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GLOBAL SMOOTH SOLUTION CURVES

USING RIGOROUS BRANCH FOLLOWING

JAN BOUWE VAN DEN BERG, JEAN-PHILIPPE LESSARD,
AND KONSTANTIN MISCHAIKOW

Abstract. In this paper, we present a new method for rigorously computing
smooth branches of zeros of nonlinear operators f : Rl1×B1 → R

l2×B2, where
B1 and B2 are Banach spaces. The method is first introduced for parameter
continuation and then generalized to pseudo-arclength continuation. Examples
in the context of ordinary, partial and delay differential equations are given.

1. Introduction

Finding solutions of a nonlinear functional differential equation

(1) G(p, u) = 0,

where p is a set of parameters, is central in mathematics. In particular, when (1)
takes the form of a partial differential equation or a delay equation, finding explicit
solutions becomes a real challenge due to the nonlinearity of G and the fact that
the state space is infinite dimensional.

Several computer-assisted approaches rigorously solving systems of nonlinear
equations have been proposed since the early 1990s [2, 4, 5, 7, 10, 11, 12, 13, 14, 15,
17, 18]. A combination of topological methods (Banach fixed point theorem, Conley
index theory), a priori analytic estimates and use of interval arithmetic have led
to new theorems about the existence of solutions. In early works, such as [17, 18],
the proofs of existence were done for fixed parameters. In [5, 7], these arguments
were put in a context of continuation where a premium was placed on minimizing
computational cost; but the focus remained on discrete parameter values only. This
method was referred to as validated continuation. In [4, 10], continuous branches
of solution curves were obtained in the context of a predictor-corrector algorithm.
The idea was to work directly with small intervals of parameters (using interval
arithmetic) and then draw conclusions about solution branches for these intervals
of parameters. However, the computational cost of such methods is high, since
trivial predictors were used, leading to very small step sizes in the parameter. In [1],
validated continuation was adapted to prove the existence of piecewise continuous
solution curves of (1). At each step of the algorithm, first order predictors were used
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to prove the existence of small continuous solutions curves, allowing significantly
larger step sizes. With this in mind, we now aim to develop a method that will
allow us to rigorously obtain the existence of global smooth solution curves in the
context of both parameter and pseudo-arclength continuation.

Before proceeding, it is worth mentioning that this method might as well be
applied to finite dimensional systems. However, the motivation for applying rig-
orous numerical techniques to such a problem is less appealing, as the confidence
in getting reliable outputs from classical numerical methods is high and since the
main source of error is often due to round-off. In the context of infinite dimen-
sional problems, the numerical methods must be applied to some finite dimensional
approximation, which raises questions concerning the validity of the output. With
this in mind, we develop a method that provides an internal check of consistency on
the dimension of truncation from the infinite to finite dimensional problem, hence
delivering rigorous mathematical proofs.

When looking for solutions of (1) with a periodic profile, one may apply a Fourier
transformation to the a priori unknown solution u and then solve for the Fourier
coefficients. This transforms (1) into an equivalent problem in Fourier space. We
will turn to concrete examples quickly, where we also specify the parameters and
spaces involved, but we first introduce the general setting and notation. Denote by
g : Rl1×B1 → B2 the Fourier transformation of G, where Rl1 is the parameter space
and B1, B2 are Banach spaces. Sometimes we will be interested in finding solutions
of g = 0 satisfying additional conditions (see Examples 1 and 2 below). An extra
set of l2 equations will then ensure that the additional conditions are satisfied, i.e.,
h = 0 with h : Rl1 × B1 → R

l2 . Hence, consider the infinite dimensional system of
equations

(2) F : Rl1 ×B1 → R
l2 ×B2 : (p, ξ) �→ F(p, ξ) = (h(p, ξ), g(p, ξ)) = 0,

where p = (p1, . . . , pl1) ∈ R
l1 are the original parameters of (1) and ξ consists of

the Fourier coefficients of u. To be more specific, we denote these by ξ = (ξk)
∞
k=0

with, in general, ξk ∈ R
n, n ≥ 1 (see below for examples where n = 1, 2; one may

also think of systems of equations and higher dimensional spatial settings leading
to larger n). In this paper, we do not deal with the details of the equivalence
(for periodic solutions) of (1) and (2), which will be context dependent. Let us
remark that although in the present paper we restrict our attention to periodic
solutions, extensions to nonperiodic (boundary value) problems are possible within
this setting.

Since the periodic solutions of (1) we are looking for are reasonably smooth,
we choose our Banach spaces such that the Fourier coefficients ξ = (ξk)k, ξk ∈ R

n

decay quickly. There are of course many possibilities. We only deal with one popular
choice, used in [1, 4, 5, 6, 7], mostly in the context of validated continuation. We
choose weight functions (q > 0)

(3) ωq
k =

{
1, k = 0,
kq, k ≥ 1,

which are used to define the norm

(4) ‖ξ‖q = sup
k≥0

ωq
k|ξk|∞
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and the Banach space

(5) Ωq = {ξ , ‖ξ‖q < ∞},
consisting of sequences with algebraically decaying tails. We finally let B1 = Ωq1

and B2 = Ωq2 . Throughout we assume that F is a C1 function.

Example 1. Consider the problem of computing periodic solutions (with a special
symmetry) of the fourth order Swift-Hohenberg ordinary differential equation

(6) −u′′′′ − νu′′ + u− u3 = 0, ν ∈ R.

This ordinary differential equation has a conserved quantity (first integral), called
the energy, which is given by

E = u′′′u′ − 1

2
u′′2 +

ν

2
u′2 +

1

4
(u2 − 1)2.

We restrict our attention to finding periodic solutions at the zero energy level E = 0.
Plugging the cosine Fourier expansion

u(y) = ξ0 + 2
∑
k≥1

ξk cos kLy

into (6), the problem g = (gk)k≥0 = 0, where

(7) gk
def
=

[
1 + νL2k2 − L4k4

]
ξk −

∑
k1+k2+k3=k

ξk1
ξk2

ξk3
, k ≥ 0,

corresponds to finding periodic solutions u of (6); see [1]. Here p = (p1, p2) ∈ R
2,

where p1 = ν and p2 = L is the frequency of u ( 2πL is its period). The extra equation

h
def
= −2L2

∞∑
l=1

l2ξl −
1√
2

[
ξ0 + 2

∞∑
l=1

ξl

]2

+
1√
2
= 0

is added in order to ensure that E = 0 (one evaluates the energy at y = 0, where
u′ = 0). Letting F = (h, g), the problem F(p, ξ) = 0 is considered, with F :
R

2 × Ωq → R× Ωq−4, q > 3; see also Section 4.2.

