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ON A FAMILY OF THUE EQUATIONS OF DEGREE 16

VOLKER ZIEGLER

Abstract. We consider a parameterized family of Thue equations of degree
16. By reducing this family to a system of Pell equations and linear relations,
we are able to solve this family.

1. Introduction

It is well known that the Diophantine equation F (X,Y ) = m, with F ∈ Z[X,Y ]
a homogeneous, irreducible polynomial of degree d ≥ 3 and m a nonzero integer,
has finitely many solutions. This has been proved in 1909 by Axel Thue [19], and
therefore equations of this type are called Thue equations. Unfortunately the proof
of Thue’s theorem is not constructive, i.e. we cannot find all solutions by utilizing
his proof.

However, in the 1960s Baker [2] gave a method to effectively find all solutions of
a given Thue equation. This method is based on Baker’s theorems on linear forms
in logarithms [1, 3]. Baker’s method was further developed by Tzanakis and de
Weger [21] and by Bilu and Hanrot [6, 7]. So we have efficient algorithms to solve
single Thue equations.

In 1990 Thomas [18] considered the family

X3 − (n− 1)X2Y − (n+ 2)XY 2 − Y 3 = 1,

where n is some parameter running through all positive integers. This was the first
time that a family of Thue equations was solved, where the splitting field K of
F (X, 1) is totally real. Such families of Thue equations are usually hard to solve.
However, families with real splitting field K have also been solved for degree 4, 5, 6
and 8 (see e.g. [16, 10, 14, 11]). In this paper we solve a family of Thue equations
of degree 16. In particular, let

α =
(1 +

√
5)(

√
t+

√
3 +

√
2)(1 +

√
3)

2
.

Then we consider the Thue equation

(1) F (X,Y ) = NK/Q(X − αY ) = 1,

where K = Q(α) and 0 < t ∈ Z such that degK = 16. This means t has a prime
factor p �= 2, 3, 5 such that the highest power of p which divides t is not a square.
We have chosen this Thue equation to demonstrate the power of our generalized
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Tzanakis method. The algebraic number α was haphazardly taken. The only
restriction was to ensure that various coefficients and constants stay adequately
small. In theory we could have taken any α ∈ Q(

√
d1,

√
d2,

√
d3,

√
t) with fixed

integers d1, d2, d3 such that Q(α) is of degree 16. However, our first theorem is:

Theorem 1. Let

M1 = max{4.793092 · 1012 log t(log log t)2, 2.732786 · 1015 log t(log log t)2/3}
and

M = min{2.61465 · 1018 log t,M1}
and assume M < log ηt or t ≤ 107, where ηt is the fundamental unit of the order
Z[
√
t]. Then Thue equation (1) has only the “trivial” solutions X = ±1 and Y = 0.

Note that

M =

⎧⎨
⎩

2.7328 · 1015 log t(log log t)2/3 if log t < 4.709 · 1050,
4.7931 · 1012 log t(log log t)2 if 4.71 · 1050 < log t < 5.78 · 10320,
2.6147 · 1018 log t otherwise.

There are a lot of papers which provide constructions of quadratic fields which
have a huge fundamental unit. In particular we use a result due to Halter-Koch [9]
in which huge fundamental units of quadratic orders are investigated. From the
theorem above and the results of Halter-Koch we obtain:

Corollary 1. Let t = 12·2k+(1+3·2k)2, k ≥ 624761981 and t = 84·6k+(5+21·6k)2,
k ≥ 1265282, respectively. Then Thue equation (1) has only trivial solutions.

In the second case the bound for k is small enough to prove:

Theorem 2. Let t = 84 · 6k + (5 + 21 · 6k)2 and k ≥ 0. Then Thue equation (1)
has only trivial solutions.

In order to solve (1) we use a generalization of Tzanakis’ method [20] found by
the author (see section 2). In order to perform several manipulations, we have to
assume t > 4000. Therefore we compute for each t all solutions to (1) using this
method (section 3). Utilizing the generalized method of Tzanakis and using lower
bounds for linear forms in logarithms, we find a crude upper bound for ηt (section
4). An application of a method due to Baker and Davenport (see [4] or section 5)
shows t > 107. In section 6 we use this new lower bound for t to sharpen our first
bound for ηt. Let us remark that the generalized method of Tzanakis leads to an
inequality of the form

|n1 logα− n2 log β + log γ| < ε−n2 ,

which is a motivation to apply a recent result on linear forms in three logarithms (see
[8, 5] or section 7). This yields the final upper bound for ηt and hence Theorem 1.

On the other hand the Brauer-Siegel theorem (see [12, Chapter XVI]) indicates
that many quadratic fields have large regulators and many families of such quadratic
fields are known. In section 8 we study two families with large regulators and hence
large fundamental unit η > 1. These investigations will lead us to Corollary 1.
Again using the method of Baker and Davenport we are able to finish the proof of
Theorem 2 in section 9.

Before we start our investigations let us note that the case Y = 0 can be excluded,
since this yields X = ±1 the trivial solutions.
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2. Reduction to a Diophantine system

In this section, we want to reduce Thue equation (1) to the Diophantine problem

(Ui +AiVi)
2 − diV

2
i =1,

U1(1− ζ1 − ζ2 − ζ3) + U2ζ1 + U3ζ2 + U4ζ3 =U5,∣∣∣∣Ui

Uj
− αi,j

∣∣∣∣ ≤ ci,j
|Uj |2

,

(2)

with 1 ≤ i, j ≤ 5. We choose d1 = 2, d2 = 3, d3 = t, d4 = 10 and d5 = 15.
Moreover, we write Ni = Q(

