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ENTROPY-SATISFYING RELAXATION METHOD

WITH LARGE TIME-STEPS FOR EULER IBVPS

FRÉDÉRIC COQUEL, QUANG LONG NGUYEN, MARIE POSTEL,
AND QUANG HUY TRAN

Abstract. This paper could have been given the title: “How to positively
and implicitly solve Euler equations using only linear scalar advections.” The
new relaxation method we propose is able to solve Euler-like systems—as well
as initial and boundary value problems—with real state laws at very low cost,
using a hybrid explicit-implicit time integration associated with the Arbitrary
Lagrangian-Eulerian formalism. Furthermore, it possesses many attractive
properties, such as: (i) the preservation of positivity for densities; (ii) the
guarantee of min-max principle for mass fractions; (iii) the satisfaction of en-
tropy inequality, under an expressible bound on the CFL ratio. The main
feature that will be emphasized is the design of this optimal time-step, which
takes into account data not only from the inner domain but also from the
boundary conditions.

1. Introduction

The numerical simulation of compressible fluid flows governed by Euler-like equa-
tions has been the subject of extensive studies for several decades [18, 19, 24, 33].
This contribution is concerned with 1-D initial and boundary value problems (IB-
VPs) within a hybrid explicit-implicit time integration. Although the present work
primarily comes within the scope of multiphase flows in pipelines [27, 30], the nu-
merical method we propose extends well beyond it.

In industrial applications, the use of large time-steps by means of an implicit
time integration is an essential requirement to reduce the computational cost to an
acceptable level. The price to be paid for the CPU saving is that we no longer have
any theoretical guarantee for positivity, although the supposedly greater amount of
numerical dissipation plays in our favor. In the area of implicit methods for Euler
equations, it seems that the schemes available so far are either positive, entropic
but costly [23], or efficient but more “risky” [8, 28, 36]. The aim of this paper is
to show that we can simultaneously achieve low cost and preserve positivity, while
maintaining some degree of accuracy on slow waves, at least for the flow regimes
described below.

In the flow regimes under consideration, there co-exist two kinds of waves that
are clearly separated by their characteristic speeds: fast acoustic waves and slow
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kinematic waves. From the petroleum engineer’s standpoint, however, only the
kinematic waves are of interest since they represent mass transportation. Therefore,
it is wise to find some way to make the time integration implicit with respect to
fast waves (to keep the time-step reasonably large), while remaining explicit with
respect to slow waves (to maintain accuracy). Such a hybrid explicit-implicit scheme
in Eulerian coordinates was attempted by Masella et al. [26], followed by Faille
and Heintzé [17], in the framework of VFRoe methods. The idea is to forcibly
alter the “Roe-matrix” (or more exactly, its VFRoe version) by canceling its slow
components. This approach is exact for linear systems, but for nonlinear systems,
it is mere heurism, even if it works well in most cases. In any case, it was reused
by Baudin et al. [4], as well as by Evje and Fl̊atten [16]. Unfortunately, little can
be said regarding the positivity of such methods.

There is another way, nevertheless, to design a selectively implicit scheme. Sur-
prisingly, this second way is based upon a theoretical tool that had been created
for quite a different purpose. The Arbitrary Lagrangian-Eulerian (ALE) formalism
was introduced [20] to allow for computations over a moving mesh. It consists of
two steps: (i) the Lagrange step, in which we take into account all physical phenom-
ena except for the displacement of particles; (ii) the convection step, during which
the quantities are remapped accordingly. When applied to a motionless grid, the
two steps most naturally split the waves into two families: fast acoustic waves for
the Lagrange step, and slow kinematic waves for the convection step (also called
projection step or remap step). Consequently, all we have to do is to compute the
Lagrange step by an implicit scheme, while carrying out the convection step using
an explicit scheme.

As a matter of fact, this alternative explicit-implicit approach has already been
implemented for years in KIVA [1, 21], a code for 3-D reactive flows, but without
the motivation related to the separation of waves. In KIVA, there is no way to
ensure positivity either. The time-step for the Lagrange step is assessed by a rule
of thumb, whereas in the convection step, the current time-step has to be divided
into smaller sub-cycles in order to comply with the CFL condition associated with
explicit transport.

Our claim is that, in the 1-D case, it is possible to recover all of the good
properties via an a priori estimate of the time-step. This estimate is the outcome
of a complete theory including existence, uniqueness, positivity, entropy for the
IBVP at the continuous and discrete levels. The success of our approach relies on
relaxation [22, 25, 29], the benefits of which are manifold. First, it is well-known
[3, 7, 10, 11] that explicit relaxation schemes can be made positivity-preserving.
Second, relaxation provides us with a PDE interpretation, from which a correct
treatment for boundary conditions can be derived in the framework proposed by
Dubois and LeFloch [15]. Finally, as will be shown in §3, it reduces the Lagrange
step to a set of two symmetric scalar linear advection equations with interacting
boundary conditions. For this two-advection system, we put forward a short-cut
solution procedure and a quick and nearly optimal estimate for L∞-bounds. Thus,
considering that the remap step also boils down to several independent linear scalar
advections, it is not unfair to say that we have managed to solve Euler equations
by means of linear scalar advections only!

This paper is outlined as follows: We start, in §2, by investigating the two-
advection set with coupling boundary conditions as a preliminary tool for the rest
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of the paper. Then, we tackle the core of the subject in §3, where we elaborate on
the relaxation strategy and the ALE formalism for a simple two-phase flow model.
Most importantly, we highlight the connection between the two-advection problem
of §2 and the Lagrange step. The details of the scheme, at the fully discrete level,
are supplied in §4, along with statements about its properties. In §5, we show how
to adapt the new scheme for two-phase flow to Euler’s standard equations. Finally,
numerical results are given in §6.

2. Symmetric advections with coupling boundary conditions

2.1. The continuous problem. Let a > 0 and Z > 0 be two real constants.
Over the time-space domain R+ × [0, Z], we consider the following problem, called
symmetric advections.

Problem (SA) Given

– the initial data z ∈ [0, Z] �→ ⇀w�(z),
↼w�(z) ∈ R2,

– the boundary data t ∈ R+ �→ σ0(t), σZ(t) ∈ R2,
– the coupling factors t ∈ R+ �→ θ0(t), θZ(t) ∈ R2.

Find

(2.1) t, z ∈ R+ × [0, Z] �→ ⇀w(t, z), ↼w(t, z) ∈ R
2

so as to satisfy the following conditions:

• for (t, z) ∈ R∗
+× ]0, Z[, the interior advection equations

∂t⇀w + a∂z⇀w = 0,(2.2a)

∂t↼w − a∂z↼w = 0;(2.2b)

• for z ∈ ]0, Z[, the initial Cauchy conditions

⇀w(t = 0, z) = ⇀w�(z),(2.3a)
↼w(t = 0, z) = ↼w�(z);(2.3b)

• for t ∈ R+, the boundary relationships

⇀w(t, z = 0) = σ0(t) + θ0(t)↼w(t, z = 0),(2.4a)
↼w(t, z = Z) = σZ(t) + θZ(t)⇀w(t, z = Z).(2.4b)

Despite its linearity, Problem (SA) will reveal itself to be a convenient building
block for the numerical approximation of a class of nonlinear models for fluid flows.
It can also be investigated per se from the theoretical point of view. This will be
done in Appendix A. For the moment, we summarize the main results that will be
needed later.

For any open subset O of R or R2 and any function f ∈ L∞(O;R), we denote
by ‖f‖ its norm, namely,

(2.5) ‖f‖ = inf{M s.t. |f(x)| ≤ M for a.e. x ∈ O}.
Of course, O may be the time domain R∗

+ or the space domain ]0, Z[ or the time-
space domain R∗

+× ]0, Z[.

Remark 2.1. The reason why we are using the L∞-norm, instead of the L2-norm
traditionally associated with linear problems, is that this is the natural setting to
express local stability, positivity and maximum principle results.
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Figure 1. Problem (SA).

Theorem 2.1. If ‖θ0‖‖θZ‖ < 1, then Problem (SA) has a unique solution. This
solution (⇀w,↼w) depends continuously on the data (⇀w�,

↼w�, σ0, σZ), that is, there
exists a constant C = C(‖θ0‖, ‖θZ‖) so that

(2.6) max{‖⇀w‖, ‖↼w‖} ≤ Cmax{‖⇀w�‖, ‖↼w�‖, ‖σ0‖, ‖σZ‖}.
Furthermore, the solution can be expressed by

⇀w(t, z) = 1{at<z}
⇀w�(z − at) + 1{at>z}

⇀w0(t− z/a),(2.7a)
↼w(t, z) = 1{at<Z−z}

↼w�(z + at) + 1{at>Z−z}
↼wZ(t− (Z − z)/a),(2.7b)

where 1{.} is the characteristic function, and (⇀w0, ↼wZ) are two auxiliary functions
that can be defined in two equivalent manners, i.e.,

(1) (⇀w0, ↼wZ) is the unique solution to the coupled system

⇀w0(t) = σ0(t) + θ0(t)[1{at<Z}
↼w�(at) + 1{at>Z}

↼wZ(t− Z/a)],(2.8a)
↼wZ(t) = σZ(t) + θZ(t)[1{at<Z}

⇀w�(Z − at) + 1{at>Z}
⇀w0(t− Z/a)];(2.8b)

(2) (⇀w0, ↼wZ) is the unique solution to the uncoupled system

⇀w0(t)− θ0(t)θZ(t− Z/a)1{at>2Z}
⇀w0(t− 2Z/a) = G0(t),(2.9a)

↼wZ(t)− θZ(t)θ0(t− Z/a)1{at>2Z}
↼wZ(t− 2Z/a) = GZ(t),(2.9b)

where

(2.10)

G0(t) = σ0(t) + θ0(t)1{at<Z}
↼w�(at)

+ θ0(t)1{at>Z}σZ(t− Z/a)
+ θ0(t)1{at>Z}θZ(t− Z/a)1{at<2Z}

⇀w�(2Z − at),
GZ(t) = σZ(t) + θZ(t)1{at<Z}

⇀w�(Z − at)
+ θZ(t)1{at>Z}σ0(t− Z/a)
+ θZ(t)1{at>Z}θ0(t− Z/a)1{at<2Z}

↼w�(at− Z).

Proof. See Appendix A. �

The auxiliary functions ⇀w0 and ↼wZ embody the incoming values ⇀w(t, z = 0) and
↼w(t, z = Z). As for

1{at<Z}
↼w�(at) + 1{at>Z}

↼wZ(t− Z/a) and 1{at<Z}
⇀w�(at) + 1{at>Z}

⇀w0(t− Z/a)
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in (2.8), in point of fact they represent the outgoing values ↼w(t, z = 0) and ⇀w(t, z =
Z).

Another result is the min-max principle below, that can be considered as a refined
version of the estimate (2.6). Its purpose is to compare solutions at two close time
values t and t+Δt.

Proposition 2.1. If 0 < Δt < Z/a, then

(1) The functions (⇀w0, ↼wZ) introduced in Theorem 2.1 and representing incom-
ing boundary values are enclosed by

⇀m0(t; Δt) ≤ ⇀w0(t
′) ≤ ⇀

M0(t; Δt),(2.11a)

↼mZ(t; Δt) ≤ ↼wZ(t
′) ≤ ↼

MZ(t; Δt),(2.11b)

for t′ ∈ [t, t+Δt], where

(2.12)

⇀
M0(t; Δt) = max

t1∈[t,t+Δt]
σ0(t1) +θ0(t1)↼w(t, a(t1 − t)),

⇀m0(t; Δt) = min
t1∈[t,t+Δt]

σ0(t1) +θ0(t1)↼w(t, a(t1 − t)),

↼
MZ(t; Δt) = max

t1∈[t,t+Δt]
σZ(t1)+θZ(t1)⇀w(t, Z − a(t1 − t)),

↼mZ(t; Δt) = min
t1∈[t,t+Δt]

σZ(t1)+θZ(t1)⇀w(t, Z − a(t1 − t)).

(2) The solution functions (⇀w,↼w) at time t+Δt are enclosed by

⇀mΔt(t, z) ≤ ⇀w(t+Δt, z) ≤ ⇀
MΔt(t, z),(2.13a)

↼mΔt(t, z) ≤ ↼w(t+Δt, z) ≤ ↼
MΔt(t, z),(2.13b)

where
⇀
MΔt(t, z)=max{⇀M0(t; Δt), 〈⇀M〉(t, z)} ↼

MΔt(t, z)=max{↼MZ(t; Δt), 〈↼M〉(t, z)},
⇀mΔt(t, z)=min{⇀m0(t; Δt), 〈⇀m 〉(t, z)} ↼mΔt(t, z)=min{↼mZ(t; Δt), 〈↼m 〉(t, z)}

with

(2.14)
〈⇀M〉(t, z) = max

z′∈[0,z]

⇀w(t, z′) 〈↼M〉(t, z) = max
z′∈[z,Z]

↼w(t, z′),

〈⇀m〉(t, z) = min
z′∈[0,z]

⇀w(t, z′) 〈↼m〉(t, z) = min
z′∈[z,Z]

↼w(t, z′).

Proof. The first part is a consequence of (2.8), where we have replaced (⇀w�(.),
↼w�(.))

by (⇀w(t, .), ↼w(t, .)) and t by Δt in the brackets. This is the same as considering the
solution at time t as initial data and looking ahead for a small time interval Δt.
Since aΔt < Z, the terms containing 1{aΔt>Z} disappear and we get (2.12) easily.

