MATHEMATICS OF COMPUTATION Volume 79, Number 271, July 2010, Pages 1833–1838 S 0025-5718(10)02305-7 Article electronically published on January 14, 2010

p^k -TORSION OF GENUS TWO CURVES OVER \mathbb{F}_{p^m}

MICHAEL E. ZIEVE

ABSTRACT. We determine the isogeny classes of abelian surfaces over \mathbb{F}_q whose group of \mathbb{F}_q -rational points has order divisible by q^2 . We also solve the same problem for Jacobians of genus-2 curves.

In a recent paper [4], Ravnshøj proved: if C is a genus-2 curve over a prime field \mathbb{F}_p , and if one assumes that the endomorphism ring of the Jacobian J of C is the ring of integers in a primitive quartic CM-field, and that the Frobenius endomorphism of J has a certain special form, then $p^2 \nmid \#J(\mathbb{F}_p)$. Our purpose here is to deduce this conclusion under less restrictive hypotheses. We write $q = p^m$, where p is prime, and for any abelian variety J over \mathbb{F}_q we let P_J denote the Weil polynomial of J, namely the characteristic polynomial of the Frobenius endomorphism π_J of J. As shown by Tate [6, Thm. 1], two abelian varieties over \mathbb{F}_q are isogenous if and only if their Weil polynomials are identical. Thus, the following result describes the isogeny classes of abelian surfaces J over \mathbb{F}_q for which $q^2 \mid \#J(\mathbb{F}_q)$.

Theorem 1. The Weil polynomials of abelian surfaces J over \mathbb{F}_q satisfying $q^2 \mid$ $#J(\mathbb{F}_q)$ are as follows:

- $\begin{array}{l} (1.1) \quad X^4 + X^3 (q+2)X^2 + qX + q^2 \ (if \ q \ is \ odd \ and \ q > 8); \\ (1.2) \quad X^4 X^2 + q^2; \\ (1.3) \quad X^4 X^3 + qX^2 qX + q^2 \ (if \ m \ is \ odd \ or \ p \not\equiv 1 \ \mathrm{mod} \ 4); \\ (1.4) \quad X^4 2X^3 + (2q+1)X^2 2qX + q^2; \end{array}$
- (1.5) $X^4 + aX^3 + bX^2 + aqX + q^2$, where (a, b) occurs in the same row as q in the following table:

q	(a,b)
13	(9, 42)
9	(6, 20)
7	(4, 16)
5	(3,6) or $(8,26)$
4	(2,5), (4,11), or $(6,17)$
3	(1,4), (3,5), or $(4,10)$
2	(0,3), (1,0), (1,4), (2,5), or $(3,6)$

The special form required of the Frobenius endomorphism in [4] has an immediate consequence for the shape of its characteristic polynomial, and by inspection the above polynomials do not have the required shape. Thus the main result of [4] follows from the above result.

Received by the editor May 29, 2007 and, in revised form, August 30, 2008. 2010 Mathematics Subject Classification. Primary 14H40.

^{©2010} American Mathematical Society Reverts to public domain 28 years from publication

MICHAEL E. ZIEVE

Our proof of Theorem 1 relies on the classical results of Tate ([6, Thm. 1] and [8, Thm. 8]) and Honda [2] describing the Weil polynomials of abelian varieties over finite fields. An explicit version of their results in the case of simple abelian surfaces was given by Rück [5, Thm. 1.1]; together with the analogous results of Waterhouse [7, Thm. 4.1] for elliptic curves, this yields the following:

Lemma 2. The Weil polynomials of abelian surfaces over \mathbb{F}_q are precisely the polynomials $X^4 + aX^3 + bX^2 + aqX + q^2$, where $a, b \in \mathbb{Z}$ satisfy $|a| \leq 4\sqrt{q}$ and $2|a|\sqrt{q} - 2q \leq b \leq \frac{a^2}{4} + 2q$, and where a, b, and the values $\Delta := a^2 - 4(b - 2q)$ and $\delta := (b + 2q)^2 - 4qa^2$ satisfy one of the conditions (2.1)–(2.4) below:

