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ASYMPTOTIC ANALYSIS OF A GENERALIZED RICHARDSON

EXTRAPOLATION PROCESS ON LINEAR SEQUENCES

AVRAM SIDI

Abstract. In this work, we give a detailed convergence and stability analysis
for the author’s generalized Richardson extrapolation process GREP(m) as this
is being applied to linearly convergent or divergent infinite sequences {An},
where An ∼ A +

∑m
k=1 ζ

n
k

∑∞
i=0 βkin

γk−i as n → ∞, ζk �= 1 being distinct.
The quantity we would like to compute is A, whether it is the limit or antilimit
of {An}. Such sequences arise, for example, as partial sums of power series
and of Fourier series of functions that have algebraic and/or logarithmic branch

singularities. Specifically, we define the GREP(m) approximation A
(m,j)
n to A,

with n = (n1, . . . , nm) and α > 0, via the linear systems

Al = A
(m,j)
n +

∑m
k=1 ζ

l
k

∑nk−1
i=0 β̄ki(α+ l)γk−i, j ≤ l ≤ j +

∑m
k=1 nk,

where β̄ki are additional unknowns. We study the convergence and stabil-

ity properties of A
(m,j)
n as j → ∞. We show, in particular, that A

(m,j)
n −

A =
∑m

k=1 O(ζjk jγk−2nk ) as j → ∞. When compared with Aj − A =∑m
k=1 O(ζjk jγk ) as j → ∞, this result shows that GREP(m) is a true con-

vergence acceleration method for the sequences considered. In addition, we
show that GREP(m) is stable for the case being studied, and we also quantify
its stability properties. The results of this work are the first ones pertaining
to GREP(m) with m > 1.

1. Introduction

In [9], the author introduced a generalization of the Richardson extrapolation
process and discussed some of its convergence and stability properties. This gen-
eralization — called GREP(m) with m a positive integer, or GREP for short —
has proved to be very useful in accelerating the convergence of a large class of
infinite sequences with varying degrees of complexity in their behavior. Such se-
quences arise naturally in the summation of infinite series and in the computation of
infinite-range integrals that may be oscillatory or monotonic, or that may behave in
a more complicated manner. They also arise from trapezoidal rule approximations
of finite-range simple or multiple integrals of regular or singular functions, etc. In
addition, these sequences may be convergent or divergent. For an up-to-date treat-
ment of GREP, its special cases, related algorithms, and its analytical theory, see
the author’s book [19, Chapters 4–13].

Received by the editor April 30, 2009 and, in revised form, June 25, 2009.
2000 Mathematics Subject Classification. Primary 40A05, 40A25, 41A60, 65B05, 65B10.
Key words and phrases. Acceleration of convergence, generalized Richardson extrapolation

process, GREP(m), power series, Fourier series, asymptotic expansions.

c©2009 American Mathematical Society
Reverts to public domain 28 years from publication

1681



1682 AVRAM SIDI

The sequences for which GREP(m) is useful arise from, and are identified with,
functions A(y) that belong to some general sets that were introduced in [9] and

denoted there by F(m). This set is defined as follows:

Definition 1.1. A function A(y), defined for 0 < y ≤ b, for some b > 0, where
y can be a discrete or continuous variable, belongs to the set F(m) if there exist
functions φk(y) and βk(y), k = 1, . . . ,m, and a constant A, such that

(1.1) A(y) = A+
m∑

k=1

φk(y)βk(y),

where the βk(ξ), as functions of the continuous variable ξ, are continuous in [0, ξ̂]

for some ξ̂ ≤ b, and have Poincaré-type asymptotic expansions (see, Olver [7], for
example) of the form

(1.2) βk(ξ) ∼
∞∑
i=0

βkiξ
irk as ξ → 0+, rk > 0, k = 1, . . . ,m.

We assume that we know, or are able to compute, A(y) only for y > 0 but not
for y = 0. In case limy→0+ φk(y) = 0, k = 1, . . . ,m, limy→0+ A(y) exists and equals
A. Otherwise, limy→0+ A(y) does not exist, in which case we call A the antilimit
of A(y). In many applications, the antilimit has a relevant meaning. We would like
to compute A whether it is the limit or antilimit of A(y). This can be achieved in
a very efficient way by GREP(m), assuming that we know A(y) along with φk(y)
and rk, k = 1, . . . ,m. The definition of GREP(m) is given next.

Definition 1.2. Let A(y) belong to F(m) with the notation of Definition 1.1.
Pick a decreasing positive sequence {yl} ⊂ (0, b] such that liml→∞ yl = 0. Let
n ≡ (n1, n2, . . . , nm), where n1, . . . , nm are nonnegative integers. Then, the ap-

proximation A
(m,j)
n to A, whether A is the limit or the antilimit of A(y) as y → 0+,

is defined through the linear system

(1.3) A(yl) = A(m,j)
n +

m∑
k=1

φk(yl)

nk−1∑
i=0

β̄kiy
irk
l , j ≤ l ≤ j +N, N =

m∑
k=1

nk,

β̄ki being the additional (auxiliary) N unknowns. In (1.3),
∑−1

i=0 ci ≡ 0 so that

A
(m,j)
(0,...,0) = A(yj) for all j. This generalization of the Richardson extrapolation

process that generates the A
(m,j)
n is denoted GREP(m).1

There are two different limiting processes concerning the A
(m,j)
n : (i) that in which

n = (n1, . . . , nm) is fixed and j → ∞, called Process I, and (ii) that in which j is
fixed and nk → ∞, k = 1, . . . ,m, simultaneously, called Process II. Of these,
Process II is the one that is the most effective; therefore, we normally use the

sequence {A(m,j)
(ν,...,ν)}∞ν=0 to approximate A.

