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SHARPLY LOCAL POINTWISE A POSTERIORI ERROR

ESTIMATES FOR PARABOLIC PROBLEMS

ALAN DEMLOW AND CHARALAMBOS MAKRIDAKIS

Abstract. We prove pointwise a posteriori error estimates for semi- and fully-
discrete finite element methods for approximating the solution u to a parabolic
model problem. Our estimates may be used to bound the finite element error
‖u − uh‖L∞(D), where D is an arbitrary subset of the space-time domain of
the definition of the given PDE. In contrast to standard global error estimates,
these estimators de-emphasize spatial error contributions from space-time re-
gions removed from D. Our results are valid on arbitrary shape-regular sim-
plicial meshes which may change in time, and also provide insight into the
contribution of mesh change to local errors. When implemented in an adap-
tive method, these estimates require only enough spatial mesh refinement away
from D in order to ensure that local solution quality is not polluted by global
effects.

1. Introduction

We consider finite element approximations to the model problem

ut −Δu+ u = f in Ω× (0, T ],

∂u

∂n
= 0 on ∂Ω× [0, T ],

u(x, 0) = u0(x).

(1.1)

Here Ω ⊂ R
N , N ≥ 2, is a bounded domain with smooth boundary ∂Ω, and f and

u0 are assumed to be sufficiently smooth.
Our goal in this work is to prove sharply local (sometimes also called localized in

the literature) pointwise a posteriori error estimates for finite element approxima-
tions uh to u. Many applications only require knowledge of u on some subset D
of Ω × (0, T ]. As a simple physical example, we may consider a thermal evolution
problem in which one desires to monitor the temperature evolution at a single point
(i.e., on D = x0 × [0, T ] for a given x0 ∈ Ω) or to calculate the temperature distri-
bution accurately only at the final time (D = Ω × {T}). More broadly, there has
been much recent interest in so-called goal-oriented error estimation and adaptivity
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in which a posteriori error estimates and adaptive finite element methods are de-
signed to compute physically relevant “quantities of interest” which take the form
of functionals J(u) of u. Most examples of such functionals given in the literature
are only locally dependent (cf. the survey articles [BR01] and [GS02]).

When the desired information from a computation depends on u only in some
subset D, it is desirable to place just enough computational resources (mesh ele-
ments and time steps) in regions away from D to ensure that solution quality in
these regions does not pollute solution quality in the target set D. In the context
of adaptive methods, achieving this goal requires a posteriori error estimates which
control but do not overemphasize pollution effects. Broadly speaking, there are
two main options for estimating and controlling pollution effects a posteriori. The
first is to approximately compute a “generalized Green’s function” which solves a
dual problem encoding information about the quantity of interest; we refer again
to [BR01] and [GS02] for examples and details. Note that if in the current context
D is a single point (x0, t0), then we have J(u) = u(x0, t0), and the “generalized
Green’s function” is the actual Green’s function. Computational experience shows
that this “dual-weighted residual” approach provides quite accurate information
about the error in many situations, though such bounds are also often not reliable
on coarse meshes. In addition, dual-weighted residual methods are most effective
when J is a linear functional, which excludes the case of rigorous local norm error
estimation considered here. Finally, the added expense of computing a dual solu-
tion is reasonable in the context of elliptic problems, but may become less so in the
the context of parabolic problems because of the added computational overhead of
the time discretization.

The second main option for bounding pollution errors is to prove explicit a poste-
riori error estimates for a local norm of the error (or for the error at a single point).
In order to make clear the intuition behind the two main types of such explicit
local estimates, we briefly state two types of local (pointwise) a priori estimates
for elliptic problems. Then let v and vh ∈ Sk be the continuous and finite element
solutions to a second-order elliptic problem. Here Sk is a standard Lagrange finite
element space of degree k defined on a quasi-uniform mesh of diameter h. Follow-
ing the classical local energy estimates of [NS74], Schatz and Wahlbin proved the
following local pointwise bound in [SW95]. Let x0 ∈ Ω. If appropriate assumptions
hold, then for any d ≥ Ch we have

|(v − vh)(x0)| ≤C�h(min
χ∈Sk

‖v − χ‖L∞(Bd(x0)) + d−k+1‖v − vh‖W−k+1
∞ (Ω))

≤C�h(h
k+1|v|Wk+1

∞ (Bd(x0))
+ d−sh2k|v|Wk+1

∞ (Ω)).
(1.2)

Here ‖·‖W−k+1
∞ (ω) is a negative norm and �h is a logarithmic factor. Thus the point-

wise error is bounded by a “local approximation term” minχ∈Sk
‖v − χ‖L∞(Bd(x0))

of order hk+1 and a “global pollution term” d−k+1‖v − vh‖W−k+1
∞ (Ω) which under

ideal conditions has maximum order d−k+1h2k and which measures the effects of
global solution properties upon the quality of the approximation vh to v at the
point x0. In [Sch98], Schatz introduced a form of sharply local pointwise a priori
estimates for elliptic problems. Given x0 ∈ Ω, let σx0

(y) = h
h+|x0−y| . Schatz proved
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in [Sch98] that

|(v − vh)(x0)| ≤C�h min
χ∈Sk

‖σk−1
x0

(v − χ)‖L∞(Ω)

≤Chk+1�h‖σk−1
x0

Dk+1v‖L∞(Ω).
(1.3)

If we let d be as in (1.2) and then note that σx0
(y) ≤ 1 for |y − x0| ≤ d and

σx0
(y) ≤ h

d for |y−x0| ≥ d, we immediately obtain from (1.3) that |(v− vh)(x0)| ≤
C�h(h

k+1‖v‖Wk+1
∞ (Bd(x0))

+ d−shk+1+s‖v‖W s
∞(Ω)), precisely as in (1.2). Note, how-

ever, that σx0
(y) decreases smoothly with respect to the distance from y to x0,

whereas in (1.2) the distance to x0 is only taken into account by the fixed parame-
ter d. Thus (1.3) and (1.2) both measure the degree to which global properties of
v affect solution quality at x0, but (1.3) measures more sharply the way in which
the distance that solution features of v lie from x0 affects solution quality at x0.

Local a posteriori estimates which imitate local a priori estimates such as (1.2)
by splitting the local error explicitly into a local residual term that is of the same
order as the local error norm being bounded, and a global pollution term that is
heuristically of higher order and must be bounded separately have also appeared
in the literature in the context of elliptic problems. The first such estimates to
our knowledge appeared in [XZ00], which included both local energy and local
L∞ estimates; see also [LN03] for local energy estimates which treat effects arising
from corner singularities on polygonal domains and [Dem07] for local W 1

∞ estimates
analogous to (1.2). Sharply local pointwise a posteriori gradient bounds of residual
type were proved for elliptic problems in [Dem06]. These estimates are valid on
general shape-regular simplicial meshes (which may be highly graded) and employ
a version of the weight σ in which the mesh parameter h reflects the local mesh size.
In the parabolic context, sharply local pointwise a priori estimates were proved in
[Ley04a]. Assume now that uh ∈ Sk is the semidiscrete finite element approximation
to the solution u to (1.1) with discrete initial data uh,0. Given a fixed point (x0, t0) ∈
Ω × (0, T ], let σx0,t0(x, t) = h

h+|x−x0|+
√
t0−t

. It was proved in [Ley04a] that if

0 ≤ s ≤ k − 1, then

(1.4) |(u− uh)(x0, t0)| ≤ C�h,s min
χ∈C([0,t0];Sk)

‖σs
x0,t0

(u− χ)‖L∞(Ω×[0,T ]),

where �h,s is a logarithmic factor.
In this work we prove sharply local pointwise a posteriori error estimates which

may be viewed as a posteriori counterparts to the sharply local a priori error
estimates proved in [Ley04a], and also as parabolic counterparts to the similar
sharply local pointwise a posteriori gradient estimates proved for elliptic problems
in [Dem06]. In the absence of a time discretization, the local behavior of finite
element methods for parabolic problems is similar to the local behavior of FEM
for elliptic problems (see for example the local energy estimates in [Ley04a] and
[STW98]). The effects of time discretizations and mesh change on local error be-
havior are less well understood, however, and is a major focus of the current work.
Here we study the backward Euler time discretization as a simple model case. As
we show more precisely below, the time discretization has little effect upon the
localization of the error that is present in spatial semidiscretizations. The effects of
changing spatial meshes are more subtle, but as we show below, these mesh change
effects also possess a localization property similar to that seen in the spatial error.
We also note here that [LW08] employs sharply local a priori results similar to
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(1.4) to prove asymptotic results concerning averaging estimators for fully discrete
schemes for parabolic problems. In these results the time-stepping error must be
strictly smaller than the space discretization error in order to obtain the desired
error estimate. Here we seek instead to adaptively balance time and sharply local
space contributions to the overall error.

Next, we briefly describe our results for semidiscrete finite element approxima-
tions. Let Th be a shape-regular simplicial decomposition of Ω, let hK be the
diameter of K ∈ Th, and let Sk be a standard Lagrange finite element space of
polynomial degree k on Th. In addition, let uh be a semidiscrete finite element
approximation to u with initial data uh(0) = Phu0, where Ph is the L2 projection
onto Sk. Then for a point (x0, t0) ∈ Ω× (0, T ] with x0 ∈ K0 ∈ Th,

|(u− uh)(x0, t0)| ≤C
[
‖σk+1

x0,t0(0)(u0 − Phu0)‖L∞(Ω)

+ (1 + �h) sup
0<t<t0

max
K∈Th

(
σk−1
x0,t0(K, t)η∞,t(K)

)]
.

(1.5)

Here η∞,t(K) is an L∞-type residual parabolic error indicator defined on the ele-
ment K, �h is a logarithmic factor which we define more precisely later, and

(1.6) σx0,t0(K, t) =
hK

hK + dist(K0,K) +
√
t0 − t

.

Note that if (K, t) is removed from (K0, t0) in either space or time, then σx0,t0(K, t)
is equivalent to the local mesh size. Thus, initial data approximation effects in
the term ‖σx0,t0(0)

k+1(u0 − Phu0)‖L∞(Ω) above are de-emphasized by a factor of

approximately hk+1 so long as t0 is not close to 0. The weight σ in the second line
of (1.5) also de-emphasizes error contributions from regions away from (K0, t0) by
positive powers of h if k−1 > 0, i.e., so long as we are using quadratic or higher-order
finite element spaces. More precisely, if the “parabolic distance” dist(x,K)+

√
t0 − t

from the target point (x0, t0) to some element K at time t is of size d, then the
residual contribution from the element K at t to the error at (x0, t0) will be given

by σk−1
x0,t0η∞,t(K) ≤ d−k+1hk−1

K η∞,t(K). Heuristically, hk−1
K η∞,t(K) can be thought

of as a W−k+1
∞ -type residual indicator that is bounded by ‖u−uh‖W−k+1

∞ (K). Thus

(1.5) computably bounds the error at the target point (x0, t0), but without requiring
that the L∞ error be resolved globally (unless k = 1). Note that no factor σ is
available in the second line of (1.5) in the practically important case of piecewise
linear finite element spaces, as expected; cf. [Dem04] for a counterexample in the
context of a priori estimates for elliptic problems. Finally, it is trivial to take the
supremum of both sides of (1.5) in order to bound ‖u − uh‖L∞(D) for arbitrary
subsets D of Ω× (0, T ]; cf. §3.3.