- (2.1) $v_p(b) = 0;$
- (2.2) $v_p(b) \ge m/2$ and $v_p(a) = 0$, and either $\delta = 0$ or δ is a non-square in the ring \mathbb{Z}_p of p-adic integers;
- (2.3) $v_p(b) \ge m$ and $v_p(a) \ge m/2$ and Δ is a square in \mathbb{Z} , and if q is a square and we write $a = \sqrt{q}a'$ and b = qb' then

 $p \not\equiv 1 \mod 4$ if b' = 2,

 $p \not\equiv 1 \mod 3$ if $a' \not\equiv b' \mod 2$;

(2.4) the conditions in one of the rows of the following table are satisfied:

(a,b)	Conditions on p and q
(0, 0)	q is a square and $p \not\equiv 1 \mod 8$, or
	q is a non-square and $p\neq 2$
(0, -q)	q is a square and $p \not\equiv 1 \mod 12$, or
	q is a non-square and $p\neq 3$
(0,q)	q is a non-square
(0, -2q)	q is a non-square
(0, 2q)	q is a square and $p \equiv 1 \mod 4$
$(\pm\sqrt{q},q)$	q is a square and $p\not\equiv 1 \bmod 5$
$(\pm\sqrt{2q},q)$	q is a non-square and $p = 2$
$(\pm 2\sqrt{q}, 3q)$	q is a square and $p \equiv 1 \mod 3$
$(\pm\sqrt{5q},3q)$	q is a non-square and $p = 5$

Moreover, the surface J is simple if and only if either

- Δ is a non-square in \mathbb{Z} ; or
- (a,b) = (0,2q) and q is a square and $p \equiv 1 \mod 4$; or
- $(a,b) = (\pm 2\sqrt{q}, 3q)$ and q is a square and $p \equiv 1 \mod 3$.

The p-rank of J (namely, the rank of the p-torsion subgroup of $J(\overline{\mathbb{F}}_q)$) is 2 in (2.1), 1 in (2.2), and 0 in (2.3) and (2.4).

Proof of Theorem 1. As shown by Weil [9], for any abelian surface J over \mathbb{F}_q , the Weil polynomial P_J is a monic quartic in $\mathbb{Z}[X]$ whose complex roots have absolute value \sqrt{q} . In particular, $\#J(\mathbb{F}_q) = \deg(\pi_J - 1) = P_J(1) \leq (\sqrt{q} + 1)^4$, so if $\#J(\mathbb{F}_q) = cq^2$ with $c \in \mathbb{Z}$ then $c \leq (1 + q^{-1/2})^4$. It follows that c = 1 unless $q \leq 27$. In light of the above lemma, there are just finitely many cases to consider with c > 1; we treated these cases using the computer program presented at the end of this paper, which gave rise to precisely the solutions in (1.5). Henceforth assume c = 1.

1834

The Weil polynomials of abelian surfaces over \mathbb{F}_q are the polynomials $P(X) := X^4 + aX^3 + bX^2 + aqX + q^2$ occurring in the above lemma. We must determine which of these polynomials satisfy $P(1) = q^2$, or equivalently, b = -1 - a(q+1). The inequality $-1 - a(q+1) = b \le a^2/4 + 2q$ says that $q^2 \le (a/2 + q + 1)^2$, and since $a/2 + q + 1 \ge -2\sqrt{q} + q + 1 > 0$, this is equivalent to $q \le a/2 + q + 1$, or in other words $-2 \le a$. The inequality $2|a|\sqrt{q} - 2q \le b = -1 - a(q+1)$ always holds if $a \in \{0, -1, -2\}$, and if $a \ge 1$ it is equivalent to $a(\sqrt{q} + 1)^2 \le 2q - 1$; since $2q - 1 < 2q < 2(\sqrt{q} + 1)^2$, this implies a = 1, in which case $(\sqrt{q} + 1)^2 \le 2q - 1$ is equivalent to $q \ge 8$.