Before we continue, we would like to note that, because m ≥ 1 is an arbitrary
integer, F(m) includes most functions that arise in applications, hence is a very
comprehensive set. Some special cases of GREP(m) are the D transformation for

1For the classical (polynomial) Richardson extrapolation process that covers Romberg inte-
gration among other applications, we have m = 1 and φ1(y) = yr1 , both in Definition 1.1 and in
Definition 1.2. See Davis and Rabinowitz [3, Chapter 6], Stoer and Bulirsch [21, Chapter 3], or
Sidi [19, Chapter 2], for example.
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computing infinite-range integrals and the d transformation for summing infinite

series, both of which are due to Levin and Sidi [5], and the D, D̃, W , and mW
transformations of the author [11], [12], [13], [17], for infinite-range (mostly oscil-
latory) integrals. The summation of power series and generalized Fourier series by
the d transformation is the subject of Sidi and Levin [20] and Sidi [14]. These trans-
formations can also be used for computing multidimensional infinite-range integrals
and for summing multidimensional infinite series; see Levin and Sidi [6].

The convergence and stability analysis of GREP(m) with m = 1 has been studied
extensively by the author. The study in [15] and [18] concerns functions A(y) that
vary slowly (or behave smoothly) as y → 0. The study in papers [10]–[14] mentioned
above concerns functions A(y) in F(1) that vary quickly (e.g., behave exponentially
or oscillate) as y → 0. See also [19, Chapters 8 and 9]. So far, a detailed study of
GREP(m) with m > 1, for functions A(y) that are in F(m) has not appeared in the
literature, however. Such a study has proved to be exceedingly difficult because of
the highly nonlinear nature of GREP(m) with m > 1.

The purpose of the present paper is to give the very first results pertaining to
GREP(m) with m > 1 when A(y) is in F(m) and is varying quickly as y → 0.
Specifically, we consider sequences {An}∞n=0 that are such that

An = A+
m∑

k=1

ζnkBk(n), Bk(n) ∼
∞∑
i=0

βkin
γk−i as n → ∞,

ζk 	= 1 distinct and arbitrary, γk arbitrary.

(1.4)

Everything here can be real or complex. Comparing with Definition 1.1, we have
the following analogy: y = n−1, A(y) = An, φk(y) = ζnk nγk , rk = 1, k = 1, . . . ,m.
Of course, y is necessarily discrete and takes on the values 1, 1/2, 1/3, . . . , only.
Note that φk(y) are quickly varying because φk(y) = yγk exp[(log ζk)/y] and ζk 	= 1.
More specifically, (i) in case ζk is real and 0 < ζk < 1, φk(y) → 0 exponentially
and monotonically as y → 0, (ii) in case ζk is real and −1 < ζk < 0, φk(y) →
0 exponentially and oscillates about zero as y → 0, and (iii) in case |ζk| = 1,
hence ζk = eiθk , φk(y) = yγk exp(iθk/y) tends to zero or remains bounded or tends
to infinity as y → 0, depending on whether 
γk < 0 or 
γk = 0 or 
γk > 0,
respectively; φk(y) oscillates about zero in all three cases.

To allow for more generality in the definition of GREP(m), as it is applied in the
next paragraph to the sequence {An} described in (1.4), we introduce a parameter
α > 0 that is at our disposal and reexpand the functions Bk(n) in (1.4) as in

(1.5) An = A+

m∑
k=1

ζnkBk(n), Bk(n) ∼
∞∑
i=0

β̂ki(α+ n)γk−i as n → ∞.2

Choosing yl = 1/(α + l), l = 0, 1, . . . , and taking n = (n1, . . . , nm), where the

ni are positive integers, we define A
(m,j)
n , the GREP(m) approximation to A, along

2Note that both sequences {nγk−i}∞i=0 and {(α+n)γk−i}∞i=0 are asymptotic scales as n → ∞,
and since Bk(n) can be expanded in the former as in (1.4), it can be expanded in the latter as in

(1.5) as well. The β̂ki in (1.5) are uniquely determined from the βki in (1.4), and vice versa. For

example, βk0 = β̂k0, βk1 = β̂k1 + αγkβ̂k0, βk2 = β̂k2 + α(γk − 1)β̂k1 + 1
2
α2γk(γk − 1)β̂k0, and so

on.
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with the auxiliary unknowns β̄ki, via the linear equations [cf. (1.3)]

(1.6) Al = A(m,j)
n +

m∑
k=1

ζlk

nk−1∑
i=0

β̄ki(α+ l)γk−i, j ≤ l ≤ j +N, N =
m∑

k=1

nk.

We know that (see Sidi [9] and [19, Theorem 4.2.2, p. 86]) A
(m,j)
n can be expressed

as in

(1.7) A(m,j)
n =

N∑
i=0

γ
(m,j)
ni Aj+i,

for some scalars γ
(m,j)
ni that satisfy

(1.8)

N∑
i=0

γ
(m,j)
ni = 1.

