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ON THE EVALUATION OF MATSUBARA SUMS

OLIVIER ESPINOSA

Abstract. Given a connected (multi)graph G, consisting of V vertices and I
lines, we consider a class of multidimensional sums of the general form

SG :=
∞∑

n1=−∞

∞∑
n2=−∞

· · ·
∞∑

nI=−∞

δG(n1, n2, . . . , nI ; {Nv})(
n2
1 + q21

) (
n2
2 + q22

)
· · ·

(
n2
I + q2I

) ,
where the variables qi (i = 1, . . . , I) are real and positive and the variables Nv

(v = 1, . . . , V ) are integer-valued. δG(n1, n2, . . . , nI ; {Nv}) is a function valued
in {0, 1} which imposes a series of linear constraints among the summation
variables ni, determined by the topology of the graph G.

We prove that these sums, which we call Matsubara sums, can be explicitly

evaluated by applying a G-dependent linear operator Ô′
G to the evaluation

of the integral obtained from SG by replacing the discrete variables ni by
continuous real variables xi and replacing the sums by integrals.

1. Introduction

Infinite series are ubiquitous in mathematics. In particular, both elementary
and special functions are either defined in terms of an infinite series or have series
representations of one sort or another. For example, the Hurwitz zeta function is
defined by the series

(1.1) ζ(z, q) :=

∞∑
n=0

1

(n+ q)z
,

for z ∈ C,Re z > 1 and q ∈ C, q �= 0, −1, −2, . . . . The Riemann zeta function is a
special case of the Hurwitz zeta function, ζ(z) = ζ(z, 1).

Conversely, confronted with an infinite series, it is always a legitimate pursuit to
try to evaluate it in terms of known elementary or special functions. Sometimes,
as an intermediate step, the evaluation of infinite series can be reduced to the
evaluation of an integral, which may or may not have a closed form evaluation.
Consider, for instance, Plana’s summation formula [1],

(1.2)
∞∑
n=0

f(n) =
1

2
f(0) +

∫ ∞

0

f(x)dx+ i

∫ ∞

0

f(it)− f(−it)

e2πt − 1
dt,

valid under certain restrictive growth conditions for the function f in the complex
domain.
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When applied to the series (1.1), Plana’s formula leads to Hermite’s representa-
tion [2],

(1.3) ζ(z, q) =
1

2
q−z +

1

z − 1
q1−z + 2

∫ ∞

0

sin
(
z tan−1(t/q)

)
(q2 + t2)z/2 (e2πt − 1)

dt,

for Re q > 0. This representation actually provides a meromorphic extension of
ζ(z, q) to the whole complex z-plane.

A formula similar in spirit to Plana’s summation formula can be obtained by use
of contour integration and the residue theorem,

(1.4)

∞∑
n=−∞

f(n) =
1

2πi

∫
�

↓↑
2π nb(z)f(−iz)dz,

provided the function f(z) does not have poles on the imaginary axis. The contour
denoted above by ↓↑ runs parallel to the imaginary axis, upwards from the right
and downwards from the left, encircling counterclockwise all the poles (located at
z = ni, n ∈ Z) of the kernel nb(z), defined as

(1.5) nb(z) =
1

e2πz − 1
=

1

2
(cothπz − 1) .

If the function f(−iz) is such that its integral along a circular contour at infinity
vanishes, then we can evaluate the contour integral in (1.4) by splitting the original
contour ↓↑ into two closed clockwise contours, one on each side of the imaginary axis
and enclosing all the poles of f(−iz). As a simple example, consider the evaluation
of the sum

(1.6)

∞∑
n=−∞

1

n2 + q2
,

where q is a positive real variable. In this case we have the evaluation

1

2πi

∫
�

↓↑
2π nb(z)

1

−z2 + q2
dz = 2π

∑
z=±q

Res
z

[
nb(z)

1

z2 − q2

]

=
2π

2q
[nb(q)− nb(−q)] .

The identity

(1.7) nb(z) + nb(−z) + 1 = 0

can be used to obtain the known result,

(1.8)
∞∑

n=−∞

1

n2 + q2
=

π cothπq

q
.

In this paper we consider the evaluation of a class of sums, M, that generalizes
the simple sum (1.6). Each of the sums in M is defined in terms of a particular
kind of connected graph, in a way that we make explicit in the next section.

In principle, the sums in M, called Matsubara sums, can be evaluated by the re-
peated direct application of the contour integration formula (1.4), on a case-by-case
basis. However, using an algebraic identity, M. Gaudin [8] has been able to obtain
a closed form evaluation of any Matsubara sum as a sum of terms corresponding
to the trees of the corresponding graph. This is reviewed in section 4.



ON THE EVALUATION OF MATSUBARA SUMS 1711

Starting from Gaudin’s result, we prove that any Matsubara sum can be alterna-
tively evaluated by applying a linear operator to the evaluation of an integral asso-
ciated with the sum. Although this integral can also be computed using Gaudin’s
method, it is usually the case that the direct computation of the integral can be
done in a straightforward manner by other means, including symbolic manipula-
tion programs such as Mathematica or Maple. In this case the evaluation of the
corresponding sum will be notably simplified.