In §4 we prove an estimate similar to (1.5) for backward Euler finite element ap-
proximations to (1.1). Though their statement is somewhat more complicated, our
results for fully discrete approximations differ from (1.5) mainly in that in addition
to the initial data estimator and spatial estimator already present in (1.5), they in-
clude mesh change and mesh coarsening estimators as well as a time discretization
estimator. Let {un

h} be a sequence of backward Euler-finite element approximations
to u defined on a set of time nodes {tn}, meshes Tn, and degree-k finite element
spaces Sn, where 0 ≤ i ≤ M . Also, Pn

h is the L2 projection onto Sn. Though its
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final expression is somewhat more complicated, the time estimator has principal
part

max
1≤t≤M

[
‖un

h − Pn
h u

n−1
h ‖L∞(Ω) + ‖f − fn‖L∞(Ω×[tn−1,tn])

]
,

which is of optimal order since un
h → Pn

h u
n−1
h with order 1 as tn → tn−1 even

if Tn 	= Tn−1. We emphasize that the time estimator above is only of optimal
order in time for the backward Euler method, with no decay in error dependence
as one moves away from the target time (cf. [Ley04b] for a counterexample in
the context of a priori error estimates). However, the spatial estimator continues
to de-emphasize error contributions away from the target region. In addition to
the spatial, time, and initial data estimators, mesh change estimators are present
which are nonzero only when the mesh is refined or coarsened in passing between
time steps. These mesh change estimators (whose form is given precisely later) also
include weights whose form is similar to (1.6), so that the effects of mesh changes
occuring away from the target region D are also de-emphasized. For problems with
smooth data, this indicates that essentially uniform timesteps are necessary in order
to bound the maximum error on a target region D. The spatial meshes, however,
may be refined in regions which are close to D in the sense of the parabolic distance
min(x0,t0)∈D |x − x0| +

√
|t0 − t|, but coarser in regions removed from the target

point so long as k ≥ 2. Numerical experiments in §5 confirm this heuristic.
We next comment on our assumptions. First, we assume that ∂Ω is smooth,

whereas previous a posteriori pointwise estimates for elliptic problems have gener-
ally been proved on polyhedral domains. We avoid polyhedral domains here because
we wish to focus on the interaction of the spatial localization implied by (1.5) with
the time discretization, and corner singularities arising on polyhedral domains add a
great deal of technical overhead that would lengthen and cloud our presentation (cf.
[Noc95], [Bom00]). Polyhedral domains are of definite practical interest, however,
and global pointwise estimates on such domains are studied in the companion work
[DLM09] using somewhat different techniques that largely avoid direct engagement
with technicalities surround corner singularities (see Remark 4.2 below). It also
is important to emphasize the generality of our assumptions concerning the grids
used in both space and time discretizations here. In the context of fully discrete
problems, we essentially only assume uniform shape regularity of the simplicial
grids used at each time step as well as a weak compatibility assumption between
grids. (Curved boundary elements must satisfy approximability conditions fulfilled
by shape-regular simplicial elements; we give a brief discussion of procedures for
ensuring that approximation theory results hold on curved domains below.) Thus
highly graded and unstructured grids that change in an arbitrary way from time
step to time step may be employed, though severe mesh changes are penalized in
our estimators. In addition, no restriction whatsoever is placed on the time nodes.
Modulo issues arising from the curved boundary, our results are thus truly a pos-
teriori in that computable estimators rather than assumptions are used to control
time step sizes and changes in the mesh. The paper is organized as follows. In
§2 we state some common preliminary results and definitions. In §3 we state and
prove estimates for semidiscrete finite element approximations, and in §4 we state
and prove analogous results for fully discrete methods. In §5 we present numeri-
cal experiments that illustrate properties of the fully discrete estimators and also
confirm that pollution occurs if the mesh is not refined sufficiently away from the
target set D.
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2. Preliminaries

In this section we provide a number of preliminaries.

2.1. Analytical preliminaries. In order to simplify notation, we first define the
bilinear form

A(u, v) =

∫
Ω

∇u∇v dx+

∫
Ω

uv dx.

We also denote by (u, v) the L2 inner product of u and v over Ω. We shall depress
the dependence of functions upon t when doing so should cause no confusion.

Our analysis relies heavily on properties of the heat kernel for the problem (1.1).
We sum up the necessary results in the following lemma.

Lemma 2.1. There exists a Green’s function G(x, t; y, s) for the problem (1.1).
That is, there exists a kernel G such that for (x0, t0) ∈ Ω× (0, T ],

(2.1) u(x0, t0) =

∫
Ω

G(x0, t0; y, 0)u0(y) dy +

∫ t0

0

∫
Ω

G(x0, t0; y, s)f(y, s) dy ds

is a weak solution of (1.1). In addition, for s < t and j ≥ 0, the spatial derivatives
of G satisfy the pointwise bound

(2.2) |Dj
xG(x, t; y, s)| ≤ C(|x− y|+

√
t− s)−N−je−c |x−y|2

t−s .

Here C depends on T and Ω.

Proof. See [ÈI70]. �

As a consequence of Lemma 2.1, we also have the relationship

v(x0, t0) =

∫
Ω

G(x0, t0; y, 0)v(y, 0) dy

+

∫ t0

0

[(vt, G(x0, t0)) +A(v,G(x0, t0))] dt,

(2.3)

where we use the abbreviation G(x0, t0) = G(x0, t0, ·, ·). Note that (2.3) is valid for
any v possessing sufficient smoothness, whereas (2.1) requires that u solves (1.1).

2.2. Finite element preliminaries. In this subsection we collect a few prelimi-
naries concerning Lagrange finite element spaces defined on simplicial grids. Further
properties of such spaces will be discussed in subsequent sections because some nota-
tion and technicalities differ depending upon whether a single fixed grid is employed
throughout a calculation as in Section 3 (concerning semidiscrete discretizations)
or a time-varying family of spaces is used as in Section 4 (concerning backward
Euler discretizations).

Assume that Th is a simplicial decomposition of Ω that is shape-regular (that
is, all elements have uniformly bounded aspect ratio), and is also face-to-face in
the sense that the intersection of any two simplices must be a complete edge, face,
or vertex. Elements bordering ∂Ω may be curved. Then let Sk be a standard
Lagrange finite element space consisting of the continuous functions that are piece-
wise polynomials of degree k on Th; for curved elements abutting ∂Ω we also allow
parametric finite element basis functions (that is, basis functions that are obtained
by a nonaffine mapping of polynomials from a reference domain). We denote by
hK the diameter of the element K ∈ Th.
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We assume the existence of an interpolant Ih : L1(Ω) → Sk with the following
properties. Given K ∈ Th, let ωK be the patch of elements sharing a vertex with
K. We then require that Ih satisfy for K ∈ Th,

(2.4) ‖Ihu‖L1(K) ≤ C‖u‖L1(ωK)

and

(2.5) ‖Ihu‖W 1
1 (K) ≤ C‖u‖W 1

1 (ωK).

In addition, we require that for 1 ≤ j ≤ k + 1,

(2.6) ‖u− Ihu‖L1(K) ≤ Chj
K |u|W j

1 (ωK)

and

(2.7) ‖∇(u− Ihu)‖L1(K) ≤ Chj−1
K |u|W j

1 (ωK).

On shape-regular simplicial grids having straight sides, the above are standard
or easily-derived properties of, for example, a Scott-Zhang type interpolant that is
modified to be L1-stable (cf. the comments on page 491 of [SZ90]) or an interpolant
of Clément type (cf. [Clé75]).

The construction of appropriate finite element spaces on curved domains is some-
what more complex, and we briefly discuss two options. The first is to employ
parametric finite element spaces along with an appropriately defined interpolant.
Such spaces and a corresponding interpolant Ih of Clément type were constructed
for both two- and three-dimensional domains with smooth boundary in [Ber89].
For this interpolant, (2.4) and (2.5) may be trivially obtained from Theorem 4.1 of
[Ber89] using the triangle inequality. The same theorem contains (2.6) and (2.7),
but with full norms on the right-hand side instead of seminorms. The presence of
full norms in these inequalities would add a slight amount of technical overhead
to our proofs but make no difference in our final results, so we do not consider
this situation explicitly. [Ber89] also reviews techniques of [Len86] (two and three
dimensions) and [Zlá73] and [Sco73] (two dimensions) for constructing appropriate
curved meshes and associated parametric mappings. Once meshes are constructed
using one of these procedures, one must check that the associated parametric map-
pings do not differ too much from affine mappings (cf. (2.2) in [Ber89]). As noted
in Corollary 6.1 of [Ber89], this condition is met if the mesh resolves the boundary
sufficiently. The necessary conditions (which will ensure that (2.4)-(2.7) hold) can
easily be checked automatically in software.

An alternative method for constructing finite element spaces and an appropriate
interpolant Ih are contained in [Dem]. The finite element spaces Sk in the latter
work have strictly piecewise polynomial (not parametric) basis functions. In two
space dimensions, ensuring that (2.4) through (2.7) hold reduces to checking a set
of simple geometric assumptions that can easily be done automatically in software.
This framework has the advantage of allowing for the construction of nested discrete
spaces, which is not possible when parametric spaces are used. However, the results
of [Dem] are for practical purposes largely limited to space dimension two and do
not easily extend from the natural boundary conditions that we consider here to
essential boundary conditions.
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We also note that the mesh construction approach of [Len86] and the two-
dimensional meshing procedure of [Dem] easily lend themselves to adaptive mesh
refinement via bisection. Both employ a standard (straight-sided) simplicial de-

composition T̃0 of a polyhedral approximation Ω0,h to Ω in order to construct a
curved simplicial decomposition T0 of Ω. Refinement can be carried out by bisect-
ing elements in T̃0, projecting newly created nodes on ∂Ω0,h onto ∂Ω in order to

create a new triangulation T̃1 of a polyhedral approximation Ω1,h to Ω, and then
repeating the procedures of [Len86] or [Dem] to obtain a new curved triangulation
T1 of Ω. The sufficient conditions to guarantee that (2.4) through (2.7) hold cited
in the above two paragraphs can then be rechecked on T1. Thus using either [Ber89]
or [Dem] yields an adaptive mesh refinement procedure with checkable conditions
for adaptive boundary resolution. We also refer to [DR98] for a different treatment
of a posteriori control of boundary resolution.

