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pk-TORSION OF GENUS TWO CURVES OVER Fpm

MICHAEL E. ZIEVE

Abstract. We determine the isogeny classes of abelian surfaces over Fq whose
group of Fq-rational points has order divisible by q2. We also solve the same
problem for Jacobians of genus-2 curves.

In a recent paper [4], Ravnshøj proved: if C is a genus-2 curve over a prime field
Fp, and if one assumes that the endomorphism ring of the Jacobian J of C is the ring
of integers in a primitive quartic CM-field, and that the Frobenius endomorphism
of J has a certain special form, then p2 � #J(Fp). Our purpose here is to deduce
this conclusion under less restrictive hypotheses. We write q = pm, where p is
prime, and for any abelian variety J over Fq we let PJ denote the Weil polynomial
of J , namely the characteristic polynomial of the Frobenius endomorphism πJ of
J . As shown by Tate [6, Thm. 1], two abelian varieties over Fq are isogenous if and
only if their Weil polynomials are identical. Thus, the following result describes
the isogeny classes of abelian surfaces J over Fq for which q2 | #J(Fq).

Theorem 1. The Weil polynomials of abelian surfaces J over Fq satisfying q2 |
#J(Fq) are as follows :

(1.1) X4 +X3 − (q + 2)X2 + qX + q2 (if q is odd and q > 8);
(1.2) X4 −X2 + q2;
(1.3) X4 −X3 + qX2 − qX + q2 (if m is odd or p �≡ 1 mod 4);
(1.4) X4 − 2X3 + (2q + 1)X2 − 2qX + q2;
(1.5) X4 + aX3 + bX2 + aqX + q2, where (a, b) occurs in the same row as q in

the following table:

q (a, b)

13 (9, 42)

9 (6, 20)

7 (4, 16)

5 (3, 6) or (8, 26)

4 (2, 5), (4, 11), or (6, 17)

3 (1, 4), (3, 5), or (4, 10)

2 (0, 3), (1, 0), (1, 4), (2, 5), or (3, 6)

The special form required of the Frobenius endomorphism in [4] has an immediate
consequence for the shape of its characteristic polynomial, and by inspection the
above polynomials do not have the required shape. Thus the main result of [4]
follows from the above result.
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Our proof of Theorem 1 relies on the classical results of Tate ([6, Thm. 1] and
[8, Thm. 8]) and Honda [2] describing the Weil polynomials of abelian varieties
over finite fields. An explicit version of their results in the case of simple abelian
surfaces was given by Rück [5, Thm. 1.1]; together with the analogous results of
Waterhouse [7, Thm. 4.1] for elliptic curves, this yields the following:

Lemma 2. The Weil polynomials of abelian surfaces over Fq are precisely the
polynomials X4 + aX3 + bX2 + aqX + q2, where a, b ∈ Z satisfy |a| ≤ 4

√
q and

2|a|√q − 2q ≤ b ≤ a2

4 + 2q, and where a, b, and the values Δ := a2 − 4(b− 2q) and

δ := (b+ 2q)2 − 4qa2 satisfy one of the conditions (2.1)–(2.4) below:

(2.1) vp(b) = 0;
(2.2) vp(b) ≥ m/2 and vp(a) = 0, and either δ = 0 or δ is a non-square in the

ring Zp of p-adic integers;
(2.3) vp(b) ≥ m and vp(a) ≥ m/2 and Δ is a square in Z, and if q is a square

and we write a =
√
qa′ and b = qb′ then

p �≡ 1 mod 4 if b′ = 2,

p �≡ 1 mod 3 if a′ �≡ b′ mod 2;

(2.4) the conditions in one of the rows of the following table are satisfied:

(a, b) Conditions on p and q

(0, 0) q is a square and p �≡ 1 mod 8, or

q is a non-square and p �= 2

(0,−q) q is a square and p �≡ 1 mod 12, or

q is a non-square and p �= 3

(0, q) q is a non-square

(0,−2q) q is a non-square

(0, 2q) q is a square and p ≡ 1 mod 4

(±√
q, q) q is a square and p �≡ 1 mod 5

(±
√
2q, q) q is a non-square and p = 2

(±2
√
q, 3q) q is a square and p ≡ 1 mod 3

(±
√
5q, 3q) q is a non-square and p = 5

Moreover, the surface J is simple if and only if either

• Δ is a non-square in Z; or
• (a, b) = (0, 2q) and q is a square and p ≡ 1 mod 4; or
• (a, b) = (±2

√
q, 3q) and q is a square and p ≡ 1 mod 3.

The p-rank of J (namely, the rank of the p-torsion subgroup of J(Fq)) is 2 in (2.1),
1 in (2.2), and 0 in (2.3) and (2.4).

Proof of Theorem 1. As shown by Weil [9], for any abelian surface J over Fq, the
Weil polynomial PJ is a monic quartic in Z[X] whose complex roots have absolute
value

√
q. In particular, #J(Fq) = deg(πJ−1) = PJ(1) ≤ (

√
q+1)4, so if #J(Fq) =

cq2 with c ∈ Z then c ≤ (1 + q−1/2)4. It follows that c = 1 unless q ≤ 27. In light
of the above lemma, there are just finitely many cases to consider with c > 1; we
treated these cases using the computer program presented at the end of this paper,
which gave rise to precisely the solutions in (1.5). Henceforth assume c = 1.
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The Weil polynomials of abelian surfaces over Fq are the polynomials P (X) :=
X4 + aX3 + bX2 + aqX + q2 occurring in the above lemma. We must determine
which of these polynomials satisfy P (1) = q2, or equivalently, b = −1 − a(q + 1).
The inequality −1 − a(q + 1) = b ≤ a2/4 + 2q says that q2 ≤ (a/2 + q + 1)2, and
since a/2 + q + 1 ≥ −2

√
q + q + 1 > 0, this is equivalent to q ≤ a/2 + q + 1, or

in other words −2 ≤ a. The inequality 2|a|√q − 2q ≤ b = −1 − a(q + 1) always

holds if a ∈ {0,−1,−2}, and if a ≥ 1 it is equivalent to a(
√
q + 1)2 ≤ 2q − 1; since

2q − 1 < 2q < 2(
√
q + 1)2, this implies a = 1, in which case (

√
q + 1)2 ≤ 2q − 1 is

equivalent to q ≥ 8.
Condition (2.1) holds if and only if a �≡ −1 mod p, or equivalently either a ∈

{0,−2} or both a = 1 and p �= 2. This accounts for (1.1), (1.2), and (1.4).
Condition (2.3) cannot hold, since p | a implies b ≡ −1 mod p.
The condition vp(b) ≥ m/2 says that a ≡ −1 mod p�m/2�, or equivalently a = −1.

In this case, b = q and δ = 9q2 − 4q, so δ �= 0. If q is odd, then δ is a square in Zp

if and only if δ is a square modulo pq, or equivalently, m is even and −4 is a square
modulo p, which means that p ≡ 1 mod 4. If q is even, then δ is not a square in Z2,
since for q ≤ 8 we have δ ∈ {28, 128, 544}, and for q > 8 we have δ ≡ −4q mod 16q.
Thus (2.2) gives rise to (1.3).

Finally, if a = −2 then b = 2q + 1, and if a = 0 then b = −1, so in either case
q � b. Thus (2.4) cannot hold, and the proof is complete. �

Next we determine which of the Weil polynomials in (1.1)–(1.5) occur for Jaco-
bians. We use the classification of Weil polynomials of Jacobians of genus-2 curves.
This classification was achieved by the combined efforts of many mathematicians,
culminating in the following result [3, Thm. 1.2]:

Lemma 3. Let PJ = X4 + aX3 + bX2 + aqX + q2 be the Weil polynomial of an
abelian surface J over Fq.