The general results presented in this paper are a by-product of the study of
general properties of Feynman graphs in the so-called Euclidean or imaginary-
time formalism of finite-temperature quantum field theory. In this formalism the
evaluation of each Feynman graph requires the computation of a sum of Matsubara
type. The existence of the linear operator referred to above was first conjectured
from the analysis of two general classes of Feynman graphs [6] and then established
in full generality [7]. The aim of this paper is to present the relevant mathematical
results for a readership of non-(particle) physicists. Accordingly, all references to
physical quantities have been removed.

Before defining our classM in full generality and presenting the general theorems,
we will illustrate our main results for the simplest non-trivial sum in M, which we
will call SG2

:
(1.9)

SG2
:=

∞∑
n1=−∞

∞∑
n2=−∞

δn1+n2−N,0

(n2
1 + q21) (n

2
2 + q22)

=
∞∑

n=−∞

1

(n2 + q21) ((N − n)2 + q22)
.

Here N ∈ Z and q1 > 0, q2 > 0 are real variables. The Kronecker delta symbol is
defined for n,m ∈ Z by

(1.10) δn,m =

{
1 if n = m,

0 otherwise.

A standard evaluation, by the method of residues (1.4) for example, yields

(1.11)

∞∑
n=−∞

1

(n2 + q21) ((N − n)2 + q22)
=

2π

2q12q2

[
1 + nb(q1) + nb(q2)

Ni+ q1 + q2

+
nb(q1)− nb(q2)

Ni− q1 + q2
− nb(q1)− nb(q2)

Ni+ q1 − q2
− 1 + nb(q1) + nb(q2)

Ni− q1 − q2

]
,

where nb(q) is the kernel defined in (1.5).
We note that, although written using the imaginary unit i =

√
−1, the result

is clearly real. In the form just written, it becomes easier to recognize the general
structure of the results we shall present below.

Consider the integral obtained by replacing, in the LHS of (1.11), the sum over
the discrete variable n by an integral over a continuous variable x:

IG2
:=

∫ ∞

−∞

dx

(x2 + q21) ((N − x)2 + q22)
=

π(q1 + q2)

q1q2 (N2 + (q1 + q2)2)

=
2π

2q12q2

[
1

Ni+ q1 + q2
− 1

Ni− q1 − q2

]
.

(1.12)
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It is clear from these explicit evaluations that for this simple case there is a
simple formal relation between the sum SG2

and the integral IG2
. To formulate

this relation we introduce reflection operators R̂i ≡ R̂(qi), acting on the space of
functions of the variables qj ,

(1.13) R̂(qi)f(q1, . . . , qi, . . .) = f(q1, . . . ,−qi, . . .).

For instance, we have

R̂(q1)

[
2π

2q12q2

1

Ni− q1 − q2

]
= − 2π

2q12q2

1

Ni+ q1 − q2

and

R̂(q2)

[
2π

2q12q2

1

Ni+ q1 + q2

]
= − 2π

2q12q2

1

Ni+ q1 − q2
.

In terms of the reflection operator (1.13) we have:
(1.14)

SG2
(N, q1, q2) =

[
1 + nb(q1)

(
1− R̂(q1)

)
+ nb(q2)

(
1− R̂(q2)

)]
IG2

(N, q1, q2).

For instance, the term

− 2π

2q12q2

nb(q1)

Ni+ q1 − q2
in (1.11) is generated as

− 2π

2q12q2

nb(q1)

Ni+ q1 − q2
= − nb(q1)R̂(q1)

[
− 2π

2q12q2

1

Ni− q1 − q2

]
.

It is straightforward to show that the operator
(
1− R̂1

)(
1− R̂2

)
annihilates the

integral IG2
evaluated in (1.12), that is:

(1.15)
(
1− R̂1

)(
1− R̂2

)
IG2

≡ 0,

where we have abbreviated R̂i := R̂(qi). Therefore, the operator in (1.14) that
generates the sum SG2

from the corresponding integral IG2
can be written in the

multiplicative form,

(1.16) ÔG2
=

2∏
i=1

[
1 + nbi

(
1− R̂i

)]
,

where nbi := nb(qi).
In this paper we shall prove that all the sums in the class M, to be defined in

the next section, satisfy a property similar to (1.14), with an operator of the type
(1.16).

Note 1.1. It is important to notice that whereas the evaluation (1.12) is still valid
if the variable N is extended to the real or complex domains, the same does not
happen in the case of (1.11). In the latter case one finds, for N ∈ C,

(1.17)

∞∑
n=−∞

1

(n2 + q21) ((N − n)2 + q22)
=

2π

2q12q2

[
1 + nb(q1) + nb(q2 +Ni)

Ni+ q1 + q2

+
nb(q1)− nb(q2 +Ni)

Ni− q1 + q2
− nb(q1)− nb(q2 −Ni)

Ni+ q1 − q2
− 1 + nb(q1) + nb(q2 −Ni)

Ni− q1 − q2

]
.
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Therefore it is clear that the simple relationship (1.14) only holds in the case N ∈ Z.
The Matsubara sums to be defined next will in general be functions of several integer
variables Nv. We will not consider in this paper the extension of our results to the
case Nv complex.