In addition to defining the patch ωK as above, we also let ω′
K be the patch of

elements sharing a vertex with any element in ωK , and let ω′′
K be the patch of

elements sharing a vertex with any element in ω′
K . The shape regularity of Th

implies that the diameters of all elements in ω′′
K are equivalent to the diameter of

K.

3. The semidiscrete case

3.1. Finite element approximation. We assume that Th is a simplicial decom-
position of Ω, that Sk is a Lagrange finite element space of degree k on Th, and that
an interpolant Ih satisfying (2.4) through (2.7) exists, as in §2.2. The semidiscrete
approximation uh ∈ C([0, T ], S) of u then satisfies

(uh,t, vh) +A(uh, vh) = (f, vh), vh ∈ Sk and t ∈ (0, T ],

uh(0) = Phu0.

Here Ph : L2(Ω) → Sk is the L2 projection onto Sk. Below we shall use the fact
that u and uh are Galerkin orthogonal, that is,

(3.1) (ut − uh,t, vh) +A(u− uh, vh) = 0, vh ∈ Sk, 0 < t ≤ T.

3.2. Sharply local a posteriori error estimates for the semidiscrete prob-
lem. Given a fixed point x0 ∈ Ω and time t0 ∈ [0, T ], we define the weight

σx0,t0(K, t) =
hK

hK + dist(x0,K) +
√
t0 − t

,

where K ∈ Th and 0 ≤ t ≤ t0. We shall also sometimes view σ as a function of
(x, t) ∈ Ω× [0, T ] instead of (K, t) ∈ Th × [0, T ], that is,

σx0,t0(x, t) =
hK

hK + dist(x0,K) +
√
t0 − t

, x ∈ K ∈ Th.

For fixed t, σx0,t0(·, t) is thus piecewise constant on the mesh. For K ∈ Th we also
define the L∞-type parabolic residual indicator

η∞,t(K) = h2
K‖(f +Δuh − uh − uh,t)(t)‖L∞(K) + hK‖�∇uh(t)�‖L∞(∂K).
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Here �∇uh� denotes the jump in normal derivative on ∂K \ ∂Ω and the normal
derivative itself on ∂K ∩ ∂Ω.

Theorem 3.1. Let x0 ∈ Ω, 0 < t0 ≤ T , and h = minK∈Th
hK . Assume that ∂Ω

is smooth and that the assumptions of the previous section concerning Th, Sk, and
the interpolant Ih are met. Then

|(u− uh)(x0, t0)| ≤C[‖σx0,t0(·, 0)k+1(u0 − Phu0)‖L∞(Ω)

+ (1 + �h,t0) sup
0<t<t0

max
K∈Th

σx0,t0(K, t)k−1η∞,t(K)].
(3.2)

Here �h,t0 = max(ln t0
h2 , 0), and C depends on T , Ω, and the shape regularity of Th.

Remark 3.2. It is not clear from [ÈI70] precisely how C above depends upon T .
For global pointwise estimates, the time dependence of constants is considered more
carefully in [DLM09].

Proof. Let x0 ∈ K0, and also let Qt0 = Ω× (0, t0). We shall use the abbreviations
G(x, t) = G(x0, t0;x, t) and G(t) = G(·, t). Using (2.3), the Galerkin orthogonal-
ity relationship (3.1), the scaled trace inequality ‖v‖L1(∂T ) ≤ C(h−1

T ‖v‖L1(T ) +
‖∇v‖L1(T )) for T ∈ Th, and standard techniques for proving residual-type bounds
(cf. [Dem06]), we then calculate that

(u−uh)(x0, t0) = (u0 − Phu0, G(0)) +

∫ t0

0

((u− uh)t, G) +A(u− uh, G)

=(u0 − Phu0, G(0)− IhG(0))

+

∫ t0

0

[((u− uh)t, G− IhG) +A(u− uh, G− IhG)] dt

≤‖σk+1
x0,t0(u0 − Phu0)‖L∞(Ω)‖σ−k−1

x0,t0 (G(0)− IhG(0))‖L1(Ω)

+ (‖σ−k+1
x0,t0 h−2(G− IhG)‖L1(Qt0

) + ‖σ−k+1
x0,t0 h−1∇(G− IhG)‖L1(Qt0

))

· sup
0<t<t0

max
K∈Th

σx0,t0(K, t)k−1η∞,t(K).

(3.3)

Thus, we must establish that

‖σ−k−1
x0,t0 (G(0)− IhG(0))‖L1(Ω) ≤C,(3.4)

‖σ−k+1
x0,t0 (h−2|G− IhG|+ h−1|∇(G− IhG)|)‖L1(Qt0

) ≤C(1 + �h,t0).(3.5)

In order to prove (3.4), we first consider the case
√
t0 ≤ h(x0). Employing the

properties (2.4) through (2.7) of Ih, noting that σx0,t0 is equivalent to 1 on ω′
K0

and
is equivalent on any two neighboring elements, and noting that hK ≤ Cdist(K,K0)
for K ⊂ Ω \ ωK0

(cf. [Dem06], Proposition 2.1), we find that



1242 ALAN DEMLOW AND CHARALAMBOS MAKRIDAKIS

‖σ−k−1
x0,t0 (G(0)− IhG(0))‖L1(Ω) ≤C‖G(0)− IhG(0)‖L1(ω′

K0
)

+ ‖σ−k−1
x0,t0 (G(0)− IhG(0))‖L1(Ω\ω′

K0
).

Using the L1 stability of Ih and (2.2), we find that

C‖G(0)− IhG(0)‖L1(ω′
K0

) ≤ C‖G(0)‖L1(Ω) ≤ C.

Using (2.2) and (2.6), noting that h(x) ≤ C|x− x0| for x ∈ Ω \ ωK0
, and recalling

that σ is equivalent on neighboring elements, we next compute that

‖σ−k−1
x0,t0 (G(0)−IhG(0))‖L1(Ω\ω′

K0
)

≤C‖(h+ | · −x0|+
√
t0)

k+1Dk+1G‖L1(Ω\ωK0
)

≤C

∫
Ω

(|x− x0|+
√
t0)

k+1(|x− x0|+
√
t0)

−N−k−1e−
c|x−x0|2

t0 dx

≤C

∫ ∞

0

rN−1

(r + 1)N
e−cr2 dr

≤C.

Here we have transformed the integral above into polar coordinates with r = |x−x0|√
t0

.

If
√
t0 ≥ h(x0), then h(x) + |x − x0| +

√
t0 ≤ C(|x − x0| +

√
t0) for all x ∈ Ω.

Using (2.2) and (2.6), we then compute that

‖σ−k−1
x0,t0 (G(0)−IhG(0))‖L1(Ω)

≤‖(| · −x0|+ h+
√
t0)

k+1h−k−1(G− IhG)‖L1(Ω)

≤‖(| · −x0|+
√
t0)

k+1Dk+1G‖L1(Ω)

≤C‖(| · −x0|+
√
t0)

−Ne−
c|·−x0|2

t0 ‖L1(Ω)

≤C.

Next we prove (3.5). Let K0 ∈ Th be an element containing x0, and define
Q0 = ωK0

× (t0 − h(x0)
2, t0), Q1 = ω′

K0
× (t0 − h(x0)

2, t0), and Q2 = ω′′
K0

×
(t0 − h(x0)

2, t0). Noting that σx0,t0 is equivalent to 1 on Q1 and employing the
interpolation properties (2.4) through (2.7), we find that∫

Qt0

σ−k+1
x0,t0 (h−2|G− IhG|+ h−1|∇(G− IhG)|) dx dt

=

∫
Q1

σ−k+1
x0,t0 (h−2|G− IhG|+ h−1|∇(G− IhG)|) dx dt

+

∫
Qt0

\Q1

σ−k+1
x0,t0 (h−2|G− IhG|+ h−1|∇(G− IhG)|) dx dt

≤Ch(x0)
−1

∫
Q2

|∇G| dx dt

+

∫
Qt0

\Q0

(h+ |x− x0|+
√
t0 − t)−k+1|Dk+1G| dx dt.

(3.6)
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In order to bound the term h(x0)
−1

∫
Q2

|∇G| dx dt, we set r = |x−x0|√
t

and com-

pute

h(x0)
−1

∫
Q2

|∇G| dx dt ≤ h(x0)
−1

∫ t0

t0−h(x0)2

∫
|x−x0|≤Ch(x0)

|∇G| dx dt

≤ Ch(x0)
−1

∫ h(x0)
2

0

∫
|x−x0|≤Ch(x0)

(|x− x0|+
√
t)−N−1e−c

|x−x0|2
t dx dt

≤ Ch(x0)
−1

∫ h(x0)
2

0

1√
t

∫ ∞

0

rN−1

(r + 1)N+1
e−cr2 dr dt

≤ Ch(x0)
−1

√
t
∣∣∣h(x0)

2

0

≤ C.

In order to bound the last term in (3.6), we again use (2.2) and the fact that
h ≤ C|x− x0| for (x, t) ∈ Qt0 \Q0 to find∫

Qt0
\Q0

(h+|x− x0|+
√
t0 − t)−k−1|Dk+1G| dx dt

≤C

∫
Qt0

\Q0

(|x− x0|+
√
t0 − t)−N−2e−c|x−x0|2/(t0−t) dx dt

≤C

∫ t0

t0−h(x0)2

∫
|x−x0|≥ch(x0)

(|x− x0|+
√
t0 − t)−N−2 dx dt

+ C

∫ t0−h(x0)
2

0

∫
|x−x0|≥0

(|x− x0|+
√
t0 − t)−N−2 dx dt,

(3.7)

where the last integral is not present if t0 ≤ h(x0)
2. Using the transformation

r = |x−x0|√
t0−t

, we calculate that

∫ t0

t0−h(x0)2

∫
|x−x0|≥ch(x0)

(|x− x0|+
√
t0 − t)−N−2 dx dt

≤
∫ h(x0)

2

0

1

t

∫ ∞

h(x0)/
√
t

r−3 dr dt

≤
∫ h(x0)

2

0

1

t

t

h(x0)2
dt

≤C.

We finally compute that if t(0) ≥ h(x0)
2, then

C

∫ t0−h(x0)
2

0

∫
|x−x0|≥0

(|x− x0|+
√
t0 − t)−N−2 dx dt ≤C

∫ t0

h(x0)2

1

t
dt

≤C ln
t0

h(x0)2
.