The stability of the extrapolation process is ultimately connected with the quantity

(1.9) Γ(m,j)
n =

N∑
i=0

∣∣γ(m,j)
ni

∣∣,
which determines the rate at which errors in the Al propagate into A

(m,j)
n . Note

that, in view of (1.8), we have Γ
(m,j)
n ≥ 1 always. We also know that the larger

Γ
(m,j)
n is, the less reliable the computed A

(m,j)
n is. For a detailed discussion of

stability in extrapolation, see [19, Section 0.5]. We will only mention that in case
the Al are of approximately the same order of magnitude and are known with an

accuracy of t decimal digits, and Γ
(m,j)
n is of order 10s, the computed and the exact

A
(m,j)
n will agree up to t−s digits approximately; as a result, the computed A

(m,j)
n ,

as an approximation to A, will have at most t− s correct digits.

In this work, we study the convergence and stability behavior of A
(m,j)
n under

Process I. Specifically, we analyze A
(m,j)
n −A and Γ

(m,j)
n as j → ∞. To this effect,

following some examples of sequences {An} that satisfy (1.4) that we give in the

next section, in Section 3, we give determinant representations of A
(m,j)
n −A and of

a polynomial related to the stability of A
(m,j)
n . Following that, in Section 4, we state

the main results concerning Process I, that is, as j → ∞ while n = (n1, . . . , nm) is
being held fixed. In Section 5, using the representations of Section 3, we give the
proofs of the main results. In view of the main results of Section 4, in Section 6,
we address the problems of slow convergence and reduced numerical stability in
GREP(m) that are present when ζs ≈ 1 in the complex plane for some s, and
we justify the use of the so-called arithmetic progression sampling (APS) (see [19,
Chapters 6, 10, 12, 13]) to remedy both problems.

Before proceeding further, we note that the computation of the sequence of

approximations {A(m,j)
(ν,...,ν)}∞ν=0 can be done in a very efficient manner using the

W (m) algorithm of Ford and Sidi [4]; see also [19, Chapter 7]. This algorithm is
recursive in nature and does not necessitate the direct solution of the linear system
in (1.6). The appendix to [4] contains a FORTRAN 77 program that implements the
d transformation using the W (m) algorithm. The W (m) algorithm is implemented
via SUBROUTINE WMALGM in this program. The program appears also in the
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author’s book [19, Appendix I], where GREP and all the different special cases
mentioned earlier in this section are covered in great detail.

2. Examples

Sequences {An} that behave as in (1.4) with m = 1, that is,

(2.1) An ∼ A+ ζn
∞∑
i=0

βin
γ−i as n → ∞, ζ 	= 1 and γ arbitrary,

are quite common and are said to be linearly convergent in case limn→∞ An exists.
limn→∞ An exists if either (i) |ζ| < 1 or (ii) |ζ| = 1 and 
γ < 0. In case this
limit exists, it is equal to A. Such sequences arise as partial sums of infinite series∑∞

s=1 as, namely, An =
∑n

s=1 as, n = 1, 2, . . . , when an satisfies

(2.2) an ∼ ζn
∞∑
i=0

αin
γ−i as n → ∞, ζ 	= 1 and γ arbitrary.

See [19, Theorem 6.6.6, p. 145] for a proof of this statement.
In view of the above, it is clear that if An =

∑n
s=1 as, where

an =

m∑
k=1

a(k)n ; a(k)n ∼ ζnk

∞∑
i=0

αkin
γk−i as n → ∞,

ζk 	= 1 distinct and arbitrary, γk arbitrary,

(2.3)

then An has an asymptotic expansion of the form given in (1.4). Here are two
examples:

• Analytic functions that havem algebraic branch points in the complex plane
are one source of infinite series

∑∞
s=0 as that satisfy (2.3). For example, if

f(z) = c1 log(1−λ1z)+c2(1+λ2z)
ω, then f(z) has the Maclaurin expansion

f(z) =

∞∑
n=0

an, a0 = c2, an = −c1(λ1z)
nn−1 + c2(λ2z)

n

(
ω

n

)
, n ≥ 1.

Thus, ζ1 = λ1z and γ1 = −1. From the fact that (see Abramowitz and
Stegun [1, Eq. 6.1.47, p. 257])(

ω

n

)
= (−1)n

Γ(n− ω)

Γ(−ω)Γ(n+ 1)

∼ (−1)n
∞∑
i=0

cin
−ω−1−i as n → ∞, c0 =

1

Γ(−ω)
,

it follows that ζ2 = −λ2z and γ2 = −ω − 1. Of course, m = 2 in this case.
Here Γ(z) stands for the Gamma function.