√
di) and obtain

(3) NK/Ni
(X − αY ) = Ui + (Ai +

√
di)Vi,

with Ui, Vi ∈ Q[X,Y ] and Ai ∈ Q. By comparing coefficients, we find

V1 = −4XY
(
X6 + 6X5Y + 16(t− 7)X4Y 2 + 48(2t− 9)X3Y 3

− 32(t2 − 3t− 7)X2Y 4 − 24(7t2 − 30t− 1)XY 5

−8(t+ 1)(t2 − 10t+ 1)Y 6
)
,

V2 = −4Y
(
−X7 − 3(t+ 1)X6Y + 20(t+ 5)X5Y 2 + 4(11t2 + 18t+ 59)X4Y 3

+ 152(t2 − 12t− 5)X3Y 4 − 180(t3 − 9t2 + 55t+ 1)X2Y 5

−568(t− 1)(t2 − 10t+ 1)XY 6 + 224(t2 − 10t+ 1)2Y 7
)
,

V3 = 4XY
(
−X6 − 6X5Y + 8(t+ 8)X4Y 2 + 48(3t− 1)X3Y 3

+16(t− 4)(t+ 7)X2Y 4 − 24(t2 + 6t+ 17)XY 5 − 8(t− 5)(t2 − 10t+ 1)Y 6
)
,

V4 = 4XY
(
−X6 + 6X5Y + 4(t+ 5)X4Y 2 − 48tX3Y 3

+8(t2 − 18t+ 5)X2Y 4 − 24(t2 − 10t+ 1)XY 5 − 8(t+ 1)(t2 − 10t+ 1)Y 6
)
,

V5 = 4XY
(
−X6 − (t− 7)X5Y + 8(2t+ 1)X4Y 2

+ 12(t2 − 6t− 3)X3Y 3 + 16(2t2 − 21t− 1)X2Y 4

−4(t− 7)(t2 − 10t+ 1)XY 5 − 8(t− 1)(t2 − 10t+ 1)Y 6
)
.

Now, let us write

U1 = X8 + u
(1)
1 X7Y + · · ·+ u

(8)
1 Y 8

...

U5 = X8 + u
(1)
5 X7Y + · · ·+ u

(8)
5 Y 8,

V1 = v
(1)
1 X7Y 6 + · · ·+ v

(8)
1 Y 8

...

V5 = v
(1)
5 X7Y + · · ·+ v

(8)
5 Y 8.
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Note that the coefficients v
(j)
i are known and the u

(j)
i are unknown for 1 ≤ i ≤ 5

and 1 ≤ j ≤ 8. By (3) and the middle equation of (2) we obtain the linear system

(4)

u
(1)
1 +A1v

(1)
1 = c̃

(1)
1

...

u
(8)
1 +A1v

(8)
1 = c̃

(8)
1

u
(1)
2 +A2v

(1)
1 = c̃

(1)
2

...

u
(1)
1 (1− ζ1 − ζ2 − ζ3) + u

(1)
2 ζ1 + u

(1)
3 ζ2 + u

(1)
4 ζ3 +A5v

(1)
5 = c̃

(1)
5

...

u
(8)
1 (1− ζ1 − ζ2 − ζ3) + u

(8)
2 ζ1 + u

(8)
3 ζ2 + u

(8)
4 ζ3 +A5v

(8)
5 = c̃

(8)
5 ,

where the c̃
(j)
i with 1 ≤ i ≤ 5 and 1 ≤ j ≤ 8 are obtained by directly computing

the coefficients of the norm in equation (3). Note that this linear system is overde-
termined, but we have the three parameters ζ1, ζ2 and ζ3 to play with. If we choose

ζ1 =
35(t2 − 42t+ 65)

2t3 − 63t2 − 692t− 135
,

ζ2 =
5(3t4 − 140t3 + 1066t2 − 3292t− 325)

8(t− 2)(2t3 − 63t2 − 692t− 135)
,

ζ3 =
−7(t3 − 39t2 − 61t+ 195)

4(2t3 − 63t2 − 692t− 135)
,

(5)

then the linear system is solvable and we are able to compute the u’s. In particular
we find

U1 = X8 + (4(t2 − 10t+ 1))2Y 8 +
1

t4 − 46t3 + 180t2 − 722t+ 2315

×
(
−(12t4 − 536t3 + 1792t2 − 4008t+ 14260)X7Y

− (24t5 − 1072t4 + 2944t3 − 13776t2 + 60392t− 7040)X6Y 2

+ (416t4 − 23232t3 + 5248t2 + 252608t+ 41440)X5Y 3

+ (92t6 − 4608t5 + 34748t4 − 203552t3 + 315540t2 + 685856t

− 219820)X4Y 4

− (448t5 − 29504t4 − 69760t3 + 345984t2 + 997056t+ 82880)X3Y 5

− (96t7 − 5248t6 + 57824t5 − 373760t4 + 663072t3 + 130688t2

+ 1767328t− 28160)X2Y 6

− (96t7 − 5600t6 + 71008t5 − 370656t4 + 1595936t3 − 3859616t2

+1503264t− 114080)XY 7
)
,
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U2 = X8 +
1