To prove the second part, we go along the same lines to deduce (2.14) from
(2.7), but this time the initial data and the boundary data have been taken into
account. �

The bounds for ⇀w(t+Δt, z) depend only on what lies on the left of z, while those
for ↼w(t+Δt, z) depend only on what lies on the right of z. The coupling between
⇀w and ↼w is achieved, in reality, via the bounds on ⇀w0 and ↼wZ , as demonstrated by
(2.12). In (2.14), it would have been sharper to restrict the dependence domains
to [z − aΔ, z] and [z, z + aΔt], but our aim is to prepare the ground for a parallel
comparison between the continuous and the discrete problems.
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2.2. The discrete problem. The space domain [0, Z] is divided into N cells of

variable lengths Δzi so that
∑N

i=1 Δzi = Z. In each cell ]zi−1/2, zi+1/2[ we consider
ψi representing an approximation of ψ(zi). To this grid we add two fictitious points,
located at i = 0 and i = N+1 in order to deal with boundary conditions. However,
the discrete norm

(2.15) ‖ψ‖ = max
1≤i≤N

|ψi|

is taken over inner points. Let Δt > 0 be a time-step. The superscript n will denote
the time level tn, while n	 will denote the time level tn� = tn +Δt. The problem
below is meant to be a discrete version of the continuous Problem (SA).

Problem (SA)nN Given, for 0 ≤ i ≤ N + 1,

(2.16) ⇀wn
i ,

↼wn
i ∈ R× R, σn

0 , σ
n
Z ∈ R× R, θn0 , θ

n
Z ∈ R× R.

Find

(2.17) ⇀wn�
i , ↼wn�

i ∈ R× R so as to satisfy

• the implicit scheme for interior points 1 ≤ i ≤ N , i.e.,

⇀wn�
i − ⇀wn

i

Δt
+ a

⇀wn�
i − ⇀wn�

i−1

Δzi
= 0,(2.18a)

↼wn�
i − ↼wn

i

Δt
− a

↼wn�
i+1 − ↼wn�

i

Δzi
= 0;(2.18b)

• the boundary relationships for the two fictitious points, i.e.,

⇀wn�
0 = σn

0 + θn0
↼wn�

0 ,(2.19a)

↼wn�
N+1 = σn

Z + θnZ
⇀wn�

N+1;(2.19b)

• the Neumann relationships for outgoing waves, i.e.,

↼wn�
0 = ↼wn�

1 ,(2.20a)

⇀wn�
N+1 = ⇀wn�

N .(2.20b)

We have already mentioned the reason why we chose to work with an implicit
scheme such as (2.18): in applications, (⇀w,↼w) will correspond to fast acoustic waves.
In (2.19), which is a discrete version of (2.4), the data (σ0, σZ , θ0, θZ) have been
frozen to time n to make the presentation easier. Note that the conditions are
imposed at the centers of the fictitious cells, not at the edges of the physical do-
main. The Neumann relationships (2.20) correspond to a wave-cancellation strategy
adapted from Dubois and LeFloch [15].

Definition 2.1. Let us introduce

• the local acoustic CFL ratios

(2.21) μi =
aΔt

Δzi
,

• the local apparent propagation factor

(2.22) ei =
μi

1 + μi
,
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• the global cumulated propagation factors

(2.23) E�
k =

{
Π�

j=kej if k ≤ 
,

1 if k > 
.

Although μi can be larger than 1, ei and E�
k can never exceed or be equal to

1. The name “apparent propagation factor” comes from the following observation.
Rewriting the inner equations (2.18) under the form

(1 + μi)⇀w
n�
i − μi

⇀wn�
i−1 = ⇀wn

i ,(2.24a)

(1 + μi)↼w
n�
i − μi

↼wn�
i+1 = ↼wn

i ,(2.24b)

we can deduce that

⇀wn�
i = ei⇀w

n�
i−1 + (1− ei)⇀w

n
i ,(2.25a)

↼wn�
i = ei↼w

n�
i+1 + (1− ei)↼w

n
i .(2.25b)

In the above convex combinations, the factor ei accounts for the influence of the
upwind cell (i.e., i− 1 for ⇀wi and i+ 1 for ↼wi) in the updated values at i.

Theorem 2.2. If θn0 θ
n
Z < 1, then Problem (SA)nN is well-posed, in the sense that it

has a unique solution. This solution (⇀wn�
i , ↼wn�

i ) depends continuously on the initial
data (⇀wn

i ,
↼wn

i , σ
n
0 , σ

n
Z), i.e., there is a constant C = C(θn0 , θ

n
Z), independent of Δt,

so that

(2.26) max{‖⇀wn�‖, ‖↼wn�‖} ≤ Cmax{‖⇀wn‖, ‖↼wn‖, |σn
0 |, |σn

Z |}.

Furthermore, the solution can be given by

⇀wn�
i =

∑i
k=1 (E

i
k+1 − Ei

k)
⇀wn

k + Ei
1
⇀wn�

0 ,(2.27a)

↼wn�
j =

∑N
�=j (E�−1

j − E�
j)

↼wn
� + EN

j
↼wn�

N+1(2.27b)

for 0 ≤ i ≤ N , 1 ≤ j ≤ N + 1, where the boundary values (⇀wn�
0 , ↼wn�

N+1) can be
defined in two equivalent ways, i.e.,

(1) (⇀wn�
0 , ↼wn�

N+1) is the unique solution to the coupled system

⇀wn�
0 = σn

0 + θn0 [
∑N

�=1 (E�−1
1 − E�

1)
↼wn

� + EN
1

↼wn�
N+1],(2.28a)

↼wn�
N+1 = σn

Z + θnZ [
∑N

k=1 (E
N
k+1 − EN

k )⇀wn
k + EN

1
⇀wn�

0 ];(2.28b)

(2) (⇀wn�
0 , ↼wn�

N+1) is the unique solution to the uncoupled system

[1− θn0 θ
n
Z(E

N
1 )2]⇀wn�

0 = σn
0+θn0

∑N
�=1 (E

�−1
1 − E�

1)
↼wn

�(2.29a)

+θn0E
N
1 [σn

Z + θnZ
∑N

k=1(E
N
k+1 − EN

k )⇀wn
k ],

[1− θn0 θ
n
Z(E

N
1 )2]↼wn�

N+1 = σn
Z+θnZ

∑N
k=1 (E

N
k+1 − EN

k )⇀wn
k ,(2.29b)

+θnZE
N
1 [σn

0 + θn0
∑N

�=1(E
�−1
1 − E�

1)
↼wn

� ].

The formal analogy between this theorem and Theorem 2.1, as reflected by
contemplating (2.27)–(2.29) vs. (2.7)–(2.9), is worth mentioning. Note that the
assumption θn0 θ

n
Z < 1 at the discrete level is weaker than the condition ‖θ0‖‖θZ‖ < 1
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at the continuous level. As in the continuous case, there is a refined min-max
estimate. For θ ∈ R and (wk)1≤k≤N , we define the upper-bound

(2.30) M(θ, w) =

⎧⎨⎩ θ max
1≤k≤N

wk if θ ≥ 0,

−θ min
1≤k≤N

wk if θ < 0,

and the lower-bound

(2.31) m(θ, w) =

⎧⎨⎩ θ min
1≤k≤N

wk if θ ≥ 0,

−θ max
1≤k≤N

wk if θ < 0.

Proposition 2.2. If θn0 θ
n
Z < 1, then for all Δt > 0:

(1) The values of fictitious points (⇀w0, ↼wZ) introduced in Theorem 2.1 are en-
closed by

⇀mn�
0 ≤ ⇀wn�

0 ≤ ⇀
Mn�

0 and ↼mn�
N+1 ≤ ↼wn�

N+1 ≤ ↼
Mn�

N+1,(2.32)

⇀mn�
0 = min

ξ∈[0,1]

σn
0 + θn0 σ

n
Zξ +m(θn0 θ

n
Z ,

⇀wn)ξ(1− ξ) +m(θn0 ,
↼wn)(1− ξ)

1− θn0 θ
n
Zξ

2
,(2.33)

⇀
Mn�

0 = max
ξ∈[0,1]

σn
0 + θn0 σ

n
Zξ +M(θn0 θ

n
Z ,

⇀wn)ξ(1− ξ) +M(θn0 ,
↼wn)(1− ξ)

1− θn0 θ
n
Zξ

2
,

↼mn�
N+1 = min

ξ∈[0,1]

σn
Z + θnZσ

n
0 ξ +m(θn0 θ

n
Z ,

↼wn)ξ(1− ξ) +m(θnZ ,
↼wn)(1− ξ)

1− θn0 θ
n
Zξ

2
,

↼
Mn�

N+1 = max
ξ∈[0,1]

σn
Z + θnZσ

n
0 ξ +M(θn0 θ

n
Z ,

↼wn)ξ(1− ξ) +M(θnZ ,
↼wn)(1− ξ)

1− θn0 θ
n
Zξ

2
.

(2) The values of inner points 1 ≤ i, j ≤ N are enclosed by

(2.34) ⇀mn�
i ≤ ⇀wn�

i ≤ ⇀
Mn�

i and ↼mn�
j ≤ ↼wn�

j ≤ ↼
Mn�

j ,

with
⇀
Mn�

i =max{⇀Mn�
0 , 〈⇀M〉ni }

↼
Mn�

j =max{↼Mn�
N+1, 〈

↼
M〉nj },

⇀mn�
i = min{ ⇀mn�

0 , 〈⇀m〉ni } ↼mn�
j = min{ ↼mn�

N+1, 〈↼m〉nj }
and

(2.35)
〈⇀M〉ni = max

1≤k≤i

⇀wn
k 〈↼M〉nj = max

j≤�≤N

↼wn
� ,

〈⇀m〉ni = min
1≤k≤i

⇀wn
k 〈↼m〉nj = min

j≤�≤N

↼wn
� .

Formal connections could be made between this proposition and Proposition 2.1,
by comparing (2.32)–(2.35) to (2.11)–(2.14). The bounds supplied by (2.32)–(2.35)
also have a practical purpose: they will be used for the numerical computation of
some optimal CFL ratios in the upcoming Euler problems.

Continuous dependence of (⇀wn�, ↼wn�) with respect to (σn
0 , σ

n
Z ,

⇀wn, ↼wn), as stated
in Theorem 2.2 and improved in Proposition 2.2, can be interpreted as a property
of stability. In the case of Problem (SA)

n
N , however, there is an additional stability

property via energy inequalities.

Theorem 2.3. For any strictly convex function (⇀w,↼w) ∈ R
2 �→ S (⇀w,↼w) ∈ R that

is of the form

(2.36) S (⇀w,↼w) = S(⇀w) + S(↼w),
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in which w ∈ R �→ S(w) ∈ R is strictly a convex function, the implicit scheme
(2.18) of Problem (SA)nN satisfies the implicit local energy dissipation inequality

(2.37)
S (⇀wn�

i , ↼wn�
i )− S (⇀wn

i ,
↼wn

i )

Δt
+

H (⇀wn�
i , ↼wn�

i+1)− H (⇀wn�
i−1,

↼wn�
i )

Δzi
≤ 0,

for 1 ≤ i ≤ N , where H (⇀w,↼w) = a[S(⇀w)− S(↼w)] is the consistent energy-flux.

We recall that for smooth solutions of the continuous Problem (SA), combining
(2.2a) and (2.2b) leads to

(2.38) ∂tS (⇀w,↼w) + ∂zH (⇀w,↼w) = 0,

provided that S is smooth itself. The fact that this additional conservation law
has an inequality counterpart at the discrete level is a major asset for the stability
of a scheme.

Remark 2.2. More general energies can be considered for S , but the form (2.36)
will be enough for our future purpose.

Proof of Theorem 2.2. Uniqueness and existence. Suppose ⇀wn�
0 is known. Then, by

(2.25a), we have ⇀wn�
1 = e1⇀w

n�
0 + (1− e1)⇀w

n
1 . By induction on 1 ≤ i ≤ N , we carry

out a left-to-right sweeping

(2.39) ⇀wn�
i = Ei

1
⇀wn�

0 +
∑i

k=1(E
i
k+1 − Ei

k)
⇀wn

k .

Specifying i = N in (2.39), combining with (2.20b) and using (2.19b), we have

(2.40) ↼wn�
N+1 = σn

Z + θnZ [
∑N

�=1(E
N
k+1 − EN

k )↼wn
� + EN

1
↼wn�

0 ].

In a similar fashion, if ⇀wn�
N+1 is known, we can derive

(2.41) ↼wn�
j = EN

j
↼wn�

N+1 +
∑N

�=j(E
�−1
j − E�

j)
↼wn

�

for 1 ≤ j ≤ N , then

(2.42) ⇀wn�
0 = σn

0 + θn0 [
∑N

�=1(E
�−1
1 − E�

1)
↼wn

� + EN
1

↼wn�
N+1].

The system (2.39), (2.41) coincides exactly with (2.27), while the system (2.42),
(2.40) is none other than (2.28). A little more algebra shows the equivalence
between (2.28) and (2.29). Note that if θn0 θ

n
Z < 1, since EN

1 < 1, the bracket
1− θn0 θ

n
Z(E

N
1 )2 always remains positive.

Continuous dependence. Equation (2.29a) gives rise to the abrupt upper-bound

(2.43) |⇀wn�
0 | ≤ C0 max{|σn

0 |, |σn
Z |, ‖⇀wn‖, ‖↼wn‖},

with

(2.44)
[1− θn0 θ

n
Z(E

N
1 )2]C0 =1+ |θn0 |

∑N
�=1(E

�−1
1 − E�

1)

+ |θn0 |EN
1 + |θn0 ||θnZ |EN

1

∑N
�=1(E

i
k+1 − Ei

k).

Note that on one hand E�−1
1 −E�

1 ≥ 0 and Ei
k+1 −Ei

k ≥ 0. On the other hand, the
sums involved are telescoping sums, i.e.,

(2.45)
∑N

�=1(E
�−1
1 − E�

1) =
∑N

k=1(E
N
k+1 − EN

k ) = 1− EN
1 .