• Another source of interest is the set of Fourier series of functions that
have a number of algebraic singularities. To be more specific, let f(x) be
defined on [−π, π], except at some points x1, x2, . . . , in [−π, π], where it
has algebraic singularities of different strengths. Then its Fourier series is
given by

∑∞
−∞ cne

inx, where cn = 1
2π

∫ π

−π
f(x)e−inx dx. The partial sums
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∑n
s=−n cse

isx of this series are as in (1.4). As an example, let us consider

f(x) =

⎧⎪⎨
⎪⎩
0 −π ≤ x < a,

(x− a)ω1(b− x)ω2g(x) a ≤ x ≤ b

0 b < x ≤ π,

,

where g ∈ C∞[a, b]. That is, f(x) has algebraic singularities at x = a and
x = b. For simplicity, let us assume that f(x) is real so that twice the real
part of the series 1

2c0 +
∑∞

n=0 cne
inx gives f(x). It is known that (see, for

example, Bleistein and Handelsman [2, Section 3.4])

cn ∼ e−ina
∞∑
s=0

b1sn
−ω1−1−s + e−inb

∞∑
s=0

b2sn
−ω2−1−s as n → ∞.

Thus, the partial sums An = 1
2c0 +

∑n
s=1 cse

isx are as in (1.4), with m = 2

and ζ1 = ei(x−a), ζ2 = ei(x−b), γ1 = −ω1 − 1, and γ2 = −ω2 − 1.

3. Technical preliminaries

The results in the following lemma follow from [19, Section 4.2].

Lemma 3.1. Let A
(m,j)
n be defined as in (1.6). For any scalars gi(j), define

(3.1)
∣∣ g1(j) | g2(j) | · · · | gp(j)∣∣ =

⎡
⎢⎢⎢⎣

g1(j) g2(j) · · · gp(j)
g1(j + 1) g2(j + 1) · · · gp(j + 1)

...
...

...
g1(j +N) g2(j +N) · · · gp(j +N)

⎤
⎥⎥⎥⎦ .

Clearly this is a matrix of dimension (N + 1) × p. With this notation, define the
(N + 1)× ν matrix D(ζ, γ, ν) by

(3.2) D(ζ, γ, ν) =
∣∣ ζj(α+j)γ−ν+1 | ζj(α+j)γ−ν+2 | · · · | ζj(α+j)γ−1 | ζj(α+j)γ

∣∣.
For an arbitrary sequence {xs}∞s=0, let Xj,N = [xj , xj+1, . . . , xj+N ]T and define also

(3.3) e(m,j)
n ({xs}) = det

[
Xj,N |D(ζ1, γ1, n1) |D(ζ2, γ2, n2) | · · · |D(ζm, γm, nm)

]
.

[Note that the matrix on the right-hand side of (3.3) is (N + 1)× (N + 1).] Then,
with Is = 1 for all s, we have

(3.4) A(m,j)
n =

e
(m,j)
n ({As})
e
(m,j)
n ({Is})

and

(3.5)

N∑
i=0

γ
(m,j)
ni zi =

e
(m,j)
n ({zs})
e
(m,j)
n ({Is})

z−j .

The result in (3.4) can be obtained by applying Cramer’s rule to the linear
system in (1.6). The validity of the result in (3.5) [and also of that in (1.7) and

(1.8)] can be shown by expanding the determinant e
(m,j)
n ({xs}) with respect to its

first column and identifying γ
(m,j)
ni as the cofactor of xj+i divided by e

(m,j)
n ({Is}).

The determinant representations of Lemma 3.1 will be very useful in our study
later.
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Another tool that we will employ in our proofs and that concerns confluent
Vandermonde determinants is given next. For a proof of this lemma, see Sidi [16,
Eq. (3.15) and Appendix].

Lemma 3.2. Let the (p+ 1)× (p+ 1) matrix H be given as in

(3.6) H =
[
H1|H2| · · · |Ht],

where

(3.7) Hi =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
ci ci1

1 ci1
2 · · · ci1

si−1

c2i c2i 2
1 c2i 2

2 · · · c2i 2
si−1

...
...

...
...

cpi cpi p
1 cpi p

2 · · · cpi p
si−1

⎤
⎥⎥⎥⎥⎥⎦ , i = 1, . . . , t;

t∑
i=1

si = p+ 1.

Then

(3.8) detH =

[ t∏
i=1

( si−1∏
k=0

k!

)
c
si(si−1)/2
i

][ ∏
1≤i<k≤t

(ck − ci)
sisk

]
.

4. Main results

Our first result concerns the stability of Process I. It says that Γ
(m,j)
n is bounded

for all large j, which implies that Process I is stable.

Theorem 4.1. The polynomial
∑N

i=0 γ
(m,j)
ni zi satisfies

(4.1) lim
j→∞

N∑
i=0

γ
(m,j)
ni zi =

m∏
k=1

(
z − ζk
1− ζk

)nk

.

Consequently,

(4.2) lim
j→∞

Γ(m,j)
n = lim

j→∞

N∑
i=0

∣∣γ(m,j)
ni

∣∣ ≤ m∏
k=1

(
1 + |ζk|
|1− ζk|

)nk

.

In case all the ζk are real positive or all are real negative, equality holds in (4.2).

In case all the ζk are real negative, we thus have limj→∞ Γ
(m,j)
n = 1.

Note that (4.1) implies that limj→∞ γ
(m,j)
ni , i = 0, 1, . . . , N, all exist and are finite.

In fact, they are the corresponding coefficients of the polynomial
∏m

k=1

(
z−ζk
1−ζk

)nk .

Consequently, limj→∞ Γ
(m,j)
n exists and is finite. This is part of (4.2), which also

gives a very simple upper bound in terms of the ζk.
The next theorem says that GREP(m) accelerates the convergence of the sequence

{As} under Process I, providing at the same time the full asymptotic expansion of

the error in A
(m,j)
n .