(1) If J is simple, then J is not isogenous to a Jacobian if and only if the
conditions in one of the rows of the following table are met:

Condition on p and q Conditions on a and b

— a2 − b = q and b < 0 and

all prime divisors of b are 1 mod 3

— a = 0 and b = 1− 2q

p > 2 a = 0 and b = 2− 2q

p ≡ 11 mod 12 and q square a = 0 and b = −q

p = 3 and q square a = 0 and b = −q

p = 2 and q non-square a = 0 and b = −q

q = 2 or q = 3 a = 0 and b = −2q

(2) If J is not simple, then there are integers s, t such that PJ = (X2 − sX +
q)(X2− tX+ q), and s and t are unique if we require that |s| ≥ |t| and that
if s = −t then s ≥ 0. For such s and t, J is not isogenous to a Jacobian if
and only if the conditions in one of the rows of the following table are met:
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p-rank of J Condition on p and q Conditions on s and t

— — |s− t| = 1

2 — s = t and t2 − 4q ∈ {−3,−4,−7}
q = 2 s = 1 and t = −1

1 q square s2 = 4q and s− t squarefree

p > 3 s2 �= t2

p = 3 and q non-square s2 = t2 = 3q

0 p = 3 and q square s− t is not divisible by 3
√
q

p = 2 s2 − t2 is not divisible by 2q

q = 2 or q = 3 s = t

q = 4 or q = 9 s2 = t2 = 4q

Theorem 4. The polynomials in (1.1)–(1.5) which are not Weil polynomials of
Jacobians are precisely the polynomials X4 + aX3 + bX2 + aqX + q2, where q and
(a, b) satisfy the conditions in one of the rows of the following table:

q (a, b)

5 (8, 26)
4 (6, 17)
2 (−2, 5), (0, 3), (1, 4), (2, 5), or (3, 6)

Proof. Let J be an abelian surface over Fq whose Weil polynomial PJ = X4 +
aX3 + bX2 + aqX + q2 satisfies one of (1.1)–(1.5). In each case, a2 − b �= q, and if
a = 0 then b ∈ {−1, 3}, so if J is simple then Lemma 3 implies J is isogenous to a
Jacobian.

Henceforth assume J is not simple, so PJ = (X2 − sX + q)(X2 − tX + q) where
s, t ∈ Z; we may assume that |s| ≥ |t|, and that s ≥ 0 if s = −t. Note that
a = −s− t and b = 2q + st, so (X − s)(X − t) = X2 + aX + b− 2q. In particular,
Δ := a2 − 4(b− 2q) is a square, say Δ = z2 with z ≥ 0.

Suppose PJ satisfies (1.1), so Δ = 12q+9. Then (z− 3)(z+3) = 12q is even, so
z − 3 and z + 3 are even and incongruent mod 4, whence their product is divisible
by 8, so q is even, a contradiction.

Now suppose PJ satisfies (1.2), so Δ = 8q + 4. Then (z − 2)(z + 2) = 8q, so at
least one of z− 2 and z+2 is divisible by 4; but these numbers differ by 4, so they
are both divisible by 4, whence their product is divisible by 16, so q is even. Thus
8q is a power of 2 which is the product of two positive integers that differ by 4,
so q = 4. In this case, (q, a, b, s, t) = (4, 0,−1, 3,−3), which indeed satisfies (1.2).
Moreover, (2.1) holds, so Lemma 2 implies J has p-rank 2. Since |s−t| = 6 /∈ {0, 1}
and q �= 2, Lemma 3 implies J is isogenous to a Jacobian.