2. Matsubara sums

In this section we will introduce the class of sums M, whose elements we shall call
Matsubara sums. These sums were considered for the first time by T. Matsubara
[3] in his work on the statistical mechanics of quantum fields, where they appear
in connection to the evaluation of so-called Feynman diagrams. In order to give
a general definition of the class M we need to make use of some graph-theoretical
terminology.

Consider a connected graph formed by a set of V points (also called vertices)
and I edges (also called lines or arcs). We will demand that each line joins two
different vertices (that is, we exclude loops, i.e. lines that join a vertex to itself)
and that each vertex be the endpoint of at least two different lines. Any pair of
vertices can be joined by more than one line. In graph-theoretic language [4], [5],
we are considering a (V, I)-multigraph such that the degree of each vertex is at least
2.

We will restrict our attention to graphs of the type described, which we shall
call Matsubara graphs.

Let G be a Matsubara graph with V vertices and I lines. We choose for each line
a definite orientation and assign to this oriented line a positive real number qi and
an integer-valued summation variable ni. We assign to each vertex v an integer Nv

and the algebraic sum Tv :=
∑

i s
v
i ni, where

(2.1) svi =

⎧⎪⎨
⎪⎩
+1 if the line i is oriented into vertex v,

−1 if the line i is oriented away from vertex v,

0 if the line i is not incident on vertex v.

The Matsubara sum SG associated to the graph G is defined as

(2.2) SG :=

∞∑
n1=−∞

∞∑
n2=−∞

· · ·
∞∑

nI=−∞

δG(n1, n2, . . . , nI ; {Nv})
(n2

1 + q21) (n
2
2 + q22) · · · (n2

I + q2I )
.

Here δG(n1, n2, . . . , nI ; {Nv}) is a function valued in {0, 1} whose function is to
impose a series of linear constraints among the summation variables ni. It is given
explicitly by

(2.3) δG(n1, n2, . . . , nI ; {Nv}) =
V∏

v=1

δTv,Nv
,

where δm,n is the Kronecker delta defined in (1.10) above. Whenever there is no
possibility of confusion we will use the shorthand notation δG(n;N) to denote the
object δG(n1, n2, . . . , nI ; {Nv}).

Lemma 2.1. SG = 0, unless the integers Nv satisfy the relation

(2.4)

V∑
v=1

Nv = 0.
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q1

n1

N −N

n2

q2

1 2

1

2

Figure 1. The graph G2, with labeled vertices and lines (left) and
its Matsubara sum variables (right).

q1

n1

N −N

n3

q3

q2

n2

Figure 2. The graph G3 with its Matsubara sum variables.

Proof. The V equations Tv = Nv have to be satisfied simultaneously for the sum
SG not to vanish. Now, each summation variable ni (associated to line i) appears
in only two of these equations (those corresponding to the vertices on which line i
is incident), once in the form +ni and once in the form −ni. Therefore,

∑
v Tv ≡ 0

and ∑
v

Nv =
∑
v

Tv = 0. �

Hence, in order for the Matsubara sums to be considered not to vanish identically,
we shall always assume that the condition (2.4) holds.

We now give a few examples of Matsubara sums.

Example 2.2. The simplest non-trivial example of a Matsubara sum corresponds
to the (2, 2)-graph G2 containing 2 vertices joined together by two lines, with N1+
N2 ≡ 0, shown in Figure 1. Setting N1 = N , the Matsubara sum for G2 is simply
the sum SG2

defined in (1.9) in the Introduction.

Example 2.3. A slightly more complicated example of a Matsubara sum is the
one associated to the (2, 3)-graph G3, consisting of two vertices joined now by three
lines, represented in Figure 2. Again we require N2 = −N1 ≡ −N , in which case
the constraints at the vertices reduce to the single equation n1 + n2 + n3 = N .
Thus,

(2.5) SG3
(N, q1, q2, q3) =

∑
n1

∑
n2

1

(n2
1 + q21) (n

2
2 + q22) ((N − n1 − n2)2 + q23)

,
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1

2

3

4

5a

b

c

d

Figure 3. The graph G4, with labeled vertices and lines. The
orientation of the lines, not shown, is described in the text.

where it is from now on understood that the summation variables ni run from −∞
to +∞.