Theorem 4.2. Let us assume that An is precisely as in (1.5) with the notation
therein. Let us also define

(4.3) χ
(m,j)
nki =

e
(m,j)
n ({ζsk(α+ s)γk−i})

e
(m,j)
n ({Is})

.

Then the following hold:
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(1) The χ
(m,j)
nki , for i ≥ nk, satisfy the asymptotic equalities

(4.4) χ
(m,j)
nki ∼ (i−nk+1)nk

(
ζk

ζk − 1

)nk m∏
s=1
s �=k

(
ζs − ζk
ζs − 1

)ns

ζjk j
γk−nk−i as j → ∞.

Thus, the sequences {χ(m,j)
nki }∞i=nk

are all asymptotic scales as j → ∞; that

is, limj→∞ χ
(m,j)
nk,i+1/χ

(m,j)
nki = 0, for all i ≥ nk. Here (a)s =

∏s
p=1(a+ p− 1)

is the Pochhammer symbol.

(2) The error in the approximation A
(m,j)
n has a genuine asymptotic expansion,

given as in

(4.5) A(m,j)
n −A ∼

m∑
k=1

∞∑
i=nk

β̂kiχ
(m,j)
nki as j → ∞.

(3) Let β̂k,nk+rk be the first nonzero β̂k,nk+swith s ≥ 0. Then

(4.6) A(m,j)
n − A ∼

m∑
k=1

ζjk

∞∑
i=0

εnkij
γk−2nk−rk−i as j → ∞,

where εnki are some constants. Thus, we have, at worst,

(4.7) A(m,j)
n − A =

m∑
k=1

O(ζjk j
γk−2nk) as j → ∞.

Remark. (1) From the philosophy of the Richardson extrapolation process and
its generalizations, we heuristically expect GREP(m), as defined in (1.6),

to “eliminate” the terms β̂ki(α + j)γk−i, with i = 0, 1, . . . , nk − 1, and
k = 1, . . . ,m, from the asymptotic expansion in (1.5), giving

(4.8) A(m,j)
n −A =

m∑
k=1

O(ζjk j
γk−nk) as j → ∞.

The fact that Process I is stable as stated in Theorem 4.1 can be used to
actually prove rigorously that GREP(m), as defined in (1.6), does satisfy
(4.8). For details, see [19, p. 89, Theorem 4.4.2]. Thus, the fact that we
actually have a result such as that in (4.7) for the problem we are treating
is quite surprising in view of the “expected” (4.8). [Note that (4.7) does
not contradict (4.8); it is simply much stronger than (4.8).]

(2) The results of (4.4)–(4.6) are the best that can be obtained asymptoti-
cally under the given conditions. The simplicity of the leading term in the

asymptotic expansion of χ
(m,j)
nki given in (4.4) is also quite surprising.

(3) For m = 1, Theorem 4.2 reduces to part (ii) of Theorem 19.2.3 in [19,
p. 367], which was first given in Sidi [10].

5. Proofs of main results

For simplicity of notation, we will write

(5.1) w = (ζ, γ, ν) and μ = ν − 1,

for arbitrary ζ, γ, and ν. We will also write

(5.2) wk = (ζk, γk, nk) and μk = nk − 1, k = 1, . . . ,m.
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Thus, we will be using the short-hand notation

D(w) = D(ζ, γ, ν) and D(wk) = D(ζk, γk, nk), k = 1, . . . ,m,

throughout. We will use similar notation for all other matrices that depend on ζk,
γk, and nk.

Finally, we will count the N + 1 rows of all the matrices defined in Lemma 3.1
starting from r = 0 up to r = N . Thus, for us, the rth row of the matrix G =∣∣ g1(j) | g2(j) | · · · | gp(j)∣∣ in (3.1) is the vector

Gr =
[
g1(j + r), g2(j + r), . . . , gp(j + r)

]
, r = 0, 1, . . . , N.

5.1. Proof of Theorem 4.1. We start with the analysis of the determinant

e
(m,j)
n ({zs}). It is important to understand the details of the technique that we
develop here because this technique is used again in the next subsection in the
proof of Theorem 4.2. In this technique, we perform only elementary column trans-

formations on e
(m,j)
n ({zs}). As we will see soon, it is sufficient to look at the matrix

D(ζ, γ, ν) given in (3.2) for this purpose. We recall that D(ζ, γ, ν) = D(w) is
(N + 1)× ν.

Note that the rth row of D(w) is the vector

(5.3) Dr(w) =
[
ζj+r(α+ j + r)γ−μ, ζj+r(α+ j + r)γ−μ+1,

. . . , ζj+r(α+ j + r)γ−1, ζj+r(α+ j + r)γ
]
.

Factoring out the term ζj(α+j)γ−μ+i−1 from the ith column of D(w), i = 1, . . . , ν,
we obtain the matrix D′(w) whose rth row is

(5.4) D′
r(w) =

[
ζr(1 + εr)

γ−μ, ζr(1 + εr)
γ−μ+1, . . . , ζr(1 + εr)

γ−1, ζr(1 + εr)
γ
]
,

where

(5.5) εr = r/(α+ j).

The product of the terms we have factored out from the columns of D(w) to obtain
D′(w) is

(5.6) F1(w; j) = ζνj
ν∏

i=1

(α+ j)γ−ν+i.