Condition (2.1) holds if and only if $a \not\equiv -1 \mod p$, or equivalently either $a \in \{0, -2\}$ or both a = 1 and $p \neq 2$. This accounts for (1.1), (1.2), and (1.4).

Condition (2.3) cannot hold, since $p \mid a$ implies $b \equiv -1 \mod p$.

The condition $v_p(b) \ge m/2$ says that $a \equiv -1 \mod p^{\lceil m/2 \rceil}$, or equivalently a = -1. In this case, b = q and $\delta = 9q^2 - 4q$, so $\delta \ne 0$. If q is odd, then δ is a square in \mathbb{Z}_p if and only if δ is a square modulo pq, or equivalently, m is even and -4 is a square modulo p, which means that $p \equiv 1 \mod 4$. If q is even, then δ is not a square in \mathbb{Z}_2 , since for $q \le 8$ we have $\delta \in \{28, 128, 544\}$, and for q > 8 we have $\delta \equiv -4q \mod 16q$. Thus (2.2) gives rise to (1.3).

Finally, if a = -2 then b = 2q + 1, and if a = 0 then b = -1, so in either case $q \nmid b$. Thus (2.4) cannot hold, and the proof is complete.

Next we determine which of the Weil polynomials in (1.1)-(1.5) occur for Jacobians. We use the classification of Weil polynomials of Jacobians of genus-2 curves. This classification was achieved by the combined efforts of many mathematicians, culminating in the following result [3, Thm. 1.2]:

Lemma 3. Let $P_J = X^4 + aX^3 + bX^2 + aqX + q^2$ be the Weil polynomial of an abelian surface J over \mathbb{F}_q .

Condition on p and q	Conditions on a and b
—	$a^2 - b = q$ and $b < 0$ and
	all prime divisors of b are $1 \mod 3$
—	a = 0 and $b = 1 - 2q$
p > 2	a = 0 and $b = 2 - 2q$
$p \equiv 11 \mod 12$ and q square	a = 0 and $b = -q$
p = 3 and q square	a = 0 and $b = -q$
p = 2 and q non-square	a = 0 and $b = -q$
q = 2 or q = 3	a = 0 and $b = -2q$

(1) If J is simple, then J is not isogenous to a Jacobian if and only if the conditions in one of the rows of the following table are met:

(2) If J is not simple, then there are integers s,t such that $P_J = (X^2 - sX + q)(X^2 - tX + q)$, and s and t are unique if we require that $|s| \ge |t|$ and that if s = -t then $s \ge 0$. For such s and t, J is not isogenous to a Jacobian if and only if the conditions in one of the rows of the following table are met:

MICHAEL E. ZIEVE

p-rank of J	Condition on p and q	Conditions on s and t
		s-t = 1
2		$s = t$ and $t^2 - 4q \in \{-3, -4, -7\}$
	q = 2	s = 1 and $t = -1$
1	q square	$s^2 = 4q$ and $s - t$ squarefree
	p > 3	$s^2 \neq t^2$
	p = 3 and q non-square	$s^2 = t^2 = 3q$
0	p = 3 and q square	$s-t$ is not divisible by $3\sqrt{q}$
	p = 2	$s^2 - t^2$ is not divisible by $2q$
	q = 2 or $q = 3$	s = t
	q = 4 or $q = 9$	$s^2 = t^2 = 4q$

Theorem 4. The polynomials in (1.1)-(1.5) which are not Weil polynomials of Jacobians are precisely the polynomials $X^4 + aX^3 + bX^2 + aqX + q^2$, where q and (a,b) satisfy the conditions in one of the rows of the following table:

q	(a,b)
5	(8, 26)
4	(6, 17)
2	(-2,5), (0,3), (1,4), (2,5), or $(3,6)$

Proof. Let J be an abelian surface over \mathbb{F}_q whose Weil polynomial $P_J = X^4 + aX^3 + bX^2 + aqX + q^2$ satisfies one of (1.1)–(1.5). In each case, $a^2 - b \neq q$, and if a = 0 then $b \in \{-1, 3\}$, so if J is simple then Lemma 3 implies J is isogenous to a Jacobian.