Now suppose PJ satisfies (1.3), so Δ = 4q+1. Then (z−1)(z+1) = 4q, so z−1
and z + 1 are even and incongruent mod 4, whence their product is divisible by 8,
so q is even. Thus 4q is a power of 2 which is the product of two positive integers
that differ by 2, so q = 2. In this case, (q, a, b, s, t) = (2,−1, 2, 2,−1), which indeed
satisfies (1.3). Moreover, (2.2) holds, so Lemma 2 implies J has p-rank 1. Since
|s−t| = 3 �= 1 and q is a non-square, Lemma 3 implies J is isogenous to a Jacobian.

Now suppose PJ satisfies (1.4), so Δ = 0 and a /∈ {0,±2
√
q}, and thus Lemma 3

implies J is non-simple. Here (a, b, s, t) = (−2, 2q + 1, 1, 1), so Lemma 2 implies J
has p-rank 2. Since s = t = 1, Lemma 3 implies J is isogenous to a Jacobian if
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and only if 1− 4q �∈ {−3,−4,−7}, or equivalently q �= 2. This gives rise to the first
entry in the last line of the table.

Finally, if PJ satisfies (1.5), then the result follows from Lemma 3 and Lemma 2
via a straightforward computation. �

Remark 5. The result announced in the abstract of [4] is false, since its hypotheses
are satisfied by every two-dimensional Jacobian over Fp. This is because the ab-
stract of [4] does not mention the various hypotheses assumed in the theorems of
that paper.

We used the following Magma [1] program in the proof of Theorem 1.

for q in [2..27] do if IsPrimePower(q) then

Q:=Floor(4*Sqrt(q)); M:=Floor((Sqrt(q)+1)^4/q^2);

for c in [2..M] do

for a in [-Q..Q] do b:=-1-a*(q+1)+(c-1)*q^2;

if b le (a^2/4)+2*q and 2*Abs(a)*Sqrt(q)-2*q le b then

p:=Factorization(q)[1,1]; m:=Factorization(q)[1,2];

Delta:=a^2-4*(b-2*q); delta:=(b+2*q)^2-4*q*a^2;

if GCD(b,p) eq 1 then <q,a,b,c>;

elif GCD(b,q) ge Sqrt(q) and GCD(a,p) eq 1 and

(delta eq 0 or not IsSquare(pAdicRing(p)!delta)) then

<q,a,b,c>;

elif IsDivisibleBy(b,q) and GCD(a,q) ge Sqrt(q) and

IsSquare(Delta) then

if not IsSquare(q) then <q,a,b,c>;

else sq:=p^((m div 2)); ap:=a div sq; bp:=b div q;

if not ((bp eq 2 and IsDivisibleBy(p-1,4)) or

(IsDivisibleBy(ap-bp,2) and IsDivisibleBy(p-1,3)))

then <q,a,b,c>;

end if;

end if;

elif (a eq 0 and b eq 0) then

if ((IsSquare(q) and not IsDivisibleBy(p-1,8)) or

(not IsSquare(q) and p ne 2)) then <q,a,b,c>;

end if;

elif (a eq 0 and b eq -q) then

if ((IsSquare(q) and not IsDivisibleBy(p-1,12)) or

(not IsSquare(q) and p ne 3)) then <q,a,b,c>;

end if;

elif a eq 0 and b in {q,-2*q} and not IsSquare(q) then

<q,a,b,c>;

elif a eq 0 and b eq 2*q and IsSquare(q) and

IsDivisibleBy(p-1,4) then <q,a,b,c>;

elif Abs(a) eq p^(m div 2) and b eq q and IsSquare(q) and

not IsDivisibleBy(p-1,5) then <q,a,b,c>;

elif Abs(a) eq p^((m+1) div 2) and b eq q and

not IsSquare(q) and p eq 2 then <q,a,b,c>;

elif Abs(a) eq 2*p^(m div 2) and b eq 3*q and IsSquare(q)

and IsDivisibleBy(p-1,3) then <q,a,b,c>;
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elif Abs(a) eq p^((m+1) div 2) and b eq 3*q and

not IsSquare(q) and p eq 5 then <q,a,b,c>;

end if;

end if;

end for;

end for;

end if;

end for;
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