Example 2. Consider the problem of finding periodic solutions of the so-called
Wright’s delay equation

(8) y′(t) = −αy(t− 1)[1 + y(t)], α >
π

2
,

considered in [16]. Plugging the Fourier expansion

y(t) = ξ0,1 + 2

∞∑
k=1

[ξk,1 cos kLt− ξk,2 sin kLt]

into (8) and letting ξk = (ξk,1, ξk,2) ∈ R
2 (with ξ0,2 = 0), consider

gk
def
= Rk

(
ξk,1
ξk,2

)
+ α

∑
k1+k2=k

ki∈Z

Θk1

(
ξk1,1ξk2,1 − ξk1,2ξk2,2

ξk1,1ξk2,2 + ξk1,2ξk2,1

)
, k ≥ 0,

where

Rk =

(
α cos kL −kL+ α sin kL

kL− α sin kL α cos kL

)
and Θk1

=

(
cos k1L sin k1L
− sin k1L cos k1L

)
.
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Solving g = (gk)k≥0 = 0 corresponds to finding periodic solutions of (8); see [9].
In order to eliminate arbitrary shifts of the periodic solution y, the normalizing
condition y(0) = 0 is imposed. Hence,

h
def
= y(0) = ξ0,1 + 2

∞∑
k=1

ξk,1 = 0

is appended to g = 0. Letting F = (h, g) and p = (α,L) ∈ R
2, the problem

F(p, ξ) = 0 is considered, with F : R2 × Ωq → R× Ωq−1, q ≥ 2.

Example 3. Consider the problem of looking for stationary solutions of nonlinear
partial differential equations of the form

(9) ut = L(p, u) +
P∑

j=2

cj(p)u
j in D =

N∏
l=1

[
0,

2π

Ll

]
,

defined on N -dimensional rectangular spatial domains, where L is a linear differ-
ential operator in u. In particular, consider the two dimensional problem N = 2,
L(u) =

(
ν − (1 + Δ)2

)
u, P = 3, c2 = 0, c3 = −1 with periodic boundary condi-

tions; see [6]. More precisely, consider

ut = νu− (1 + Δ)2u− u3 = 0, in D =

[
0,

2π

L1

]
×
[
0,

2π

L2

]
,

u(x, y, t) = u(x+
2π

L1
, y, t), u(x, y, t) = u(x, y +

2π

L2
, t),(10)

u(x, y, t) = u(−x, y, t) = u(x,−y, t) = u(−x,−y, t).

Plugging the expansion of the time independent a priori unknown solution

u(x, y) =
∑

k1,k2∈Z

ck1,k2
eik1L1xeik2L2y

into (10), we need to solve

(11) gi,j(ν, ξ)
def
= μi,j(ν)ξi,j −

∑
i1+i2+i3=i
j1+j2+j3=j

ik,jk∈Z

ξi1,j1ξi2,j2ξi3,j3 = 0, i, j ≥ 0,

where ξi,j is the real part of ci,j , ξ = (ξi,j)i,j≥0, ξ−ik,jk = ξik,−jk = ξ−ik,−jk = ξik,jk
and μi,j = ν −

[
1−

(
i2L2

1 + j2L2
2

)]2
. Letting F = (gi,j)i,j≥0, solving F(ν, ξ) = 0

corresponds to finding solutions of (10).

1.1. Parameter continuation. We want to develop a computational method to
rigorously continue the zeros of F : Rl1 × Ωq1 → R

l2 × Ωq2 , as we move one of the
parameters of p, say p1. We introduce only the main ideas here, and discuss the
method in detail in Section 2. Fixing the parameters p2, . . . , pl1 and considering
ν

def
= p1 as the continuation parameter, we define the infinite dimensional vector of

variables x = (p2, . . . , pl1 , ξ) and the new map

(12) f : R×
[
R

l1−1 × Ωq1
]
→ R

l2 × Ωq2 : (ν, x) �→ f(ν, x).

Under the assumption that Dxf(ν, x) is nonsingular along the branch of zeros that
we are computing, we vary the parameter ν. In this case, the implicit function
theorem implies that the branch of zeros can be viewed globally as the graph of
a function of the parameter ν. The idea is to transform the problem f(ν, x) = 0
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into a fixed point equation and to apply the Banach fixed point theorem. Since
we want develop this idea in a computational setting, consider a finite dimensional
projection f (m) of (12). First, using a Newton-like iterative scheme on f (m), we
compute an approximate zero x̄ of (12) at the parameter value ν = ν0. Next, we
compute a tangent vector ẋ such that Dxf(ν0, x̄)ẋ + Dνf(ν0, x̄) ≈ 0. Using the
vectors x̄ and ẋ, we define the set of predictors by

(13) xν = x̄+Δν ẋ,

where Δν is small. Consider the Banach space Φ = R
l1−1 ×Ωq1 (with the induced

product norm). We compute an approximate inverse A of the linear operator
Dxf(ν0, x̄). For ν = ν0 +Δν close to ν0, we define Tν : Φ → Φ by

(14) Tν(x) = x−Af(ν, x),

and look for a fixed point of Tν using the Banach fixed point theorem. Note that
it is sufficient that A is injective to ensure that fixed points of T are in bijection
with zeros of f .

Example 4. For the problem introduced in Example 1, the approximate inverse A
may be constructed as follows [1]. Denote by Dxf

(m)(ν0, x̄) the Jacobian matrix of
the projection f (m) at the approximate solution (ν0, x̄), and let Jm be an approx-
imate inverse of Dxf

(m)(ν0, x̄), computed using an LU decomposition. Recalling
(7), denote the linear part of gk by μk(L, ν) = 1 + νL2k2 − L4k4. Now we define

A
def
=

⎡⎢⎢⎢⎢⎢⎢⎣
Jm 0TF 0TF 0TF · · ·
0F μm(L̄, ν0)

−1 0 0 · · ·
0F 0 μm+1(L̄, ν0)

−1 0 · · ·
0F 0 0 μm+2(L̄, ν0)

−1

...
...

...
. . .

⎤⎥⎥⎥⎥⎥⎥⎦ ,

which acts as an approximate inverse of the linear operator Dxf(ν0, x̄), provided of
course that the projection dimension m is large enough. Note that A : R×Ωq−4 →
R

2 × Ωq.

