p^{k}-TORSION OF GENUS TWO CURVES OVER $\mathbb{F}_{p^{m}}$

MICHAEL E. ZIEVE

Abstract

We determine the isogeny classes of abelian surfaces over \mathbb{F}_{q} whose group of \mathbb{F}_{q}-rational points has order divisible by q^{2}. We also solve the same problem for Jacobians of genus-2 curves.

In a recent paper [4], Ravnshøj proved: if C is a genus- 2 curve over a prime field \mathbb{F}_{p}, and if one assumes that the endomorphism ring of the Jacobian J of C is the ring of integers in a primitive quartic CM-field, and that the Frobenius endomorphism of J has a certain special form, then $p^{2} \nmid \# J\left(\mathbb{F}_{p}\right)$. Our purpose here is to deduce this conclusion under less restrictive hypotheses. We write $q=p^{m}$, where p is prime, and for any abelian variety J over \mathbb{F}_{q} we let P_{J} denote the Weil polynomial of J, namely the characteristic polynomial of the Frobenius endomorphism π_{J} of J. As shown by Tate [6, Thm. 1], two abelian varieties over \mathbb{F}_{q} are isogenous if and only if their Weil polynomials are identical. Thus, the following result describes the isogeny classes of abelian surfaces J over \mathbb{F}_{q} for which $q^{2} \mid \# J\left(\mathbb{F}_{q}\right)$.
Theorem 1. The Weil polynomials of abelian surfaces J over \mathbb{F}_{q} satisfying $q^{2} \mid$ $\# J\left(\mathbb{F}_{q}\right)$ are as follows:
(1.1) $X^{4}+X^{3}-(q+2) X^{2}+q X+q^{2}$ (if q is odd and $q>8$);
(1.2) $X^{4}-X^{2}+q^{2}$;
(1.3) $X^{4}-X^{3}+q X^{2}-q X+q^{2}($ if m is odd or $p \not \equiv 1 \bmod 4)$;
(1.4) $X^{4}-2 X^{3}+(2 q+1) X^{2}-2 q X+q^{2}$;
(1.5) $X^{4}+a X^{3}+b X^{2}+a q X+q^{2}$, where (a, b) occurs in the same row as q in the following table:

q	(a, b)
13	$(9,42)$
9	$(6,20)$
7	$(4,16)$
5	$(3,6)$ or $(8,26)$
4	$(2,5),(4,11)$, or $(6,17)$
3	$(1,4),(3,5)$, or $(4,10)$
2	$(0,3),(1,0),(1,4),(2,5)$, or $(3,6)$

The special form required of the Frobenius endomorphism in 4] has an immediate consequence for the shape of its characteristic polynomial, and by inspection the above polynomials do not have the required shape. Thus the main result of 4] follows from the above result.

[^0]Our proof of Theorem 1 relies on the classical results of Tate (6 , Thm. 1] and [8, Thm. 8]) and Honda [2] describing the Weil polynomials of abelian varieties over finite fields. An explicit version of their results in the case of simple abelian surfaces was given by Rück [5, Thm. 1.1]; together with the analogous results of Waterhouse [7, Thm. 4.1] for elliptic curves, this yields the following:

Lemma 2. The Weil polynomials of abelian surfaces over \mathbb{F}_{q} are precisely the polynomials $X^{4}+a X^{3}+b X^{2}+a q X+q^{2}$, where $a, b \in \mathbb{Z}$ satisfy $|a| \leq 4 \sqrt{q}$ and $2|a| \sqrt{q}-2 q \leq b \leq \frac{a^{2}}{4}+2 q$, and where a, b, and the values $\Delta:=a^{2}-4(b-2 q)$ and $\delta:=(b+2 q)^{2}-4 q a^{2}$ satisfy one of the conditions (2.1)-(2.4) below:
(2.1) $v_{p}(b)=0$;
(2.2) $v_{p}(b) \geq m / 2$ and $v_{p}(a)=0$, and either $\delta=0$ or δ is a non-square in the ring \mathbb{Z}_{p} of p-adic integers;
(2.3) $v_{p}(b) \geq m$ and $v_{p}(a) \geq m / 2$ and Δ is a square in \mathbb{Z}, and if q is a square and we write $a=\sqrt{q} a^{\prime}$ and $b=q b^{\prime}$ then

$$
\begin{array}{ll}
p \not \equiv 1 \bmod 4 & \text { if } b^{\prime}=2 \\
p \not \equiv 1 \bmod 3 & \text { if } a^{\prime} \not \equiv b^{\prime} \bmod 2
\end{array}
$$