7

(
−36X7Y − 24(t+ 1)X6Y 2 + 48(t+ 5)X5Y 3

+ (44t2 + 72t+ 236)X4Y 4 + (96t2 − 1152t− 480)X5Y 3

+ (−96t3 + 864t2 − 5280t− 96)X2Y 6

+ (−288t3 + 3168t2 − 3168t+ 288)X7Y

+(112t4 − 2240t3 + 11424t2 − 2240t+ 112)Y 8
)
,

U3 = X8 +
1

t4 − 140t3 + 1066t2 − 3292t− 325

×
(
(−12t4 + 1128t3 − 11184t2 + 29976t+ 3900)X7Y

+ (−48t5 + 2240t4 − 13648t3 + 11152t2 + 106048t+ 15600)X6Y 2

+ (384t5 − 23136t4 + 186816t3 − 351744t2 − 400704t− 93600)X5Y 3

+ (372t6 − 18776t5 + 118188t4 + 32304t3 − 629236t2 − 1297240t

− 61100)X4Y 4

+ (768t6 − 52416t5 + 714816t4 − 3606912t3 + 7391616t2 − 1685952t

+ 187200)X3Y 5

+ (−192t7 + 10880t6 − 153600t5 + 1256896t4 − 6220480t3 + 13049856t2

− 1861760t+ 62400)X2Y 6

+ (−96t7 + 9312t6 − 164448t5 + 1094496t4 − 2762784t3 − 716256t2

+ 408288t− 31200)XY 7

+ (48t8 − 3200t7 + 66752t6 − 623232t5 + 2832800t4 − 5611904t3

+540096t2 + 51328t− 5200)Y 8
)
,

U4 = X8 +
1

t3 − 39t2 − 61t+ 195

×
(
(−12t3 + 468t2 + 4572t− 2340)X7Y

+ (−24t4 + 968t3 + 216t2 − 29672t+ 6240)X6Y 2

+ (288t3 − 26592t2 − 94368t+ 56160)X5Y 3

+ (92t5 − 3580t4 − 5416t3 + 181960t2 − 29428t+ 99060)X4Y 4

+ (−192t4 − 23808t3 + 587136t2 − 155904t− 112320)

+ (−96t6 + 4832t5 − 41024t4 + 180672t3 − 443104t2 − 783008t

+ 24960)X6Y 2

+ (−96t6 + 4800t5 − 5664t4 − 318336t3 − 9888t2 − 181056t+ 18720)X7Y

+ (16t7 − 944t6 + 13136t5 − 41328t4 − 149456t3 + 337136t2

−63376t+ 3120)Y 8
)
,
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U5 = X8 +
1

2t3 − 63t2 − 692t− 135

×
(
(−9t3 + 651t2 − 7491t+ 4545)X7Y

+ (−33t4 + 1446t3 − 2988t2 + 66906t− 30195)X6Y 2

+ (240t4 − 13464t3 + 84456t2 + 13944t− 29880)X5Y 3

+ (244t5 − 13080t4 + 100488t3 − 479760t2 − 99676t+ 128520)X4Y 4

+ (480t5 − 31824t4 + 452544t3 − 2006688t2 + 1470432t+ 59760)X3Y 5

+ (−132t6 + 7104t5 − 76068t4 + 586464t3 − 683148t2

+ 1890144t− 120780)X2Y 6

+ (−72t6 + 6000t5 − 118008t4 + 752928t3 − 1064376t2

+ 459888t− 36360)XY 7

+ (32t7 − 1648t6 + 12352t5 + 115824t4 − 1065952t3 + 112t2

+32128t− 2160)Y 8
)
,

and, moreover, we have

A1 = − 4(t3 − 23t2 + 291t− 845)

t4 − 46t3 + 180t2 − 722t+ 2315
, A2 =

12

7
,

A3 =
6(t4 − 23t3 + 67t2 − 397t)

3t4 − 140t3 + 1066t2 − 3292t− 325
, A4 =

960t

t3 − 39t2 − 61t+ 195
,

A5 =
15(t3 − 7t2 − 1053t+ 195)

4(2t3 − 62t2 − 692t− 135)
.

Therefore we have reduced Thue equation (1) to the first two equations of system
(2).

Let us choose the index j such that

|X − αjY | = min
i

|X − αiY |,

where α1 := α, . . . , α16 are the conjugates of α. We assume j = 1 for our further
considerations, since for t > 4000 (see next section) the other cases run analogously
and only absolute constants may change. Furthermore, we write f(X) := F (X, 1).
Then we know by the classical theory of Thue equations that

(6) X = αY + θ
215

|Y 15f ′(α)| = αY + θ
1.399332

|Y |15t15/2 ,

where |θ| ≤ 1. If we insert this into the expressions for the U ’s we get

(7) Ui = Y 8bi + θ
Ri

|Y |8 ,

where bi is an explicit computable algebraic number, |θ| ≤ 1 and Ri is effective
computable and depends only on t. From the relation above we obtain

(8)

∣∣∣∣Ui

Uj
− αi,j

∣∣∣∣ ≤ Ri,j

|Y |16 =
ci,j
|Uj |2

,

where Ri,j and ci,j are again effective computable and αi,j = bi
bj
. Hence we have

shown how to reduce Thue equation (1) to Diophantine system (2).
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3. Small t: I

In this section, we roughly show how to solve Diophantine system (2) and in
particular we describe how to solve the case t ≤ 4000. Note that the first equations
in (2) are Pell equations. Hence we have

Ui +AiVi =± εni
i + ε−ni

i

2
,

Vi =± εni
i − ε−ni

i

2
√
di

(9)

with ε1 = 3+ 2
√
2, ε2 = 2+

√
3, ε3 = ηt = η, ε4 = 19− 6

√
10 and ε5 = 4+

√
15 and

with exponents ni ≥ 0. Hence

Ui = βiε
ni
i + β̄iε

ni
i .

Note that the β’s are effective computable for each given t. Hence we obtain from
the last two lines of system (2) the inequality

|β1ε
n1
1 (ζ1 + ζ2 + ζ3 − 1) + β2ε

n2
2 (ζ1 + α2,3ζ2 + α2,4ζ3 − α2,5)| ≤ cε−n2

2 ,

with an effective computable constant c depending only on t. Note that we also
have n1c1 < n2 < n2c2 for some computable constants c1 and c2. Let us put

γ =
β1(1− ζ1 − ζ2 − ζ3)

β2(ζ1 + α2,3ζ2 + α2,4ζ3 − α2,5)
.