As was the case for the sum SG2
, it turns out that SG3

can also be generated in
a simple way from the corresponding integral IG3

, obtained by replacing the double
sum by a double integral,

IG3
(N, q1, q2, q3) =

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

1

(x2
1 + q21) (x

2
2 + q22) ((N − x1 − x2)2 + q23)

=
(2π)2

2q12q22q3

[
1

Ni+ q1 + q2 + q3
− 1

Ni− q1 − q2 − q3

]
.(2.6)

In this case, after a lengthy evaluation, we find that

(2.7) SG3
(N, q1, q2, q3) = Ô′

G3
(q1, q2, q3)IG3

(N, q1, q2, q3),

where Ô′
G3

is the operator,

Ô′
G3

= 1 + nb(q1)
(
1− R̂(q1)

)
+ nb(q2)

(
1− R̂(q2)

)
+ nb(q3)

(
1− R̂(q3)

)
+ nb(q1) nb(q2)

(
1− R̂(q1)

)(
1− R̂(q2)

)
+ nb(q1) nb(q3)

(
1− R̂(q1)

)(
1− R̂(q3)

)
+ nb(q2) nb(q3)

(
1− R̂(q2)

)(
1− R̂(q3)

)
.(2.8)

As in the case ofG2, it is direct to show that the operator
(
1−R̂1

)(
1−R̂2

)(
1−R̂3

)
annihilates IG3

:

(2.9)
(
1− R̂1

)(
1− R̂2

)(
1− R̂3

)
IG3

≡ 0.

Therefore, the operator that generates the sum SG3
from the corresponding integral

IG3
can be written in the multiplicative form,

(2.10) ÔG3
=

3∏
i=1

[
1 + nbi

(
1− R̂i

)]
.

We will prove in the following sections that the types of relationship just de-
scribed are generic for Matsubara sums.

Example 2.4. As a final, more intricate example we consider the Matsubara sum
associated to the graph G4, represented in Figure 3. G4 is a (4, 5)-graph. Its
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Matsubara sum will be a function of 3 integer variables, Na, Nb, Nc, and 5 real
positive variables, q1, . . . , q5:

(2.11) SG4
:=

∑
n1,...,n5

δn1+n2,Na
δn3−n1−n5,Nb

δ−n3−n4,Nc

(n2
1 + q21)(n

2
2 + q22)(n

2
3 + q23)(n

2
4 + q24)(n

2
5 + q25)

.

The orientation of the lines has been chosen such that line 5 flows from top to
bottom and all the rest flow from right to left. Solving for the constraints imposed
by the Kronecker deltas, we find that SG4

is equivalent to the double sum

(2.12)
∞∑

n=−∞

∞∑
m=−∞

{
1

(n2 + q21)(m
2 + q25)

× 1

((Na − n)2 + q22)((Nb + n+m)2 + q23)((Nb +Nc + n+m)2 + q24)

}
.

We shall present the explicit evaluation of this sum in section 6.

3. The main theorems

Here we state the main theorems concerning the explicit evaluation of Matsubara
sums. These results were first conjectured [6] and then proved [7] in the context of
thermal quantum field theory. Our proofs of Theorems 3.1 and 3.4 and of Lemma
3.3 rely on the explicit evaluation of both the Matsubara sum and the Matsubara
integral associated to a general graph G, which will be given in the next section.

Theorem 3.1. Let G be a Matsubara graph. Let {qi}, i = 1, . . . , I be the set of
positive real values associated to the lines of G and {Nv}, v = 1, . . . , V be the set of
integer values associated to the vertices of G. We assume the condition

∑
v Nv = 0

to hold. Then the Matsubara sum of G, SG({Nv}, {qi}), can be explicitly evaluated
as

(3.1) SG({Nv}, {qi}) = ÔG({qi})IG({Nv}, {qi}),

where

(3.2) ÔG({qi}) =
I∏

i=1

[
1 + nbi

(
1− R̂i

)]
,

and IG({Nv}, {qi}) is the Matsubara integral of G.

Upon expansion of the product, the operator ÔG can be seen to contain one or
more terms that individually annihilate the Matsubara integral IG, so that actually
the operator ÔG can be made “smaller”. To state this result we need the following
graph-theoretical definition [5]:

Definition 3.2. A cutset of the (connected) graph G is a set of lines whose removal
from the graph results in a disconnected graph.

Lemma 3.3. Let C be a cutset of the graph G. Then the operator

(3.3) ÂC =
∏
i∈C

(
1− R̂i

)
annihilates the Matsubara integral IG associated to the graph G.
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Theorem 3.4. Let the conditions of Theorem 3.1 hold and let L := I − V + 1 be
the number of independent cycles of the graph G. Then the relationship between
the Matsubara sum SG({Nv}, {qi}) and integral IG({Nv}, {qi}) can alternatively be
written as

(3.4) SG({Nv}, {qi}) = Ô′
G({qi})IG({Nv}, {qi}),

where

Ô′
G({qi}) := 1+

I∑
i=1

nbi
(
1− R̂i

)
+

∑′

〈i1,i2〉
nbi1 nbi2

(
1− R̂i1

)(
1− R̂i2

)

+ · · ·+
∑′

〈i1,...,iL〉

L∏
l=1

nbil
(
1− R̂il

)
.

(3.5)

Here the indices i1, i2, . . . run from 1 to I (the number of lines of the graph G)
and the symbol 〈i1, . . . , ik〉 stands for an unordered k-tuple with no repeated indices,
representing a particular set of lines. The prime on the summation symbols implies
that the tuples that are cutsets of the graph G are to be excluded from the sums.