The goal is to prove that there exists a ball B(r,Δν) = xν + B(r) ⊂ Φ of
radius r using norm (4), centered at xν , such that Tν maps the ball B(r,Δν) into
itself and acts as a contraction on B(r,Δν), for small Δν = ν − ν0. To verify these
conditions, we need to compute two bounds Y = Y (Δν) and Z = Z(r,Δν). In
essence, Y measures how far the center xν of B(r,Δν) is mapped from itself (under
Tν), whereas Z measures the contraction rate of (all components of) Tν on B(r,Δν).
The most computationally demanding part of the method is the construction of the
bounds Y and Z; see for instance Sections 3.2 and 3.3 in [1] or Section 6 in [5]. Their
construction requires a combination of a priori analytic estimates (bounds on the
truncation error terms) and rigorous computations involving interval arithmetic.
Once the bounds Y and Z are computed, verifying that

(15) ‖Y (Δν) + Z(r,Δν)‖Φ < r

is sufficient to conclude that Tν : B(r,Δν) → B(r,Δν) is a contraction (see
Lemma 5 and [17]), yielding a unique zero of f(ν, x) at ν = ν0 +Δν . In practice,
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we use an iterative procedure (with Δν varying) to find the approximate maximal
Δ0

ν for which there exists an r > 0 such that (15) is satisfied; see Section 2 and
[1]. If this step is successful, let ν1 = ν0 +Δ0

ν . We then have a continuum of zeros
C0 =

{(
ν, x0(ν)

)
| f

(
ν, x0(ν)

)
= 0, ν ∈ [ν0, ν1]

}
; see Lemma 7. Since we want to

repeat the argument with initial parameter value ν1, we put ourselves in the context
of a continuation method. This involves a predictor and corrector step. Recalling
(13), the predictor at the parameter value ν1 = ν0+Δ0

ν is given by x̂1
def
= x̄+Δ0

ν ẋ.
The corrector step, based on a Newton-like iterative scheme for the projection f (m),
takes x̂1 as its input and produces, within a prescribed tolerance, a zero x̄1 at ν1.
We can then compute a new tangent vector ẋ1, build the new set of predictors
x̄1 +Δν ẋ1, construct the bounds Y, Z at the parameter value ν1 and try to verify
(15) again. If we are successful in finding a new Δ0

ν , we let ν2 = ν1+Δ0
ν and we get

the existence of a continua of zeros C1 =
{(

ν, x1(ν)
)
| f

(
ν, x1(ν)

)
= 0, ν ∈ [ν1, ν2]

}
.

Once we have the two continua of zeros C0 and C1, we ask the natural question: can
we prove that C0 and C1 connect at

(
ν1, x

0(ν1)
)
=

(
ν1, x

1(ν1)
)
such that C0 ∪ C1 is

a smooth one dimensional branch of solutions of f = 0? It turns out that there is a
simple check that can be added to the continuation step in order to give an answer
to this question; see Proposition 8.

1.2. Pseudo-arclength continuation. The rigorous continuation introduced in
the previous section requires Dxf(ν, x) to be nonsingular along the branch of zeros
we are following. This implies that the continuation method will necessarily fail
when trying to continue past a fold. One way to overcome this difficulty is to
consider the continuation parameter ν as a variable and the arclength of the curve
as a new parameter [8]. Consider the vector of variables X = (p, ξ) and recall (2).
To solve F(X) = 0 past folds, we append one equation to the system, namely the
equation E = 0 of a plane almost perpendicular to the curve we are following. In
practice, we do not know exactly the arclength of the curve. The new continuation
parameter, denoted by s, will then be the pseudo-arclength of the curve. Note that
E depends on s. (The details of the construction of E are rather technical and are
presented in Section 3.) In essence, we apply the rigorous continuation method on
F(s,X) = 0, where

F(s,X) =

(
E(s,X)
F(X)

)
.

With this construction, note that DXF (s,X) will be nonsingular at a fold point.
Hence, we can expect a Newton-like map to contract neighborhoods of the fold
point. In Lemma 10 and Proposition 11 we formulate the algorithms to establish
the existence of a smooth solution curve.

The paper is organized as follows. In Section 2, we introduce the parameter
continuation method to obtain smooth branches of zeros. In Section 3, we show
how to modify the continuation method in order to continue past folds: pseudo-
arclength continuation. In Section 4, we first present an example of the parameter
continuation in the context of periodic solutions of delay differential equations. We
also discuss an application of the pseudo-arclength method to periodic solutions of
ordinary differential equations. This example provides an improvement of a result
presented in [1].
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2. Parameter continuation

In this section, we develop a method to compute smooth solution curves of

F : Rl1 × Ωq1 → R
l2 × Ωq2 ,

as we move one of the parameters of p. Without loss of generality, we consider
ν

def
= p1 as the continuation parameter. Hence, we fix all parameters p2, . . . , pl1 .

Defining the infinite dimensional vector of variables x = (p2, . . . , pl1 , ξ), we want
to do rigorous branch following for the problem f(ν, x) = 0. As mentioned before,
we transform this problem into a fixed point problem Tν(x) = x. With x as given
above, define the norm

(16) ‖x‖Φ = max
{
|p2|, . . . , |pl1 |, ‖ξ‖q1

}
and the corresponding Banach space

(17) Φ =
{
x = (p2, . . . , pl1 , ξ) , ‖x‖Φ < ∞

}
.

Consider ν0 fixed and suppose the existence of x̄ ∈ Φ such that f(ν0, x̄) ≈ 0.
Assume we have a bijective linear operator A : Rl2 × Ωq2 → R

l1−1 × Ωq1 which
acts as an approximation for the inverse of Dxf(ν0, x̄). Recalling (14), consider the
Newton-like operator Tν(x) = x − Af(ν, x) with ν close to ν0. Suppose also that
we have computed a tangent vector ẋ ∈ Φ such that Dxf(ν0, x̄)ẋ+Dνf(ν0, x̄) ≈ 0.
The idea is to find balls in Φ on which Tν is a contraction mapping, thus leading
to solutions of f(ν, x) = 0. Recalling that ξk ∈ R

n, let us define the ball of radius
r in Φ, centered at the origin,

(18) Bq1(r)
def
= [−r, r]l1−1 ×

∞∏
k=0

[
− r

ωq1
k

,
r

ωq1
k

]n
.

We will drop q1 from the notation whenever this does not compromise clarity.
Recalling (13), consider the predictors based at ν0: xν = x̄+Δν ẋ, with Δν = ν−ν0.
For ν close to ν0 we define the ball centered at xν by Bxν

(r) = xν+B(r). To simplify
the presentation, define k0 = −l1 + 1, so that the indexing of the sets begins at
k = k0. To show that Tν is a contraction mapping, we need bounds Yk and Zk for
all k ≥ k0, such that, with Δν = ν − ν0,

(19)
∣∣∣[Tν(xν)− xν ]k

∣∣∣ ≤ Yk(Δν),

and

(20) sup
b,c∈B(r)

∣∣∣[DTν(xν + b)c]k

∣∣∣ ≤ Zk(r,Δν).