Let us now perform the following column transformations on the matrix D′(w):

for s = 1, 2, . . . , ν − 1 do
for i = ν, ν − 1, . . . , s+ 1 do

subtract the (i− 1)st column from the ith column,
and overwrite the ith column

end for(i)
end for(s)

As a result of these transformations, we obtain the matrix D′′(w) whose rth row is
(5.7)
D′′

r (w) =
[
ζr(1+εr)

γ−με0r, ζ
r(1+εr)

γ−με1r, . . . , ζ
r(1+εr)

γ−μεμ−1
r , ζr(1+εr)

γ−μεμr
]
.

Factoring out the term (α+ j)1−i from the ith column of D′′(w), i = 1, . . . , ν, and
recalling (5.5), we obtain the matrix D′′′(w) whose rth row is
(5.8)
D′′′

r (w) =
[
ζr(1+εr)

γ−μr0, ζr(1+εr)
γ−μr1, . . . , ζr(1+εr)

γ−μrμ−1, ζr(1+εr)
γ−μrμ

]
.
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The product of the terms we have factored out from the columns of D′′(w) to obtain
D′′′(w) is

(5.9) F2(w; j) =

μ∏
i=0

(α+ j)−i.

Summarizing, we have obtained from the matrixD(w), by elementary column trans-
formations, the matrix D′′′(w). The product of the terms we have factored out from
the columns of D(w) and D′′(w), until reaching D′′′(w), is

(5.10) F3(w; j) = F1(w; j)F2(w; j) =
[
ζj(α+ j)γ−μ

]ν
.

With these developments, also letting Z0,N = [z0, z1, . . . , zN ]T, we thus have

(5.11) e(m,j)
n ({zs}) = zj

[ m∏
k=1

F3(wk; j)

]

× det
[
Z0,N |D′′′(w1) |D′′′(w2) | · · · |D′′′(wm)

]
.

Now, as j → ∞, we have that εr → 0; hence (1 + εr)
ω ∼ 1 for every ω. Thus,

(5.12) D′′′(w) ∼ D′′′′(w) as j → ∞, entry-wise,

where the rth row of D′′′′(w) is

(5.13) D′′′′
r (w) =

[
ζrr0, ζrr1, . . . , ζrrμ−1, ζrrμ

]
.

Consequently,

(5.14) det
[
Z0,N |D′′′(w1) |D′′′(w2) | · · · |D′′′(wm)

]
∼

det
[
Z0,N |D′′′′(w1) |D′′′′(w2) | · · · |D′′′′(wm)

]
as j → ∞,

provided that the right-hand side is nonzero. By Lemma 3.2, the determinant on
the right-hand side of (5.14) is given by

(5.15) det
[
Z0,N |D′′′′(w1) |D′′′′(w2) | · · · |D′′′′(wm)

]
= K

[ m∏
i=1

(ζi − z)ni

]
,

where

(5.16) K =

[ m∏
i=1

( ni−1∏
k=0

k!

)
ζ
ni(ni−1)/2
i

][ ∏
1≤i<k≤m

(ζk − ζi)
nink

]

and is nonzero by the fact that the ζk are distinct. Combining everything, we finally
have that

(5.17) e(m,j)
n ({zs}) ∼ C(j)zj

[ m∏
i=1

(ζi − z)ni

]
as j → ∞,

where

(5.18) C(j) = K

[ m∏
i=1

F3(wi; j)

]
	= 0.

Letting z = 1 in (5.17), and recalling that ζi 	= 1 for all i, we also have that

(5.19) e(m,j)
n ({Is}) ∼ C(j)

[ m∏
i=1

(ζi − 1)ni

]
as j → ∞.
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Because (5.17) and (5.19) are asymptotic equalities, we can divide the former by
the latter and obtain the result in (4.1). The result in (4.2) is obtained by invoking
[19, p. 31, Lemma 1.4.4].

5.2. Proof of Theorem 4.2. We start with the observation that the error in
A

(m,j)
n has a determinant representation given as in

(5.20) A(m,j)
n −A =

e
(m,j)
n ({As −A})
e
(m,j)
n ({Is})

,

which is easily obtained from (3.4). Substituting (1.5) in (5.20), and expanding the

determinant e
(m,j)
n ({As −A}) with respect to its first column, we obtain

A(m,j)
n −A =

1

e
(m,j)
n ({Is})

m∑
k=1

e(m,j)
n ({ζskBk(s)})(5.21)

∼ 1

e
(m,j)
n ({Is})

m∑
k=1

∞∑
i=0

β̂kie
(m,j)
n ({ζsk(α+ s)γk−i}) as j → ∞.

Now, for i = 0, 1, . . . , nk−1, the determinant e
(m,j)
n ({ζsk(α+s)γk−i}) is zero because

it has two identical columns, namely, its first column and one of the columns in the

matrix D(wk), which is part of e
(m,j)
n ({xs}) in (3.3). Consequently, the summation

on i in (5.21) begins with i = nk. We have thus obtained the expansion in (4.5).
Of course, in order for (4.5) to be a genuine asymptotic expansion, we must have

(5.22) lim
j→∞

χ
(m,j)
nk,i+1

χ
(m,j)
nki

= 0, i = nk, nk + 1, . . . , k = 1, . . . ,m.