(3.8)

Collecting the preceding estimates into (3.3) completes the proof of Theorem 3.1.
�



1244 ALAN DEMLOW AND CHARALAMBOS MAKRIDAKIS

3.3. Sharply local estimates for arbitrary subsets. Practically speaking, it is
sometimes of interest to bound the maximum error over some arbitrary subset D
of Ω × (0, T ] and not just at a single point. This can be trivially accomplished by
taking the maximum of (3.2) over D.

Corollary 3.3. Let D ⊂ Ω× (0, T ], and let

σD(x, t) = sup
(x0,t0)∈D

σx0,t0(x, t).

Also, let tD = sup(x,t)∈D t. Then under the conditions of Theorem 3.1,

‖u− uh‖L∞(D) ≤C[‖σD(·, 0)k+1(u0 − Phu0)‖L∞(Ω)

+ (1 + �h,tD ) sup
0<t<tD

max
K∈Th

σD(K, t)k−1η∞,t(K)].
(3.9)

Here �h,tD = max(ln tD
h2 , 0), and C depends on T , Ω, and the shape regularity of Th.

Remark 3.4. Given a set D, let the parabolic distance ρD(x, t) to D be given
by ρD(x, t) = min(x0,t0)∈D |x − x0| +

√
t− t0, and for K ⊂ Ω, let ρD(K, t) =

minx∈K ρ(x, t). Then

(3.10) σD(K, t) =
hK

hK + ρD(K, t)
.

If D has simple geometry, it is thus not difficult to compute σD.

Remark 3.5. We now comment on the effects of the weight σD in (3.9). First, if we
assume that inf(x0,t0)∈D t0 = t̃ > 0, then we have from the definition of ρD above

that σD(K, 0) ≤ hK√
t̃
. Thus, if u0 ∈ Ck+1(Ω) and the mesh is quasi-uniform with

diameter h, then the initial data term satisfies

(3.11) ‖σD(·, 0)k+1(u0 − Phu0)‖L∞(Ω) ≤ Ch2k+2t̃−(k+1)/2.

That is, the effects of the error in approximating the initial data upon the finite
element error at a later time are of higher order even when k = 1.

Next we recall the heuristic that multiplying a residual error indicator by a
factor of hK has the effect of lowering the derivative index of the Sobolev norm
being used to measure the error by one. For example, one obtains an L2-type
residual error indicator by multiplying the H1-type residual indicator by hK . Note
that σD(K, t)k−1η∞,t(K) ≤ 1

ρD(K,t)k−1h
k−1
T η∞,t(K). Using the heuristic above,

hk−1
T η∞,t(K) is a W−k+1

∞ -type residual error indicator. Thus the estimate (3.9),
roughly speaking, measures the pollution error in regions removed from D in a
W−k+1

∞ norm, which is weaker than the L∞ norm when k ≥ 2 (that is, when
quadratic and higher-order elements are used). Note also that in contrast to local
estimates of the form (1.2), the weight σD gives a smooth transition from regions in
which L∞-type residual indicators η∞,t(K) measure elementwise error contributions

to regions in which W−k+1
∞ residual indicators h−k+1

K η∞,t(K) measure elementwise
error contributions.

4. The fully discrete case

4.1. Fully discrete finite element approximation. Let 0 = t0 < t1 < ... <
tJ = T , In = (tn−1, tn), and τn = |In|. For each 0 ≤ n ≤ J , let Tn be a shape-
regular simplicial decomposition of Ω as in §2.2. Also, let Sn be a space of continu-
ous piecewise polynomials of degree k, k ≥ 1, on Tn for each 0 ≤ n ≤ J . We assume
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that the meshes Tn are uniformly shape-regular in the sense that the aspect ratios
of all elements are uniformly bounded, and additionally we assume the existence
of interpolants Inh : L1(Ω) → Sn that satisfy the approximation properties (2.4)
through (2.7) with uniform constants on curved boundary elements as well as inte-
rior elements. Thus our estimates allow for spatial meshes that are highly graded
and unstructured. They may also change in an arbitrary fashion from time step to
time step subject to a certain compatibility constraint described in the next para-
graph, though the estimators that we develop may penalize severe mesh changes.
In addition, no relationship is assumed either between time steps or between the
size of time steps and the mesh.

Next we state a compatibility assumption on the meshes {Tn}n=0,...,J ; cf. Ap-
pendix A of [LM06] for more details. Two simplicial decompositions Ti and Tj of Ω
are said to be compatible if they are derived from the same macro triangulation M
by an admissible refinement procedure which preserves shape regularity and assures
that for any elements K ∈ Ti and K ′ ∈ Tj , either K ∩K ′ = ∅, K ⊂ K ′, or K ′ ⊂ K.
The bisection-based refinement procedure used for example in the ALBERTA finite
element toolbox (cf. [SS05]) is known to be admissible.

There is a natural partial ordering of compatible triangulations, with Ti ≤ Tj
if Tj is a refinement of Ti. The finest common coarsening Ti ∧ Tj of Ti and Tj is

defined in a natural way, and ĥij = max(hi, hj), where ĥij is the local mesh size
function for Ti ∧ Tj . Finally, let Si and Sj be finite element spaces of degree k on

Ti and Tj . Ŝij = Si∩Sj is then the corresponding space of degree k on Ti∧Tj . We

also let Îijh : L1(Ω) → Ŝij be an interpolant satisfying (2.4) through (2.7). We shall
generally be concerned with the finest common coarsenings of meshes Tn−1 and Tn.
Thus we write T̂n = Tn−1 ∧ Tn, ĥn = ĥn−1,n, Ŝ

n = Ŝn−1,n, and Înh = În−1,n
h .

Letting vn(x) = v(tn, x) for v ∈ C0(Ω × [0, T ]), we discretize the weak form
of (1.1) using the finite element spaces Sn for the spatial discretization and the
backward Euler method for the time discretization as follows. Let u0

h ∈ S0 be the
L2 projection of u0 onto S0. un

h ∈ Sn, 1 ≤ n ≤ J , is then defined via the recursion

(4.1)

(
un
h − un−1

h

τn
, φn

)
+A(un

h, φn) = (fn, φn) for all φn ∈ Sn.

In order to obtain a time-continuous approximation to u, we first define the “hat”
functions φn(t) to be the functions that are continuous, piecewise linear with respect
to the time mesh, and which satisfy φn(tn) = 1, φn(ti) = 0 for i 	= n. Then we
interpolate the functions un

h linearly between tn−1 and tn:

(4.2) uh(x, t) =

J∑
n=0

φn(t)u
n
h(x).

Then let un
h,t =

d
dtuh|In , that is,

un
h,t(x) =

un
h(x)− un−1

h (x)

τn
, n ≥ 1.

Next we define a set of discrete differential operators An
h. For u ∈ H1(Ω), let

An
hu ∈ Sn be given by

(4.3) A(u, vh) = (An
hu, vh), vh ∈ Sn.
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Combining (4.1) and (4.3), we see that

(4.4) fn − un
h,t = [An

hu
n
h] + [fn − Pn

h f
n] + [

un−1
h − Pn

h u
n−1
h

τn
],

where Pn
h is the L2 projection onto Sn. Rewriting (4.4) yields

(4.5) un
h = (I + τnA

n
h)

−1(Pn
h u

n−1
h + τnP

n
h f

n).

Thus un
h → Pn

h u
n−1
h with optimal order τn as τn → 0. We do not expect that

un
h → un−1

h when Tn is coarser than Tn−1.

4.2. Elliptic reconstruction. It will be convenient to employ the elliptic recon-
struction defined for semidiscrete problems in [MN03] and for fully discrete schemes
in [LM06]. Analogous to our definition of uh, we first define the reconstruction at
time nodes and then interpolate linearly between them. For 0 ≤ n ≤ J , let Rnun

h

solve

(4.6) A(Rnun
h, v) = (gn, v), v ∈ H1(Ω),

where

(4.7) gn =

{
A0

hu
0
h + f0 − P 0

hf
0, n = 0,

fn − un
h,t, n ≥ 1.

Thus Rnun
h solves a continuous elliptic problem with homogeneous natural bound-

ary conditions. Note also from (4.4) that the definitions of g0 and gn, n ≥ 1, differ
only in that g0 does not include a term of the form (un−1

h − Pn
h u

n−1
h )/τn, which

is not defined for n = 0 and which is in addition L2-orthogonal to Sn. We finally
define the time-continuous reconstruction

(4.8) Ruh(x, t) =

J∑
n=0

φn(t)Rnun
h(x).

Error relationships between Rnun
h and un

h and between Ruh and u will play
a fundamental role in our analysis. First note that (4.3), (4.4), (4.6), and (4.7)
together yield the Galerkin orthogonality relationship

(4.9) A(un
h −Rnun

h, vh) = 0, vh ∈ Sn, 0 ≤ n ≤ J.

Let t ∈ In and v ∈ H1(Ω). Using the fact that φn−1(t)+φn(t) = 1 along with (4.6)
through (4.9), we compute

((u−Ruh)t, v) +A(u−Ruh, v)

=(f, v)− ((Ruh)t, v)− φn−1(t)A(Rn−1un−1
h , v)− φn(t)A(Rnun

h, v)

=(f, v)− ((Ruh)t, v)− φn−1(t)(gn − gn−1, v)

− (φn(t) + φn−1(t))A(Rnun
h, v)

=(f, v)− ((Ruh)t, v)− φn−1(t)(gn − gn−1, v)− (fn − un
h,t, v)

=((uh −Ruh)t, v) + (f − fn, v) + φn−1(t)(g
n − gn−1, v).

(4.10)

Remark 4.1. Our definition of the elliptic reconstruction differs somewhat from
that used in [LM06], where Rnun

h is instead taken to solve A(Rnun
h, v) = (An

hu
n
h, v),

v ∈ H1(Ω). Comparing (4.4) and (4.7), we see that the right-hand-side data used
in our definition and that in [LM06] differ by [fn −Pn

h f
n] + [(un−1

h − Pn
h u

n−1
h )/τn]

except when n = 0, where the two definitions differ only by f0 − P 0
hf0. This
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difference is orthogonal to Sn, so both definitions contain the same “principal”
part.

Remark 4.2. The elliptic reconstruction is an efficient bookkeeping device for han-
dling the time discretization error in our development, but not absolutely essential
to our proofs. Thus we chose not to employ the reconstruction in the previous
subsection concerning semidiscrete approximations. This situation stands in con-
trast to that in the companion work [DLM09], where the elliptic reconstruction
plays an essential role. In the latter work, a posteriori error estimates are proved
in L∞(Ω × [0, T ]), and local error behavior is not considered. In particular, it is
shown in [DLM09] that using the elliptic reconstruction technique, one can combine
stability and strong stability of the continuous parabolic solution operator with a
posteriori estimates in L∞ for the corresponding elliptic finite element method in
order to obtain a posteriori estimates in L∞ for parabolic finite element methods.
In other words, [DLM09] employs properties of the continuous parabolic problem
and properties of the discrete elliptic problem in order to obtain L∞ estimates,
whereas here we directly employ properties of both the discrete and continuous
parabolic problems but make no use of existing elliptic estimates.