Note that the operator Ô′
G({qi}) contains products of at most L kernel factors

nb(qi), since for a graph with L independent cycles the maximum number of lines
that can be removed without disconnecting the graph is precisely L.1

4. Explicit evaluations of SG and IG

We notice that the main building block of a Matsubara sum can be expressed as

1

n2 + q2
=

1

2q

[
1

in+ q
− 1

in− q

]

=
1

2q

(
1− R̂(q)

) 1

q − in
.(4.1)

The representation above would allow us to trade the original quadratic denom-
inators in the Matsubara sum (2.2) for linear denominators (in the summation
variables ni), and express SG in the form

(4.2) SG =
I∏

k=1

1

2qk

(
1− R̂k

) ∑
n1,...,nI

δG(n1, n2, . . . , nI ; {Nv})
(q1 − in1)(q2 − in2) · · · (qI − inI)

,

were it not for the fact that the new sum does not converge in general. However,
as we shall see, it is possible to regulate the sum in (4.2) in such a way that it is
well defined.

The main results that will allow us to obtain a complete evaluation of the Mat-
subara sum SG were obtained by M. Gaudin [8] long ago, and will be reviewed
in this section, adapted to the context of this paper. Gaudin showed that the
summand in (4.2) admits a decomposition into partial fractions, which allows us
to systematically eliminate the constraints imposed by the delta function δG(n;N)
and perform the sum explicitly.

1The number of independent cycles of a graph G is called the cycle rank or cyclomatic number
in graph theory and is given by m(G) = I − V + 1 if G is connected [5].
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n1

n3

n2

n1

n3

n2

n1

n3

n2

Figure 4. The trees of the graph G3, shown as dark lines.

The generalized Kronecker delta δG(n;N) enforces V −1 independent linear rela-
tions satisfied by the summation variables ni, also involving the vertex parameters
Nv, which we shall write as

Rv(N,n) = 0, for v = 1, . . . , V − 1.(4.3)

This system of linear equations allows us to solve for V − 1 of the I summation
variables in terms of a set of L = I−V +1 independent ones. In general, there will
be several distinct ways of choosing this set of independent summation variables. As
shown by Gaudin [8], there is a one-to-one correspondence between the collection
of all possible sets of independent summation variables and the set of all trees
associated to the given (connected) graph G.

A tree2 is a set of lines of G joining all vertices and making a connected graph
with no cycles. Every tree T will contain V − 1 lines and its complement T (the
set of lines of G which do not belong to T ) will have L lines. The summation
variables corresponding to the L lines in T , denoted by nl, will constitute a set of
independent summation variables in terms of which the system (4.3) can be solved.
The summation variables associated with the lines of the tree, nj , with j ∈ T ,
will be linear combinations of the independent summation variables and the vertex
parameters,

(4.4) nj = ΩT
j (N,nl), j ∈ T , l ∈ T .

As a simple example, in Figure 4 we show the three possible trees for the (2, 3)-
graph G3. In this case, each tree T is composed of a single line (heavy line), whose
summation variable can be expressed, after solving for the constraint at one of the
vertices imposed by the delta function, in terms of the two independent summation
variables associated with the (thin) lines that do not belong to the tree (these are
the lines in T ) and the vertex parameter N . For instance, for the first tree we have
n1 = N − n2 − n3, etc.

Similarly, for the (4, 5)-graph G4 of Figure 3 there exist 8 trees, shown in Figure
5. The system of equations determined by the Kronecker deltas in the definition
(2.11) of SG4

can be solved in terms of 8 different sets of independent variables,
one for each of the 8 trees. For instance, the solution that led to the double sum
(2.12), n2 = Na−n1, n3 = Nb+n1+n5 and n4 = −Nb−Nc−n1−n5, corresponds
to the last tree in Figure 5 (the one in the bottom-right corner).

2More accurately, a spanning tree, in the graph-theoretical terminology.
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Figure 5. The 8 trees of the graph G4, represented by the dark lines.

Gaudin’s main insight is the following identity for the rational function appearing
in (4.2):

(4.5)

I∏
k=1

1

qk − ink
δG(n;N) =

∑
T

∏
j∈T

1

qj − iΩT
j (N,−iql)

∏
l∈T

1

ql − inl
δG(n;N).

For instance, for the case of the Matsubara sum SG3
, this identity takes the form

(4.6)
δ (N − n1 − n2 − n3)

(q1 − in1) (q2 − in2) (q3 − in3)
=

δ (N − n1 − n2 − n3)

(q1 + q2 + q3 − iN)

×
{

1

(q2 − in2) (q3 − in3)
+

1

(q1 − in1) (q3 − in3)
+

1

(q1 − in1) (q2 − in2)

}
.

We note that the identity (4.5) holds only in the presence of the constraint δG(n;N)
on the variables ni. For instance, in the example above,

1

(q2 − in2) (q3 − in3)
+

1

(q1 − in1) (q3 − in3)
+

1

(q1 − in1) (q2 − in2)

=
q1 + q2 + q3 − i(n1 + n2 + n3)

(q1 − in1)(q2 − in2)(q3 − in3)
,

so that the identity (4.6) holds only if the constraint n1 + n2 + n3 = N is imposed.
Once we have applied Gaudin’s identity (4.5) to the Matsubara sum (4.2), we

proceed to perform the sum over the variables ni. Since, for each tree, the sum-
mation variables nj , j ∈ T , appear now only in the constraint δG(n;N), we have
formally

(4.7)
∑

n1,...,nI

∏
l∈T

1

ql − inl
δG(n;N) =

∑
nl:l∈T

∏
l∈T

1

ql − inl
=

∏
l∈T

∑
nl

1

ql − inl
.