Henceforth assume J is not simple, so $P_J = (X^2 - sX + q)(X^2 - tX + q)$ where $s, t \in \mathbb{Z}$; we may assume that $|s| \ge |t|$, and that $s \ge 0$ if s = -t. Note that a = -s - t and b = 2q + st, so $(X - s)(X - t) = X^2 + aX + b - 2q$. In particular, $\Delta := a^2 - 4(b - 2q)$ is a square, say $\Delta = z^2$ with $z \ge 0$.

Suppose P_J satisfies (1.1), so $\Delta = 12q + 9$. Then (z-3)(z+3) = 12q is even, so z-3 and z+3 are even and incongruent mod 4, whence their product is divisible by 8, so q is even, a contradiction.

Now suppose P_J satisfies (1.2), so $\Delta = 8q + 4$. Then (z - 2)(z + 2) = 8q, so at least one of z - 2 and z + 2 is divisible by 4; but these numbers differ by 4, so they are both divisible by 4, whence their product is divisible by 16, so q is even. Thus 8q is a power of 2 which is the product of two positive integers that differ by 4, so q = 4. In this case, (q, a, b, s, t) = (4, 0, -1, 3, -3), which indeed satisfies (1.2). Moreover, (2.1) holds, so Lemma 2 implies J has p-rank 2. Since $|s - t| = 6 \notin \{0, 1\}$ and $q \neq 2$, Lemma 3 implies J is isogenous to a Jacobian.

Now suppose P_J satisfies (1.3), so $\Delta = 4q + 1$. Then (z-1)(z+1) = 4q, so z-1 and z+1 are even and incongruent mod 4, whence their product is divisible by 8, so q is even. Thus 4q is a power of 2 which is the product of two positive integers that differ by 2, so q = 2. In this case, (q, a, b, s, t) = (2, -1, 2, 2, -1), which indeed satisfies (1.3). Moreover, (2.2) holds, so Lemma 2 implies J has p-rank 1. Since $|s-t| = 3 \neq 1$ and q is a non-square, Lemma 3 implies J is isogenous to a Jacobian.

Now suppose P_J satisfies (1.4), so $\Delta = 0$ and $a \notin \{0, \pm 2\sqrt{q}\}$, and thus Lemma 3 implies J is non-simple. Here (a, b, s, t) = (-2, 2q + 1, 1, 1), so Lemma 2 implies J has p-rank 2. Since s = t = 1, Lemma 3 implies J is isogenous to a Jacobian if

and only if $1 - 4q \notin \{-3, -4, -7\}$, or equivalently $q \neq 2$. This gives rise to the first entry in the last line of the table.

Finally, if P_J satisfies (1.5), then the result follows from Lemma 3 and Lemma 2 via a straightforward computation.

Remark 5. The result announced in the abstract of [4] is false, since its hypotheses are satisfied by every two-dimensional Jacobian over \mathbb{F}_p . This is because the abstract of [4] does not mention the various hypotheses assumed in the theorems of that paper.