4.3. A posteriori estimate for the fully discrete problem. In this subsection
we develop an a posteriori estimator for the fully discrete case. We begin by adapt-
ing our definition of the weight σ and error indicator η∞,t to the time-discrete case.
Let hn(x) be the local mesh size on Tn and let hn,K be the diameter of K ∈ Tn.
Also let (x̃, t̃) be a fixed point lying in Ω× (0, T ]. We then define the weight

σn,x̃,t̃(K, t) =
hn,K

hn,K + dist(K, x̃) +
√
t̃− t

,

where K ∈ Tn and 0 ≤ t ≤ t̃. We shall also require a similar weight defined with
respect to a finest common coarsening T̂n and thus define for K̂ ∈ T̂n,

σ̂n,x̃,t̃(K̂, t) =
ĥn,K̂

ĥn,K̂ + dist(K̂, x̃) +
√

t̃− t
.

We occasionally write σn = σn,x̃,t̃ when the dependence is clear from the context.
Next we define several types of error indicator. We first consider a spatial or

elliptic indicator. For K ∈ Tn we define the L∞-type residual indicator

η∞,n(K) = h2
n,K‖gn +Δun

h − un
h‖L∞(K) + hn,K‖�∇un

h�‖L∞(∂K).

Next we define time indicators

ηtime,data,n = ‖f − fn‖L∞[L∞(Ω);In]

and

ηtime,n;(x̃,t̃) = ‖un
h − Pn

h u
n−1
h ‖L∞(Ω)

+ max
K∈Tn

σn(K, tn)
sh2

n,K‖(I − Pn
h )(f

n − fn−1) +An
h(u

n
h − Pn

h u
n−1
h )‖L∞(K).

(4.11)

Thirdly, for K ∈ Tn, 1 ≤ i ≤ M , we define coarsening indicators

ηcoarse,n(K)

=h2
n,K(‖u

n−1
h − Pn

h u
n−1
h

τn
‖L∞(K) + ‖An

h(P
n
h u

n−1
h − un−1

h )‖L∞(K))

+ hn,K‖∇(Pn
h u

n−1
h − un−1

h )‖L∞(K) + ‖Pn
h u

n−1
h − un−1

h ‖L∞(K).



1248 ALAN DEMLOW AND CHARALAMBOS MAKRIDAKIS

Finally, for K̂ ∈ T̂n and 1 ≤ i ≤ M we define mesh change indicators

(4.12) ηmesh,n(K̂) = ĥ2
n,K̂

‖(An
h −An−1

h )un−1
h − (Pn

h − Pn−1
h )fn−1‖L∞(K̂).

We briefly note that the spatial and the two time indicators η∞,n and ηtime,data,n

and ηtime,n are of optimal order in space and time, respectively. The coarsening
and mesh change indicators ηcoarse,n and ηmesh,n also scale optimally in space. The
coarsening indicator ηcoarse,n disappears unless the mesh is coarsened in proceeding
from Tn−1 to Tn, and the mesh change indicator ηmesh,n also disappears unless the
mesh changes (is coarsened, refined, or both) in proceeding from Tn−1 to Tn. The
properties of these estimators are discussed more thoroughly in remarks below.

Theorem 4.3. Let 0 < t̃ ≤ T , let M be such that 1 ≤ M ≤ J and tM−1 <

t̃ ≤ tM , and let x̃ ∈ Ω. Also, let hM = min0≤n≤M minK∈Tn
h
hK and ĥM =

min0≤n≤M minK̂∈T̂n
h
ĥK . Assume that ∂Ω is smooth and that the assumptions of

§4.1 concerning the meshes Tn, the finite element spaces Sn, and the interpolants
Inh are met. Then for 0 ≤ s ≤ k − 1,

|(u− uh)(x̃, t̃)| ≤ C[‖σ0,x̃,t̃(·, 0)k+1(u0 − Phu0)‖L∞(Ω)

+ (1 + �hM ,t̃ + �τ,t̃) max
0≤n≤M

max
K∈Tn

σn,x̃,t̃(K, tn+1)
sη∞,n(K)

+ max
1≤n≤M

[t̃ · ηtime,data,n + (1 + �hM ,t̃ + �τ,t̃)ηtime,n;(x̃,t̃)]

+ (1 + �hM ,t̃ + �τ,t̃) max
1≤n≤M

max
K∈Tn

σn,x̃,t̃(K, tn+1)
sηcoarse,n(K)

+ (1 + �̂ĥM ,t̃ + �τ,t̃) max
1≤n≤M

max
K̂∈T̂n

σ̂n,x̃,t̃(K̂, tn)
sηmesh,n(K̂)],

(4.13)

where �hM ,t̃ = max(0, ln(t̃/h2
M )), �̂ĥM ,t̃ = max(0, ln(t̃/ĥ

2

M )), �τ,t̃ = 0 if M ≤ 2

and �τ,t̃ = ln t̃
τM−1

otherwise, and we use the convention tM = tM+1 = t̃ when

evaluating σn,x̃,t̃ and σ̂n,x̃,t̃. If in addition 0 ≤ s ≤ 2, then

|(u− uh)(x̃, t̃)| ≤ C[‖σ0,x̃,t̃(·, 0)k+1(u0 − Phu0)‖L∞(Ω)

+ (1 + �hM ,t̃ + �τ,t̃) max
0≤n≤M

max
K∈Tn

σn,x̃,t̃(K, tn)
sη∞,n(K)

+ max
1≤n≤M

[t̃ · ηtime,data,n + (1 + �hM ,t̃ + �τ,t̃)ηtime,n;(x̃,t̃)]

+ (1 + �hM ,t̃ + �τ,t̃) max
1≤n≤M

max
K∈Tn

σn,x̃,t̃(K, tn)
sηcoarse,n(K)

+ (1 + �̂ĥM ,t̃ + �τ,t̃) max
1≤n≤M

max
K̂∈T̂n

σ̂n,x̃,t̃(K̂, tn)
sηmesh,n(K̂).

(4.14)

In the above estimates, C depends on Ω, T , the degree k of the finite element spaces,
and the shape regularity of the elements in the meshes Tn, 0 ≤ n ≤ J .

Before proving Theorem 4.3 we make a series of remarks concerning its proper-
ties.

Remark 4.4. The only difference between (4.13) and (4.14) is that the weight σn,x̃,t̃

on the second and fourth lines of the estimate is evaluated at tn+1 in (4.13), but at tn
in (4.14). The latter estimate is more convenient in practice because the estimator
maxK∈Tn

σn,x̃,t̃(K, tn)
sη∞,n(K) can be computed without knowing what the next

node tn+1 is, while computing maxK∈Tn
σn,x̃,t̃(K, tn+1)

sη∞,n(K) requires knowing



POINTWISE A POSTERIORI ESTIMATES FOR PARABOLIC PROBLEMS 1249

tn+1. We have only been able to establish (4.14) for s ≤ 2. This restriction does
allow for the best possible weighting in the piecewise quadratic and cubic cases.

Remark 4.5. The right-hand sides of (4.13) and (4.14) split easily into initial data
errors (the first line of each estimate), spatial estimators (second line), time estima-
tor (third line), and coarsening and mesh change estimators (fourth and fifth lines,
respectively). The main two terms in the time indicator are ηtime,data,n and the term

‖un − Pn
h u

n−1
h ‖L∞(Ω) from the time indicator ηtime,n;(x̃,t̃) in (4.11). Recalling the

comment following (4.5), we see that these terms are both of optimal order in time,
but their influence upon the error at the target point (x̃, t̃) does not decay as one
moves away from (x̃, t̃) in either time or space. However, the influence of the initial
data, spatial, coarsening, and mesh change error estimators upon the error at (x̃, t̃)
does indeed decay as one moves away in time and space so long as s > 0 (which is
always possible if k ≥ 2, i.e., quadratic or higher-order elements are used). The last
term maxK∈Tn

σn,x̃,T̃ (K, tn)
s(h2

n,K‖(I−Pn
h )(f

n−fn−1)+An
h(u

n
h−Pn

h u
n−1
h )‖)L∞(K)

in the time estimator ηtime,n;(x̃,t̃) is of mixed character. h2An
h(u

n
h −Pn

h u
n−1
h ) scales

heuristically as un
h − Pn−1

h un−1
h , though one cannot use inverse estimates to prove

this because of the global nature of An
h. Thus it is of optimal order in time, but also

has a local character when s > 0 due to the weight σ. Taken together, these obser-
vations suggest that if u is smooth, then in order to ensure a small error at some
given time t̃ it is necessary to take essentially uniform (small) time steps through-
out the calculation, but spatial meshes at time nodes tn < t̃ may be substantially
coarser than those that will be required at the final time.

Remark 4.6. We next compare the estimate (4.13) for fully discrete approximations
with the estimate (3.2) for semidiscrete approximations. The first terms (the initial
data errors) are essentially the same in both estimates. The second terms (the
spatial errors) differ mainly in that the time accumulation in (3.2) is taken as
supremum over a continuous time interval, whereas in (4.13) the time accumulation
occurs as a maximum over the discrete time intervals. In addition, mesh changes
and the time discretization are accounted for in (4.13) but not in (3.2).

Remark 4.7. Next we further discuss the time indicators. In [DLM09], a single time

estimator
∑M

n=1

∫
In

‖f − fn + φn−1(g
n − gn−1)‖L∞(Ω) dt is employed. Note

gn − gn−1 =[An
hu

n
h −An−1

h un−1
h ] + [(fn − Pn

h f
n)− (fn−1 − Pn−1

h fn−1)]

+ [
un−1
h − Pn

h u
n−1
h

τn
− un−2

h − Pn−1
h un−2

h

τn−1
]

(4.15)

for n ≥ 2 (the expression for n = 1 excludes the last half of the last term above).
We instead split gn−gn−1 in order to separate time discretization and mesh change
effects and then manipulate the resulting time terms so that the remaining“second-

derivative” factors involving An
h are multiplied by h2.

∑M
n=1

∫
In

‖f−fn+φn−1(g
n−

gn−1)‖L∞(Ω) dt is of optimal order in time when no mesh change is allowed, but
the estimators we present here are necessary to properly account for mesh change
effects and have correct spatial scaling as well.