Note that Yk, Zk ∈ R for k0 ≤ k < 0 and Yk, Zk ∈ R
n for k ≥ 0. As mentioned

earlier, we refer to Sections 3.2 and 3.3 in [1] or Section 6 in [5] for explicit compu-
tations of the bounds (19) and (20). The following lemma was proved in [1].

Lemma 5. Consider ν = ν0 +Δν . If there exists an r > 0 such that ‖Y + Z‖Φ <
r, with Y = (Yk)k≥k0

and Z = (Zk)k≥k0
, satisfying (19) and (20), respectively,

then Tν is a contraction mapping on Bxν
(r) with contraction constant at most

‖Y +Z‖Φ/r < 1. Furthermore, there is a unique x̃ν ∈ Bxν
(r) such that f(ν, x̃ν) = 0,

and x̃ν lies in the interior of Bxν
(r).
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For the sake of simplicity of presentation, we assume n = 1. The generalization
of the discussion below for the case n ≥ 1 is straightforward, using componentwise
comparison for all vector inequalities concerned. An example with n = 2 can be
found in [9].

The bounds/functions Yk(Δν) and Zk(r,Δν) can be constructed so that they are
polynomials in r and |Δν | (note the absolute value) with nonnegative coefficients.
Of course, in parameter continuation, at each step one is interested in either Δν > 0
or Δν < 0, but we stick with the general setting since using the sign of Δν will
only marginally improve the bounds and step size. Also, for sufficiently large k, say
k ≥ M , one may choose

Yk = 0, and Zk = ẐM

(
M

k

)q1
for some ẐM = ẐM (r,Δν) > 0, where M is a computational parameter (to be
discussed in the example presented in Section 4.2). The reason one can choose Yk =
0 for k large enough is because the quantity [Tν(xν)−xν ]k eventually vanishes. This
is due to the fact that xν has only finitely many nonzero entries (e.g., see Section
3.2 in [1]). In order to verify the hypotheses of Lemma 5 in a computationally
efficient way, we introduce the following notion of radii polynomials.

Definition 6. Let Yk(Δν) = 0 and Zk(r,Δν) = ẐM (r,Δν)
(
M
k

)q1 for all k ≥ M .
We define the radii polynomials {pk0

, . . . , pM−1, pM} by

pk(r, |Δν |) def
=

{
Yk(Δν) + Zk(r,Δν)− r

ωk
, k = k0, . . . ,M − 1,

ẐM (r,Δν)− r
ωM

, k = M,

where we recall that Yk(Δν) = Yk(|Δν |) and Zk(r,Δν) = Zk(r, |Δν |) are polyno-
mials with nonnegative coefficients. In particular, pk is increasing in |Δν | ≥ 0 and
convex in r ≥ 0.

Here, we repeat the discussion presented in [1], as it sheds light on the reason
the radii polynomials pk are useful. Some terms of the polynomials Yk and Zk are
close to zero. More precisely,

Yk ∼ δ1 + δ2|Δν |+O(Δ2
ν),

Zk ∼ δ3r +O(Δνr, r
2),

where δ1, δ2 and δ3 are very small: δ1 ≈ 0 because of the choice of x̄, δ2 ≈ 0 because
the choice of ẋ, and δ3 ≈ 0 because of the choice of the linear operator A and the
Newton-like map Tν . Therefore, the radii polynomials are roughly of the form

pk(r, |Δν |) ∼ (δ1 + |Δν |δ2)−
(

1

ωk
− δ3

)
r +O(r2,Δνr,Δ

2
ν).

Hence, for a reasonably large range of Δν , one may anticipate finding a small r > 0
(but not too small) at which all radii polynomials are negative. The following is a
slight modification of a result presented in [1].

Lemma 7. Recall (2) and suppose that F ∈ C�
(
R

l1 ×B1,R
l2 ×B2

)
, � ≥ 1. If

there exists an r > 0 and a small Δν such that pk(r, |Δν |) < 0 for all k = k0, . . . ,M ,
then there exists a C� function x̃ : [ν0 − Δν , ν0 + Δν ] → Φ : ν �→ x̃(ν) such that
f(ν, x̃(ν)) = 0 for all ν ∈ [ν0 − Δν , ν0 + Δν ]. Furthermore, these are the only
solutions of f(ν, x) = 0 in the tube {|ν − ν0| ≤ Δν , x− xν ∈ B(r)}.
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Proof. Since pk is increasing in |Δν | ≥ 0, existence and uniqueness of a solution
x̃(ν) for ν ∈ [ν0 −Δν , ν0 +Δν ] follows from the definition of the radii polynomials
and Lemma 5. In particular, for every fixed ν ∈ [ν0−Δν , ν0+Δν ], Tν : Bxν

→ Bxν

is a contraction. Consider the change of variable y = x− xν . Then, the operator

T̃ : [ν0 −Δν , ν0 +Δν ]×B(r) → B(r) : (ν, y) �→ T̃ (ν, y)
def
= Tν(y + xν)

is a uniform contraction on B(r). Since F ∈ C�
(
R

l1 ×B1,R
l2 ×B2

)
, we have that

T̃ ∈ C� ([ν0 −Δν , ν0 +Δν ]×B(r), B(r)). By the uniform contraction principle
(see e.g., [3]), we conclude that x̃(ν) is a C� function of ν. �

After one successful step, based at (ν, x) = (ν0, x̄0) with predictor ẋ0 and step
size Δν , we find the corrector x̄1 at ν = ν1 = ν0 + Δν using a Newton iteration,
and we rebuild the radii polynomials, now based at (ν, x) = (ν1, x̄1). Suppose now
that we have performed two successful continuation steps; i.e., in both steps we
have found radii r0 and r1, respectively, where the radii polynomials are negative.
We thus have two continuous solution graphs over intervals [ν0, ν1] and [ν1, ν2]:
Lemma 7 implies the existence of two functions x0(ν) and x1(ν) of class C� such that
C0 def

=
{(

ν, x0(ν)
)
| ν ∈ [ν0, ν1]

}
and C1 def

=
{(

ν, x1(ν)
)
| ν ∈ [ν1, ν2]

}
are smooth

branches of solutions of f(ν, x) = 0. The question is to determine whether or not
C0 and C1 connect at the parameter value ν1 to form a smooth continuum of zeros
C0∪C1. In other words, can we prove that x0(ν1) = x1(ν1) and that the connection
is smooth? It turns out that validated continuation is well suited to answer this
question. At the parameter value ν1, we have two sets enclosing a unique zero,
namely

B0
def
= x̄0 + (ν1 − ν0)ẋ0 + B(r0)

and
B1

def
= x̄1 +B(r1).

We want to prove that the solutions in B0 and B1 are the same. We return now to
the radii polynomials pk(r, |Δν |), k = k0, . . . ,M , constructed at basepoint (ν, x) =
(ν1, x̄1), and evaluate them at Δν = 0:

p̃k(r)
def
= pk(r, 0).