Unfortunately, the sum

(4.8)
∞∑

n=−∞

1

q − in

diverges, and the result above does not make sense.
However, as shown in [8], it is possible to regulate the sum in such a way that

all intermediate steps are mathematically sound. The basic idea is to associate to
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each line i in the graph G a real parameter τi, which at the end will be taken to
zero, and consider the sum

(4.9) Sτ
G :=

∑
n1,...,nI

ei(n1τ1+n2τ2+···+nIτI)

(n2
1 + q21) (n

2
2 + q22) · · · (n2

I + q2I )
δG(n1, n2, . . . , nI ; {Nv}),

so that

(4.10) SG = lim
τi→0

Sτ
G.

The subtle issues related to the interchange in the order of limits and summations
are discussed at length in [8]. Now we have

(4.11)
∑

n1,...,nI

∏
l∈T

1

ql − inl
δG(n;N)ei(n1τ1+n2τ2+···+nIτI) =

∏
l∈T

∑
nl

einlTl

ql − inl
,

where Tl is a linear combination of the τi, whose particular form depends on the tree
T being considered. It can be shown that Tl is the algebraic sum of the τ -variables
of the lines of the cycle T ∪ {l} (formed by adding the line l to the tree T ): τk will
be preceded by a plus sign if the line k has the same orientation as the line l, and
by a minus sign otherwise.

The sum that we now need is given by

(4.12)
∑
n

einT

q − in
= 2πεnb(εq)e

Tq,

where ε is the sign of T (ε = +1 if T > 0 and ε = −1 if T < 0) and nb(z) is the
kernel introduced in (1.5). Clearly, only ε matters when the regulator T is taken
to zero.

The final result for the Matsubara sum for the graph G is therefore

(4.13) SG =

I∏
k=1

1

2qk

(
1− R̂k

)∑
T

⎛
⎝∏

j∈T

1

qj − iΩT
j (N,−iql)

∏
l∈T

2πεl nb(εlql)

⎞
⎠ ,

where εl is the sign of the variable Tl associated to each line l ∈ T in the process
of regulation.

Consider now the (regulated) Matsubara integral associated to the graph G:

(4.14) IτG :=

∫
· · ·

∫
dx1dx2 · · · dxI

ei(x1τ1+x2τ2+···+xIτI)

(x2
1 + q21) (x

2
2 + q22) · · · (x2

I + q2I )
δG(x1, x2, . . . , xI ; {Nv}),

so that

(4.15) IG = lim
τi→0

IτG.

Now δG stands for a product of Dirac delta functions, and the integrals over the
x-variables run from −∞ to ∞.
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All the algebraic manipulations given above for the sum SG hold here unchanged,
leading us to

(4.16)

∫
· · ·

∫
dx1dx2 · · · dxI

∏
l∈T

1

ql − ixl
δG(x,N)ei(x1τ1+x2τ2+···+xIτI)

=
∏
l∈T

∫ ∞

−∞

eixlTl

ql − ixl
dxl,

where Tl is the same linear combination of the τi as in the case of SG.
The integral that we need now is given by

(4.17)

∫ ∞

−∞

eixT

q − ix
dx = −2πε ϑ(−εq)eTq,

where ε is the sign of T , and ϑ(q) is the Heaviside step function. Clearly, again
only ε matters when the regulator T is taken to zero.

So,

(4.18) IG =

I∏
k=1

1

2qk

(
1− R̂k

)∑
T

⎛
⎝∏

j∈T

1

qj − iΩT
j (N,−iql)

∏
l∈T

−2πεl ϑ(−εlql)

⎞
⎠ .

5. The relation between SG and IG

In this section we use the explicit evaluations obtained in the previous section to
prove the theorems stated in section 3, which provide an efficient way of computing
the Matsubara sum SG in terms of the Matsubara integral IG.

Lemma 5.1. The Matsubara integral can be written as

(5.1) IG =
∑
T

ITG ,

where

(5.2) ITG = (2π)L
I∏

k=1

1

2qk

∏
j∈T

(
1− R̂j

) 1

qj − iΩT
j (N, iεlql)

is the contribution to IG associated to the tree T .

Proof. Assuming ql > 0 we have(
1− R̂l

)
[ϑ(−εlql)f(ql)] = ϑ(−εlql)f(ql)− ϑ(εlql)f(−ql)

= −εlf(−εlql).

Therefore, for each tree T , the action of the operators
(
1− R̂l

)
with l ∈ T can be

performed explicitly in (4.18), to yield (5.2). Note that ε2l = 1 and that there are

L = I − V + 1 factors (2π) (one for each line in T ). �

Lemma 5.2. For q ∈ R, q �= 0, the function nb(q) satisfies the identity

(5.3) nb(q) = −ϑ(−q) + ε(q) nb(|q|),
where ε(q) is the sign of q.