One disadvantage of the time estimator presented in Theorem 4.3 is that it
appears requires the computation of linear operators that are spatially globally
dependent (An

h and Pn
h ) at each time step. Note, however, from (4.15) that if

Tn = Tn−1, (I − Pn
h )(f

n − fn−1) +An
h(u

n
h − Pn

h u
n−1
h ) = gn − gn−1 = (fn − un

h,t)−
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(fn−1 − un−1
h,t ). Thus we must only compute An

h and Pn
h when the mesh changes

and can otherwise avoid this added overhead.

Remark 4.8. It is common in practice to modify the backward Euler scheme in
(4.1) by replacing Pn

h u
n−1
h with Ln

hu
n−1
h , where Ln

h is the standard nodal Lagrange
interpolant. This is, for example, the case in the ALBERTA adaptive library
(cf. [SS05]). Note that this definition does not coincide with ours when mesh
coarsening is allowed, and does not admit all of the spatial orthogonalities that we
employ to prove that mesh change effects, and in particular coarsening effects, have
a local character.

Remark 4.9. We finally consider the possibility of using the estimators in Theorem
4.3 in order to carry out fully (space and time) adaptive computations. In (4.14), it
is easy to see that the initial data estimator (first line) can be easily reduced to any
given error tolerance by adapting the initial mesh. In addition, one expects that
the space estimator (second line) and time estimator (third line) can be controlled
at each time step tn by adjusting the mesh Tn and the time step τn. It is clear that
the coarsening estimator (fourth line) may also be reduced or eliminated at a given
time step by refining Tn. In practice, a limited number of spatial coarsening steps
are typically carried out at each time step, and one might thus adapt the viewpoint
that the coarsening estimator is an “on-off switch” for coarsening: Coarsening is
allowed if it is small enough, but not if it isn’t. Note that disallowing coarsening is
unlikely to have a negative effect on the other error terms.

Control of the final mesh-change term (fifth line) is somewhat more complex. The
term (Pn

h −Pn−1
h )fn−1 is a data approximation term, and may be controlled at each

time step by splitting it as (Pn
h −I)fn−1+(I−Pn−1

h )fn−1 and controlling coarsening.

The difficulty lies in the term (An
h − An−1

h )un−1
h . Assume momentarily that Tn−1

is quasi-uniform of size hn−1 and that Tn is obtained by refining Tn−1 uniformly so
that Tn is quasi-uniform of size hn. If ‖un−1

h − un−1‖L∞(Ω) ≤ Chk+1
n−1 and un−1 is

smooth, it is not hard to show that ‖(An
h −An−1

h )un−1
h ‖L∞(Ω) ≤ C(1 + hn−1

hn
)hk−1

n−1.

Scaling by ĥ2
n = h2

n−1 as in (4.12) and assuming that (An
h −An−1

h )un−1
h dominates

the indicator ηmesh,n yields ηmesh,n ≤ C(1 + hn−1

hn
)hk+1

n−1. That is, we expect that

ηmesh,n → 0 as ĥn → 0 if the refinement depth between Tn−1 and Tn is bounded,
but ηmesh,n may in fact blow up if too many refinements are carried out in passing
from Tn−1 to Tn relative to the mesh size. Simple numerical experiments confirm
this behavior, which is expected since An

h → (−Δ + I) as hn → 0, at least for

k ≥ 1, and un−1
h is not in W 2

∞. Adaptive codes typically refine at most a few
times between successive mesh levels, so severe blowup is not generally expected
in practical situations. Thus practically speaking, ηmesh,n is of optimal order (and
also multiplied by the localizing weight σ̂ in the final a posteriori estimate), but
adaptive control of the mesh change estimator remains a nontrivial task.

In [Dup82] Dupont gave an example for which

max
n

sup
Ω

hn → 0, max
n

sup
Ω

ĥn 	→ 0,

and for which the discrete solution does not converge to the exact solution. Thus it
is not unexpected that one must control mesh change as well as mesh size in order
to obtain a rigorous a posteriori upper bound. In [LM06], the elliptic reconstruction
is used to obtain optimal-order estimators in various norms (L∞(L2), L∞(H1), and
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H1(L2)) for backward Euler schemes. The estimators presented there also involve

the maximum mesh size ĥn at each time step in an error term that measures mesh
change, though in a slightly different fashion than here. Automatically controlling
the effects of mesh change in fully adaptive codes employing backward Euler time-
stepping schemes is thus not an entirely solved problem, especially in the context
of nonstandard norms such as we employ here.

4.4. Proof of Theorem 4.3.

Proof. Let x̃ ∈ Ω, let G(y, t) = G(x̃, t̃; y, t), and let G(t) = G(·, t). Using (2.3), we
calculate

(4.16) (u− uh)(x̃, t̃) = (u0 − P 0
hu0, G(0)) +

∫ t̃

0

[((u− uh)t, G) + A(u− uh, G)] dt.

The term (u0−P 0
hu0, G(0)) above may be handled exactly as in (3.3) and following,

so we must only concentrate on the time integral term in (4.16).
Employing (4.10) while noting that G(t) ∈ H1(Ω), we find that

∫ t̃

0

[((u− uh)t, G) +A(u− uh, G)] dt

=

∫ t̃

0

[((u−Ruh)t, G) +A(u−Ruh, G)

+ ((Ruh − uh)t, G) +A(Ruh − uh, G)] dt

=

∫ t̃

0

A(Ruh − uh, G) dt+
M∑
n=1

∫
In

[(f − fn + φn−1(g
n − gn−1), G)] dt.

(4.17)

In order to bound the term
∫ t̃

0
A(Ruh − uh, G) dt from (4.17), we recall the

definitions (4.2) and (4.8) and calculate

(4.18)

∫ t̃

0

A(Ruh − uh, G) =

M∑
n=0

∫ tn+1

tn−1

φnA(Rnun
h − un

h, G) dt.

In what follows we use the convention tn = 0 for n < 0 and tM = tM+1 = t̃.
Let Inh : L1(Ω) → Sn satisfy (2.4) through (2.7). Employing (4.9) and standard
techniques for proving residual-type estimates, we find that for 0 ≤ n ≤ M ,

M∑
n=0

∫ tn+1

tn−1

φnA(Rnun
h − un

h, G) dt

=

M∑
n=0

∫ tn+1

tn−1

φnA(Rnun
h − un

h, G− InhG) dt

≤C max
0≤n≤M

max
tn−1≤t≤tn+1

max
K∈Tn

φn(t)σ
s
n,x̃,t̃(K, t)η∞,n(K)

·
M∑
n=0

∫ tn+1

tn−1

∫
Ω

σ−s
n,x̃,t̃

(h−2
n |G− InhG|+ h−1

n |∇(G− InhG)|) dx dt.

(4.19)
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Next we bound each term in the last sum of (4.19). If t̃− tn+1 < hn(x̃)
2, we let

K0 ∈ Tn be an element containing x̃. Also, we let t̃n = t̃−hn(x̃)
2 if t̃−tn−1 > hn(x̃)

2

and t̃n = tn−1 otherwise. Finally, let Q0 = ωK0
× (t̃n, tn+1), Q1 = ω′

K0
× (t̃n, tn+1),

and Q2 = ω′′
K0

× (t̃n, tn+1) if t̃− tn+1 < hn(x̃)
2 and Q0 = Q1 = Q2 = ∅ otherwise.

Noting that σn,x̃,t̃ is equivalent to 1 on Q2 and recalling the fact that s ≤ k− 1, we
use the properties of Inh to compute

∫ tn+1

tn−1

∫
Ω

σ−s
n,x̃,t̃

(h−2
n |G− InhG|+ h−1

n |∇(G− InhG)|) dx dt

≤C

∫
Q1

(h−2
n |G− InhG|+ h−1

n |∇(G− InhG)|) dx dt

+

∫
Ω×(tn−1,tn+1)\Q1

σ−k+1
n,x̃,t̃

(h−2
n |G− InhG|+ h−1

n |∇(G− InhG)|) dx dt

≤Chn(x̃)
−1

∫
Q2

|∇G| dx dt

+

∫
Ω×(tn−1,tn+1)\Q0

(|x− x̃|+
√
t̃− t)k−1|Dk+1G| dx dt.

(4.20)

Using (2.2), noting that hn(x̃)
−1 ≤ 1√

t̃−t
for t ∈ [t̃n, tn+1], and using the transfor-

mation r = |x−x̃|√
t̃−t

, we next find that

Chn(x̃)
−1

∫
Q2

|∇G| dx dt

≤Chn(x̃)
−1

∫ tn+1

t̃n

∫
|x−x̃|≤Chn(x̃)

(|x− x̃|+
√
t̃− t)−N−1 dx dt

≤Chn(x̃)
−1

∫ tn+1

t̃n

1√
t̃− t

∫ ∞

0

rN−1

(r + 1)N+1
dr dt

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Chn(x̃)

−1

∫ t̃

t̃−hn(x̃)2

1√
t̃− t

dt, n ≥ M − 2,

C

∫ tn+1

t̃n

1

t̃− t
dt, n < M − 2.

Recalling that tn−1 ≤ t̃n, we thus have

(4.21) Chn(x̃)
−1

∫
Q2

|∇G| dx dt ≤

⎧⎪⎨
⎪⎩
C, n ≥ M − 2,

C

∫ tn+1

tn−1

1

t̃− t
dt, n < M − 2.
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Inserting (4.21) into (4.20), defining Qmin = BhM
(x̃)× [t̃− h2

M , t̃), recalling the
definition of Q0, and computing as in (3.7) through (3.8), we find that

M∑
n=0

∫ tn+1

tn−1

∫
Ω

σ−s
n,x̃,t̃

(h−2
n |G− InhG|+ h−1

n |∇(G− InhG)|) dx dt

≤C(1 +

∫
Qt̃\Qmin

(|x− x̃|+
√
t̃− t)k−1|Dk+1G| dx dt

+

M−3∑
n=0

∫ tn+1

tn−1

1

t̃− t
dt)

≤C(1 + �hM ,t̃ +

∫ tM−2

0

1

t̃− t
dt)

≤C(1 + �hM ,t̃ + ln
t̃

t̃− tM−2

)

≤C(1 + �hM ,t̃ + �τ,t̃).