As a result,

(2.46) C0 = C0(E
N
1 ) =

1 + |θn0 |(1− EN
1 ) + |θn0 |EN

1 + |θn0 ||θnZ |EN
1 (1− EN

1 )

1− θn0 θ
n
Z(E

N
1 )2

.
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To get rid of Δt (through EN
1 ) in C0, we can upper-bound it by

‖C0‖ = max
ξ∈[0,1]

C0(ξ),

which is finite because C0(ξ) is a continuous function of ξ ∈ [0, 1]. In a similar way,
we can show that

(2.47) |↼wn�
N+1| ≤ ‖CN+1‖max{|σn

0 |, |σn
Z |, ‖⇀wn‖, ‖↼wn‖}

for a constant ‖CN+1‖, which depends on (θn0 , θ
n
Z) but not on Δt. This enables us

to write

(2.48) max{|⇀wn�
0 |, |↼wn�

N+1|} ≤ C(θn0 , θ
n
Z)max{|σn

0 |, |σn
Z |, ‖⇀wn‖, ‖↼wn‖},

with C(θn0 , θ
n
Z) = max(‖C0‖, ‖CN+1‖). As for points inside the domain, from the

first equation of (2.27), we have

(2.49) |⇀wn�
i | ≤ [Ei

1 +
∑i

k=1(E
i
k+1 − Ei

k)]max{|⇀wn�
0 |, ‖⇀wn‖} = max{|⇀wn�

0 |, ‖⇀wn‖}

for all 1 ≤ i ≤ N , so that ‖⇀wn�‖ is also bounded by the right-hand side of (2.48).

The same conclusion holds true for ‖↼wn�‖. �
Proof of Proposition 2.2. The first part is a direct consequence of formulae (2.29).
The second part is based on (2.27). �
Proof of Theorem 2.3. From the convex combinations (2.25), we infer that

S(⇀wn�
i ) ≤ eiS(⇀w

n�
i−1) + (1− ei)S(⇀w

n
i ),(2.50a)

S(↼wn�
i ) ≤ eiS(↼w

n�
i+1) + (1− ei)S(↼w

n
i ),(2.50b)

insofar as S is a convex function. Using the definition (2.22) of ei, we cast (2.50)
into

(1 + μi)S(⇀w
n�
i )− μiS(⇀w

n�
i−1) ≤ S(⇀wn

i ),(2.51a)

(1 + μi)S(↼w
n�
i )− μiS(↼w

n�
i+1) ≤ S(↼wn

i ).(2.51b)

Using the definition (2.21) of μi, we go back to the discretized form

S(⇀wn�
i )− S(⇀wn

i )

Δt
+ a

S(⇀wn�
i )− S(⇀wn�

i−1)

Δzi
≤ 0,(2.52a)

S(↼wn�
i )− S(↼wn

i )

Δt
− a

S(↼wn�
i+1)− S(↼wn�

i )

Δzi
≤ 0.(2.52b)

To complete the proof, we add (2.52a) and (2.52b). �
2.3. Practical procedures. For the sake of computational efficiency, we recom-
mend the following solution procedure, to be implemented in place of explicit for-
mulae (2.27)–(2.29). The basic idea rests on the following observation.

Lemma 2.1. The mapping ⇀wn�
0 �→ F (⇀wn�

0 ) defined by the diagram

F (⇀wn�
0 ) |⇀wn�

0

(2.25a)−−−−→ ⇀wn�
1

(2.25a)−−−−→ . . . ⇀wn�
i . . .

(2.25a)−−−−→ ⇀wn�
N

(2.20b)−−−−→ ⇀wn�
N+1

(2.19a)

�⏐⏐ ⏐⏐	(2.19b)

↼wn�
0 ←−−−−

(2.20a)

↼wn�
1 ←−−−−

(2.25b)
. . . ↼wn�

i . . . ←−−−−
(2.25b)

↼wn�
N ←−−−−

(2.25b)

↼wn�
N+1

is an affine function, whose derivative is equal to θn0 θ
n
Z(E

N
1 )2.
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Proof. Each elementary step of the diagram is an affine operation, therefore, the
overall process is an affine function. In the left-to-right propagation using (2.25a),

the cumulated factor by which the variable ⇀wn�
0 is multiplied is EN

1 . The outlet
condition (2.19b) multiplies it by θnZ . In the right-to-left propagation using (2.25b),
the cumulated factor is also EN

1 . The inlet condition (2.19a) multiplies the variable
by θn0 . �

Of course, the expected value for ⇀wn�
0 is a fixed point of F . The fact that

F (⇀w0) = θn0 θ
n
Z(E

N
1 )2⇀w0 + β naturally suggests a two-step procedure:

(1) First, we set ⇀wn�
0 = 0 and apply the sweep process described in the diagram

in order to compute β = F (0).

(2) Second, we deduce the correct value for ⇀wn�
0 by

(2.53) ⇀wn�
0 =

β

1− θn0 θ
n
Z(E

N
1 )2

.

Once this value is known, a second sweep loop is performed in order to
assign the correct values to every other point in the computational domain.

Note that, because of linearity, the existence of a unique fixed point for F only
requires θn0 θ

n
Z(E

N
1 )2 �= 1, which is implied by θn0 θ

n
Z < 1, instead of the contracting

property |θn0 θnZ(EN
1 )2| < 1. In the latter case, we would have to impose |θn0 ||θnZ | < 1.

Finally, we wish to point out a cost-effective routine for the computation of the
bounds (2.33). The following result is valid only when θ = θn0 θ

n
Z < 0, but this will

be sufficient for our applications.

Lemma 2.2. For a given θ < 0, the extremal values of the function

(2.54) f(ξ) =
Aξ2 +Bξ + C

1− θξ2
, ξ ∈ [0, 1]

are given by

min
ξ∈[0,1]

f(ξ) = 1{B≥0}f(0) + 1{B<0}f(min(ξ�, 1)),(2.55a)

max
ξ∈[0,1]

f(ξ) = 1{B≥0}f(1) + 1{B<0} max{f(0), f(1)}(2.55b)

where ξ� only needs to be defined for when B < 0 by

(2.56) ξ� =
−(A+ θC) +

√
(A+ θC)2 − θB2

θB
.

Proof. The proof is based on a discussion about the roots of the derivative

(2.57) f ′(ξ) =
θBξ2 + 2(A+ θC)ξ +B

(1− θξ2)2
.

We leave it to the readers. �

3. Two-phase flow model: the continuous problem

3.1. The original problem. In this section, we deal with a hydrodynamic model
built from an internal energy function (τ, Y ) ∈ R∗

+ × [0, 1] �→ ε(τ, Y ) ∈ R+. This
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function ε must be smooth enough and have the following properties, in accordance
with the framework for compressible fluids proposed by Weyl [35]:

(3.1)
(a) ε> 0; (b) ετ < 0; (c) εττ > 0;
(d) ετττ < 0; (e) εττεY Y > (ετY )

2.

From the internal energy ε, we define

the pressure P (τ, Y ) = −ετ (τ, Y );(3.2a)

the sound speed c(τ, Y ) = τ
√
εττ (τ, Y ) = τ

√
−Pτ (τ, Y ).(3.2b)

Conditions (3.1c), (3.1e) express the fact that ε is strictly convex with respect to
(τ, Y ). From the standpoint of physics, τ is a specific volume, that is, the inverse
of some density ρ, while Y is a mass-fraction. For a prescribed internal energy ε,
we state the following IBVP for a fluid model within the phase space

(3.3) ΩU = {U = (ρY, ρ, ρu) ∈ R
3 | ρ > 0, u ∈ R and Y ∈ [0, 1]},

where u denotes the velocity.

Problem (TP) Given

– the initial data x ∈ [0, X] �→ U�(x) ∈ ΩU,
– the inlet data t ∈ R+ �→ q0(t), g0(t) ∈ R2

+,
– the outlet data t ∈ R+ �→ pX(t), YX(t) ∈ R+ × [0, 1].

Find

(3.4) U : (t, x) ∈ R
+ × [0, X] �→ U(t, x) ∈ ΩU

so as to satisfy (in the usual sense of distributions) the following conditions:

• for (t, x) ∈ R∗
+× ]0, X[, the system of conservation laws

∂t(ρY ) + ∂x(ρYu) = 0,(3.5a)

∂t(ρ) + ∂x(ρu) = 0,(3.5b)

∂t(ρu) + ∂x(ρu
2 + p) = 0,(3.5c)

with p = P

(
1

ρ
,
ρY

ρ

)
, where P is the pressure defined in (3.2a);

• for (t, x) ∈ R∗
+× ]0, X[, the energy inequality

(3.6) ∂t{ρE}(U) + ∂x{ρEu+ pu}(U) ≤ 0,

with

(3.7) {ρE}(U) =
1

2

(ρu)2

ρ
+ ρε

(
1

ρ
,
ρY

ρ

)
;

• for x ∈ ]0, X[, the initial Cauchy conditions

(3.8) ρ(t = 0, x) = ρ�(x), u(t = 0, x) = u�(x), Y (t = 0, x) = Y�(x);

• for t ∈ R+, the boundary relationships

ρu(t, x = 0) = q0(t) if u(t, 0) > −c(ρ−1(t, 0), Y (t, 0)),(3.9a)

ρYu(t, x = 0) = g0(t) if u(t, 0) > 0,(3.9b)

p(t, x = X) = pX(t) if u(t,X) < c(ρ−1(t,X), Y (t,X)),(3.9c)

Y (t, x = X) = YX(t) if u(t,X) < 0,(3.9d)

where c is the sound speed defined in (3.2b).
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This problem, called (TP) for two-phase, is one of the simplest models for flows
in pipelines. It is a particular yet prominent case of a more sophisticated model
used in the industrial code TACITE [27, 30]. Here, ρ denotes the total density, ρY
is the gas density, so that the liquid density can be computed as ρ(1−Y ). Both gas
and liquid phases move at the same velocity u. The PDE part of this model consists
of two mass-balances (3.5b), (3.5a) and one total momentum-balance (3.5c). Then,
it is well known [18] that the formula-definition (3.2a) of the pressure law gives rise
to a further conservation law

(3.10) ∂t{ρE}(U) + ∂x{ρEu+ pu}(U) = 0

for the smooth solutions of (3.5). In addition, assumptions (3.1c)–(3.1e) ensure that
the mapping U ∈ ΩU → {ρE}(U) ∈ R+ is strictly convex. Hence, (ρE, ρEu+ pu)
may serve as an entropy pair for selecting the physical weak solution of (3.5) via
the energy inequality (3.6).

The boundary conditions (3.9) represent the operating modes available to the
pipeline monitors. At the inlet x = 0, we would like to impose the flow rates (3.9a),
(3.9b) whenever the physics of waves allows us to do so. At the outlet x = X,
we would like to impose the pressure (3.9c) whenever the physics is in agreement
with our wishes; should the flow direction happen to be reverted at the outlet, we
would also like to prescribe the incoming gas fraction (3.9d). In practice, since the
flows considered are always subsonic, the first three conditions (3.9a)–(3.9c) are
systematically active, while (3.9d) depends on the test case at hand. In order to
express the above boundary conditions, we adopt the theory developed by Dubois-
LeFloch [15] based on the notion of half-Riemann problems.

For conciseness in the notation, the PDE model (3.5) is written in the condensed
form

(3.11) ∂tU+ ∂xF(U) = 0.

The following proposition collects the classical properties of (3.5) that we will use
later.

Proposition 3.1. The system (3.5) is hyperbolic over ΩU, i.e., for any state U ∈
ΩU, the Jacobian matrix ∇UF(U) has real eigenvalues

(3.12) u− c(U) < u < u+ c(U)

and is R-diagonalizable. The two extreme fields are genuinely nonlinear while the
intermediate one is linearly degenerate.

Furthermore, the mapping U ∈ ΩU → {ρE}(U) ∈ R+ is strictly convex.

Proof. The calculations can be found in [18], for instance. Hyperbolicity is due to
(3.1c), genuine nonlinearity of the extreme fields is due to (3.1d), the additional
law (3.10) follows from (3.2a) and strict convexity of ρE is due to (3.1c), (3.1e). �

3.2. The relaxation problem. As explained in [5, 10, 22] (see also [2, 3, 4]), it
is judicious to approximate the entropic weak solutions of the original problem by
those of a relaxation model: this helps us cope more easily with the nonlinearities
in the closure laws.

It is well known [18] that the (strict) convexity ∂ττP (τ, Y ) > 0 stated in (3.1d)
is responsible for the (genuine) nonlinearities in the two extreme fields. Following
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the strategy developed in [10] (see also [3, 6, 7]), we propose to modify the reported
nonlinearities by approximating the exact pressure law by

(3.13) Π(τ, ζ, Y ) = P (ζ, Y ) + a2(ζ − τ ),

for some given positive constant a > 0. The new unknown ζ is intended to coincide
with τ in the limit of an infinite relaxation parameter so as to restore the original
nonlinearities. The estimates

∂τΠ(τ, ζ, Y ) < 0 and ∂ττΠ(τ, ζ, Y ) = 0,

to be compared with (3.1c), (3.1d), actually ensure that the relaxation PDE model
is hyperbolic but with only linearly degenerate fields [6, 7].

Over the phase space,

(3.14) ΩU = {U = (ρY, ρ, ρu, ρζ) ∈ R
4 | ρ > 0, ζ > 0 and Y ∈ [0, 1]},

and for a fixed relaxation parameter λ > 0, we introduce the relaxation approxi-
mation (TP-R)aλ of the original problem (TP) in the following way.

Problem (TP-R)aλ Given

– the initial data x ∈ [0, X] �→ U�(x) ∈ ΩU,
– the inlet boundary data t ∈ R+ �→ q0(t), g0(t) ∈ R2

+,
– the outlet boundary data t ∈ R+ �→ pX(t), YX(t) ∈ R+ × [0, 1].