(2.4) the conditions in one of the rows of the following table are satisfied:

(a, b)	Conditions on p and q
$(0,0)$	q is a square and $p \not \equiv 1 \bmod 8$, or q is a non-square and $p \neq 2$
$(0,-q)$	q is a square and $p \not \equiv 1 \bmod 12$, or q is a non-square and $p \neq 3$
$(0, q)$	q is a non-square
$(0,-2 q)$	q is a non-square
$(0,2 q)$	q is a square and $p \equiv 1 \bmod 4$
$(\pm \sqrt{q}, q)$	q is a square and $p \not \equiv 1 \bmod 5$
$(\pm \sqrt{2 q}, q)$	q is a non-square and $p=2$
$(\pm 2 \sqrt{q}, 3 q)$	q is a square and $p \equiv 1 \bmod 3$
$(\pm \sqrt{5 q}, 3 q)$	q is a non-square and $p=5$

Moreover, the surface J is simple if and only if either

- Δ is a non-square in \mathbb{Z}; or
- $(a, b)=(0,2 q)$ and q is a square and $p \equiv 1 \bmod 4$; or
- $(a, b)=(\pm 2 \sqrt{q}, 3 q)$ and q is a square and $p \equiv 1 \bmod 3$.

The p-rank of J (namely, the rank of the p-torsion subgroup of $\left.J\left(\overline{\mathbb{F}}_{q}\right)\right)$ is 2 in (2.1), 1 in (2.2), and 0 in (2.3) and (2.4).

Proof of Theorem [1. As shown by Weil [9, for any abelian surface J over \mathbb{F}_{q}, the Weil polynomial P_{J} is a monic quartic in $\mathbb{Z}[X]$ whose complex roots have absolute value \sqrt{q}. In particular, $\# J\left(\mathbb{F}_{q}\right)=\operatorname{deg}\left(\pi_{J}-1\right)=P_{J}(1) \leq(\sqrt{q}+1)^{4}$, so if $\# J\left(\mathbb{F}_{q}\right)=$ $c q^{2}$ with $c \in \mathbb{Z}$ then $c \leq\left(1+q^{-1 / 2}\right)^{4}$. It follows that $c=1$ unless $q \leq 27$. In light of the above lemma, there are just finitely many cases to consider with $c>1$; we treated these cases using the computer program presented at the end of this paper, which gave rise to precisely the solutions in (1.5). Henceforth assume $c=1$.

The Weil polynomials of abelian surfaces over \mathbb{F}_{q} are the polynomials $P(X):=$ $X^{4}+a X^{3}+b X^{2}+a q X+q^{2}$ occurring in the above lemma. We must determine which of these polynomials satisfy $P(1)=q^{2}$, or equivalently, $b=-1-a(q+1)$. The inequality $-1-a(q+1)=b \leq a^{2} / 4+2 q$ says that $q^{2} \leq(a / 2+q+1)^{2}$, and since $a / 2+q+1 \geq-2 \sqrt{q}+q+1>0$, this is equivalent to $q \leq a / 2+q+1$, or in other words $-2 \leq a$. The inequality $2|a| \sqrt{q}-2 q \leq b=-1-a(q+1)$ always holds if $a \in\{0,-1,-2\}$, and if $a \geq 1$ it is equivalent to $a(\sqrt{q}+1)^{2} \leq 2 q-1$; since $2 q-1<2 q<2(\sqrt{q}+1)^{2}$, this implies $a=1$, in which case $(\sqrt{q}+1)^{2} \leq 2 q-1$ is equivalent to $q \geq 8$.