Then we have

(10)

∣∣∣∣ εn1
1 γ

εn2
1

− 1

∣∣∣∣ ≤ c

2
ε−2n2
2 ,

and taking logarithms and observing | log x| < 2|1− x| for |1− x| < 1/3 we obtain

(11) |Λ| := |n1 log ε1 − n2 log ε2 + log γ| < cε−2n2
2

with a new effective computable constant c. Using lower bounds for linear forms in
logarithms, in particular using a result of Matveev [15] (see also the next section),
we obtain

log |Λ| > −c′ log n2,

hence n2 < N0, where again N0 is an effective computable constant. Using a
method due to Baker and Davenport [4] (see also Section 5) or a method based
on the LLL-algorithm (see [17, section VI.3]) we can reduce the usually huge first
bound N0 to a suitable smaller bound N , i.e. we can find suitable small upper
bounds for |U2| and also |Y |. By the classical theory of Thue equations it is known
that a solution (X,Y ) yields a convergent X/Y to α, provided Y is not too small.
Therefore it is possible to find all solutions to Thue equation (1) in theory and
also in practice for t ≤ 4000. The author implemented the idea presented in this
section using Matveev’s theorem [15] and the upper bound reduction based on
the LLL-algorithm in Mathematica. The program was running 2 days, 10 hours
and 3 minutes on a common work station and found no nontrivial solutions for
t ≤ 4000. Note that the implementation is rather crude and improvements of the
implementation may reduce the running time to less than one day. For details on
how to compute the bounds occurring in this section, see below.
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4. A first bound

In this section, we assume t > 4000. Note that for different choices of j (the
last paragraph of section 2) we obtain different Diophantine systems (2). Since the
computations for different j’s are nearly the same, we give details only for j = 1.
Note that in this section the constants c1, . . . are only depending on t and are
effective computable.

First, we want to compute the β’s occurring in (9). By utilizing (3) and (6) we
find

U1 +A1V1 > 323545 · t7/2, V1 < −228781 · t7/2,
U2 +A2V2 > 61506 · t4, V2 < −35510t4,

U3 +A3V3 > 72541 · t4, V3 < −72541t7/2.

(12)

In other cases the V ’s may be positive, and we obtain other values for the β’s (see
Lemma 1 below):

Lemma 1. Assume t > 4000. Then we have

Ui = ±(βiε
ni
i + β̄iε

−ni
i )

with i = 1, 2, 3 and

β1 =
1

2
±

√
2(t3 − 23t2 + 291t− 845)

t4 − 46t3 + 180t2 − 722t+ 2315
, β2 =

1

2
± 2

√
3

7
,

β3 =
1

2
±

√
t(3t3 − 69t2 + 201t− 1191)

3t4 − 140t3 + 1066t2 − 3292t− 325
,

and β̄i are the conjugates of βi with i = 1, 2, 3. The +/− signs hold according to
Table 1.

Table 1. The signs that hold for βi in case j.

i \ j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 − + − − − + + + − − − + + + − +
2 + + − + + − + + − − + − − + − −
3 + + + + − + + − + − − + − − − −

Now let us consider equation (7). As mentioned above it is possible to compute
the bi’s explicitly. Doing so and assuming t > 4000 and j = 1, we obtain:

Lemma 2.

|U1| > 323208 · t7/2Y 8 = a1t
7/2Y 8, |U2| > 122382 · t4Y 8 = a2t

4Y 8,

|U3| > 72512 · t4Y 8 = a3t
4Y 8, |U4| > 323434 · t7/2Y 8 = a4t

7/2Y 8,

|U5| > 68003 · t4Y 8 = a5t
4Y 8.

Unfortunately the U ’s may change sign if we do not assume t > 4000, so it is
really necessary to distinguish between small (≤ 4000) and large t. Note that 4000
is not the “correct” value for the distinction, but it is the next nice round number.
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Our next aim is to compute lower bounds for n1 and n2. Let us note that
βi + β̄i = 1 and βi, β̄i > 0, hence βiβ̄i ≤ 1/4. Since |Ui| = βiε

ni
i + β̄iε

−ni
i we obtain

εni
i =

|Ui|+
√
|Ui|2 − 4βiβ̄i

2βi
≥ 2|Ui| − 1

2βi

for i = 1, 2, 3. Hence

(13) n1 ≥ 7/2 log t− log β1 + log(a1 − 1/2)

log ε1
≥ cn1

log t

and

(14) ni ≥
4 log t− log βi + log(ai − 1/2)

log εi
≥ cni

log t,

provided i = 2, 3. Note that
√
x2 − 1 ≥ x− 1 for all x ≥ 1. Since for i = 1, 2, 3

− log βi + log(ai − 1/2) > 0,

we may choose

cn1
=

7

2 log(3 + 2
√
2)

, cn2
=

4

log(2 +
√
3)

, cn3
=

4

log η
.

Now, let us find bounds for n1/n2 and n3/n2. Because of (8) we have

|α1,2|+
θc1,2
U2
2

=
|U1|
|U2|

=
β1

β2

εn1
1

εn2
2

1 + β1/β̄1 · ε−2n1
1

1 + β2/β̄2 · ε−2n2
2

for some |θ| ≤ 1. Further, we find

(15)
εn1
1

εn2
2

=
β2

β1
|α1,2|(1 + θc2)

with |θ| ≤ 1. In particular we have c2 = 3.2148·106
t4 . Similarly we obtain

(16)
εn3
1

εn2
2

=
β2

β3
|α3,2|(1 + θc2),

where in this case c2 = 3.0216·106
t4 . In particular we have

3.6177√
t

<
εn1
1

εn2
2

<
7.1922√

t

and

0.80232 <
εn3
3

εn2
2

< 1.7836.

Taking logarithms in the first case we obtain

n1 log ε1 − n2 log ε2 = log

(
β2

β1
|α1,2|

)
+ 2θc2

for some |θ| < 1. Note that for |1− x| < 1/3 we have | log(1 + x)| < 2|x|. Further
manipulations yield

(17)
n1

n2
=

log ε2
log ε1

+
log

(
β2

β1
|α1,2|

)
+ 2θc2

n2 log ε1
=

log ε2
log ε1

+ r
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and

(18)
n3

n2
=

log ε2
log ε3

+
log

(
β2

β1
|α1,2|

)
+ 2θc2

n2 log ε3
=

log ε2
log ε3

+ r,

with |r| < c3 and c3 = 0.09339 in the first case and c3 = 1.67984
log t log η in the other case.