Proof. For q > 0, (5.3) is a trivial identity. For q < 0, nb(q) = −1 − nb(−q) is an
immediate consequence of the identity (1.7). �
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Lemma 5.3. The Matsubara sum SG can be written as

(5.4) SG =
∑
T

∏
l∈T

[1 + nbl
(
1− R̂l

)
]ITG .

Proof. The identity (5.3) implies that

nb(εlql) = −ϑ(−εlql) + εl ε(ql) nb(|ql|).

Then, as we computed already, for ql > 0 and an arbitrary function f(q),(
1− R̂l

)
[−ϑ(−εlql)f(ql)] = εlf(−εlql),

whereas(
1− R̂l

)
[εl ε(ql) nb(|ql|)f(ql)] = εl nb(|ql|) [ε(ql)f(ql)− ε(−ql)f(−ql)]

= εl ε(ql) nb(|ql|)
(
1 + R̂l

)
f(ql).

But (
1 + R̂l

)
f(−εlql) =

(
1 + R̂l

)
f(ql).

Therefore, for ql > 0,(
1− R̂l

)
nb(εlql)f(ql) = εl

[
1 + nbl

(
1 + R̂l

)]
f(−εlql),

and hence

∏
l∈T

(
1− R̂l

)⎛⎝∏
j∈T

1

qj − iΩT
j (N,−iql)

∏
l∈T

2πεl nb(εlql)

⎞
⎠

= (2π)L
∏
l∈T

[
1 + nbl

(
1 + R̂l

)] ∏
j∈T

1

qj − iΩT
j (N, iεlql)

.

The final result follows from the basic property,

�(5.5)
1

q

(
1 + R̂(q)

)
f(q) =

(
1− R̂(q)

) [1
q
f(q)

]
.

Now we are finally in a position to prove the propositions of section 3:

Proof of Theorem 3.1. We know from Lemma 5.3 that

(5.6) SG =
∑
T

∏
l∈T

[1 + nbl
(
1− R̂l

)
]ITG .

But the identity

(
1− R̂(q)

)1
q

(
1− R̂(q)

)
=

1

q

(
1 + R̂(q)

)(
1− R̂(q)

)
≡ 0

implies that all the operators
(
1−R̂j

)
, with j ∈ T , annihilate each of the ITG defined

in (5.2). Therefore we can extend the product indices in (5.6) from l ∈ T to i ∈ G:∑
T

∏
l∈T

[1 + nbl
(
1− R̂l

)
]ITG =

∑
T

∏
i∈G

[1 + nbi
(
1− R̂i

)
]ITG .
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But now observe that the operator acting on ITG is T -independent, so that we can
transpose it with the sum over trees to get

SG =
∏
i∈G

[1 + nbi
(
1− R̂i

)
]
∑
T

ITG

=
∏
i∈G

[1 + nbi
(
1− R̂i

)
]IG,

according to (5.1). �

Proof of Lemma 3.3. Let C be a cutset of the graph G and let T be an arbitrary
tree of G. The lines in C cannot all belong to T since then C would not be a cutset
(recall that T is a connected graph). Therefore, at least one of the lines in C must
belong to the tree T , say k. But then the operator

ÂC =
∏
i∈C

(
1− R̂i

)
will contain the factor

(
1 − R̂k

)
, which annihilates ITG in (5.2). Since this will be

true for any tree, the result follows. �

Proof of Theorem 3.4. The expansion of the product defining the operator ÔG gen-
erates an expression similar to (3.5), but where the sums run over all possible tuples
of lines at each order. But according to Lemma 3.3, if a tuple C is a cutset of G, then
the corresponding term will contain the operator ÂC , defined above, which annihi-
lates the integral IG. So the tuples corresponding to cutsets can safely be omitted
from ÔG. Finally, since a tree of G has V − 1 lines, then the maximum number of
lines that we can remove without disconnecting the graph G is L = I − (V − 1). So
all tuples with more than L lines will be cutsets, and hence the expansion of the
product defining the operator ÔG ends at degree L. �

6. Example application: The calculation of SG4

According to the results presented in this paper, we can compute the sum SG4

defined in (2.11) by first computing its associated integral IG4
and then acting on

it with the operator Ô′
G4

. According to Theorem 3.4, this operator is given by

Ô′
G4

= 1 + nb1
(
1− R̂1

)
+ nb2

(
1− R̂2

)
+ nb3

(
1− R̂3

)
+ nb4

(
1− R̂4

)
+ nb5

(
1− R̂5

)
+ nb2 nb4

(
1− R̂2

)(
1− R̂4

)
+ nb2 nb3

(
1− R̂2

)(
1− R̂3

)
+ nb1 nb3

(
1− R̂1

)(
1− R̂3

)
+ nb1 nb4

(
1− R̂1

)(
1− R̂4

)
+ nb4 nb5

(
1− R̂4

)(
1− R̂5

)
+ nb3 nb5

(
1− R̂3

)(
1− R̂5

)
+ nb2 nb5

(
1− R̂2

)(
1− R̂5

)
+ nb1 nb5

(
1− R̂1

)(
1− R̂5

)
,

(6.1)

where, as before, nbi ≡ nb(qi) and R̂i ≡ R̂(qi).