Condition (2.1) holds if and only if $a \not \equiv-1 \bmod p$, or equivalently either $a \in$ $\{0,-2\}$ or both $a=1$ and $p \neq 2$. This accounts for (1.1), (1.2), and (1.4).

Condition (2.3) cannot hold, since $p \mid a$ implies $b \equiv-1 \bmod p$.
The condition $v_{p}(b) \geq m / 2$ says that $a \equiv-1 \bmod p^{\lceil m / 2\rceil}$, or equivalently $a=-1$. In this case, $b=q$ and $\delta=9 q^{2}-4 q$, so $\delta \neq 0$. If q is odd, then δ is a square in \mathbb{Z}_{p} if and only if δ is a square modulo $p q$, or equivalently, m is even and -4 is a square modulo p, which means that $p \equiv 1 \bmod 4$. If q is even, then δ is not a square in \mathbb{Z}_{2}, since for $q \leq 8$ we have $\delta \in\{28,128,544\}$, and for $q>8$ we have $\delta \equiv-4 q \bmod 16 q$. Thus (2.2) gives rise to (1.3).

Finally, if $a=-2$ then $b=2 q+1$, and if $a=0$ then $b=-1$, so in either case $q \nmid b$. Thus (2.4) cannot hold, and the proof is complete.

Next we determine which of the Weil polynomials in (1.1)-(1.5) occur for Jacobians. We use the classification of Weil polynomials of Jacobians of genus-2 curves. This classification was achieved by the combined efforts of many mathematicians, culminating in the following result [3, Thm. 1.2]:

Lemma 3. Let $P_{J}=X^{4}+a X^{3}+b X^{2}+a q X+q^{2}$ be the Weil polynomial of an abelian surface J over \mathbb{F}_{q}.
(1) If J is simple, then J is not isogenous to a Jacobian if and only if the conditions in one of the rows of the following table are met:

Condition on p and q	Conditions on a and b
-	$a^{2}-b=q$ and $b<0$ and all prime divisors of b are $1 \bmod 3$
-	$a=0$ and $b=1-2 q$
$p>2$	$a=0$ and $b=2-2 q$
$p \equiv 11 \bmod 12$ and q square	$a=0$ and $b=-q$
$p=3$ and q square	$a=0$ and $b=-q$
$p=2$ and q non-square	$a=0$ and $b=-q$
$q=2$ or $q=3$	$a=0$ and $b=-2 q$

(2) If J is not simple, then there are integers s, t such that $P_{J}=\left(X^{2}-s X+\right.$ $q)\left(X^{2}-t X+q\right)$, and s and t are unique if we require that $|s| \geq|t|$ and that if $s=-t$ then $s \geq 0$. For such s and t, J is not isogenous to a Jacobian if and only if the conditions in one of the rows of the following table are met:

p-rank of J	Condition on p and q	Conditions on s and t
2	-	$\|s-t\|=1$
	-	$s=t$ and $t^{2}-4 q \in\{-3,-4,-7\}$
	$q=2$	$s=1$ and $t=-1$
	q square	$s^{2}=4 q$ and $s-t$ squarefree
	$p>3$	$s^{2} \neq t^{2}$
	$p=3$ and q non-square	$s^{2}=t^{2}=3 q$
	$p=2$	$s-t$ is not divisible by $3 \sqrt{q}$
	$q=2$ or $q=3$	$s^{2}-t^{2}$ is not divisible by $2 q$
	$q=4$ or $q=9$	$s=t$

Theorem 4. The polynomials in (1.1)-(1.5) which are not Weil polynomials of Jacobians are precisely the polynomials $X^{4}+a X^{3}+b X^{2}+a q X+q^{2}$, where q and (a, b) satisfy the conditions in one of the rows of the following table:

q	(a, b)
5	$(8,26)$
4	$(6,17)$
2	$(-2,5),(0,3),(1,4),(2,5)$, or $(3,6)$

Proof. Let J be an abelian surface over \mathbb{F}_{q} whose Weil polynomial $P_{J}=X^{4}+$ $a X^{3}+b X^{2}+a q X+q^{2}$ satisfies one of (1.1)-(1.5). In each case, $a^{2}-b \neq q$, and if $a=0$ then $b \in\{-1,3\}$, so if J is simple then Lemma 3 implies J is isogenous to a Jacobian.