Since p̃k(r1) < 0, we find a nonempty interval I def
= [r−1 , r

+
1 ] containing r1 such that

p̃k(r) are all strictly negative on I. We now have two additional sets enclosing a
unique zero at parameter value ν1, namely

B±
1

def
= x̄1 +B(r±1 ).

Proposition 8. If B0 ⊂ B+
1 or B−

1 ⊂ B0, then C0 ∪ C1 consists of a continuous
branch of solutions of f(ν, x) = 0, and C0 ∩ C1 = {(ν1, x0(ν1))} = {(ν1, x1(ν1))} ⊆
B0 ∩ B1. Moreover, if T (ν, x) = Tν(x) is of class C�, then C0 ∪ C1 is a C� smooth
curve.

Proof. For a geometric representation of the proof, we refer to Figure 1. The sets
B−

1 , B+
1 and B1 all contain a unique zero of f(ν1, ·). Since the balls are nested,

these zeros are one and the same, namely x1(ν1). Furthermore, B0 also contains
exactly one zero of f(ν1, ·), namely x0(ν1). This assertion implies that either B0

and B+
1 , or B0 and B−

1 are nested, hence x0(ν1) = x1(ν1). This means that C0 ∪C1
consists of a one dimensional continuous branch of zeros of f . It remains for us to
prove smoothness at ν = ν1. By Lemma 7, x1(ν) is a smooth C� function on the
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Figure 1. B0 ∩ B1 contains a unique zero of (12) and C0 ∪ C1
consists of a continuum of zeros. This picture illustrates the proof
of Proposition 8.

interval [ν1 −Δν , ν1 +Δν ]. Moreover, we assert that x0(ν) and x1(ν) coincide on
[ν1 − ε, ν1] for ε > 0 sufficiently small. Namely, x1(ν1) lies in the interior of the
tube {(ν, x), |ν − ν1| ≤ Δν , x − (x̄1 + (ν − ν1)ẋ1) ∈ B(r1)}, and (ν, x1(ν)) are the
only zeros of f inside this tube. On the other hand, the solution curve x0(ν) must
enter the tube for ν close to ν1, since x0(ν1) is in the interior. From uniqueness of
solutions inside the tube (Lemma 7) it follows that indeed x0(ν) and x1(ν) coincide
on [ν1− ε, ν1] for ε > 0 sufficiently small. Hence, we conclude that the union C0∪C1
is C� smooth. �

In practice, the hypotheses of Proposition 8 are verified as follows. The center
points x̄0 + (ν1 − ν0)ẋ0 of B0 and x̄1 of B1, B

±
1 are computed using the finite

dimensional approximations f (m0) and f (m1) of f , respectively. This means that
x̄0 + (ν1 − ν0)ẋ0 ∈ R

m0 and x̄1 ∈ R
m1 . Let m̄ = max{m0,m1}. Recalling (18),

let q0 and q1 be the decay rates of the tails of B0 and B1, respectively. Note that
B1, B

−
1 and B+

1 have the same decay rate. If q0 < q1, the tail of B+
1 decays faster

than the tail of B0, which clearly means that B0 �⊂ B+
1 . Hence, we have to check

whether or not B−
1 ⊂ B0 by verifying that the product of the first m̄ intervals of

B−
1 is a subset of the product of the m̄ first intervals of B0 (this consists of checking

2m̄ inequalities on a computer) and checking that r−1 < r0. This will ensure that
B−

1 ⊂ B0. Similarly, if q0 > q1, we can only investigate that B0 ⊂ B+
1 . We proceed

as before; that is, we verify the inclusion of the m̄ dimensional finite part of the
sets and then check that r0 < r+1 . If q0 = q1, we have the choice. For instance, we
can start by verifying that B0 ⊂ B+

1 . If it is true, we stop. If not, we determine
whether or not B−

1 ⊂ B0. If we can show that B−
1 ⊂ B0, then we have the desired

continuum. If not, we cannot conclude anything about the continuity of the branch.
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Figure 2. Solving F(X) = 0 on the plane (X − X̂) · Ẋ = 0.

3. Pseudo-arclength continuation

In this section, we adapt the continuation method presented in Section 2 to
pseudo-arclength continuation. In general, there may be no preferred parameter in
which one wants to continue, or if there is, one would like to continue past folds.
This is where pseudo-arclength continuation comes into the picture [8]. The first
step is to reformulate the problem so that Dxf(ν, x) being singular is no longer an
obstruction for the method.

3.1. Avoiding the singularity of the derivative. ConsideringX = (p, ξ), where
all parameters p are now variables, we want to solve F(X) = 0, where F is given
by (2), restricted to a plane almost perpendicular to the branch of zeros we are

following; see [8]. Suppose that we have a predictor X̂ and some guess about the

direction Ẋ of the curve, then one can define the plane (X−X̂) ·Ẋ = 0. This plane
is transverse to the curve and contains the predictor. Appending the equation of
the plane to F , we consider

F(X)
def
=

(
(X − X̂) · Ẋ

F(X)

)
= 0.

In this setting, a generic fold point X̄ is hyperbolic; that is, DXF(X̄) is nonsingular.
Hence, we can expect a contraction mapping argument to be successful. For a
geometric representation, we refer to Figure 2.

3.2. Piecewise smooth solution curves. We now incorporate the discussion of
Section 3.1 into the context of a predictor-corrector algorithm. From a previous
step, we have a direction vector Ẋ0, and suppose we have computed an approx-
imate solution X̄1 of F(X) = 0 in a plane perpendicular to Ẋ0. We want to

construct the radii polynomials based at X̄1. We numerically compute Ẋ1 such
that DF(X̄1)Ẋ1 ≈ 0. Then, fixing Δs > 0 (to be determined later), we define the
predictors

(21)

{
Xs = X̄1 + sΔsẊ1,

X ′
s = Ẋ0 + s(Ẋ1 − Ẋ0),

s ∈ [0, 1].
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Figure 3. The family of planes {Πs, s ∈ [0, 1]}.

Using these, we introduce a family of planes

(22) Πs = {(s,X) | E(s,X)
def
= (X −Xs) ·X ′

s = 0} ,
where X · Y denotes an inner product (in practice we use the usual dot product
in Euclidian space, since Xs and X ′

s only have finitely many nonzero components).
The family {Πs | s ∈ [0, 1]} is an interpolation between the plane Π0 from the pre-
vious step and the plane Π1 perpendicular to the predictors Xs; see Figure 3. Note
that we can choose Ẋ1 to be approximately of unit length and such that Ẋ0 · Ẋ1

is positive, so that Ẋ0 and Ẋ1 point roughly in the same direction (and we do
not back trace on the solution curve). When we set P = (s, p) and H = (E, h),
then we are in the setting of parameter continuation introduced in Section 2, for
zeros of F(P, ξ) = (H, g), except that the first equation E = 0 changes at each step
in the iterative continuation process (which has some consequences for matching
the piecewise continuous solution curves, as discussed in Section 3.3). The set of
equations is more conveniently written as

(23) F(s,X) =

(
E(s,X)
F(X)

)
.