We used the following Magma [1] program in the proof of Theorem 1.

```
for q in [2..27] do if IsPrimePower(q) then
Q:=Floor(4*Sqrt(q)); M:=Floor((Sqrt(q)+1)^4/q^2);
for c in [2..M] do
for a in [-Q..Q] do b:=-1-a*(q+1)+(c-1)*q^2;
if b le (a^2/4)+2*q and 2*Abs(a)*Sqrt(q)-2*q le b then
p:=Factorization(q)[1,1]; m:=Factorization(q)[1,2];
Delta:=a<sup>2</sup>-4*(b-2*q); delta:=(b+2*q)<sup>2</sup>-4*q*a<sup>2</sup>;
  if GCD(b,p) eq 1 then <q,a,b,c>;
  elif GCD(b,q) ge Sqrt(q) and GCD(a,p) eq 1 and
    (delta eq 0 or not IsSquare(pAdicRing(p)!delta)) then
    <q,a,b,c>;
  elif IsDivisibleBy(b,q) and GCD(a,q) ge Sqrt(q) and
    IsSquare(Delta) then
    if not IsSquare(q) then <q,a,b,c>;
    else sq:=p^((m div 2)); ap:=a div sq; bp:=b div q;
      if not ((bp eq 2 and IsDivisibleBy(p-1,4)) or
        (IsDivisibleBy(ap-bp,2) and IsDivisibleBy(p-1,3)))
        then <q,a,b,c>;
      end if;
    end if;
  elif (a eq 0 and b eq 0) then
    if ((IsSquare(q) and not IsDivisibleBy(p-1,8)) or
      (not IsSquare(q) and p ne 2)) then <q,a,b,c>;
    end if;
  elif (a eq 0 and b eq -q) then
    if ((IsSquare(q) and not IsDivisibleBy(p-1,12)) or
      (not IsSquare(q) and p ne 3)) then <q,a,b,c>;
    end if;
  elif a eq 0 and b in \{q,-2*q\} and not IsSquare(q) then
    <q,a,b,c>;
  elif a eq 0 and b eq 2*q and IsSquare(q) and
    IsDivisibleBy(p-1,4) then <q,a,b,c>;
  elif Abs(a) eq p<sup>(m</sup> div 2) and b eq q and IsSquare(q) and
    not IsDivisibleBy(p-1,5) then <q,a,b,c>;
  elif Abs(a) eq p<sup>((m+1)</sup> div 2) and b eq q and
    not IsSquare(q) and p eq 2 then <q,a,b,c>;
  elif Abs(a) eq 2*p^{(m div 2)} and b eq 3*q and IsSquare(q)
    and IsDivisibleBy(p-1,3) then <q,a,b,c>;
```

```
elif Abs(a) eq p^((m+1) div 2) and b eq 3*q and
    not IsSquare(q) and p eq 5 then <q,a,b,c>;
    end if;
end if;
end for;
end for;
end if;
end for;
```

References

- W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235–265. MR1484478
- T. Honda, Isogeny classes of abelian varieties over finite fields, J. Math. Soc. Japan 20 (1968), 83–95. MR0229642 (37:5216)
- E. W. Howe, E. Nart and C. Ritzenthaler, Jacobians in isogeny classes of abelian surfaces over finite fields, Ann. Inst. Fourier (Grenoble), 59 (2009), 239–289, arXiv:math/0607515v3 [math.NT]. MR2514865 (2010b:11064)
- C. R. Ravnshøj, p-torsion of genus two curves over prime fields of characteristic p, arXiv:0705.3537v1 [math.AG], 24 May 2007.
- H.-G. Rück, Abelian surfaces and Jacobian varieties over finite fields, Compositio Math. 76 (1990), 351–366. MR1080007 (92e:14016)
- J. Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134–144. MR0206004 (34:5829)
- W. C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. École Norm. Sup. (4) 2 (1969), 521–560. MR0265369 (42:279)
- W. C. Waterhouse and J. S. Milne, Abelian varieties over finite fields, pp. 53–64 in: 1969 Number Theory Institute AMS, Providence, 1971. MR0314847 (47:3397)
- A. Weil, Variétés Abéliennes et Courbes Algébriques, Hermann, Paris, 1948. MR0029522 (10:621d)

DEPARTMENT OF MATHEMATICS, HILL CENTER-BUSCH CAMPUS, RUTGERS, THE STATE UNI-VERSITY OF NEW JERSEY, 110 FRELINGHUYSEN ROAD, PISCATAWAY, NEW JERSEY 08854–8019

 $Current \ address:$ Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1043

E-mail address: zieve@umich.edu

URL: www.math.lsa.umich.edu/~zieve/

1838