Henceforth assume J is not simple, so $P_{J}=\left(X^{2}-s X+q\right)\left(X^{2}-t X+q\right)$ where $s, t \in \mathbb{Z}$; we may assume that $|s| \geq|t|$, and that $s \geq 0$ if $s=-t$. Note that $a=-s-t$ and $b=2 q+s t$, so $(X-s)(X-t)=X^{2}+a X+b-2 q$. In particular, $\Delta:=a^{2}-4(b-2 q)$ is a square, say $\Delta=z^{2}$ with $z \geq 0$.

Suppose P_{J} satisfies (1.1), so $\Delta=12 q+9$. Then $(z-3)(z+3)=12 q$ is even, so $z-3$ and $z+3$ are even and incongruent $\bmod 4$, whence their product is divisible by 8 , so q is even, a contradiction.

Now suppose P_{J} satisfies (1.2), so $\Delta=8 q+4$. Then $(z-2)(z+2)=8 q$, so at least one of $z-2$ and $z+2$ is divisible by 4 ; but these numbers differ by 4 , so they are both divisible by 4 , whence their product is divisible by 16 , so q is even. Thus $8 q$ is a power of 2 which is the product of two positive integers that differ by 4 , so $q=4$. In this case, $(q, a, b, s, t)=(4,0,-1,3,-3)$, which indeed satisfies (1.2). Moreover, (2.1) holds, so Lemma 2 implies J has p-rank 2. Since $|s-t|=6 \notin\{0,1\}$ and $q \neq 2$, Lemma 3 implies J is isogenous to a Jacobian.

Now suppose P_{J} satisfies (1.3), so $\Delta=4 q+1$. Then $(z-1)(z+1)=4 q$, so $z-1$ and $z+1$ are even and incongruent $\bmod 4$, whence their product is divisible by 8 , so q is even. Thus $4 q$ is a power of 2 which is the product of two positive integers that differ by 2 , so $q=2$. In this case, $(q, a, b, s, t)=(2,-1,2,2,-1)$, which indeed satisfies (1.3). Moreover, (2.2) holds, so Lemma 2 implies J has p-rank 1. Since $|s-t|=3 \neq 1$ and q is a non-square, Lemma 3 implies J is isogenous to a Jacobian.

Now suppose P_{J} satisfies (1.4), so $\Delta=0$ and $a \notin\{0, \pm 2 \sqrt{q}\}$, and thus Lemma 3 implies J is non-simple. Here $(a, b, s, t)=(-2,2 q+1,1,1)$, so Lemma 2 implies J has p-rank 2. Since $s=t=1$, Lemma 3 implies J is isogenous to a Jacobian if
and only if $1-4 q \notin\{-3,-4,-7\}$, or equivalently $q \neq 2$. This gives rise to the first entry in the last line of the table.

Finally, if P_{J} satisfies (1.5), then the result follows from Lemma 3 and Lemma 2 via a straightforward computation.

Remark 5. The result announced in the abstract of [4] is false, since its hypotheses are satisfied by every two-dimensional Jacobian over \mathbb{F}_{p}. This is because the abstract of [4] does not mention the various hypotheses assumed in the theorems of that paper.