Find

(3.15) U
λ : (t, x) ∈ R+ × [0, X] �→ U

λ(t, x) ∈ ΩU

so as to satisfy in the usual weak sense (for clarity the superscripts λ for the
components of Uλ are omitted):

• for (t, x) ∈ R∗
+× ]0, X[, the system of conservation laws

∂t(ρY ) + ∂x(ρYu) = 0,(3.16a)

∂t(ρ) + ∂x(ρu) = 0,(3.16b)

∂t(ρu) + ∂x(ρu
2 +Π(τ, ζ, Y )) = 0,(3.16c)

∂t(ρζ) + ∂x(ρζu) = λρ[τ − ζ];(3.16d)

• for (t, x) ∈ R
∗
+× ]0, X[, the energy inequality

(3.17) ∂t{ρE }(Uλ) + ∂x{ρEu+Πu}(Uλ) ≤ 0,

with

(3.18) {ρE }(Uλ) =
1

2

(ρu)2

ρ
+ ρε

(
ρζ

ρ
,
ρY

ρ

)
+

ρ

2a2

[
Π2 − P 2

(
ρζ

ρ
,
ρY

ρ

)]
;

• for x ∈ ]0, X[, the initial Cauchy conditions

ρ(t = 0, x) = ρ�(x), u(t = 0, x) = u�(x),(3.19a)

Y (t = 0, x) = Y�(x), ζ(t = 0, x) = ζ�(x);(3.19b)
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• for t ∈ R+, the boundary relationships

ρu(t, x = 0) = q0(t) if u(t, 0) > −aτ (t, 0),(3.20a)

ρYu(t, x = 0) = g0(t) if u(t, 0) > 0,(3.20b)

Π(t, x = X) = pX(t) if u(t,X) < aτ (t,X),(3.20c)

Y (t, x = X) = YX(t) if u(t,X) < 0.(3.20d)

Clearly, the limit λ → +∞ in (3.16) formally gives ζ = τ and thus restores Π =
P (τ, Y ) and E = E(τ, Y, u). In other words, the original equations (3.5) together
with the entropy diminishing condition (3.6) are formally recovered in the limit of
an infinite relaxation parameter. However, to prevent the relaxation approximation
from instabilities in the asymptotic regime λ → +∞, the relaxation system (3.16)
is required to be uniformly compatible with the privileged entropy E , according to
the work by Liu [25] and Chen et al. [9]. The relaxation entropy inequality (3.17)
accounts for this stability requirement. Its detailed form reads [7]

(3.21) ∂t{ρE }(Uλ) + ∂x{ρEu+Πu}(Uλ) = −λρ[a2 + Pτ (ζ, Y )](τ − ζ)2 ≤ 0.

For this inequality to be valid for all λ > 0, the positive constant a entering the
definition of the relaxation pressure law (3.13) must be chosen in order to obey the
subcharacteristic condition [6, 9, 25]

(3.22) a2 > −Pτ (ζ, Y )

for all (ζ, Y ) under consideration. We also refer to (3.22) as the Whitham condition.
For simplicity in the notation, the relaxation system (3.16) is rewritten in the

condensed form

(3.23) ∂tU
λ + ∂xF(U

λ) = λR(Uλ).

Let us summarize the main properties of (3.16) that will soon be of interest.

Proposition 3.2. The first order system in (3.16) is hyperbolic over ΩU, i.e., for
any state U ∈ ΩU, the Jacobian matrix ∇UF(U) has real eigenvalues

(3.24) u− aτ < u = u < u+ aτ

and is R-diagonalizable. The eigenvalues all correspond to linearly degenerate fields
and are associated with the strong Riemann invariants

(3.25) ↼w = Π− au, Y, I = Π+ a2τ, ⇀w = Π+ au.

Furthermore, the solutions of (3.16) satisfy the additional conservation law

(3.26) ∂t{ρΠ}(Uλ) + ∂x{ρΠu+ a2u}(Uλ) = λρ[1 + a−2Pτ (ζ, Y )](P (ζ, Y )−Π).

Proof. The calculations are easily adapted from [3, 4]. Because of the linear de-
generacy of all fields, the additional law (3.26) holds with equality in the sense of
distributions for the discontinuous solutions of (3.16). �
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Let Δt be the time-step. As explained in [3, 4] and illustrated in (3.27) below,
the relaxation strategy consists of two steps. First, starting from the data U� =
U

n = U(tn, .) at equilibrium, that is, with ζn = τn, we solve Problem (TP-R)aλ=0

from tn until tn� = tn + Δt. Since the relaxation parameter is set at λ = 0, the
outcome U

n� will be out of equilibrium, i.e., (ρζ)n� �= 1. Second, we project it
onto the equilibrium manifold by setting ζn+1 = τn�, while keeping the remaining
components:
(3.27)

Un = U�
solve (TP-R)a0−−−−−−−−−−−→

by some method,
Un� return to−−−−−−−→

equilibrium
Un+1

‖ ‖ ‖

(Un, (ρζ)n = 1)
e.g., Lagrange-−−−−−−−−−−−→
projection

(Un�, (ρζ)n�) −−−−−−−→ (Un+1 = Un�, 1)

The question remains as to how we can find a good scheme for the first step. In
[3, 4], Problem (TP-R)a0 was solved by a direct Eulerian approach. In this paper, we
propose an indirect but much more advantageous approach, based on the Lagrange-
Euler decomposition of the relaxation system (3.16).

3.3. The relaxation problem in ALE coordinates. Let us introduce a new ref-
erential frame, in which the coordinates are denoted by χ. This frame is neither the
material (Lagrangian) configuration X nor the laboratory (Eulerian) configuration
x. Instead, it moves at the imposed speed u − v with respect to the laboratory.
Then, the velocity of the particles with respect to the moving frame, as seen from
the laboratory, is equal to v.

Let x = x(χ, t) be the correspondence between the moving frame and the labo-
ratory frame, and let J = ∂χx|t be the dilatation rate. Then, from the calculations
presented in [13, 14, 20], it is a classical exercise to prove that system (3.16) is
equivalent to

∂t(J) + ∂χ(v) − ∂χ(u) = 0,(3.28a)

∂t(ρYJ) + ∂χ(ρYv) = 0,(3.28b)

∂t(ρJ) + ∂χ(ρv) = 0,(3.28c)

∂t(ρuJ) + ∂χ(ρuv) + ∂χ(Π) = 0,(3.28d)

∂t(ρζJ) + ∂χ(ρζv)︸ ︷︷ ︸
projection

= λρJ(τ − ζ)︸ ︷︷ ︸
Lagrange

.(3.28e)

The formulation (3.28) most naturally separates fast acoustic waves from slow kine-
matic waves. Therefore, the basic idea of Arbitrary Lagrangian-Eulerian (ALE)
approaches is to perform a splitting of (3.28), as indicated above, within a time-
step Δt. The Lagrange-projection method that we are going to detail is a special
case of ALE, in which v is chosen so as to come back to Eulerian coordinates after
the two steps, namely, to secure Jn� = 1:

(3.29) (Jn = 1,Un)
Lagrange−−−−−−→ (Jn�,Un�)

projection−−−−−−→ (Jn� = 1,Un�).
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3.3.1. Lagrange step. In the Lagrange step, which takes into account only acoustic
effects due to the pressure, the PDE system to be solved reads

∂t(J) − ∂χ(u) = 0,(3.30a)

∂t(ρYJ) = 0,(3.30b)

∂t(ρJ) = 0,(3.30c)

∂t(ρuJ) + ∂χ(Π) = 0,(3.30d)

∂t(ρζJ) = λρJ(τ − ζ).(3.30e)

This system is equipped with the initial data (J�,U�) = (Jn = 1,Un) and a suitably
modified version of the boundary conditions (3.20), namely,

(3.31)
(a) ρu(t, χ = 0) = q0(t); (c) Π(t, χ = X) = pX(t);
(b) ρYu(t, χ = 0) = g0(t); (d) Y (t, χ = X) = YX(t).

It is important to note that when λ = 0, it is possible to solve (3.30)–(3.31) by
means of Problem (SA). In other words, we can reduce the Lagrange step to the
problem of two symmetric advections with coupling boundary conditions.

Theorem 3.1. Let m = ρ� = ρn > 0 be the initial density. Define

(3.32) z =

∫ χ

0

m(κ) dκ and Z =

∫ X

0

m(κ) dκ.

Then, the Lagrange step (3.30)–(3.31) with λ = 0 is equivalent to

• the PDE system

(3.33)
(a) ∂tY = 0; (c) ∂t⇀w + a∂z⇀w = 0;
(b) ∂tI = 0; (d) ∂t↼w − a∂z↼w = 0,

where Y and (⇀w,↼w,I ) = (Π + au,Π− au,Π+ a2τ ), already introduced in
(3.25), are to be considered as functions of (t, z) ∈ [tn, tn+1]× [0, Z];

• and the boundary conditions
(3.34)

(a) Y (t, z = 0)= g0(t)/q0(t); (b) ⇀w(t, z = 0)=σ0(t) + θ0(t)↼w(t, z = 0);
(c) Y (t, z = Z)=YX(t); (d) ↼w(t, z = Z)=σZ(t) + θZ(t)⇀w(t, z = Z),

where

σ0(t) =
2I�(0)q0(t)

1 + q0(t)/a
, θ0(t) =

1− q0(t)/a

1 + q0(t)/a
,(3.35a)

σZ(t) = 2pX(t), θZ(t) = −1.(3.35b)

Proof. Equation (3.30c) implies that m = ρJ is a function of χ alone, and it
coincides with its initial value, i.e., m = ρ�J� = ρn. Factoring m out of the time
derivatives in the remaining equations of (3.30), dividing each equation by m > 0,
and using dz = m(χ)dχ, we end up with

(3.36)
(a) ∂tY = 0; (c) ∂tτ − ∂zu = 0;
(b) ∂tζ = 0; (d) ∂tu+ ∂zΠ = 0.

where we recall that Π = P (ζ, Y ) + a2(ζ − τ ). This system, in which z appears
as the Lagrangian mass-coordinate [34], can be shown to be hyperbolic with eigen-
values ±a and 0 (double), all of them being linearly degenerate fields. Hence, it is
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equivalent to

∂tτ − ∂zu = 0,(3.37a)

∂tY = 0,(3.37b)

∂tu + ∂zΠ = 0,(3.37c)

∂tΠ + a2∂zu = 0,(3.37d)

from which (3.33) follows. On the other hand, the boundary conditions (3.31) can
be rewritten as
(3.38)

(a) Y (t, z = 0) = g0(t)/q0(t); (b) u(t, z = 0) = q0(t)τ (t, z = 0);
(c) Y (t, z = Z) = YX(t); (d) Π(t, z = Z) = pX(t).

Substituting the inverse transformation

(3.39) Π = 1
2 (

⇀w + ↼w), u = 1
2a (

⇀w − ↼w), τ = 1
2a2 [2I − (⇀w + ↼w)]

into (3.38) and invoking I (t, z = 0) = I�(0) yield (3.34)–(3.35). �

3.3.2. Projection step. The outcome of the fast Lagrange step, denoted by (Jn�,Un�)
in (3.29), is now the input data for the slow projection step. The latter amounts
to solving

∂t(J) + ∂χ(v) = 0,(3.40a)

∂t(ρYJ) + ∂χ(ρYv) = 0,(3.40b)

∂t(ρJ) + ∂χ(ρv) = 0,(3.40c)

∂t(ρuJ) + ∂χ(ρuv) = 0,(3.40d)

∂t(ρζJ) + ∂χ(ρζv) = 0,(3.40e)

where v is a given velocity field. Comparing the evolution equations (3.40a) and
(3.30a) for J , we see that in order for J to go back to its initial value 1, we have to
take v = u. For the moment, it is not obvious as to how we can achieve this, but
things will become clearer at the fully discrete level. Taking v = u for granted and
writing the system (3.40) under the condensed form

∂t(J) + ∂χ(u) = 0,(3.41a)

∂t(UJ) + ∂χ(Uu) = 0,(3.41b)

we can combine the equations to obtain the componentwise advection equation

(3.42) ∂tU+
u

J
∂xU = 0.

Thus, the projection step is merely a remap of the variables contained in U.

4. Two-phase flow model: the numerical scheme

The connection made by Theorem 3.1 between the Lagrange step and Problem
(SA) opens up the possibility of us applying the scheme considered in Problem
(SA)nN .

4.1. Updating formulae. We divide the domain [0, X] intoN cells [xj−1/2, xj+1/2]
of size Δx = X/N . The inner cells are numbered from 1 to N . We also define two
ghost cells labeled 0 and N + 1.
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4.1.1. For the Lagrange step. At the beginning of each time step n → n	, the
variables χ and x coincide with each, so that we can identify them. Since all
data, including ρn, are assumed to be piecewise constant, the local step-size of the
mass-coordinate z is

(4.1) Δzi = ρni Δx.

To update (⇀w,↼w) in (3.33)–(3.34), we use formulae (2.18)–(2.20). Updating
(Y,I ) inside the domain is easy, since ∂tY = ∂tI = 0. As for (Y,I ) at the
boundaries, we need to specify two more conditions at each ghost cell, as indicated
in (4.3a) and (4.4a) below. Note that

– the “wave-cancellation” conditions for I are justified by the fact that the
I -wave, artificially created by the relaxation model, has no real physical
meaning;

– the “mass-fraction” conditions for Y do not conflict with the evolution
equation ∂tY = 0, since the latter is valid only for inner points.