That (5.22) holds follows directly from (4.4), whose proof we tackle next.

By moving the first column of e
(m,j)
n ({ζsk(α+ s)γk−i}) to the right of the matrix

D(wk), we obtain

(5.23) (−1)uke(m,j)
n ({ζsk(α+ s)γk−i})
= det

[
D(w1) | · · · |D(wk−1) | D̃(i)(wk) |D(wk+1) | · · · |D(wm)

]
,

where

(5.24) uk =

k∑
i=1

ni

and D̃(i)(w) is (N + 1)× (ν + 1) and

D̃(i)(w) =
[
D(w) | d̃i(w)

]
,

d̃i(w) = [ ζj(α+ j)γ−i, ζj+1(α+ j + 1)γ−i, . . . , ζj+N (α+ j +N)γ−i ]T.
(5.25)

We first perform elementary column transformations on D(w) to obtain D′′(w),
precisely as in the preceding subsection. Next, we factor out the term ζj(α+ j)γ−i

from the last column d̃i(w) of D̃
(i)(w) and obtain from D̃(i)(w) the matrix D̃(i)′(w)

whose rth row is

(5.26) D̃(i)
r

′(w) =
[
D′′

r (w) , ζ
r(1 + εr)

γ−i
]
.
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We now rewrite the last entry of D̃
(i)
r

′(w) in the form

ζr(1 + εr)
γ−i = ζr(1 + εr)

γ−μ(1 + εr)
μ−i = ζr(1 + εr)

γ−μ
∞∑
s=0

(
μ− i

s

)
εsr.

From this and from (5.7), it is easy to see that, if we multiply the (s+1)st column

of D̃(i)′(w) [hence the (s + 1)st column of D′′(w)] by
(
μ−i
s

)
, s = 0, 1, . . . , μ, and

subtract from the last column of D̃(i)′(w), and overwrite the latter, we obtain the

matrix D̃(i)′′(w) whose rth row is

D̃(i)
r

′′(w) =
[
D′′

r (ζ, γ) , ζ
r(1 + εr)

γ−μ∑∞
s=ν

(
μ−i
s

)
εsr

]
(5.27)

=
[
D′′

r (w) , ζ
r(1 + εr)

γ−μενr
{(

μ−i
ν

)
+O(εr)

} ]
.

Factoring out the term (α + j)1−s from the sth column of D̃(i)′′(w), s = 1, . . . , ν,

and
(
μ−i
ν

)
(α + j)−ν from its last [that is, (ν + 1)st] column, we obtain the matrix

D̃(i)′′′(w) whose rth row is

(5.28) D̃(i)
r

′′′(w) =
[
D′′′

r (w) , ζr(1 + εr)
γ−μrν

{
1 +

∑∞
s=1drs(α+ j)−s

} ]
,

for some scalars drs.
With D̃(i)(wk) taken care of, we next perform on the matrices D(ws), s 	= k, the

exact same column transformations as in the preceding subsection.
With these developments, taking into account all the terms we factored out

from all the columns of e
(m,j)
n ({ζsk(α+ s)γk−i}), including the (nk +1)st column of

D̃(i)(wk), we have

(5.29) e(m,j)
n ({ζsk(α+ s)γk−i}) = E(i)(j) det

[
D′′′(w1) | · · ·

|D′′′(wk−1) | D̃(i)′′′(wk) |D′′′(wk+1) | · · · |D′′′(wm)
]
,

where

(5.30) E(i)(j) = (−1)uk
(
μk−i
nk

)
ζjk(α+ j)γk−nk−i

[ m∏
s=1

F3(ws; j)

]
.

Going to the limit as j → ∞ in D̃(i)′′′(w), as before, we obtain the matrix D̃(i)′′′′(w)
whose rth row is

(5.31) D̃(i)
r

′′′′(w) =
[
D′′′′

r (w) , ζrrν
]
.

Combining everything in (5.23), we obtain

(5.32) e(m,j)
n ({ζsk(α+ s)γk−i}) ∼ E(i)(j) det

[
D′′′′(w1) | · · ·

|D′′′′(wk−1) | D̃(i)′′′′(wk) |D′′′′(wk+1) | · · · |D′′′′(wm)
]

as j → ∞,

provided that the right-hand side of (5.32) is nonzero. Note that E(i)(j) 	= 0 for

all i ≥ nk because
(
μk−i
nk

)
	= 0 by the fact that μk − i = nk − i − 1 ≤ −1. Again,

applying Lemma 3.2, and rearranging, we have

(5.33) e(m,j)
n ({ζsk(α+ s)γk−i}) ∼ C̃(i)(j)

[ m∏
s=1
s �=k

(ζs − ζk)
ns

]
as j → ∞,

where

(5.34) C̃(i)(j) = (−1)nk(nk!)
(
μk−i
nk

)
ζj+nk

k (α+ j)γk−nk−iC(j).
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Dividing the asymptotic equality in (5.33) by that in (5.19), and simplifying, we
obtain the asymptotic equality in (4.4).