We used the following Magma [1] program in the proof of Theorem 1 .

```
for q in [2..27] do if IsPrimePower(q) then
Q:=Floor(4*Sqrt(q)); M:=Floor((Sqrt(q)+1)^4/q^2);
for c in [2..M] do
for a in [-Q..Q] do b:=-1-a*(q+1)+(c-1)*q^2;
if b le (a^2/4)+2*q and 2*Abs(a)*Sqrt(q) - 2*q le b then
p:=Factorization(q)[1,1]; m:=Factorization(q) [1,2];
Delta:=a^2-4*(b-2*q); delta:=(b+2*q)^2-4*q*a^2;
    if GCD(b,p) eq 1 then <q,a,b,c>;
    elif GCD(b,q) ge Sqrt(q) and GCD(a,p) eq 1 and
        (delta eq 0 or not IsSquare(pAdicRing(p)!delta)) then
        <q,a,b,c>;
    elif IsDivisibleBy(b,q) and GCD(a,q) ge Sqrt(q) and
        IsSquare(Delta) then
        if not IsSquare(q) then <q,a,b,c>;
        else sq:=\mp@subsup{p}{}{\wedge}((m div 2)); ap:=a div sq; bp:=b div q;
                if not ((bp eq 2 and IsDivisibleBy(p-1,4)) or
                    (IsDivisibleBy(ap-bp,2) and IsDivisibleBy(p-1,3)))
                then <q,a,b,c>;
            end if;
        end if;
    elif (a eq 0 and b eq 0) then
        if ((IsSquare(q) and not IsDivisibleBy(p-1,8)) or
                (not IsSquare(q) and p ne 2)) then <q,a,b,c>;
        end if;
    elif (a eq 0 and b eq -q) then
        if ((IsSquare(q) and not IsDivisibleBy(p-1,12)) or
                (not IsSquare(q) and p ne 3)) then <q,a,b,c>;
        end if;
    elif a eq 0 and b in {q, -2*q} and not IsSquare(q) then
        <q,a,b,c>;
    elif a eq 0 and b eq 2*q and IsSquare(q) and
        IsDivisibleBy(p-1,4) then <q,a,b,c>;
    elif Abs(a) eq p^(m div 2) and b eq q and IsSquare(q) and
        not IsDivisibleBy(p-1,5) then <q,a,b,c>;
    elif Abs(a) eq p^((m+1) div 2) and b eq q and
        not IsSquare(q) and p eq 2 then <q,a,b,c>;
    elif Abs(a) eq 2*p^(m div 2) and b eq 3*q and IsSquare(q)
        and IsDivisibleBy(p-1,3) then <q,a,b,c>;
```

```
    elif Abs(a) eq p^((m+1) div 2) and b eq 3*q and
        not IsSquare(q) and p eq 5 then <q,a,b,c>;
    end if;
end if;
end for;
end for;
end if;
end for;
```


References

1. W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235-265. MR 1484478
2. T. Honda, Isogeny classes of abelian varieties over finite fields, J. Math. Soc. Japan 20 (1968), 83-95. MR 0229642 (37:5216)
3. E. W. Howe, E. Nart and C. Ritzenthaler, Jacobians in isogeny classes of abelian surfaces over finite fields, Ann. Inst. Fourier (Grenoble), 59 (2009), 239-289, arXiv:math/0607515v3 [math.NT]. MR2514865 (2010b:11064)
4. C. R. Ravnshøj, p-torsion of genus two curves over prime fields of characteristic p, arXiv:0705.3537v1 [math.AG], 24 May 2007.
5. H.-G. Rück, Abelian surfaces and Jacobian varieties over finite fields, Compositio Math. 76 (1990), 351-366. MR1080007(92e:14016)
6. J. Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134-144. MR0206004 (34:5829)
7. W. C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. École Norm. Sup. (4) 2 (1969), 521-560. MR0265369 (42:279)
8. W. C. Waterhouse and J. S. Milne, Abelian varieties over finite fields, pp. 53-64 in: 1969 Number Theory Institute AMS, Providence, 1971. MR0314847(47:3397)
9. A. Weil, Variétés Abéliennes et Courbes Algébriques, Hermann, Paris, 1948. MR0029522 (10:621d)

Department of Mathematics, Hill Center-Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, New Jersey 08854-8019

Current address: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1043

E-mail address: zieve@umich.edu
$U R L$: www.math.lsa.umich.edu/~zieve/

[^0]: Received by the editor May 29, 2007 and, in revised form, August 30, 2008.
 2010 Mathematics Subject Classification. Primary 14H40.