To summarize, the comprehensive set of equations for the Lagrange step is:

• For 1 ≤ i ≤ N ,

Y n�
i − Y n

i

Δt
= 0,(4.2a)

I n�
i − I n

i

Δt
= 0,(4.2b)

⇀wn�
i − ⇀wn

i

Δt
+ a

⇀wn�
i − ⇀wn�

i−1

Δzi
= 0,(4.2c)

↼wn�
i − ↼wn

i

Δt
− a

↼wn�
i+1 − ↼wn�

i

Δzi
= 0.(4.2d)

• For i = 0,

Y n�
0 = gn0 /q

n
0 , I n�

0 = I n�
1 ,(4.3a)

↼wn�
0 = ↼wn�

1 , ⇀wn�
0 = σn

0 + θn0
↼wn�

0 ,(4.3b)

with σn
0 =

2qn0 /a

1 + qn0 /a
I n

1 and θn0 =
1− qn0 /a

1 + qn0 /a
.

• For i = N + 1,

Y n�
N+1 = Y n

X , I n�
N+1 = I n�

N ,(4.4a)

⇀wn�
N+1 = ⇀wn�

N , ↼wn�
N+1 = σn

Z + θnZ
⇀wn�

N+1,(4.4b)

with σn
Z = 2pnX and θnZ = −1.
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To gain more insight into this scheme, it is helpful to rewrite it in terms of the
original variables. After some algebra, we see that (4.2) is equivalent to

ρni
Y n�
i − Y n

i

Δt
= 0,(4.5a)

ρni
τn�i − τni

Δt
−

ũn�
i+1/2 − ũn�

i−1/2

Δx
= 0,(4.5b)

ρni
un�
i − un

i

Δt
+

Π̃n�
i+1/2 − Π̃n�

i−1/2

Δx
= 0,(4.5c)

ρni
ζn�i − ζni

Δt
= 0,(4.5d)

where

Π̃n�
i+1/2 = 1

2 (Π
n�
j +Πn�

j+1)− a
2 (u

n�
j+1 − un�

j ),(4.6a)

ũn�
i+1/2 = 1

2 (u
n�
j + un�

j+1) − 1
2a (Π

n�
j+1 −Πn�

j )(4.6b)

appear to be the pressure and the velocity of the solution to the Riemann problem
associated with (3.37) at the interface i+1/2. A straightforward calculation shows
that we can replace (4.5d) by

(4.7) ρni
Πn�

j −Πn
j

Δt
+ a2

ũn�
i+1/2 − ũn�

i−1/2

Δx
= 0

so as to be able to work with Π as a full-fledged variable. Since Jn
i = 1, equation

(4.5b) can still be interpreted as

(4.8)
Jn�
i − Jn

i

Δt
−

ũn�
i+1/2 − ũn�

i−1/2

Δx
= 0,

which is the discrete version of (3.30a). Following the widely adopted terminology
in continuum mechanics (see [12] for a mathematical presentation), we shall refer

to (4.8) as Piola’s identity. If, in (4.5), we replace (4.5b) with (ρJ)n�i = ρni , then
the new system can be condensed under the conservative form

(4.9)
(UJ)n�i − (UJ)ni

Δt
+

A
n�
i+1/2 − A

n�
i−1/2

Δx
= 0,

where An�
i+1/2 = (0, 0, Π̃n�

i+1/2, 0) denotes the acoustic part of the flux. For later use,

we write An�
i+1/2 = (0, 0, Π̃n�

i+1/2).

Remark 4.1. In the pure Eulerian setting of [4] and within the frame of an implicit
time integration, Baudin et al. strongly recommended handling the discrete version
of the relaxation equation (3.16d) in the limit λ → +∞. In contrast, the solution
procedure proposed here seems to rely on the choice λ = 0 as advocated by formu-
lae (3.33). Let us stress, however, that no contradiction arises with [4]. Had we
discretized the last equation (3.30e) by the consistent approximation

(4.10) ρni
ζn�i − ζni

Δt
= λρni (τ

n
i − ζn�i ),

then for any λ ≥ 0, we would have obtained the expected value (4.5d)

(4.11) ζn�i = τni
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because at time n, the variable ζ is at equilibrium, i.e., ζni = τni . This algebraic
miracle occurs solely in Lagrangian coordinates.

4.1.2. For the projection step. Piola’s identity (4.8) clearly shows that, at the dis-

crete level, we have to use the velocity field vi+1/2 = ũn�
i+1/2, defined at the in-

terfaces, to remap the variables. More concretely, we have to discretize (3.41) by

Jn�

i − Jn�
i

Δt
+

ũn�
i+1/2 − ũn�

i−1/2

Δx
= 0,(4.12a)

(UJ)n�

i − (UJ)n�i
Δt

+
(Uũ)n�i+1/2 − (Uũ)n�i−1/2

Δx
= 0,(4.12b)

the product (Uũ)n�i+1/2 being upwinded as

(4.13) (Uũ)n�i+1/2 = U
n�
i (ũn�

i+1/2)
+ + U

n�
i+1(ũ

n�
i+1/2)

−,

where u+ (respectively u−) stands for the positive (resp. negative) part of u. Note

that Π̃n�
i+1/2 and ũn�

i+1/2 are byproducts of the Lagrange step and can be computed
as

(4.14) Π̃n�
i+1/2 = 1

2 (
⇀wn�

i + ↼wn�
i+1), ũn�

i+1/2 = 1
2a (

⇀wn�
i − ↼wn�

i+1).

To better understand this projection step, let us multiply (4.8) by U
n�
i and add

it to (4.12b). Arguing that Jn� = 1, according to (4.12a), we have

(4.15)
Un�

i − U
n�
i

Δt
+ (ũn�

i−1/2)
+U

n�
i − U

n�
i−1

Δx
+ (ũn�

i+1/2)
−U

n�
i+1 − U

n�
i

Δx
= 0

after some cancellations. Undoubtedly, this is a first-order explicit discretization
of (3.42), where J has been “implicit” to Jn�. Let us introduce the algebraic CFL
ratios

(4.16) λi+1/2 =
ũn�
i+1/2Δt

Δx

based on the transport velocities. Then, equation (4.15) becomes

(4.17) U
n�

i = λ+
i−1/2U

n�
i−1 + (1− λ+

i−1/2 + λ−
i+1/2)U

n�
i − λ−

i+1/2U
n�
i+1,

and we see that a CFL-like condition should be imposed on Δt so that the right-
hand side of (4.17) is a convex combination. This is the objective of the next
subsection.

4.2. Positivity, stability and energy properties. The novelty we wish to put
forward lies in the guarantee of positivity, stability and energy dissipation, as stated
in the following theorem.

Theorem 4.1. The overall scheme (3.27), (3.29) has the following properties:

(1) It can be expressed as the locally conservative form

(4.18)
Un+1

i −Un
i

Δt
+

Fn�
i+1/2 − Fn�

i−1/2

Δx
= 0

with Fn�
i+1/2 = Un�

i (ũn�
i+1/2)

+ +Un�
i+1(ũ

n�
i+1/2)

− +An�
i+1/2.
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(2) Under the CFL constraint

(4.19)
Δt

Δx
<

2a

max
1≤i≤N

{
(
↼
M

n�

i −⇀mn�
i+1)

+ − (↼mn�
i −⇀

M
n�

i+1)
−
} ,

where the various
⇀
M,

↼
M,⇀m,↼m’s, defined by (2.33)–(2.34) of Proposition

2.2, are explicitly computable from data at time n and do not depend on
Δt, we have

(4.20) ρn+1
i > 0 and Y n+1

i ∈ [0, 1].

(3) Under the CFL restriction (4.19), there is the min-max principle

(4.21) min{Y n
i−1, Y

n
i , Y n

i+1} ≤ Y n+1
i ≤ max{Y n

i−1, Y
n
i , Y n

i+1}.

(4) Under the CFL restriction (4.19) and the subcharacteristic condition

(4.22) a2 > max
i∈{1,...,N}

max
σ∈[0,1]

{−Pτ (στ
n
i + (1− σ)τn�i , Y n

i )},

we have

(4.23)
{ρE}(Un+1

i )− {ρE}(Un
i )

Δt
+

(ρEũ+ Π̃ũ)n�i+1/2 − (ρEũ+ Π̃ũ)n�i−1/2

Δx
≤ 0.

This discrete energy inequality is consistent with (3.6).
(5) Stationary contact discontinuities are preserved exactly.

To our knowledge, the stability results mentioned above seem to be new for
a time implicit approximation of the solutions of the Euler’s IBVP. This is why
Theorem 4.1 deserves our attention. Before proving this theorem, we wish to make
two comments.

First, the CFL restriction (4.19) results from enforcing the validity of the esti-
mate

(4.24)
Δt

Δx
[(ũn�

i−1/2)
+ − (ũn�

i+1/2)
−] < 1,

which is nothing but a CFL condition based on the intermediate wave velocity u.
Such a condition is expected, precisely because the proposed scheme is time-explicit
with respect to this wave. Numerical benchmarks testify that the estimate (4.19)
actually provides a sharp lower-bound of the time step Δt dictated by the “exact”
condition (4.24).

Second, the subcharacteristic condition (4.22) reads the same as that for a fully
time explicit setting [6]. In this respect, the sharp version (4.22) of the Whitham
condition (3.22) is quite natural.

Now, let us turn to the proof. The derivation of the energy inequality (4.23)
relies on the following preliminary result.

Lemma 4.1. Assume the subcharacteristic condition (4.22) is met. Then, the
solution of the Lagrange step satisfies the energy inequality

(4.25) ρni
E(Un�

i )− E(Un
i )

Δt
+

(Π̃ũ)n�i+1/2 − (Π̃ũ)n�i−1/2

Δx
≤ 0,

where E is defined in (3.7), and (Π̃n�
i+1/2, ũ

n�
i+1/2) by (4.14).
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Observe that the proposed discrete inequality is nothing but a consistent ap-
proximation of the energy inequality (3.6) expressed in Lagrangian coordinates

(4.26) ∂t(ρEJ) + ∂χ(Pu) ≤ 0.

Proof of Theorem 4.1. Locally conservative form. Adding (4.9) and (4.12b), we get

(4.27)
Un�

i − Un
i

Δt
+

F
n�
i+1/2 − F

n�
i−1/2

Δx
= 0,

with F
n�
i+1/2 = U

n�
i (ũn�

i+1/2)
+ + U

n�
i+1(ũ

n�
i+1/2)

− + A
n�
i+1/2. Extract the first three

components of (4.27) to have (4.18).

Positivity for density and gas mass-fraction. Since (ρJ)n�i = ρni , we have ρn�i > 0

as soon as Jn�
i > 0. By virtue of Piola’s identity (4.8), we must ask for

(4.28)
Δt

Δx
[ũn�

i−1/2 − ũn�
i+1/2] < 1.

From (4.17), we see that the estimate ρn�i > 0 implies ρn�

i > 0 as soon as the
combination in the right-hand side is convex. It suffices that 1−λ+

i−1/2+λ−
i+1/2 > 0,

that is,

(4.29)
Δt

Δx
[(ũn�

i−1/2)
+ − (ũn�

i+1/2)
−] < 1.

Obviously, (4.29) is stronger than (4.28), therefore we just have to focus on (4.29).
Thanks to (4.14) and to Proposition 2.2, we have

(4.30) 1
2a (

↼mn�
j −⇀

M
n�

j+1) ≤ ũn�
i+1/2 ≤ 1

2a (
↼
M

n�

j −⇀mn�
j+1).

Consequently,

(4.31) (ũn�
i−1/2)

+ − (ũn�
i+1/2)

− ≤ 1
2a [(

↼
M

n�

j−1 −⇀mn�
j )+ − (↼mn�

j −⇀
M

n�

j+1)
−],

hence the sufficient condition (4.19) to ensure ρn�

i = ρn+1
i > 0.

Min-max principle. In (4.17), we subtract the second equation, multiplied by any
constant A, to the first equation to obtain

ρn�

j (Y n�

j −A) = λ+
i−1/2ρ

n�
j−1(Y

n�
j−1 −A)− λ−

i+1/2ρ
n�
j+1(Y

n�
j+1 −A)(4.32)

+ [1− λ+
i−1/2 + λ−

i+1/2]ρ
n�
j (Y n�

j −A).

Again, Y n� = Y n. Now by selecting A = max{Y n
i−1, Y

n
i , Y n

i+1}, then A =
min{Y n

i−1, Y
n
i , Y n

i+1}, and discussing the signs, we obtain (4.21). This implies

Y n+1
i ∈ [0, 1].

Energy inequality. Leaving out the last component of (4.17), we may write

(4.33) Un+1
i = Un�

i = λ+
i−1/2U

n�
i−1 + (1− λ+

i−1/2 + λ−
i+1/2)U

n�
i − λ−

i+1/2U
n�
i+1,

which is a convex combination under constraint (4.19). By Jensen’s inequality,
applied to the convex function U �→ {ρE}(U), we infer

(4.34) (ρE)n+1
i ≤ λ+

i−1/2(ρE)
n�
i−1 + [1− λ+

i−1/2 + λ−
i+1/2](ρE)

n�
i − λ−

i+1/2(ρE)
n�
i+1.

However, by construction

(4.35) 1− λ+
i−1/2 + λ−

i+1/2 = Jn�
i + (λ−

i−1/2 − λ+
i+1/2).
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As a result, the inequality (4.34) becomes

(4.36) (ρE)n+1
i ≤ ρni E

n�
i − Δt

Δx
[(ρEũ)n�i+1/2 − (ρEũ)n�i−1/2],

again with the notation

(4.37) (ρEũ)n�i+1/2 = (ρE)n�i (ũn�
i+1/2)

+ + (ρE)n�i+1(ũ
n�
i+1/2)

−

for the upwinded product. According to Lemma 4.1,

(4.38) ρni E
n�
i ≤ (ρE)ni − Δt

Δx
[(Π̃ũ)n�i+1/2 − (Π̃ũ)n�i−1/2].

Inserting (4.38) into the right-hand sides of (4.36) leads to (4.23).