We point out one difference in notation compared to parameter continuation,
namely, a single continuation step is always described by s ∈ [0, 1], while Δs con-
trols the length of the step (pseudo-arclength). As in parameter continuation, we
do not need to fix the step size a priori, allowing us to choose a near optimal Δs

at each continuation step.

Remark 9. Alternative choices of (21) can be made. For example, here we describe
how to obtain a C1 representation of the curve. One can compute two nearby
approximate solutions X̄0 and X̄1 on the solution curve (and thereby thus also

fixing the step size), as well as corresponding direction vectors Ẋ0 and Ẋ1. Then,
for s ∈ [0, 1], we set

Xs = s3[Ẋ1− Ẋ0−2(X̄1− X̄0− Ẋ0)]+s2[3(X̄1− X̄0− Ẋ0)− (Ẋ1− Ẋ0)]+sẊ0+ X̄0

and X ′
s =

d
dsXs. Hence, X ′

0 = Ẋ0 and X ′
1 = Ẋ1. We can then look for zeros of (23),

with E(s,X)
def
= (X −Xs) · X ′

s. The advantage of such a choice is the global C1
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representation of the predictors Xs, whereas the downside is a significantly larger
number of terms in the estimates, as well as the need to fix a priori the distance
between successive points.

We look to uniquely enclose zeros of (23) in sets of the form BXs
(r) = Xs+B(r),

where

B(r) = [−r, r]l1 ×
∞∏
k=0

[
− r

ωk
,
r

ωk

]n
.

As before, we set up an equivalent fixed point problem. Suppose that, numerically,
we found an approximation A of the inverse of DXF(0, X̄1). We then define the
fixed point problem

(24) Ts(X) = X −AF(s,X).

Using the same construction as in Section 2, we construct bounds Y and Z, as
well as the radii polynomials pk(r,Δs), k = k0, . . . ,M , uniform in s ∈ [0, 1], where
k0 = −l1, since we now consider l1 parameters as variables. We use the radii
polynomials to find the approximate maximum value Δs ≥ 0 such that there exists
an r1 > 0 satisfying pk(r1,Δs) < 0, for all k = k0, . . . ,M . Hence, for every

s ∈ [0, 1], the set BXs
(r1) encloses a unique zero X̃1(s) of (23). Assuming that F

defined in (2) is of class C�, we can conclude that the function X̃1(s) is of class C�;
see Lemma 7. We now address the question of the smoothness of the curve

C def
=

{
X̃1(s)

∣∣∣ F(s, X̃1(s)
)
= 0, s ∈ [0, 1]

}
.

Lemma 10. Recall (21) and suppose that Ẋ0, Ẋ1 ∈ R
m+l1 . Define

κ1
def
=

−1∑
k=k0

|(Ẋ1 − Ẋ0)k|+
m−1∑
k=0

1

ωk
|(Ẋ1 − Ẋ0)k|,

κ2
def
= min{Ẋ1 · Ẋ0, Ẋ1 · Ẋ1},

where ωk is the decay rate of the set B(r). Let r1 > 0 and Δs > 0 such that
pk(r1,Δs) < 0, for all k = k0, . . . ,M . If

(25) κ1r1 < Δsκ2,

then C is a smooth curve.

Proof. We will show that the parametrization X̃1(s) is such that dX̃1

ds (s) never

vanishes, implying that C is a smooth curve. Note that κ1, κ2 ≥ 0, since Ẋ1 is

chosen so that Ẋ1 · Ẋ0 ≥ 0. We prove that dX̃1

ds (s) �= 0, for all s ∈ [0, 1]. The

definition of C implies that E(s, X̃1(s)) = 0, for all s ∈ [0, 1]. Hence, for all
s ∈ [0, 1], we get that

(26)
∂E

∂s

(
s, X̃1(s)

)
+

∂E

∂X

(
s, X̃1(s)

)dX̃1

ds
(s) = 0.

Recalling (21) and (22), we show that the first term does not vanish:

∂E

∂s

(
s, X̃1(s)

)
= −ΔsẊ1 ·X ′

s + (X −Xs) · (Ẋ1 − Ẋ0) �= 0.
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Let us estimate the two terms separately. Since s ∈ [0, 1] and Δs > 0,

ΔsẊ1 ·X ′
s = Δs

[
Ẋ1 · Ẋ0 + s(Ẋ1 · Ẋ1 − Ẋ1 · Ẋ0)

]
≥ Δs min{Ẋ1 · Ẋ0, Ẋ1 · Ẋ1}
= Δsκ2.

Since X̃1(s)−Xs ∈ B(r1),∣∣∣(X̃1(s)−Xs) · (Ẋ1 − Ẋ0)
∣∣∣ ≤

−1∑
k=k0

|(Ẋ1 − Ẋ0)k|r1 +
m−1∑
k=0

1

ωk
|(Ẋ1 − Ẋ0)k|r1

= κ1r1.

It follows that ∂E
∂s (s, X̃

1(s)) ≤ −Δsκ2 + κ1r1 < 0, for all s ∈ [0, 1]. We conclude

from (26) that dX̃1

ds (s) �= 0, for all s ∈ [0, 1]. By the implicit function theorem, C is
a smooth curve. �

In practice, we verify condition (25) at the end of the continuation step, that
is, when we have found an r1 > 0 and the approximately maximal Δs such that
pk(r1,Δs) < 0 for all k = k0, . . . ,M . We compute κ1 and κ2 and then check that
κ1r1 −Δsκ2 < 0.

3.3. Matching the piecewise smooth solution curves. In Section 3.2, we in-
troduced the theory for computing smooth pieces of solution curves. In this section,
we show how to glue these pieces to form a global smooth solution curve. Sup-
pose that we have performed two successful pseudo-arclength continuation steps

and obtained two smooth pieces of solution curves C0 def
=

{
X̃0(s), s ∈ [0, 1]

}
and

C1 def
=

{
X̃1(s), s ∈ [0, 1]

}
of F(X) = 0, with Ci originating in Πi

0 and ending in Πi
1

Figure 4. Two smooth solution curves C0 and C1 that we want
to connect smoothly. Note that the ordering of the planes Π0

1 and
Π1

0 may be different, but this does not influence the arguments.
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(i = 0, 1); see Figure 4. Consider the sets

(27) B0
def
= B(r0) + X̂1 and B1

def
= B(r1) + X̄1,

each enclosing a unique zero of F on Π0
1 and Π1

0, respectively. Note that there

might be a small distance between the planes Π0
1 : (X − X̂1) · Ẋ0 = 0 and Π1

0 :

(X − X̄1) · Ẋ0 = 0. Indeed, X̄1 was numerically computed such that

(28) δ
def
=

∣∣(X̄1 − X̂1) · Ẋ0

∣∣ ≈ 0,

but exact equality cannot be guaranteed. We remark that if Ẋ0 is computed so
that ‖Ẋ0‖ ≈ 1, then δ is a very good approximation of the distance between the
parallel planes Π0

1 and Π1
0 (see Figure 4).