We note that the operator Ô′
G4

ends at degree 2, since the removal of 3 or more
lines from G4 disconnects the graph. Moreover, each of the quadratic terms in (6.1)
is associated with one of the trees of G4 shown in Figure 5. Note that there are no
quadratic terms in (6.1) with index combinations 〈1, 2〉 and 〈3, 4〉, since these are
cutsets of G4 (see Figure 3 for the labeling).
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The integral IG4
associated to G4 is given by (see (2.12))

(6.2) IG4
:=

∫ ∞

−∞
dx

∫ ∞

−∞
dy

{
1

(x2 + q21)((Na − x)2 + q22)

× 1

((Nb + x+ y)2 + q23)((Nb +Nc + x+ y)2 + q24)(y
2 + q25)

}
.

This integral can be calculated following Gaudin’s approach explained in section 4
or by directly performing the x and y integrations, one after the other, as we do
now. Again, it is convenient to work with linear rather than quadratic denominators
by expressing

(6.3)
1

x2 + q2
=

1

2q

∑
ε=±1

ε

ix+ εq
,

so that

IG4
=

1

2q12q22q32q42q5

∑
ε1,...ε5=±1

∫ ∞

−∞
dx

{
ε1

(ix+ ε1q1)

ε2
(i(Na − x) + ε2q2)

×
∫ ∞

−∞
dy

ε3
(i(Nb + x+ y) + ε3q3)

ε4
(i(Nb +Nc + x+ y) + ε4q4)

ε5
(iy + ε5q5)

}
.

Using Mathematica 7 to perform first the y-integral and then the x-integral we
find

(6.4) IG4
=

(2π)2

2q12q22q32q42q5
×[

1

(iNa + q1 + q2)(i(Na +Nb) + q2 + q3 + q5)(i(Na +Nb +Nc) + q2 + q4 + q5)

+
1

(iNb + q1 + q3 + q5)(i(Na +Nb) + q2 + q3 + q5)(i(Na +Nb +Nc) + q2 + q4 + q5)

− 1

(iNa − q1 − q2)(iNb + q1 + q3 + q5)(i(Nb +Nc) + q1 + q4 + q5)

+
1

(iNb + q1 + q3 + q5)(i(Nb +Nc) + q1 + q4 + q5)(i(Na +Nb +Nc) + q2 + q4 + q5)

− 1

(iNa − q1 − q2)(iNc − q3 − q4)(i(Na +Nb +Nc)− q2 − q4 − q5)

+
1

(iNa + q1 + q2)(iNc − q3 − q4)(i(Nb +Nc)− q1 − q4 − q5)

− 1

(iNc − q3 − q4)(i(Nb +Nc)− q1 − q4 − q5)(i(Na +Nb +Nc)− q2 − q4 − q5)

− 1

(iNa + q1 + q2)(iNc − q3 − q4)(i(Na +Nb) + q2 + q3 + q5)

+
1

(iNa − q1 − q2)(iNc − q3 − q4)(iNb + q1 + q3 + q5)

− 1

(iNc − q3 − q4)(iNb + q1 + q3 + q5)(i(Na +Nb) + q2 + q3 + q5)

+
1

(iNa − q1 − q2)(iNc + q3 + q4)(i(Na +Nb)− q2 − q3 − q5)
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− 1

(iNa + q1 + q2)(iNc + q3 + q4)(iNb − q1 − q3 − q5)

+
1

(iNc + q3 + q4)(iNb − q1 − q3 − q5)(i(Na +Nb)− q2 − q3 − q5)

+
1

(iNa + q1 + q2)(iNc + q3 + q4)(i(Na +Nb +Nc) + q2 + q4 + q5)

− 1

(iNa − q1 − q2)(iNc + q3 + q4)(i(Nb +Nc) + q1 + q4 + q5)

+
1

(iNc + q3 + q4)(i(Nb +Nc) + q1 + q4 + q5)(i(Na +Nb +Nc) + q2 + q4 + q5)

− 1

(iNa − q1 − q2)(i(Na +Nb)− q2 − q3 − q5)(i(Na +Nb +Nc)− q2 − q4 − q5)

− 1

(iNb − q1 − q3 − q5)(i(Na +Nb)− q2 − q3 − q5)(i(Na +Nb +Nc)− q2 − q4 − q5)

+
1

(iNa + q1 + q2)(iNb − q1 − q3 − q5)(i(Nb +Nc)− q1 − q4 − q5)

− 1

(iNb−q1−q3−q5)(i(Nb+Nc)−q1−q4−q5)(i(Na+Nb+Nc)−q2−q4 − q5)

]
.

The explicit evaluation of sum SG4
can be obtained from the application of the

operator Ô′
G4

given by (6.1) to the result (6.4) for the integral IG4
. The resulting

expression would fill several pages of this journal, but it can be easily generated by
a symbolic manipulation program such as Mathematica.
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