Preservation of steady contact discontinuities. It is clear that the equivalent form
(4.5)–(4.6) comes from a stationary contact discontinuity (say, at time n)

ρni , un
i = 0, Pn

i = P �, i ∈ {1, ..., N},
the Lagrangian updated values

ρn�i = ρni , un�
i = 0, Pn�

i = P �, i ∈ {1, ..., N},
namely ũn�

i+1/2 = 0 and Π̃n�
i+1/2 = P � so that the Eulerian projection step ends up

with

(4.39) (ρY )n+1
i = (ρY )ni , ρn+1

i = ρni , (ρu)n+1
i = 0.

In other words, steady contact discontinuities are preserved exactly. �

Proof of Lemma 4.1. Let us use Theorem 2.3 with S(w) =
w2

4a2
in order to get

(4.40)
S n�

i − S n
i

Δt
+

H n�
i+1/2 − H n�

i−1/2

ρni Δx
≤ 0,

with

(4.41) S n
i = 1

2 [u
2 + (Π/a)2]ni , S n�

i = 1
2 [u

2 + (Π/a)2]n�i , H n�
i+1/2 = (Π̃ũ)n�i+1/2.

Since S = E− ε+ 1
2 (Π/a)2, equation (4.40) can be cast into

(4.42) ρni
E
n�
i − En

i

Δt
+

(Π̃ũ)n�i+1/2 − (Π̃ũ)n�i−1/2

Δx
≤ ρni Rn�

i ,

where

(4.43) Rn�
i = εn�i − εni − 1

2a2
[(Πn�

j )2 − (Πn
j )

2]

and εn�i = ε(τn�i , Y n�
i ) = ε(τn�i , Y n

i ). Since the relaxation system is brought back to
equilibrium at each time step, we have Πn

j = P (τnj , Y
n
j ) = Pn

j . Therefore, we can
rewrite the previous equation as

(4.44) Rn�
i = εn�i − εni − 1

a2
Pn
i (Π

n�
j − Pn

i )−
1

2a2
(Πn�

i − Pn
i )

2.

Because of ζn�i = τni , as shown in (4.11), we have

(4.45) Πn�
j − Pn

j = −a2(τn�j − τnj ).

Consequently, (4.44) becomes

(4.46) Rn�
i = εn�i − εni + Pn

i (τ
n�
i − τni )− 1

2a
2(τn�i − τni )

2.
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Resorting to the Taylor expansion with integral remainder
(4.47)

ε(τn�i , Y n
i )− ε(τni , Y

n
i )− ∂τε(τ

n
i , Y

n
i )(τn�i − τni ) =

∫ τn�
j

τn
j

∂ττε(ς, Y
n
i )(τn�i − ς) dς,

we can easily derive

(4.48) Rn�
i = (τn�i − τni )

2

∫ 1

0

[∂ττε(στ
n
i + (1− σ)τn�i , Y n

i )− a2](1− σ) dσ.

This quantity is negative if a2 is chosen large enough, in compliance with the
subcharacteristic condition (4.22). �

5. Euler’s standard single-phase model: an easy extension

5.1. The continuous problem. This section deals with the Euler equations for
real compressible materials governed by an internal energy (τ, s) ∈ R∗

+ × R+ �→
ε(τ, s) ∈ R+. This function ε is assumed to be smooth enough and to satisfy
Weyl’s conditions [35]

(5.1)
(a) ε> 0; (b) ετ < 0; (c) εττ > 0;
(d) ετττ < 0; (e) εττεss > (ετs)

2; (f) εs < 0.

From the internal energy ε, we define

the pressure P (τ, s) = −ετ (τ, s),(5.2a)

the sound speed c(τ, s) = τ
√
εττ (τ, s) = τ

√
−Pτ (τ, s),(5.2b)

the temperature Θ(τ, s) = −εs(τ, s).(5.2c)

Here, τ still denotes the specific volume while s stands for the specific entropy.
Comparing (5.1) to (3.1) using the formal identification s ≡ Y , we see that the
conditions for Problem (EU) are more stringent than those for Problem (TP): here,
we have to require the temperature to be positive. The strict monotonicity property
(5.1f) also enables us to define

(5.3) (τ, ε) �→ s(τ, ε) as the inverse function of (τ, s) �→ ε(τ, s).

The fact of paramount importance is that this inverse function s decreases with
respect to ε, as

(5.4) sε = 1/εs = −1/Θ < 0.

To use notations from thermodynamics, we have dε = −Pdτ − Θds. Once the
internal energy ε has been selected, we state the following IBVP over the natural
phase space

(5.5) ΩV = {V = (ρE, ρ, ρu) ∈ R
3 | ρ > 0, u ∈ R, ε = E− 1

2u
2 > 0}.

Problem (EU) Given

– the initial data x ∈ [0, X] �→ V�(x) ∈ ΩV,
– the inlet data t ∈ R+ �→ q0(t), Θ0(t) ∈ R

2
+,

– the outlet data t ∈ R+ �→ pX(t) ∈ R+.
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Find

(5.6) V : (t, x) ∈ R+ × [0, X] �→ V(t, x) ∈ ΩV

so as to satisfy (in the weak sense) the following conditions:

• for (t, x) ∈ R
∗
+× ]0, X[, the system of conservation laws

∂t(ρE) + ∂x(ρEu+ pu) = 0,(5.7a)

∂t(ρ) + ∂x(ρu) = 0,(5.7b)

∂t(ρu) + ∂x(ρu
2 + p) = 0,(5.7c)

with p = P (ρ−1, s), where P is the pressure defined in (5.2a), and s is
computed by (5.3), using ε = E − 1

2u
2. We have intentionally put the

energy balance (5.7a) in the first row in order to compare (5.7) with (3.5);
• for (t, x) ∈ R

∗
+× ]0, X[, the entropy inequality

(5.8) ∂t{ρs}(V) + ∂x{ρsu}(V) ≤ 0;

• for x ∈ ]0, X[, the initial Cauchy conditions

(5.9) ρ(t = 0, x) = ρ�(x), u(t = 0, x) = u�(x), E(t = 0, x) = E�(x);

• for t ∈ R+, the boundary relationships

ρu(t, x = 0) = q0(t) if u(t, 0) > −c(ρ−1(t, 0), s(t, 0)),(5.10a)

Θ(t, x = 0) = Θ0(t) if u(t, 0) > 0,(5.10b)

p(t, x = X) = pX(t) if u(t,X) < c(ρ−1(t,X), s(t,X)),(5.10c)

where c is the sound speed defined in (5.2b).

This problem is the usual Euler model for single-phase flows. It is well known [18]
that smooth solutions of (5.7) obey the additional conservation law

(5.11) ∂t{ρs}(V) + ∂x{ρsu}(V) = 0,

while discontinuous solutions of (5.7) are selected according to the entropy inequal-
ity (5.8). As far as the boundary conditions (5.10) are concerned, they are based on
real-life operating modes. To shorten the notation, the PDE system (5.7) is given
the clear condensed form

(5.12) ∂tV + ∂xG(V) = 0.

Now let us recapitulate the main properties that will be used later.

Proposition 5.1. The system (5.7) is hyperbolic over ΩV, i.e., for any state V ∈
ΩV, the Jacobian matrix ∇VG(V) has real eigenvalues

(5.13) u− c(V) < u < u+ c(V),

and is R-diagonalizable. The two extreme fields are genuinely nonlinear, while the
intermediate field is linearly degenerate.

Furthermore, the mapping V ∈ ΩV → {ρs}(V) ∈ R is strictly convex.

Proof. See [18] for the details. �

We are going to design the evolution strategy in two steps, based on an idea
introduced in [10]. First, we replace the energy-balance equation (5.7a) in the
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PDE system by the entropy-balance equation (5.8), with the equal sign, namely,
we consider weak solutions of the following auxiliary hyperbolic system

∂t(ρs) + ∂x(ρsu) = 0,(5.14a)

∂t(ρ) + ∂x(ρu) = 0,(5.14b)

∂t(ρu) + ∂x(ρu
2 + p) = 0,(5.14c)

selected according to the natural energy inequality

(5.15) ∂t{ρE}(ρ, ρu, ρs) + ∂x{(ρE+ p)u}(ρ, ρu, ρs) ≤ 0.

Classical considerations [18] do prove the strict convexity of the mapping (ρ, ρu, ρs)
→ {ρE}(ρ, ρu, ρs) from assumptions (5.1a), (5.1c), (5.1e). In other words, this
mapping naturally yields an entropy for discriminating the physically relevant dis-
continuous solutions of (5.14).

The formal identification Y ≡ s brings us back to Problem (TP). After solving
the new Problem (TP) (5.7) thanks to the relaxation/Lagrange-projection method
proposed earlier, we obtain Un‡ = (ρs, ρ, ρu)n‡ with a discrete analog of the energy
inequality (5.15), which we rewrite in a semi-discrete form to shorten the notation

(5.16) {ρE}(ρn‡, (ρu)n‡, (ρs)n‡) ≤ (ρE)n −Δt∂x(ρEũ+ Π̃ũ)n�.

In order to enforce the validity of the conservation of the total energy at time (n+1),

we set (ρE)n+1 = (ρE)n − Δt∂x(ρEũ + Π̃ũ)n�, while keeping the updated values
of density and momentum unchanged. In other words, we choose ρn+1 = ρn‡ and
(ρu)n+1 = (ρu)n‡. The procedure is shown in the following diagram. The reason
why this process truly guarantees the entropy decay

(ρs)n+1 ≡ {ρs}(ρn+1, (ρu)n+1, (ρE)n+1) ≤ (ρs)n‡ = (ρs)n −Δt∂x(ρsũ)
n�,

and hence the consistency with the expected entropy inequality (5.8) will be elab-
orated in the next subsection.
(5.17)

Vn = (ρE, ρ, ρu)n Vn+1 = (ρE, ρ, ρu)n+1 ⇒ (ρs)n+1 ≤ (ρs)n‡⏐⏐	 E,s

�⏐⏐swap

Un = (ρs, ρ, ρu)n
Pb. (TP )−−−−−−→
with Y≡s

Un‡ = (ρs, ρ, ρu)n‡ ⇒ (ρE)n‡ ≤ (ρE)n+1

Remark 5.1. In comparison with Problem (TP), there is a subtle difference regard-
ing boundary conditions. In §3, we imposed the gas flow rate ρY (t, x = 0) at the
inlet, from which we deduced the incoming fraction Y (t, x = 0). Here, we impose
the temperature Θ(t, x = 0). By inverting the mapping s �→ Θ(τ, s) at fixed τ
(made possible thanks to Θs = −εss < 0), we obtain s(t, x = 0) as a function of
τ (t, x = 0) and Θ0(t). Since τ is decoupled from s in the scheme, this enables us to
proceed as if s(t, x = 0) were known. At the outlet, we choose to leave s(t, x = X)
unspecified because in the applications, the velocity is expected to keep the constant
sign u(t,X) > 0.

5.2. The discrete scheme. Step Un → Un‡ in (5.17) is of course performed via
the scheme (3.27), (3.29), which consists of the two steps

(5.18) Un Lagrange−−−−−−→ Un� projection−−−−−−→ Un‡.
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Invoking once again the formal identification Y ≡ s, we can derive the formulae for
the Lagrange step mutatis-mutandis from (4.2)–(4.4), which reads:

• For 1 ≤ i ≤ N ,

sn�i − sni
Δt

= 0,(5.19a)

I n�
i − I n

i

Δt
= 0,(5.19b)

⇀wn�
i − ⇀wn

i

Δt
+ a

⇀wn�
i − ⇀wn�

i−1

Δzi
= 0,(5.19c)

↼wn�
i − ↼wn

i

Δt
− a

↼wn�
i+1 − ↼wn�

i

Δzi
= 0.(5.19d)

• For i = 0,

sn�0 = S(τn�0 ,Θn
0 ), I n�

0 = I n�
1 ,(5.20a)

↼wn�
0 = ↼wn�

1 , ⇀wn�
0 = σn

0 + θn0
↼wn�

0 ,(5.20b)

with σn
0 =

2qn0 /a

1 + qn0 /a
I n

1 and θn0 =
1− qn0 /a

1 + qn0 /a
.

• For i = N + 1,

sn�N+1 = snX , I n�
N+1 = I n�

N ,(5.21a)

⇀wn�
N+1 = ⇀wn�

N , ↼wn�
N+1 = σn

Z + θnZ
⇀wn�

N+1,(5.21b)

with σn
Z = 2pnX and θnZ = −1.

In (5.20), the function Θ �→ S(τ,Θ) is the inverse of the temperature function
s �→ Θ(τ, s) with respect to s, at fixed τ . The first variable in S is taken either at
time n or at time n	. This is not a difficulty in itself, since in view of the structure

of the equations, the specific volume τn�0 can be obtained before and independently

of sn�0 . In this Lagrange step, the relaxation parameter a is assumed to satisfy a
Whitham condition similar to (3.22), that is,

(5.22) a2 > −Pτ (ζ, s)

for all (ζ, s) under consideration.

Once (s,I , ⇀w,↼w)n�i has been converted to (U, ρζ)n�i = (ρs, ρ, ρu, ρζ)n�i , the pro-
jection step is applied according to (4.12)–(4.14). Because we are interested only
in the first three components, we are going to rewrite this step as

(5.23)
(UJ)n‡i − (UJ)n�i

Δt
+

(Uũ)n�i+1/2 − (Uũ)n�i−1/2

Δx
= 0,

the product (Uũ)n�i+1/2 being upwinded as

(Uũ)n�i+1/2 = Un�
i (ũn�

i+1/2)
+ +Un�

i+1(ũ
n�
i+1/2)

−,

with ũn�
i+1/2 = 1

2a (
⇀wn�

i − ↼wn�
i+1). So far, we have

(ρs)n‡i = (ρs)ni − Δt

Δx
[(ρsũ)n�i+1/2 − (ρsũ)n�i−1/2],(5.24a)

(ρE)n‡i ≤ (ρE)ni − Δt

Δx
[(ρEũ+ Π̃ũ)n�i+1/2 − (ρEũ+ Π̃ũ)n�i−1/2](5.24b)
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for all 1 ≤ i ≤ N . By construction, the first equation gives the updated value for

(ρs)n‡i , whereas the second equation reflects the energy property of Theorem 4.1.
Now, the “swap” step consists of ruling that

(ρE)n+1
i = (ρE)ni − Δt

Δx
[(ρEũ+ Π̃ũ)n�i+1/2 − (ρEũ+ Π̃ũ)n�i−1/2],(5.25a)

(ρ)n+1
i = (ρ)n‡i ,(5.25b)

(ρu)n+1
i = (ρu)n‡i ,(5.25c)

from which we deduce

(5.26) (ρs)n+1
i = ρn+1

i s(τn+1
i , εn+1

i ) = ρn+1
i s(τn+1

i ,En+1
i − 1

2 (u
n+1
i )2).