By (2) and the explicit computation of the constants in (8) we obtain

|U1(1− ζ1 − ζ2 − ζ3) + U2(ζ1 + α2,3ζ2 + α2,4ζ3 − α2,5)|

<
|c3,2ζ2|+ |c4,2ζ3|+ c5,2

|U2|
=

c4
|U2|

,

where c4 = 2.3345·106
t4 . Because of Lemma 1 we now obtain

|β1ε
n1
1 (1− ζ1 − ζ2 − ζ3) + β2ε

n2
2 (ζ1 + α2,3ζ2 + α2,4ζ3 − α2,5)|

≤ c̃5

|β1ε
n1
1 + β̄1ε

−n1
1 |

+ |β̄1ε
−n1
1 (1− ζ1 − ζ2 − ζ3)|

+|β̄2ε
−n2
2 (ζ1 + α2,3ζ2 + α2,4ζ3 − α2,5)|

≤ c5ε
−n1
1 + c6ε

−n2
2 ≤ c7ε

−n2
2 .

(19)

The last inequality is obtained by (15). Moreover, by computing the constants
explicitly we obtain c5 = 0.48428, c6 = 0.0091655 and c7 = 0.13401

√
t. Further

manipulations yield (10) and hence (11) with c = c8 = 0.039454t. In particular we
obtain the following lemma:

Lemma 3. Assume t > 4000. Then we have

(20) |Λ| = |n1 log ε1 − n2 log ε2 + log γ| < c9ε
−2n2
2

with c9 < 4.43996t in all cases. For more details see Table 2.

Table 2. Values of c9 in the case t > 4000.

j = 1 0.0395t j = 5 0.0468t j = 9 3.723t j = 13 0.0648t
j = 2 0.0199t j = 6 0.0641t j = 10 0.04295t j = 14 0.000221t
j = 3 0.0477t j = 7 0.000265t j = 11 0.00112t j = 15 4.44t
j = 4 0.000578t j = 8 0.0212t j = 12 3.807t j = 16 3.75t

Next we want to apply a result on lower bounds for linear forms in logarithms
to Λ. In particular we want to apply a result due to Matveev (see [15]):

Theorem 3. Denote by α1, . . . , αn algebraic numbers, not 0 nor 1, by logα1, . . .,
logαn determinations of their logarithms, by D the degree over Q of the number
field K = Q(α1, . . . , αn), and by b1, . . . , bn rational integers. Furthermore, let κ = 1
if K is real and κ = 2 otherwise. Choose

Ai ≥ max{Dh(αi), | logαi|} (1 ≤ i ≤ n),

where h(α) denotes the absolute logarithmic Weil height of α and

B = max{1,max{|bj |Aj/An : 1 ≤ j ≤ n}}.
Assume bn �= 0 and logα1, . . . , logαn are linearly independent over Z. Then

log |b1 logα1 + · · ·+ bn logαn| ≥ −C(n)C0W0D
2Ω,
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with

Ω = A1 · · ·An,

C(n) = C(n, κ) =
16

n!κ
en(2n+ 1 + 2κ)(n+ 2)(4(n+ 1))n+1

(
1

2
en

)κ

,

C0 = log
(
e4.4n+7n5.5D2 log(eD)

)
, W0 = log(1.5eBD log(eD)).

Since we know γ explicitly, it is no problem to compute all its conjugates and
also its height. Therefore we compute

(21) h(γ) ≤ 4.01445 + 8 log t ≤ 8.48402 log t (t > 4000).

In the other cases the same inequality (21) holds. Therefore we choose α1 =

ε1, α2 = ε2 and α3 = γ; moreover we take A1 = 8 log(3 +
√
2), A2 = 8 log(2 +

√
3)

and A3 = 135.7442349 log t. Of course D = 16, n = 3 and κ = 1. By this choice of
the Ai we obtain

B = max{c10n2

log t
, 1},

with c10 = 0.097479, i.e. B = 1 for n2 < 1
c10

log t < 10.2588 log t. Therefore let us

assume n2 ≥ 10.2588 log t. Then we obtain by Matveev’s theorem (Theorem 3)

(22) −c11 log t log

(
n2c12
log t

)
< log |Λ| < log c9 − 2n2 log ε2,

where c11 = 1.101191 · 1017 and c12 = 23.9914. Now let us assume n2 = ξ log t.
Then we obtain the inequality

c11 log(ξc12) < 2ξ log ε2 −
log c9
log t

,

which is valid only for ξ < c13 = 1.89232 · 1018. After similar computations in all
other cases we get:

Proposition 1. Assume t > 4000. Then we have 0 ≤ n2 < c13 log t = 1.89925 ·
1018 log t and 0 ≤ n3 < c14 log t

log η = 2.92085·1018 log t
log η in all cases.

Note that the inequality for n2 is obtained immediately. The inequality for n3

follows from the bound for n2 and (18).

5. Small t: II

In this section, we want to apply a method introduced by Baker and Daven-
port [4]. This method yields new upper bounds for n2 for every specific t. So it is
possible to show that the only solutions to (1) are trivial, provided t < 107.

First, let us recall that n1

n2
< log ε2

log ε1
+ c3 < 1, and therefore n1 < n2. Now we may

state a variant of a result due to Baker and Davenport [4]:

Lemma 4. Assume max{n1, n2} < N and let κ > 1 be a real number. Also assume

there exists a convergent p/q to δ1 := log ε1
log ε2

with q < κN such that

‖qδ1‖ <
1

2κN
and ‖qδ2‖ >

1

κ
,
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where δ2 := log γ
log ε2

and ‖ · ‖ denotes the distance to the nearest integer. Then we

have

max{n1, n2} ≤
log

(
2κ2Nc9
log ε2

)
2 log ε2

.

Proof. We consider equation (20), divide it by log ε1 and multiply it by q. Then
under our assumptions we obtain

1

2κ
< ‖qδ2‖ − n1‖qδ1‖ ≤

∣∣∣∣n1

(
q
log ε1
log ε2

− p

)
+ q

log γ

log ε2
+ n2q + n1p

∣∣∣∣ < qc9ε
−2n2
2

log ε2
.