We need to fill the gap between the planes. Consider

Π̃τ : Ẽ(τ,X)
def
=

(
X − X̄1

)
· Ẋ0 + τ = 0, τ ∈ [−δ, δ],

the interpolation with parallel planes between Π1
0 for τ = 0 and Π0

1 for τ = ±δ

(depending on the sign of (X̄1 − X̂1) · Ẋ0). As in Section 3.2, we would like to
find uniform r+1 > r−1 > 0 such that BX̄1

(r−1 ) and BX̄1
(r+1 ) both contain, for all

τ ∈ [−δ, δ], a unique zero of

(29) F̃(τ,X)
def
=

(
Ẽ(τ,X)
F(X)

)
.

Let A be the operator used in the construction of the radii polynomials based at X̄1.
In other words, A was used to define the uniform contraction T that yielded the

existence of C1. Define T̃τ (X) = X −AF̃(τ,X) and consider the uniform predictor
X̄1 for all τ ∈ [−δ, δ]. For every τ ∈ [−δ, δ], we want to enclose a unique fixed

point of T̃τ in BX̄1
(r), for some r > 0. Consider the radii polynomials p̃k(r, |τ |),

k = k0, . . . ,M , associated to this problem. Recalling (19) and (20), we note that
the bound Z does not depend on τ , while the bound Y depends on |τ | linearly; see
equations (31) and (32) below. Note that p̃k(r, |τ |) ≤ p̃k(r, δ), for all k and for all
τ ∈ [−δ, δ]. Suppose that there exist r+1 > r−1 > 0 such that p̃k(r

+
1 , δ) < 0 and

p̃k(r
−
1 , δ) < 0, for all k = k0, . . . ,M . Hence, for any given τ ∈ [−δ, δ], the sets

(30) B±
1

def
= BX̄1

(r±1 ) = X̄1 +B(r±1 )

contain a unique zero of (29). By Lemma 7, we get the existence of

C0,1 def
=

{
X̃0,1(τ )

∣∣∣ F̃(τ, X̃0,1(τ )
)
= 0, τ ∈ [−δ, δ]

}
,

where X̃0,1(τ ) is a smooth function. In the context of pseudo-arclength continua-
tion, the following result is the analogue of Proposition 8.

Proposition 11. Suppose that C0 and C1 are smooth curves. If B0 ⊂ B+
1 or

B−
1 ⊂ B0, then C0 ∪ C0,1 ∪ C1 consists of a smooth solution curve of F(X) = 0.

Proof. We show that C0 and C1 connect smoothly via C0,1. First note that B±
1 and

B1 all uniquely enclose a zero of F in the plane Π1
0. Since these balls are nested,

these zeros are the same, namely X̃0,1(0) = X̃1(0). Note also that B±
1 and B0

all uniquely enclose a zero of F in the plane Π0
1. By hypothesis, B0 and B+

1 are

nested or B−
1 and B0 are nested, implying that X̃0,1(±δ) = X̃0(1). This settles

continuity of C0 ∪ C0,1 ∪ C1. Smoothness of C0,1 follows immediately (as in the

proof of Lemma 10), since ∂Ẽ
∂τ = 1. Furthermore, combining the continuity of the
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polynomials p̃k and the fact that p̃k(r
−
1 , δ) < 0, we infer the existence of an ε > 0

such that p̃k(r
−
1 , δ + ε) < 0. The smooth solution curve {(τ, X̃0,1(τ )), |τ | ≤ δ + ε},

which slightly elongates C0,1, overlaps (at the ends) with C0 and C1, by arguments
analogous to those used in the proof of Proposition 8. Hence, we conclude that C0

and C1 connect smoothly via C0,1. �

In practice, the construction of the radii polynomials p̃k(r, |τ |) is very little extra
work. Indeed, consider the radii polynomials pk(r,Δs), k = k0, . . . ,M , based at
X̄1, which were used to draw conclusions about the existence of C1. Let Yk(Δs)
and Zk(r,Δs) be the bounds used in the construction of pk(r,Δs). Recalling the
definition of (29), we first realize that

(31) sup
b,c∈B(r)

∣∣∣[DT̃τ (X̄1 + b)c]k

∣∣∣ ≤ Zk(r, 0),

for all k = k0, . . . ,M . This is due to the fact that DF̃(τ,X) = DF(0, X). Further-
more, using the triangle inequality, we get that∣∣∣[T̃τ (X̄1)− X̄1]k

∣∣∣ =
∣∣∣[−AF̃(τ, X̄1)]k

∣∣∣
=

∣∣∣∣[−A

(
−τ

F(X̄1)

)]
k

∣∣∣∣
≤

∣∣∣∣[A(
τ
0

)]
k

∣∣∣∣+ ∣∣∣∣[−A

(
0

F(X̄1)

)]
k

∣∣∣∣
≤ |τ ||A1,k|+ Yk(0),(32)

by the definition of Yk. Combining (31) and (32), we conclude that

(33) p̃k(r, |τ |) = pk(r, 0) + |τ ||A1,k|.

Thus, the difference between the construction of p̃k and pk is given in (33).

4. Applications

In this section, we introduce two applications of the method by which we compute
global smooth solution curves of differential equations. The first application, in the
context of delay equations, uses the parameter continuation method of Section 2;
the second one, in the context of ordinary differential equations, uses the pseudo-
arclength method of Section 3.

4.1. Periodic solutions of delay equations. In [9], the parameter continuation
method introduced in Section 2 is applied to the so-called Wright’s equation

(34) y′(t) = −αy(t− 1)[1 + y(t)], α >
π

2
.

The continuation argument is used to compute a continuous branch F0 of slowly
oscillating periodic solutions (SOPS) of (34) and to show (rigorously) that F0 does
not have any fold points on the parameter interval

[
π
2 + ε, 2.24

]
, where ε = 7.3165×

10−4. This result is an attempt to partially answer the conjecture that equation (34)
has a unique SOPS for every α > π

2 . A representation of the rigorously computed
branch of SOPS is shown Figure 5. The details of the construction of the radii
polynomials and the main results of this problem can be found in [9].
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Figure 5. A continuous branch of slowly oscillating periodic so-
lutions of (34).