Theorem 5.1. The overall scheme (5.17), (5.18) has the following properties:

(1) It can be put under the locally conservative form

(5.27)
Vn+1

i −Vn
i

Δt
+

Gn�
i+1/2 −Gn�

i−1/2

Δx
= 0

with

(5.28) Gn�
i+1/2 = Vn�

i (ũn�
i+1/2)

+ +Vn�
i+1(ũ

n�
i+1/2)

− +Bn�
i+1/2

and Bn�
i+1/2 = (Π̃n�

i+1/2ũ
n�
i+1/2, 0, Π̃

n�
i+1/2).

(2) Under the CFL constraint

(5.29)
Δt

Δx
<

2a

max
1≤i≤N

{
(
↼
M

n�

i −⇀mn�
i+1)

+ − (↼mn�
i −⇀

M
n�

i+1)
−
} ,

where
⇀
M,

↼
M,⇀m,↼m are defined by (2.33)–(2.34) of Proposition 2.2, we have

(5.30) ρn+1
i > 0 and εn+1

i > 0.

(3) Under the CFL condition (5.29), there is the max principle

(5.31) sn+1
i ≤ max{sni−1, s

n
i , s

n
i+1}.

(4) Under the CFL condition (5.29), and the subcharacteristic condition

(5.32) a2 > max
i∈{1,...,N}

max
σ∈[0,1]

{−Pτ (στ
n
i + (1− σ)τn�i , sni )},

we have the entropy inequality

(5.33)
{ρs}(Vn+1

i )− {ρs}(Vn
i )

Δt
+

(ρsũ)n�i+1/2 − (ρsũ)n�i−1/2

Δx
≤ 0,

which is consistent with (5.8).
(5) Stationary contact discontinuities are preserved exactly.

Proof. The locally conservative form is straightforward. The positivity of the den-
sity follows exactly the same steps as those developed in the previous section and
gives rise to the CFL restriction (5.29). If we are able to prove that

(5.34) εn+1
i ≥ εn‡i and sn+1

i ≤ sn‡i ,

then the remaining claims will follow suit, because

• by assumption (5.1a), εn‡i = ε(τn‡i , sn‡i ) > 0,

• by the min-max principle (4.21), sn‡i ≤ max{sni−1, s
n
i , s

n
i+1},
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• by definition, (ρs)n‡i = (ρs)ni − Δt
Δx [(ρsũ)

n�
i+1/2 − (ρsũ)n�i−1/2].

To get (5.34), we first note that from (5.24a) and (5.25b), we have (ρE)n+1
i ≥

(ρE)n‡i . Therefore,

(5.35) E
n+1
i ≥ E

n‡
i

because ρn+1
i = ρn‡i . Since E = 1

2u
2 + ε and un+1

i = un‡
i , we infer that εn+1

i ≥ εn‡i .
Now, as already shown in (5.4), s is decreasing with respect to ε at fixed τ . As a
consequence,

(5.36) sn+1
i = s(τn+1

i , εn+1
i ) ≤ s(τn+1

i , εn‡i ) = s(τn‡i , εn‡i ) = sn‡i ,

which completes the proof. �

6. Numerical results

The relaxation scheme using the Lagrange-projection formalism presented in §4
is applied to two test cases inspired from real operating situations encountered by
pipeline monitors. The results are compared with those produced by the semi-
implicit relaxation scheme in Eulerian coordinates, formerly introduced by Baudin
et al. [4]. In both cases, we use the same pressure law as in Baudin et al. [3, 4],
namely,

(6.1) P (τ, Y ) =
α2
GY

τ − τ•L(1− Y )
,

where

(6.2) α2
G = 105 m2/s2, τ•L = 10−3 m3/kg.

This amounts to assuming an ideal gas and an incompressible liquid. For simplicity,
the constant a is chosen at each time-step according to

(6.3) a2 = max
1≤i≤N

−Pτ (τ
n
i , Y

n
i ),

which is a rough version of the subcharacteristic condition (3.22). We also take
for granted that, at the initial time t = 0, the pipeline is in the stationary state
corresponding to the boundary values q0(t = 0), g0(t = 0) and pX(t = 0).

6.1. A simple scenario. A mixture of gas and oil is injected into a pipeline of
length X = 4000m. The flow rates at the inlet are given by

g0(t) = 10 + 0.2(t− 100) · 1{100<t<200} + 20 · 1{t>200},(6.4a)

q0(t) = 990 + g0(t).(6.4b)

This means that within 100 seconds, we increase the gas flow rate linearly from 10
to 30 kg/m2s, while maintaining that of the liquid at the constant value 990 kg/m2s.
At the outlet, the data

(6.5) pX(t) = 105 Pa, YX(t) = 1

are also kept constant throughout the experiment.
Figure 2 displays the solutions computed at the end time T = 300s for the mesh

size Δx = 10m and the CFL ratio 0.5, based on the slow wave. In terms of the
density ρ and the mass-fraction Y , there is a good agreement between the two
schemes. In terms of the velocity u and the pressure P , the discrepancy is more
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visible but still small. This is due to the fact that both schemes are implicit—
therefore less accurate—with respect to acoustic waves.
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Figure 2. Numerical solutions obtained with the Lagrange-
projection relaxation scheme (solid) and Eulerian relaxation
scheme (dotted).

The Lagrange-projection relaxation scheme is about two times faster than the
Eulerian relaxation scheme. This speed-up stems from the practical procedure of
§2.3 for solving the linear system. Such a short-cut procedure is not possible in the
Eulerian relaxation scheme. We remind the readers that the semi-implicit Eulerian
relaxation scheme [4] is itself about 10 times faster than its fully explicit version
[3].

We carried out a study of convergence for the two schemes. In Figure 3, we
show the L1-relative error of total density ρ versus mesh size Δx = 80, 40, 20, 10m
in the log-log scale. This error is computed between the current solution and a
reference solution, obtained with a very fine mesh (Δx = 2.5m). It can be seen
clearly that both schemes converge. From the sequence of errors we infer the rates
of convergence by linear regression. The numerical orders of convergence are

Lagrange-projection relaxation scheme 0.82390,
Eulerian relaxation scheme 0.83675.

These values are quite typical of first-order schemes with nonsmooth data.
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Figure 3. Convergence of the two relaxation schemes with respect
to the mesh size Δx.

6.2. A complex scenario. In the second test case, the flow rates at the inlet are
given by

g0(t) = 10 + 0.2(t− 100) · 1{100<t<200}+ 20 · 1{t>200} kg/m2s,(6.6a)

q0(t) = 990− 9.9(t− 100) · 1{100<t<200}−990 · 1{t>200} kg/m2s.(6.6b)

This means that within 100 seconds, not only the gas flow rate is increased from 10
to 30 kg/m2s, but also the liquid flow rate is decreased from 990 kg/m2s to 0. As a
consequence, the gas mass-fraction Y rises from 0.1 to its upper-bound 1, which is
the main interest of this complex scenario. At the outlet, the pressure is increased
by 100% according to

(6.7) pX(t) = 105 + 103(t− 100) · 1{100<t<200} + 105 · 1{t>200} Pa,

so as to allow the gas to return into the pipeline, thus activating the boundary
condition YX(t) = 1.

Figure 4 displays the solutions computed at the final time T = 300 s for the
mesh size Δx = 10m and the CFL ratio 0.5, based on the slow wave. Again, in
terms of density ρ and mass-fraction Y , there is a good agreement between the
two schemes. In terms of velocity u and pressure P , the discrepancy is even more
noticeable than in the previous test case. Let us repeat, however, that u and P
are more closely associated with fast acoustic waves, in which engineers are not
interested. The only wave worthy of their attention is the slow kinematic wave by
which Y is transported.
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Figure 4. Numerical solutions obtained with the Lagrange-
projection relaxation scheme (solid) and Eulerian relaxation
scheme (dotted).
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Figure 5. Convergence of the two relaxation schemes with respect
to the mesh size Δx.

Since there is no guarantee of positivity for the Eulerian relaxation scheme, we
resorted to the following device in order to maintain ρ and Y in the proper ranges.
Whenever necessary, that is, as soon as those variables are found to get out of
range, we re-do the current time-step after dividing Δt by 2. Keeping this in mind,
we proceed to a study of convergence along the same line as in the previous case.
The results are displayed in Figure 5. The numerical orders of convergence are
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Lagrange-projection relaxation scheme 0.67695,
Eulerian relaxation scheme 0.65819.

Similarly to the first test case, the Lagrange-projection relaxation scheme is
about two times faster than the Eulerian relaxation scheme.

7. Concluding remarks

Throughout this paper, we have opted for an axiomatic layout to introduce the
various problems considered. This presentation allows us to put the boundary
conditions on an equal footing with the PDEs and the initial data.

For the sake of clarity, the transformation of the Lagrange step into two sym-
metric advection equations was carried out using the invariants ⇀w = Π + av and
↼w = Π − av involving the main variables. Actually, at the discrete level, there is
an alternative formulation that makes use of the time variations

(7.1) δ(.) = (.)n� − (.)n.

This incremental formulation is more convenient when we want to discretize the
boundary conditions (2.4) on the basis of the values of (σ0, σZ) at time n	 instead
of time n. It is also of great help when we wish to extend the new explicit-implicit
method to a quasi second-order approximation. In this case, it is still possible to
apply the same philosophy in order to find an optimal time-step that preserves
positivity, even though the entropy inequality cannot be ascertained.

We are currently working on the extension of the method to more general and
realistic two-phase flow systems, in which the gas mass balance reads

(7.2) ∂t(ρY ) + ∂x(ρYu− σ) = 0,

where σ = σ(ρ, Y, u) represents a hydrodynamic closure law [3, 4].

Appendix A. Functional framework for Problem (SA)

At first sight, Problem (SA) seems to be somewhat of a “classic”, and one might
suspect that it has already been investigated. However, a more careful look reveals
that the coupling of boundary conditions through (2.4) could be something new,
essentially because (θ0, θZ) depend on time t. The only reference we have been able
to find that contains a similar two-advection system is a review by Russell [31],
in which only a subcase of Problem (SA) is considered. On the other hand, the
functional framework usually associated with linear problems involves L2-spaces, as
is the case in Russell’s paper. However, in view of the application of Problem (SA)
to the approximation of Problem (TP) and Problem (EU), what we really need are
L∞-norms, as already explained in §2.1.

We use the L∞-norm defined by (2.5) and the notation of §2.1. We will also write
L∞ ∩ C1(O;R) for L∞(O;R) ∩ C1(O;R), equipped with the same norm. Finally,
for short-hand convenience, we write R

+
Z = R+ × [0, Z]. The set of C1-functions

ϕ(t, z) whose supports are compact and included in R
+
Z is denoted by C 1

0 (R
+
Z ).

We are going to work out a weak formulation for Problem (SA).

Definition A.1. Given

– the initial data ⇀w�,
↼w� ∈ L∞([0, Z];R)× L∞([0, Z];R),(A.1a)

– the boundary data σ0, σZ ∈ L∞(R+;R)× L∞(R+;R),(A.1b)

– the coupling factors θ0, θZ ∈ L∞ ∩ C1(R+;R)× L∞ ∩ C1(R+;R),(A.1c)
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the pair

(A.2) ⇀w,↼w ∈ L∞(R+
Z ;R)× L∞(R+

Z ;R)

is said to be a weak solution to Problem (SA) if, for any pair of test functions
(⇀ϕ, ↼ϕ) ∈ C 1

0 (R
+
Z )× C 1

0 (R
+
Z ) subject to

(A.3) ↼ϕ(t, 0) = θ0(t)⇀ϕ(t, 0) and ⇀ϕ(t, Z) = θZ(t)↼ϕ(t, Z) for all t > 0,

we have

(A.4)

0 =

∫∫
R

+
Z

⇀w(∂t⇀ϕ+ a∂z⇀ϕ) dt dz +

∫∫
R

+
Z

↼w(∂t↼ϕ− a∂z↼ϕ) dt dz

+

∫
[0,Z]

⇀w�(z)
⇀ϕ(0, z) dz +

∫
[0,Z]

↼w�(z)
↼ϕ(0, z) dz

+

∫
R+

aσ0(t)⇀ϕ(t, 0) dt +

∫
R+

aσZ(t)↼ϕ(t, Z) dt.

It can be verified that under the assumptions (A.1)–(A.2), all integrals involved
in (A.4) are well defined. This weak formulation comes from standard techniques
[18]. We first suppose (⇀w,↼w) to be a classical solution. Multiplying (2.2a) by
⇀ϕ, (2.2b) by ↼ϕ, integrating by parts, then adding them together, we replace the
initial data by (2.3) and make use of (2.4) to get rid of the boundary terms. The
constraints (A.3) on test functions (⇀ϕ, ↼ϕ) reflect the fact that (⇀w,↼w) influence each
other through boundary conditions. The subset of C 1

0 (R
+
Z ) × C 1

0 (R
+
Z ) containing

pairs of test functions satisfying (A.3) is not empty.
This weak formulation allows us to clarify Theorem 2.1 and to prove it.