Since q < κN , this yields
1

2κ
<

Nκc9ε
−2n2
2

log ε2
.

Solving this inequality for n2 we obtain the lemma. �

Due to this lemma we use the following algorithm to solve Thue equation (1) for
each admissible t with 4001 ≤ t ≤ 107. First, we make some precomputations by
computing convergents p/q to δ1 up to the 55-th convergent. Moreover, we consider
only those q’s such that ‖qδ1‖ < (2 · max{c13} · log 107)−1 to ensure κ > 1. Note
that for every case j we get an upper bound for n2 of the form n2 < c13 log t.
The “worst” case is the maximum of the c13’s, and the “best possible” case is the
minimum of the c13’s if c13 is considered as a 16-tuple corresponding to the various
cases. By this selection process only 15 of these q’s are left, with the smallest being
q = q1 = 59666063706602912133. For each of these q’s we compute

1

‖qδ1‖2 ·max{c13} · log 107
,

which yields an upper bound for κ, e.g. for q1 we obtain κ < 374.659. But on the
other hand q < κmin{c13} log 4000; hence we have a lower bound for κ, e.g. for
q1 we obtain κ > 3.8016. If upper and lower bounds provide no contradiction, we
have found an admissible q and a bound for κ. In particular, there are eleven q’s
left. For instance in the case q1 we choose κ = 300 in order to have a good chance
that ‖qδ2‖ > 1

κ . For the remaining q’s we choose the respectively lower bounds for
κ (see Table 3 below).

Table 3. Addmissable q’s and the corresponding κ.

q κ

59666063706602912133 300
22952311696019982651958 1462.4
91749580720373327695699 5845.8
389950634577513293434754 24846
9060614176003179076695041 577294
44913120245438382090040451 2.862 · 106
817496778593894056697423159 5.209 · 107
38467261714158459046868928924 2.451 · 109
154686543635227730244173138855 9.856 · 109
1740019241701663491732773456329 1.109 · 1011
71186102366132975430799538570634 4.536 · 1012
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We sequentially try these q’s in order to apply Lemma 4. It is highly improbable
that we need more than the first five q’s to apply the lemma. Note that by a simple
heuristic the probability that we need the 6-th q is less than 1.15 ·10−18. Indeed, to
test all cases up to t = 107 we need only the first five q’s. This happens only four
times. However, by the lemma we have a new upper bound for n2. Compairing
this new upper bound with the lower bound (14), we obtain either a contradiction
or a “small” range for n2 and hence for n1. If the latter case occurs we check
whether these finitely many cases yield a solution to (20) and may therefore find
all nontrivial solutions to (1). Indeed an implementation of this algorithm and a
computer search shows that there are no nontrivial solutions. This algorithm was
implemented in Mathematica and was executed on a usual PC (Dual Core 2.8 Ghz,
4 GB Memory) for the cases 4001 ≤ t ≤ 107 in 16 days. Therefore we may assume
t > 107 for the rest of the paper.

6. A better bound

In this section, we recompute the bounds obtained from section 4, but this time
we assume t > 107. Doing so, we have for j = 1 (see (17) and (18))

(23)
n1

n2
=

log ε2
log ε1

+ θc3,

respectively

(24)
n3

n2
=

log ε2
log ε3

+ θc3,

for some |θ| ≤ 1, and c3 = 0.093389 in the first case and c3 = 0.05736
log t log η in the other

case. Furthermore, we obtain (see (20))

(25) |Λ| = |n1 log ε1 − n2 log ε2 + log γ| < c9ε
−2n2
2 ,

with c9 < 3.49956t for all j’s. For more details see Table 4.

Table 4. Values of c9 in the case t > 107.

j = 1 0.0182633t j = 7 0.0001034t j = 12 3.489t
j = 2 0.0179929t j = 8 0.0180155t j = 13 0.0199443t
j = 3 0.0200056t j = 9 3.48752t j = 14 0.0001026t
j = 4 0.0001055t j = 10 0.0198862t j = 15 3.49956t
j = 5 0.0182196t j = 11 0.0001043t j = 16 3.48792t
j = 6 0.0201448t

Applying Matveev’s theorem again (see [15] or Theorem 3) we obtain n2 <

c13 log t = 1.839772 · 1018 log t and 0 ≤ n3 < c14 log t
log η = 2.61465·1018 log t

log η in all cases.

By this last statement we know n3 = 0 if log η > 2.61465 · 1018 log t. We claim the
following

Lemma 5. Suppose n3 = 0. Then there exist only trivial solutions.

Proof. If n3 = 0 we immediately obtain U3 + A3V3 = ±1 and V3 = 0. But, in the
case of j = 1, by inequalities (12) we know V3 < −72541t7/2 < −1 for t > 4000. A
contradiction, unless Y = 0, i.e. (X,Y ) is a trivial solution. The other cases run
analogously. �
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Immediately we have

Corollary 2. If t ≤ 107 or log ηt > 2.61465 · 1018 log t, then Thue equation (1) has
only trivial solutions.

7. Linear forms in three logarithms

In view of Theorem 1 we see that the bound established in the section above
applies only for huge t. Therefore we want to lower this bound in view of the proof
of Theorem 2. These lower bounds will be established by using lower bounds for
linear forms in three logarithms, as they were established by Bugeaud, Mignotte
and Siksek [8] (see also [5]). We use the following variant (see [5, Proposition 3.3]
for the case αi ∈ Q)

Theorem 4. Let αi with i = 1, 2, 3 be multiplicatively independent algebraic num-
bers all real or all complex, and consider the linear form

Λ = b1 logα1 + b2 logα2 + b3 logα3,

where bi are rational integers with gcd(b1, b2, b3) = 1 and where the determinations
of the logarithms are arbitrary but such that all are real or all purely imaginary.
Let L ≥ 5 be an integer and m ≥ 1, χ > 0, ρ > 1 be real parameters. Moreover, let

ai ≥ ρ| logαi| − log |αi|+ 2dh(α),

i = 1, 2, 3, and ai ≥ 1, where d = [Q(α1, α2, α3) : Q]/[R(α1, α2, α3) : R] and
a = min{a1, a2, a3}, with ma1a2a3 ≥ 2. Let us put K = �mLa1a2a3	. Now, we
define

C1 = max{(χmL)2/3,
√
2mL/a}, C2 = (2m2L2)1/3, C3 = (6m2)1/3L,

Ri = �Cia2a3	, Si = �Cia1a3	, Ti = �Cia1a2	,
with i = 1, 2, 3. Choose rational integers R,S, T with

R ≥ R1 +R2 +R3 + 1, S ≥ S1 + S2 + S3 + 1, T ≥ T1 + T2 + T3 + 1.