4.2. Forcing theorem and periodic solutions of ordinary differential equa-
tions. As was mentioned in Example 1, we are interested in computing periodic
solutions of the Swift-Hohenberg equation −u′′′′ − νu′′ + u− u3 = 0 with a special
symmetry at the zero energy level E = 0. In [1], a rigorous continuation argument
in the parameter ν was used to prove the following result.

Proposition 12. For every ν ∈ [0, 2], the dynamics of the Swift-Hohenberg ordi-
nary differential equation (6) on the energy level E = 0 is chaotic in the sense that
there exists a two dimensional Poincaré return map that has a compact invariant
set on which the topological entropy is positive.

The reason the continuation is stopped at ν = 2 is the apparent existence of a
saddle-node bifurcation (a fold) at ν ≈ 2.03165.

In what follows, we extend Proposition 12 by using the rigorous pseudo-arclength
continuation introduced in Section 3 to continue through the fold. Define X =
(ν, L, ξ0, ξ1, ξ2, . . . ) and

h(X)
def
= −2L2

∞∑
l=1

l2ξl −
1√
2

[
ξ0 + 2

∞∑
l=1

ξl

]2

+
1√
2
,

and for all k ≥ 0,

gk(X)
def
= [1 + νL2k2 − L4k4]ξk −

∑
k1+k2+k3=k

ki∈Z

ξk1
ξk2

ξk3
,

where ξ−k
def
= ξk. Define F = (h, g0, g1, g2, . . . )

T . Let us describe the algorithm,
where we focus on the differences with the parameter continuation in [1] (see in
particular Procedure 16 and the bounds in Sections 3.2 and 3.3 in [1]).

From a previous step, assume that we computed a smooth solution curve C0 and
a direction vector Ẋ0. Here are the steps to fulfill in order to prove existence of
(and compute) another piece of smooth solution curve C1 and to glue it smoothly
to C0:

1. Using a finite dimensional approximation F (m) : Rm+2 → R
m+2, we com-

pute an approximate zero X̄1 of F on a plane perpendicular to Ẋ0. We also
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compute a new direction vector Ẋ1 such that DF(X̄1)Ẋ1 ≈ 0. Knowing

Ẋ0, X̄1 and Ẋ1, we build the predictors defined in (21), the family of planes
{Πs | s ∈ [0, 1]} defined in (22) and the augmented map F(s,X) defined in
(23).

2. We compute the derivative DXF(M)(X̄1), where we choose the computa-
tional parameter M = 3m − 2 (see [1]), and a numerical approximation
JM of its inverse. We define μk(L, ν) = 1 + νL2k2 − L4k4, the part of gk
which is linear in the Fourier modes ξk. We define the linear operator A on
sequence spaces by

(35) A
def
=

⎡⎢⎢⎢⎢⎢⎢⎣
JM 0 0 0 · · ·
0 μM (L̄, ν̄)−1 0 0 · · ·
0 0 μM+1(L̄, ν̄)

−1 0 · · ·
0 0 0 μM+2(L̄, ν̄)

−1

...
...

...
. . .

⎤⎥⎥⎥⎥⎥⎥⎦ .

In order to make sure that A is bijective, using interval arithmetic we verify
that ‖JMDXF(M)(X̄1)− I‖∞ < 1 (with I the 3m× 3m identity matrix).

3. We set Ts(X) = X−AF (X, s). We construct the bound Y defined compo-
nentwise by (19). Let us mention that since ν is considered a variable
(as opposed to a parameter), ν̄ and ν̇ (the first components of X̄1 and

Ẋ1, respectively) will appear in Y . For a complete description of how to
compute the bound Y (Δs), we refer to [1]. Notice also that F−2(Xs) =
0. Next we construct Z defined by (20), again including ν as a variable.
Otherwise, the only difference with the construction in [1] is the fact that
we need to compute an upper bound Z−2(r,Δs). Without repeating the
framework of [1] (in particular we refer the reader to [1] for the precise
definition of A†, the approximate inverse of A), we note that for k = −2,(

[DF(s,Xs + b)−A†]c
)
−2

= DE(s,Xs + b)c− ẊT
0 · c

= (X ′
s − Ẋ0)

T · c
= s(Ẋ1 − Ẋ0)

T · c
=

[
(Ẋ1 − Ẋ0)

T · vF
]
rs.

Defining C1,0
−2 =

∣∣∣(Ẋ1 − Ẋ0)
T · vF

∣∣∣, we get that for every b, c ∈ B(r) and

s ∈ [0, 1], ∣∣∣([DF (Xs + b, s)−A†]c
)
−2

∣∣∣ ≤ C1,0
−2r.

Incorporating C1,0
−2 in Table 3 in [1], we have all the ingredients to build the

Z(r,Δs). Note that Table 3 in [1] contains the coefficients of the polynomi-
als Zk(r,Δs) defined by (20). We construct the radii polynomials pk(r,Δs),
k = −2, . . . ,M , defined in Definition 6. We compute r1 > 0 and an ap-
proximately maximal Δs > 0 (if they exist and are computable) such that
pk(r,Δs) < 0. Recalling Lemma 10, we construct κ1 and κ2 and verify
inequality (25). If the inequality is satisfied, we combine Lemma 7 and
Lemma 10 to conclude the existence of the new piece of smooth solution
curve C1.
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Figure 6. A smooth branch of periodic solutions of (6) at the
energy level E = 0.

4. We compute δ defined in (28), recall (33) and construct the radii polyno-
mials p̃k(r, |τ |). If we can show the existence of r+1 > r−1 > 0 such that
p̃(r+1 , δ), p̃(r

−
1 , δ) < 0, we construct the sets B0, B1 and B±

1 defined in (27)
and (30). If we can show that the hypothesis of Proposition 11 is satisfied,
that is, if we can show that B0 ⊂ B+

1 or B−
1 ⊂ B0, then we may conclude

that C0 and C1 connect smoothly via C0,1.

We have successfully iterated the above steps for the Swift-Hohenberg problem.
This proves the existence of a global smooth branch of periodic solutions of (6) at the
energy level E = 0; see Figure 6 (the additional geometric property needed in [1] is
also satisfied). We thus obtain the following corollary, generalizing Proposition 12.

Corollary 13. Let ν∗ = 2.0316. For every parameter value ν ∈ [0, ν∗], the Swift-
Hohenberg equation (6) is chaotic at the energy level E = 0.

Using the rigorous pseudo-arclength continuation, we also obtained that the
branch of periodic solutions we followed has a fold for a parameter value ν ∈
[2.031647, 2.031657].
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