Theorem A.1. If ‖θ0‖‖θZ‖ < 1, then Problem (SA) is well posed, in the sense
that it has a unique weak solution depending continuously on the data. All other
statements of Theorem 2.1 hold true. Furthermore, the auxiliary functions (⇀w0, ↼wZ)
both belong to L∞(R+;R).

In order to prove Theorem A.1, we need three preliminary results. The first two
are technical devices for existence, while the last one is the keystone for uniqueness.

Lemma A.1. Let T > 0 and let α, g be two functions in L∞(R+;R). If ‖α‖ < 1,
then the functional equation

(A.5) w(t)− α(t)1{t>T}w(t− T ) = g(t)

admits a unique solution w ∈ L∞(R+;R). This solution depends continuously on
the data g, and we have

(A.6) ‖w‖ ≤ 1

1− ‖α‖ ‖g‖.

Proof. Let us first assume existence and try to find out a formula for w. For t < T ,
it is clear that w(t) = g(t). For t > T let d = �t/T �, so that 0 ≤ t − dT < T , and
w(t− dT ) = g(t− dT ). Then, combining the equalities

(A.7)

w(t) = α(t) w(t− T ) + g(t),
w(t− T ) = α(t− T ) w(t− 2T ) + g(t− T ),
w(t− 2T ) = α(t− 2T ) w(t− 3T ) + g(t− 2T ),
. . . = . . .
w(t− (d− 1)T ) = α(t− (d− 1)T ) w(t− dT ) + g(t− (d− 1)T ),
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we have

(A.8) w(t) = g(t) +

d∑
r=1

α(t)α(t− T ) . . . α(t− (r − 1)T )g(t− rT ).

This ensures uniqueness. Conversely, we can readily check that

(A.9) w(t) = g(t) +

	t/T
∑
r=1

α(t)α(t− T ) . . . α(t− (r − 1)T )g(t− rT )

is indeed a solution to (A.5), the latter formula being valid for any t ≥ 0. From
(A.9), it follows that

(A.10) |w(t)| ≤ ‖g‖(1+
	t/T
∑
r=1

|α(t)α(t−T ) . . . α(t−(r−1)T )|) ≤ ‖g‖(1+
	t/T
∑
r=1

‖α‖r)

so that if ‖α‖ < 1, we have w ∈ L∞(R+;R) and the desired estimate (A.6). �

Lemma A.2. The two systems (2.8) and (2.9) are equivalent. If ‖θ0‖‖θZ‖ < 1,
then they have the same unique solution (⇀w0, ↼wZ), which depends continuously on
the data.

Proof. We first prove that (2.9) is well posed. This is done by applying Lemma A.1
twice. The first time, with

(A.11) T = 2Z/a, w(t) = ⇀w0(t), α(t) = θ0(t)θZ(t− Z/a), g(t) = G0(t),

we get existence, uniqueness and continuous dependence for ⇀w0. In this case,

(A.12) ‖⇀w0‖ ≤ 1

1− ‖θ0‖‖θZ‖
(‖σ0‖+ ‖θ0‖max{‖↼w�‖, ‖σZ‖+ ‖θZ‖‖⇀w�‖}).

The second time, with

(A.13) T = 2Z/a, w(t) = ↼wZ(t), α(t) = θZ(t)θ0(t− Z/a), g(t) = GZ(t),

we get existence, uniqueness and continuous dependence for ↼wZ . In this case,

(A.14) ‖↼wZ‖ ≤ 1

1− ‖θ0‖‖θZ‖
(‖σZ‖+ ‖θZ‖max{‖⇀w�‖, ‖σ0‖+ ‖θ0‖‖↼w�‖}).

Let us write (2.8b) at time t−Z/a, and plug the expression for ↼wZ(t−Z/a) into
(2.8a). We then obtain (2.9a). A similar elimination enables us to deduce (2.9b)
from (2.8). Thus, (2.8)⇒ (2.9).

We can put (2.9)–(2.10) under the form

⇀w0(t) = σ0(t) + θ0(t)[1{at<Z}
↼w�(at) + 1{at>Z}HZ(t− Z/a)],(A.15a)

↼wZ(t) = σZ(t) + θZ(t)[1{at<Z}
⇀w�(Z − at) + 1{at>Z}H0(t− Z/a)](A.15b)

with

H0(t) = σ0(t) + θ0(t)[1{at<Z}
↼w�(at) + 1{at>Z}

↼wZ(t− Z/a)],(A.16a)

HZ(t) = σZ(t) + θZ(t)[1{at<Z}
⇀w�(Z − at) + 1{at>Z}

⇀w0(t− Z/a)].(A.16b)

Equations (A.15a), (A.16b) testify to the fact that (⇀w0, HZ) solves (2.8). Likewise,
(H0, ↼wZ) also solves (2.8). Since (2.8)⇒(2.9), the two pairs (⇀w0, HZ) and (H0, ↼wZ)
are solutions to (2.9). By virtue of uniqueness for (2.9), we infer that H0 = ⇀w0 and
HZ = ↼wZ . Hence, (2.9)⇒ (2.8). �
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Lemma A.3. Every pair of functions (⇀κ, ↼κ) ∈ C 1
0 (R

+
Z)×C 1

0 (R
+
Z ) can be expressed

as

⇀κ = ∂t⇀ϕ+ a∂z⇀ϕ,(A.17a)
↼κ = ∂t↼ϕ− a∂z↼ϕ,(A.17b)

where the functions (⇀ϕ, ↼ϕ) ∈ C 1
0 (R

+
Z)× C 1

0 (R
+
Z ) obey, for all t ≥ 0,

(A.18) ↼ϕ(t, 0) = θ0(t)⇀ϕ(t, 0) and ⇀ϕ(t, Z) = θZ(t)↼ϕ(t, Z).

Proof. Suppose that the supports of (⇀κ, ↼κ) are included in [0, T�[×[0, Z], that is,
⇀κ(t, z) = ↼κ(t, z) = 0 for t ≥ T�. For safety, we take T = T�+Z/2a. We describe how
to construct (⇀ϕ, ↼ϕ) from (⇀κ, ↼κ) with the additional requirement that the supports
of (⇀ϕ, ↼ϕ) be included in [0, T [×[0, Z].

From a fixed point M = (t, z) ∈ [0, T [×[0, Z], we draw characteristic lines for-
ward, starting with the a slope, then alternating with −a every time a boundary
is met, and stopping at the upper boundary t = T . As illustrated in Figure 6, this
gives rise to a path, for which we now provide an analytical definition in order to
write accurate formulae later. Let

(A.19) N =

⌊
z + a(T − t)

Z

⌋
and introduce the points An(tn, zn) defined by:

• for n = 0, (t0, z0) = (t, z), which means that A0 = M ;
• for 1 ≤ n ≤ N ,

(A.20) (tn, zn) =

(
t+

nZ − z

a
,
1− (−1)n

2
Z

)
,

which means that An belongs to the right boundary if n is odd, and to the
left boundary if n is even;

• for n = N + 1, (tN+1, zn+1) = (T, zN + (−1)Na(T − tN )).

z0
0

t

z0
0

t

A1

AN

AN+1 BN+1

BN

B1

B2

A2

• •
⇀κ

⇀κ

M = A0

↼κ

↼κ
M = B0

Z Z

Figure 6. Characteristics for the solution to the adjoint problem.
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If (⇀ϕ, ↼ϕ) is a solution pair, then in the first segment [A0A1], we should have

(A.21) ⇀ϕ(A0) = ⇀ϕ(A1)−
∫ A1

A0

⇀κ(t, z(t)) dt = θZ(t1)↼ϕ(A1)−
∫ A1

A0

⇀κ(t, z(t)) dt,

where
∫ A1

A0
denotes integration along [A0A1]. More generally, we should have

⇀ϕ(A2k) = ⇀ϕ(A2k+1)−
∫ A2k+1

A2k

⇀κ dt = θZ(t2k+1)↼ϕ(A2k+1)−
∫ A2k+1

A2k

⇀κ dt,

⇀ϕ(A2k+1) = ⇀ϕ(A2k+2)−
∫ A2k+2

A2k+1

↼κ dt = θ0(t2k+2)↼ϕ(A2k+2)−
∫ A2k+2

A2k+1

↼κ dt

(A.22)

for k within an acceptable range. Combining the equalities (A.22) with the final
data ⇀ϕ(AN+1) = ↼ϕ(AN+1) = 0, we end up with

(A.23) ⇀ϕ(M) = −
∑
k≥0

Θ2k

∫ A2k+1

A2k

⇀κ dt−
∑
k≥1

Θ2k−1

∫ A2k

A2k−1

↼κ dt,

where the sums automatically stop beyond AN+1, and

(A.24) Θ2k =
k∏

�=1

θ0(t2�)θZ(t2�−1), Θ2k−1 = θZ(t2k−1)
k−1∏
�=1

θ0(t2�)θZ(t2�−1).

Consider the function ⇀ϕ defined by (A.23)–(A.24) for t < T and by ⇀κ(t, z) = 0
for all t ≥ T . Since (tn, zn) are C

1-functions of (t, z), it is a straightforward matter
to check that ⇀ϕ is C1 with respect to (t, z) if (θ0, θZ) are C1-functions of t. On the
other hand, it can be verified to be compact-supported. Therefore, ⇀ϕ ∈ C 1

0 (R
+
Z).

Starting from M with the slope −a, we derive a similar construction for ↼ϕ ∈
C 1
0 (R

+
Z ). It is easy to check that (⇀ϕ, ↼ϕ) is indeed a solution to (A.17)–(A.18). �

Proof of Theorem A.1. Uniqueness. Suppose there are two pairs (⇀w1, ↼w1) and
(⇀w2, ↼w2) both satisfying the weak formulation (A.4). We are going to show that
(⇀w1, ↼w1) = (⇀w2, ↼w2) in the sense that

(A.25)

∫∫
R

+
Z

(⇀w2 − ⇀w1)κ dt dz = 0 and

∫∫
R

+
Z

(↼w2 − ↼w1)κ dt dz = 0

for all κ ∈ C 1
0 (R

+
Z ). We make use of a nonlinear version of Holmgren’s tech-

nique [32] and consider the adjoint problem (A.17)–(A.18) for a given pair (⇀κ, ↼κ) ∈
C 1
0 (R

+
Z )×C 1

0 (R
+
Z). According to Lemma A.3, this problem has a solution (⇀ϕ, ↼ϕ) ∈

C 1
0 (R

+
Z ) × C 1

0 (R
+
Z). Specifying this solution pair as test functions and writing the

weak formulation (A.4) for (⇀w1, ↼w1) and (⇀w2, ↼w2), we get

(A.26) 0 =

∫∫
R

+
Z

(⇀w2 −⇀w1)(∂t⇀ϕ+ a∂z⇀ϕ) dt dz+

∫∫
R

+
Z

(↼w2 −⇀w1)(∂t↼ϕ− a∂z↼ϕ) dt dz,

which implies

(A.27) 0 =

∫∫
R

+
Z

(⇀w2 − ⇀w1)⇀κ dt dz +

∫∫
R

+
Z

(↼w2 − ⇀w1)↼κ dt dz.

To reach claim (A.25), we set (⇀κ, ↼κ) = (κ, 0), then (⇀κ, ↼κ) = (0, κ).

Existence and continuous dependence. Our strategy is to insert the candidate func-
tions (2.7)–(2.8) into the right-hand side of the weak formulation (A.4) and to
check that it vanishes. The calculations are somewhat heavy, because of the many
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changes of variables to be carried out for the double integrals. We just sketch out
the intermediate steps, leaving the details to the reader.

First, using (2.7) and cutting the integration domain into subdomains, we have∫∫
R

+
Z

⇀w(∂t⇀ϕ+ a∂z⇀ϕ) dt dz +

∫ Z

0

⇀w�(z)
⇀ϕ(0, z) dz +

∫
R+

a⇀w0(t)⇀ϕ(t, 0) dt

=

∫ Z

0

⇀w�(z)
⇀ϕ(Z−z

a , Z) dz +
∫
R+ a⇀w0(t)⇀ϕ(t+

Z
a , Z) dt,∫∫

R
+
Z

↼w(∂t↼ϕ− a∂z↼ϕ) dt dz +

∫ Z

0

↼w�(z)
↼ϕ(0, z) dz +

∫
R+

a↼wZ(t)↼ϕ(t, Z) dt

=

∫ Z

0

↼w�(z)
↼ϕ( za , 0) dz +

∫
R+ a↼wZ(t)↼ϕ(t+

Z
a , 0) dt,

(A.28)

Invoking (2.8), taking advantage of (A.3), making appropriate changes of variables
and invoking (2.8), once again leads us to the conclusion that the right-hand side
of (A.4) is equal to 0.

It remains to check that (⇀w,↼w) are L∞-functions. From (2.7) and from the L∞-
assumptions made on (⇀w�,

↼w�), it is obvious that we simply need to check that the
auxiliary functions (⇀w0, ↼wZ) are L∞-functions. From (2.9)–(2.10) and by Lemma
A.1, it can be seen that this is ensured as soon as ‖θ0‖‖θZ‖ < 1. Finally, from the
estimates (A.12)–(A.13), we infer that

(A.29) max{‖⇀w0‖, ‖↼wZ‖} ≤ (1 + ‖θ0‖)(1 + ‖θZ‖)
1− ‖θ0‖‖θZ‖

max{‖⇀w�‖, ‖↼w�‖, ‖σ0‖, ‖σZ‖}.

Recalling (2.7) again and arguing that the constant in (A.29) is greater than 1, we
arrive at (2.6). �
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scheme, Int. J. Comput. Fluid Dynam. 12 (1999), no. 2, 133–149. MR1729206 (2000h:65122)
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