Assume(
KL

2
+

L

4
− 1− 2K

3L

)
log ρ ≥(d+ 1) log(K2L) + gL(a1R+ a2S + a3T )

+ d(K − 1) log b− 2 log(e/2),

(26)

where

g =
1

4
− K2L

12RST
, b = (b2η0)(b2ζ0)

(
K−1∏
k=1

k!

)− 4
K(K−1)

,

with

η0 =
R− 1

2
+

(S − 1)b1
2b2

, ζ0 =
T − 1

2
+

(S − 1)b3
2b2

.

Then either
Λ′ > ρ−KL,

where

Λ′ = |Λ|max

{
LReLR|Λ|/(2b1)

2|b1|
,
LSeLS|Λ|/(2b2)

2|b2|
,
LTeLT |Λ|/(2b3)

2|b3|

}
,

or one of the following conditions (C1), (C2), (C3) or (C4) hold with

M = χ
√
(R1 + 1)(S1 + 1)(T1 + 1).
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(C1): |b1| ≤ R1 and |b2| ≤ S1 and |b3| ≤ T1.
(C2): |b1| ≤ R2 and |b2| ≤ S2 and |b3| ≤ T2.
(C3): There exist two nonzero rational integers r1 and s1 such that r1b2 =

s1b1 with

|r1| ≤
(R1 + 1)(T1 + 1)

M −max{R1, T1}
, |s1| ≤

(S1 + 1)(T1 + 1)

M −max{S1, T1}
.

(C4): There exist rational integers r1, s1, t1 and t2, with r1s1 �= 0 such that

(t1b1 + r1b3)s1 = r1b2t2, gcd(r1, t1) = gcd(s1, t2) = 1

and

0 < |r1s1| ≤ δ
(R1 + 1)(S1 + 1)

M −max{R1, S1}
, |s1t1| ≤ δ

(S1 + 1)(T1 + 1)

M −max{S1, T1}
,

|r1t2| ≤ δ
(R1 + 1)(T1 + 1)

M −max{R1, T1}
,

where δ = gcd(r1, s1).

We want to apply this theorem to (20). Therefore we have to perform some
computations. We choose α1 = γ, α2 = ε2 and α3 = ε1, therefore b1 = 1, b2 = n2

and b3 = n1. Moreover, we choose

a1 = ((ρ− 1)0.723933 + 263.429982) log t > (ρ− 1) log γ + 32h(γ),

a2 = (ρ+ 15) log(2 +
√
3) = (ρ− 1) log ε2 + 32h(ε2),

a3 = (ρ+ 15) log(3 + 2
√
2) = (ρ− 1) log ε2 + 32h(ε2).

and so we have a = min{a1, a2, a3} = a2. Let us choose real numbers m and l,
which will be fixed later, and put

L = �l log log t	 and K = �mLa1a2a3	.
Note that we will choose one l for all t; hence we only obtain an estimation for L.
In particular we have (note t > 107)

l log log t ≥ L > l log log t− 1 >

(
l − 1

log log(107)

)
log log t.

Similarly, we obtain cK log t log log t < K < cK log t log log t, where cK and cK are
effective computable constants depending on l,m, ρ and χ. Similarly, we find upper
and lower bounds for C1, C2, C3, Ri, Si, Ti, R, S, T and g according to Theorem 4.
Later, when we have fixed l,m, χ and ρ, we will give exact estimates for these
constants. Now we only want to give asymptotic expressions in order to know what
we can expect from Theorem 4. In particular, we have

C1 
 C2 
 (log log t)2/3, C3 
 log log t,

R1 
 R2 
 (log log t)2/3, R = R1 +R2 +R3 + 1 
 R3 
 log log t,

S1 
 S2 
 T1 
 T2 
 log t(log log t)2/3,

T = T1 + T2 + T3 + 1 
 T3 
 S = S1 + S2 + S3 + 1 
 S3 
 log t log log t,

g 
 1.

The next quantity that we need is b. Therefore we have to compute the quantity

(
∏K−1

k=1 k!)−4/K(K−1). In partuicular we prove:
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Lemma 6.

log

⎛
⎝(

K−1∏
k=1

k!

)− 4
K(K−1)

⎞
⎠ = −2

(K − 1) log(K − 1)

K
+ 3

K − 1

K
+ r,

with

|r| ≤ 2 + 4 logK − 1

K
+

7 + 4 logK − 1

K(K − 1)
.

Proof. The proof is straightforward using Euler-Maclaurin’s sum formula. There-
fore we give only a rough overview. First, note that we have

log

(
N∏

k=1

k!

)
=

N∑
k=1

(N + 1− k) log k = (N + 1)

N∑
k=1

log k −
N∑

k=1

k log k.

By Euler-Maclaurin’s sum formula we obtain

N∑
k=1

log k =

∫ N

1

log xdx+
logN − log 1

2
+ r1

and

N∑
k=1

k log k =

∫ N

1

x log xdx+
N logN − 1 log 1

2
+ r2,

with

r1 =

∫ N

1

(x− �x	 − 1/2)/xdx

and

r2 =

∫ N

1

(x− �x	 − 1/2)(log x+ 1)dx.