As for the full asymptotic expansion given in (4.6), we proceed as follows: In our

analysis of the χ
(m,j)
nki , we were interested in finding only the leading-order term in

its asymptotic expansion. With the term ζjk j
γk−nk−i factored out, it is easy to see

from what remains from the quotient e
(m,j)
n ({ζsk(α + s)γk−i})/e(m,j)

n ({Is}) that an
asymptotic expansion for it exists in negative powers of j. In other words, χ

(m,j)
nki

satisfies

(5.35) χ
(m,j)
nki ∼ ζjk j

γk−nk−i
∞∑
s=0

ankisj
−s as j → ∞.

Substituting (5.35) in (4.5), and rearranging, the result in (4.6) is obtained.
The rest of the proof is simple, and we leave it to the reader.

6. Implications of Theorems 4.1 and 4.2

In accelerating the convergence of linear sequences such as those treated in this
work, one is confronted with serious convergence and numerical stability problems
when ζs ≈ 1 for some s, irrespective of which method of acceleration is used.
The presence of both of these problems when using GREP can be deduced from
Theorems 4.1 and 4.2, thanks to the fact that both of these theorems provide the
leading terms in the relevant asymptotic expansions.

Theorem 4.1 tells us that the γ
(m,j)
ni are all, asymptotically as j → ∞, propor-

tional to
∏m

k=1(1− ζk)
−nk . This immediately suggests that when ζs, for some s, is

very close to 1, Γ(m,j) will be large (even though it remains bounded as j → ∞);
hence Process I will suffer from numerical stability problems in finite-precision
arithmetic. That is, as ζs approaches 1, the numerical errors committed in the

computation of A
(m,j)
n will increase.

Similarly, (4.4) and (4.5) in Theorem 4.2 tell us that the error A
(m,j)
n − A is,

asymptotically as j → ∞, proportional to
∏m

k=1(1 − ζk)
−nk . This immediately

suggests that when ζs, for some s, is very close to 1, this error will be large; hence
Process I will converge slowly, mathematically speaking. The convergence (and

acceleration of convergence) of A
(m,j)
n will slow down as ζs approaches 1. This

phenomenon has nothing to do with the computer arithmetic being used; it is
purely theoretical.

Even though our results pertain to Process I, the problems of reduced numerical
stability and slow convergence when ζs ≈ 1 for some s are observed when GREP is
applied under Process II as well.

To remedy this problem, it was proposed in [5] and [4] to apply GREP not to the
whole sequence but to a subsequence {Aκn} of {An} with some integer κ ≥ 1. This
choice of the subsequence has been called arithmetic progression sampling (APS for
short) in [19, Chapter 10]. That this will solve both of the problems can be deduced
from the fact that

Aκn ∼ A+
m∑

k=1

ζκnk

∞∑
i=0

βki(κn)
γk−i as n → ∞,

which, defining

Ãn = Aκn, ζ̃k = ζκk , k = 1, . . . ,m,
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can be rewritten as

Ãn ∼ A+

m∑
k=1

ζ̃nk

∞∑
i=0

β̃kin
γk−i as n → ∞.

Applying GREP to {Ãn} (with ζk replaced by ζ̃k, of course) we realize that Theo-

rems 4.1 and 4.2 now hold with ζ̃k instead of ζk. Whether |ζs| ≤ 1 or |ζs| ≥ 1, when

ζs is close to 1, we have that ζ̃s is farther from 1 than ζs is, even for κ = 2. There-

fore, by choosing κ appropriately, we can cause ζ̃s to be away from 1 sufficiently to
stabilize GREP numerically and to enhance its convergence.

An immediate application of this is to power series
∑∞

n=0 cnz
n, where

cn ∼
m∑

k=1

σn
k

∞∑
i=0

εkin
γk−i as n → ∞, σk 	= 1 distinct.

Then, the power series converges to a function A(z) that is analytic for |z| <
mink(1/|σk|) = ρ. In addition, letting An(z) =

∑n
s=0 csz

s, n = 0, 1, . . . , we also
have

An(z) ∼ A(z) +
m∑

k=1

(σkz)
n

∞∑
i=0

βki(z)n
γk−i as n → ∞.

Clearly, ζk = σkz, k = 1, . . . ,m, in the notation of the preceding sections. In
general, the function A(z) can be continued analytically to |z| ≥ ρ, zk = 1/σk being
its branch points, with the branch cuts directed appropriately. [As an example,
think of A(z) as the sum of m functions that have branch points at m distinct
points z1, . . . , zm in the z-plane.] Then ζs ≈ 1 means z ≈ zs = 1/σs, which in
turn means that z is near a point of singularity. Thus, we conclude that GREP
will suffer from reduced numerical stability and from slow convergence when z is
close to a point of singularity of A(z). Thus, close to points of singularity, applying
GREP with APS will be very beneficial.

The topic of APS, within the context of the d(m) transformation (which is a
GREP(m), as mentioned in Section 1) is discussed in [19]. It is discussed rigorously
in [19, Chapter 12, Section 12.7] for m = 1, where a numerical example is also
provided. In conjunction with the d(m) transformation for arbitrary m ≥ 1, APS is
applied to power series, Fourier series, and generalized Fourier series in [5], [14], [19,
Chapter 6, Section 6.5 and Chapter 12, Section 12.9]. Its use in conjunction with
the transformation of Shanks [8] is also proposed in [19, Chapter 16, subsection
16.5.1].

The results of the present work provide further theoretical justification for the
use of APS within the context of GREP(m) and the d(m) transformation, for all
m ≥ 1.
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