(4.22)

We now proceed to bound the term
∑M

n=1

∫
In
[(f − fn + φn−1(g

n − gn−1), G)] dt

from (4.17). Employing (4.15), we first expand this term as follows:

M∑
n=1

∫
In

[(f − fn + φn−1(g
n − gn−1), G)] dt = [

M∑
n=1

∫
In

(f − fn, G)]

+ [
M∑
n=1

∫
In

φn−1((I − Pn
h )(f

n − fn−1) +An
h(u

n
h − Pn

h u
n−1
h ), G) dt]

+ [

M∑
n=1

∫
In

φn−1(A
n
h(P

n
h u

n−1
h − un−1

h )

+
un−1
h − Pn

h u
n−1
h

τn
− un−2

h − Pn−1
h un−2

h

τn−1
, G) dt]

+ [
M∑
n=1

∫
In

φn−1((A
n
h −An−1

h )un−1
h − (Pn

h − Pn−1
h )fn−1, G) dt]

≡I + II + III + IV.

(4.23)

To bound I, we note from (2.2) that ‖G‖L1[L1(Ω);(0,t̃)] ≤ Ct̃. Thus

I ≤Ct̃ max
1≤n≤J

‖f − fn‖L∞[L∞(Ω);In].

In order to bound term II from (4.23), we first use the definition of An
h and

integration by parts to compute

((I − Pn
h )(f

n − fn−1) +An
h(u

n
h − Pn

h u
n−1
h ), G)

=((I − Pn
h )(f

n − fn−1) +An
h(u

n
h − Pn

h u
n−1
h ), G− InhG)

+A(un
h − Pn

h u
n−1
h , InhG)

=((I − Pn
h )(f

n − fn−1) +An
h(u

n
h − Pn

h u
n−1
h ), G− InhG)

+A(un
h − Pn

h u
n−1
h , InhG−G) +A(un

h − Pn
h u

n−1
h , G).

(4.24)
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Computing as in (4.22) and then employing the inverse inequality hn,K‖∇(un
h −

Pn
h u

n−1
h )‖L∞(K) ≤ ‖un

h − Pn
h u

n−1
h ‖L∞(K) while recalling that |σn,x̃,t̃| ≤ 1, we next

find that

M∑
n=1

∫
In

φn−1[((I − Pn
h )(f

n − fn−1) +An
h(u

n
h − Pn

h u
n−1
h ), G− InhG)

+A(un
h − Pn

h u
n−1
h , InhG−G)] dt

≤
M∑
n=1

(

∫
Ω

σn,x̃,t̃(K, t)−s(h−2
n |G− InhG|+ h−1

n |∇(G− InhG)|) dx dt)·

· max
K∈Tn

σs
n,x̃,t̃(h

2
n,K‖(I − Pn

h )(f
n − fn−1) +An

h(u
n
h − Pn

h u
n−1
h )‖L∞(K)

+ hn,K‖∇(un
h − Pn

h u
n−1
h )‖L∞(K))

≤C(1 + �hM ,t̃ + �τ,t̃) max
1≤n≤M

ηtime,n;(x̃,t̃).

(4.25)

We next mimic the definitions given in the paragraph preceding (4.20) as follows. If
t̃−tn ≤ hn(x̃)

2, we let K0 ∈ Tn be an element containing x̃. Also, let t̃n = t̃−hn(x̃)
2

if t̃ − tn−1 > hn(x̃)
2 and t̃ = tn otherwise, and with this definition of t̃n, let Q0,

Q1, and Q2 be precisely as previously defined. Finally, let ψ be a cutoff function
that is piecewise linear on Tn and satisfies ψ ≡ 1 on ω′

K0
and ψ ≡ 0 on Ω \ ω′′

K0

if t ∈ (t̃ − hn(x̃)
2, t̃), and ψ ≡ 0 otherwise. Also note that |∇ψ(x)| ≤ Chn(x̃)

−1

if x ∈ ω′′
K0

\ ω′
K0

and t ∈ (t̃ − hn(x̃)
2, t̃), and ∇ψ(x) = 0 otherwise. Noting

that A(un
h − Pn

h u
n−1
h , G) = (∇(un

h − Pn
h u

n−1
h ),∇G) + (un

h − Pn
h u

n−1
h , G), and then

integrating by parts, we compute

(∇(un
h − Pn

h u
n−1
h ),∇G)

=(∇(un
h − Pn

h u
n−1
h ), ψ∇G) + (∇(un

h − Pn
h u

n−1
h ), (1− ψ)∇G)

≤hn(x0)‖∇(un
h − Pn

h u
n−1
h )‖L∞(supp(ψ))hn(x0)

−1‖∇G‖L1(supp(ψ))

+ ‖un
h − Pn

h u
n−1
h ‖Ω(‖∇ψ∇G‖L1(ω′′

K0
) + ‖(1− ψ)ΔG‖L1(Ω)).

Employing an inverse inequality on the term hn(x0)‖∇(un
h −Pn

h u
n−1
h )‖L∞(supp(ψ)),

recalling (4.21), defining Qmin as in the paragraph preceding (4.22), and computing
as in (3.7) through (3.8), we have

M∑
n=1

∫
In

A(un
h − Pn

h u
n−1
h , G) dt

≤C max
1≤n≤M

‖un
h − Pn

h u
n−1
h ‖L∞(Ω)

· (1 + ‖G+ΔG‖L1([Ω×(0,t̃)]\Qmin)
+

∫ t̃−τM−1

0

1

t̃− t
dt)

≤C(1 + �hM ,t̃ + �τ,t̃) max
1≤n≤M

‖un
h − Pn

h u
n−1
h ‖L∞(Ω).

(4.26)

Inserting (4.26) and (4.25) into (4.24) completes the bound of term II.
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Our arguments for bounding term III from (4.23) are similar to those for term
II. Recalling the definition (4.3) of An

h, we first compute

(An
h(P

n
h u

n−1
h − un−1

h ), G) = (An
h(P

n
h u

n−1
h − un−1

h ), G− InhG)

+A(Pn
h u

n−1
h − un−1

h , InhG−G) +A(Pn
h u

n−1
h − un−1

h , G).

=(An
h(P

n
h u

n−1
h − un−1

h ), G− InhG) +A(Pn
h u

n−1
h − un−1

h , InhG−G)

+ (Pn
h u

n−1
h − un−1

h , (−ΔG+G)− Inh (−ΔG+G)).

(4.27)

Similarly,

(4.28) (
un−1
h − Pn

h u
n−1
h

τn
, G) = (

un−1
h − Pn

h u
n−1
h

τn
, G− InhG)

Arguing as previously, we find that

M∑
n=1

∫
In

∫
Ω

|σ−s
n,x̃,t̃

[h−2
n |InhG−G|+ h−1

n |∇(InhG−G)|] dx dt

≤C(1 + �hM ,t̃ + �τ,t̃).

(4.29)

Noting thatA(Pn
h u

n−1
h −un−1

h , G) = (∇(Pn
h u

n−1
h −un−1

h ),∇G)+(Pn
h u

n−1
h −un−1

h , G),
we compute

(∇(Pn
h u

n−1
h − un−1

h ),∇G)

=(∇(Pn
h u

n−1
h − un−1

h ), ψ∇G) + (∇(Pn
h u

n−1
h − un−1

h ), (1− ψ)∇G)

≤‖∇(Pn
h u

n−1
h − un−1

h )‖L∞(supp(ψ))‖∇G‖L1(supp(ψ))

+ (Pn
h u

n−1
h − un−1

h ,∇ · [(1− ψ)∇G]− Inh∇ · [(1− ψ)∇G]).

This expression may be bounded precisely as in the preceding paragaph after noting
that Inh may be defined so that the support of Inh∇ · [(1 − ψ)∇G] is the same as
that of ∇ · [(1 − ψ)∇G]. Combining (4.27), (4.28), and (4.29), one finds that for
0 ≤ s ≤ k − 1,

III ≤ C(1 + �hM ,t̃ + �τ,t̃)[ max
1≤n≤M

max
tn−1≤t≤tn

max
K∈Tn

σn,x̃,t̃(K, t)·

· (h2
n,K‖u

n−1
h − Pn

h u
n−1
h

τn
‖L∞(K) + h2

n,K‖An
h(P

n
h u

n−1
h − un−1

h )‖L∞(K)

+ hn,K‖∇(Pn
h u

n−1
h − un−1

h )‖L∞(K) + ‖Pn
h u

n−1
h − un−1

h ‖L∞(K))

+ max
1≤n≤M

max
tn≤t≤tn+1

max
K∈Tn

φn(t)σn,x̃,t̃(K, t)h2
n,K‖u

n−1
h − Pn

h u
n−1
h

τn
‖L∞(K)].

(4.30)

Next we bound the term IV from (4.23). Noting that ((An
h−An−1

h )un−1
h −(Pn

h −
Pn−1
h )fn−1, v) = 0 for any v ∈ Ŝn and proceeding as in (4.19) and following but

now with the finest common coarsenings T̂n replacing the original mesh Tn, we find

IV =
J∑

n=1

∫
In

φn−1((A
n
h −An−1

h )un−1
h − (Pn

h − Pn−1
h )fn−1, G− ÎnhG) dt

≤C(1 + �̂hM ,t̃ + �τ,t̃) max
1≤n≤M

max
tn−1≤t≤tn

max
K̂∈T̂n

φn−1(t)σ̂n,x̃,t̃(K̂, t)ĥ2
n,K̂

·

· ‖(An
h −An−1

h )un−1
h − (Pn

h − Pn−1
h )fn−1‖L∞(K̂).

(4.31)
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Finally, we consider the term maxtn−1≤t≤tn+1
φn(t)σ

s
n,x̃,t̃

from (4.19) and other

similar terms from (4.30) and (4.31). Note that φn and σn,x̃,t̃ are the only terms in
these upper bounds that depend on t. Observe also that φnσ

s
n is strictly increasing

in t for tn−1 ≤ t ≤ tn. Thus maxtn−1≤t≤tn+1
φn(t)σ

s
n,x̃,t̃

= maxtn≤t≤tn+1
φn(t)σ

s
n,x̃,t̃

.

For any nonnegative s, we also have

(4.32) max
tn≤t≤tn+1

φn(t)σ
s
n,x̃,t̃ ≤ σs

n,x̃,t̃(·, tn+1).

Collecting (4.32) and (4.22) into (4.19) and then collecting (4.19) and (4.23) into
(4.18) and then (4.17) yields the first three terms in (4.13). Similar arguments may
be used to obtain the last two (coarsening and mesh change) terms in (4.13) from
(4.30) and (4.31), thus completing the proof of (4.13). In addition, it is not hard
to compute that for tn ≤ t ≤ tn+1 and 0 ≤ s ≤ 2,

d

dt
φn(t)σ

s
n,x̃,t̃(K, t) ≤ σs

n,x̃,t̃

1

τn+1

(
s(tn+1 − t)

2
− 1

)
≤ 0.

Thus if s ≤ 2, maxtn≤t≤tn+1
φn(t)σn,x̃,t̃(·, t)s is taken on at t = tn, and we obtain

(4.14). �

4.5. Fully discrete sharply local estimates for arbitrary subsets. As in §3.3,
we may trivially obtain estimates that are valid over arbitrary subsets of Ω× (0, T ].

Corollary 4.10. Let D ⊂ Ω× (0, T ], and let

σn,D(x, t) = sup
(x0,t0)∈D

σn,x0,t0(x, t).

σ̂n,D is defined similarly. In addition, define

ηtime,n;D = ‖un
h − Pn

h u
n−1
h ‖L∞(Ω)

+ max
K∈Tn

σn,D(K, tn)
sh2

n,K‖(I − Pn
h )(f

n − fn−1) +An
h(u

n
h − Pn

h u
n−1
h )‖L∞(K).

Also, let tD = sup(x,t)∈D t, let tM−1 < tD ≤ tM , and assume 0 ≤ s ≤ min(k− 1, 2).
Then under the conditions of Theorem 4.3, we obtain

‖u− uh‖L∞(D) ≤ C[‖σ0,D(·, 0)k+1(u0 − Phu0)‖L∞(Ω)

+ (1 + �hM ,tD + �τ,tD ) max
0≤n≤M

max
K∈Tn

σn,D(K, tn)
sη∞,n(K)

+ max
1≤n≤M

[t̃ · ηtime,data,n + (1 + �hM ,t̃ + �τ,t̃)ηtime,n;D]

+ (1 + �hM ,t̃ + �τ,t̃) max
1≤n≤M

max
K∈Tn

σn,D(K, tn)
sηcoarse,n(K)

+ (1 + �̂ĥM ,t̃ + �τ,t̃) max
1≤n≤M

max
K̂∈T̂n

σ̂n,D(K̂, tn)
sηmesh,n(K̂)].

In the above estimates, C depends on Ω, T , the degree k of the finite element spaces,
and the shape regularity of the elements in the meshes Tn, 0 ≤ n ≤ M .

5. Numerical experiments

In this section we describe some numerical experiments in one space dimension
which illustrate the properties of our estimators and confirm their utility in con-
structing adaptive codes. Note that while the theoretical results of our paper and
the bulk of practical applications concern space dimension N ≥ 2, the main is-
sues addressed in this paper concerning interaction of time and space errors can
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be expected to arise even for space dimension N = 1. Thus we carry out our
computations in this simple model situation.

5.1. Basic parameters. In our computations we take Ω = (0, 1) ⊂ R and t̃ = 0.1.
For Experiments 1 and 2 below, our test solution is

u(x, t) = arctan(cos(πx100t+1)).

Note that u has an interior layer whose sharpness and position depend upon t and
that ∂u

∂x (0, t) = ∂u
∂x (1, t) = 0 (see Figure 3 for a graph of u(x, 0.1)). Based on

numerical tests using several test solutions and values of t̃, we employed space and
time estimators with the following constants:

estspace = 0.02 max
0≤n≤M

max
K∈Tn

σn,D(K, tn)
sη∞,n(K),

esttime = max
1≤n≤M

(0.002 · t̃ · ηtime,data,n + 0.2‖un
h − Pn

h u
n−1
h ‖L∞(Ω)

+0.02 max
K∈Tn

σn,D(K, tn)
sh2

n,K‖(I − Pn
h )(f

n − fn−1) +An
h(u

n
h − Pn

h u
n−1
h )‖L∞(K).)

The coarsening, initial data, and mesh change indicators were similarly scaled by
0.02, since the constants in these indicators arise in a manner similar to those in the
spatial estimator. Our main focus in choosing the above constants was to balance
the relative contributions of the various parts of our overall error estimator in order
to obtain effective error indicators; we do not attempt to justify them theoretically.
Also note that adaptivity (choosing time steps and refining and coarsening spatial
meshes) was carried out entirely on the basis of the initial data, spatial, and time
indicators; mesh change and coarsening indicators were not taken into account.
However, the results we present below indicate that these contributions are generally
similar to the spatial indicators. No logarithmic factors were taken into account.

Given an error tolerance ε, our adaptive code first refined the initial mesh so as
to ensure that the initial data and initial spatial estimators were bounded by ε

2 .
Subsequent time steps were also chosen so that the local time indicators (scaled as
in the preceding paragraph) were bounded above by ε

2 and below by ε
4 . Spatial mesh

refinement was carried out if the spatial estimator at any time step exceeded ε
2 , and

coarsening was carried out if the spatial estimators for a given pair of compatible
elements (i.e., ones having the same parent element) were below ε

32 .
Finally, quadratic elements (k = 2) were used in all computations. We thus took

s = 0 in order to control the global maximum error and s = 1 in order to carry out
computations reflecting the local character of the error.

5.2. Experiment 1: Orders of convergence. In the first experiment, adaptive
calculations were carried out based on global refinement in both space and time,
that is, s = 0. This enables us to confirm that our basic estimators are of optimal
order and also provides a benchmark with which to compare adaptive calculations
based on sharply local estimators. We took ε to be 0.1, 0.05, 0.025, 0.01, 0.005,
0.0025, 0.001, and 0.0001.

In Figure 1 we confirm that adaptivity based on our time estimators yields
optimal-order decrease of the error. The left plot in Figure 1 confirms that the
overall error decreases with the inverse of the number of time steps, and in addition
that

estspace+esttime

‖u−uh‖L∞((0,1)×(0,.1])
≈ 1 (that is, the effectivity indices are very close to 1).

In the right plot of Figure 1, we see that the error and global spatial estimator
similarly decrease with optimal order 1

DOF 3 , where DOF is the maximum number
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Figure 1. Global error ‖u−uh‖L∞((0,1)×(0,.1)) and estimators vs.
number of time steps (left) and number of elements (right) in an
adaptive algorithm for controlling ‖u− uh‖L∞ globally.

of spatial elements appearing in the computation. Figure 1 also indicates that the
coarsening and mesh change estimators consistently have values similar to or less
than the spatial estimator whenever they are nonzero.

5.3. Experiment 2: Localization. Adaptive calculations were carried out with
D0 = Ω × (0, t̃] = (0, 1)× (0, .1) (global error, as in the previous subsection), with
D1 = [0, .5] × {t = 0.1}, and with D2 = [.5, 1] × {t = 0.1}. u is smooth on D1,
whereas the the interior layer at t = 0.1 lies in 0.5 ≤ x ≤ 1 (cf. Figure 3), so more
spatial elements are required to resolve u on D2 than on D1. An error plot showing
optimal-order decrease with respect to both the time and spatial discretizations
is shown in Figure 2. The impact of localization on the time discretization is
considered in the right plot of Figure 2, where it can be seen that our adaptive
algorithm employing sharply local estimators produces very nearly the same time
discretization as the adaptive algorithm designed to control the global maximum
error. This strongly supports the assertion that our time indicators largely filter
out spatial error effects.

Figure 3 contains a comparison of the time evolution of the numbers of spatial
elements used in the adaptive code with a tolerance of ε = 0.001. The code designed
to control the global error predictably employs the largest number of elements.
Controlling the error on D1, where u is very smooth, requires the least number of
elements. Resolving the interior layer in D2 requires a number of elements at the
final time t = 0.1 comparable to the number required at t = 0.1 in the computation
controlling the global error, but at previous times a relatively small number of
elements is required. This confirms our assertion that an adaptive code based on
a sharply local estimator should allow for spatial meshes that are relatively coarse
in regions removed from the target region D but more heavily refined near D.
Figure 3 contains a comparison of the meshes at the final time t = 0.1 produced
by the adaptive code when D = D1 and D = D2, which shows that as expected
D = D2 leads to a more heavily refined mesh on [0.5, 1] when t = 0.1. As is also
expected, controlling the error on D1 or D2 does not control the error globally.
For example, ε = 10−4 and D = D1 yields ‖u − uh‖L∞(D) = 6.23 × 10−5, but

‖u− uh‖L∞((0,1)×[0,.1]) = 8.03× 10−4.
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Figure 2. Left: Optimal-order decrease of ‖u − uh‖L∞(D1) with
respect to to the number mesh elements and number of timesteps.
Right: Number of timesteps produced by adaptive algorithms with
given tolerances. Considered are algorithms for controlling the
global error, and for controlling the maximum errors on D1 and
D2.

Figure 3. Left: Number of spatial elements vs. time produced
by adaptive codes designed to control two different local errors (on
D = [0, .5] × t = .1 and D = [.5, 1] × t = .1) and the global error.
Right: u(x, 0.1) along with the meshes for t = 0.1 produced by the
adaptive algorithm with tolerance ε = 10−3 for D = D1 and D =
D2.

Finally, we note that the behavior of the coarsening and mesh change estimators
is essentially the same in the case of sharply local estimators as when the global
error is controlled. That is, these estimators are consistently approximately the size
of the spatial estimator or smaller (we do not present such data for sharply local
estimators, as it is quite similar to Figure 1).

5.4. Experiment 3: Pollution. In this experiment we illustrate pollution effects.
Here we let D = [0, 0.5]×[0, 0.1], that is, the target domain is the left half of the unit
interval, at every time in the specified time interval. In order to demonstrate that
some refinement is necessary globally in order to obtain good local approximation,
we set s = 20 in our code. This forces refinement in D while maintaining mesh
smoothness globally, but causes very little refinement away from D. As our test
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solution we chose

(5.1) u(x, t) = (1− e−t) cos(4πx).

Adaptive calculations were carried out as above with the adaptive tolerance ε taken
to be 0.1, 0.05, 0.025, 0.01, 0.005, 0.0025, 0.001, 0.0001, 0.00005, 0.000025, and
0.00001. In the left graph of Figure 4, we observe that the error initially decreases
as the mesh is refined, but the error decrease eventually stalls and the error plot
levels out. This indicates that further local refinement on D will not lead to further
error decrease on D, that is, lack of global resolution of the solution u pollutes the
solution quality on D. The right plot of Figure 4 contains the discrete solution
uh|t=0.1 and mesh obtained with ε = 0.00001. Here we observe the lack of global
resolution.

Figure 4. Left: ‖u − uh‖L∞(D) vs. number of spatial elements;
pollution is observed as the mesh is refined. Right: uh(x, 0.1) along
with the mesh for t = 0.1 produced by the adaptive algorithm with
tolerance ε = 10−4.

5.5. Conclusion. The error estimators that we have produced here substantially
isolate the time and spatial effects present in the backward Euler finite element
discretization, as can be seen both by analyzing their theoretical properties and
from numerical tests. This represents a substantial step forward in understanding
the interactions of local errors and time discretizations. However, the low order of
the backward Euler time discretization is a drawback of our adaptive method, and
an interesting question for future research is the interaction of higher-order time
discretizations with local errors. An additional open question is the possibility of
obtaining localization in the time error for some time scheme.
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