Put N = K − 1, and after some straightforward computations one obtains the
lemma. �

Next, we have to compute log b. By section 6 we know b2 < c13 log t = 1.839772 ·
1018 log t. Moreover, b3/b2 < log ε2/ log ε1 + c3 < c15 with c15 = 0.8823, provided
t > 107. Therefore we obtain

η0 =
R− 1

2
+

(S − 1)b1
2b2


 log log t,

ζ0 =
T − 1

2
+

(S − 1)b3
2b2


 log t log log t.
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The result for η0 is true, since by conditions (C1) and (C2) we may assume b2 >
S1, S2 
 log t(log log t)2/3. Therefore we have

log b 
 log((log t)3(log log t)2)− 2 logK 
 log

(
(log t)3(log log t)2

K2

)

 log log t.

Now, let us consider inequality (26). Both the left and right hand sides are of
asymptotic order log t(log log t)2. Hence we get an inequality in m, l, χ and ρ. For
fixed values for m, l and χ, we get an inequality in ρ. If it is fulfilled for some ρ > 1,
we have found admissible parameters, and we get a lower bound for Λ′ and also for
Λ, hence a new upper bound for b2 = n2. In particular, we have

−KL log ρ < log |Λ′| = log |Λ|+ log

(
max

{
LR

2b1
,
LS

2b2
,
LT

2b3

})

+ |Λ|max

{
LR

2b1
,
LS

2b2
,
LT

2b3

}
;

hence

−KL log ρ− log(Lmax{R,S, T}) < log |Λ|+ |Λ|max

{
LR

2b1
,
LS

2b2
,
LT

2b3

}
− log 2.

Let us assume |Λ| < ρ−KL

Lmax{R,S,T} . Then we obtain from the inequality above

−KL log ρ− log(Lmax{R,S, T}) < log |Λ|+ 1

2
− log 2 < log |Λ|,

a contradiction. Hence we have

log |Λ| > −KL log ρ− log(Lmax{R,S, T}) 
 log t(log log t)2.

Note that the new lower bound for n2 is asymptotically worse than the one obtained
by Matveev’s theorem, but the constants will be much smaller. Moreover, we have
to be careful in our choice so that also the bounds coming from (C3) and (C4)
stay significantly small. The bound obtained for (C3) turns into

b2 ≤ (S1 + 1)(T1 + 1)

M −max{S1, T1}
,

and condition (C4) turns into a linear form in two logarithms which will be dis-
cussed below. Hence (C3) and (C4) also yield bounds for n2. With respect to
these bounds we make the following choice:

l = 1461, m = 2, χ = 1.999999, ρ = 18.394028.
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With this choice we obtain:

1460.64 log log t < L < 1461 log log t;

2.087452 · 109 log t log log t < K < 2.087967 · 109 log t log log t;
324.3909(log log t)2/3 < C1 < 324.4442(log log t)2/3;

257.4693(log log t)2/3 < C2 < 257.5117(log log t)2/3;

4213.215 log log t < C3 < 4214.254 log log t;

839784.6(log log t)2/3 < R1 < 839923.1(log log t)2/3;

666537.6(log log t)2/3 < R2 < 666647.7(log log t)2/3;

10907197 log log t < R3 < 10909885 log log t;

11978485 log log t < R < 11981349 log log t;

5270736.9 log t(log log t)2/3 < S1 < 5271602.4 log t(log log t)2/3;

4183388.1 log t(log log t)2/3 < S2 < 4184075 log t(log log t)2/3;

68456759 log t log log t < S3 < 68473619 log t log log t;

75180476 log t log log t < S < 75198440 log t log log t;

3937795.9 log t(log log t)2/3 < T1 < 3938442.5 log t(log log t)2/3;

3125431.7 log t(log log t)2/3 < T2 < 3125431.8 log t(log log t)2/3;

51144413 log t log log t < T3 < 51157009 log t log log t;

56167738 log t log log t < T < 56181159 log t log log t;

0.239506 < g < 0.239522.

In order to compute b we have to compute the quantities η0 and ζ0. Due to the
conditions (C1) and (C2) and the computations made above, we may assume
b2 > S2. Therefore we obtain

η0 < 5990678.6799 log log t, ζ0 < 61264333.1066 log t log log t.

By Lemma 6 and the computations above we obtain

log

⎛
⎝(

K−1∏
k=1

k!

)− 4
K(K−1)

⎞
⎠ < −17.0950171382 log log t.

Hence, using the upper bounds for n2 we get

log b < 28.9611340689 log log t.

With this choice inequality (26) is fulfilled. Therefore we have by the discussion
above

log |Λ| > −KL log ρ− log(Lmax{R,S, T}) > −8.8831931 · 1012 log t(log log t)2,
and hence

n2 < 3.372618 · 1012 log t(log log t)2

or one of the conditions (C1), (C2), (C3) or (C4) holds. On the other hand con-
ditions (C1) and (C2) imply n2 < S1 < 5271602.4 log t(log log t)2/3, respectively
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n2 < S2 < 4184075 log t(log log t)2/3. Since b1 = 1, condition (C3) turns into
r1b2 = s1, and by Theorem 4 we get

n2 = b2 ≤ |s1| ≤
(S1 + 1)(T1 + 1)

M −max{S1, T1}
< 2487.01868 log t(log log t)1/3.

Now we investigate condition (C4), i.e. there exist integers r1, s1, t1 and t2 with
r1s1 �= 0 such that (t1b1 + r1b3)s1 = r1b2t2 and let δ = gcd(r1, s1). We consider
the linear form Λ and multiply it by r1t2/δ and then obtain∣∣∣∣r1t2δ Λ

∣∣∣∣ =
∣∣∣∣b3r1t2δ

log ε1 −
b2r1t2

δ
log ε2 +

r1t2
δ

log γ

∣∣∣∣
=

∣∣∣∣b3r1t2δ
log ε1 −

b3r1s1
δ

log ε2 −
t1s1b1

δ
log ε2 +

r1t2
δ

log γ

∣∣∣∣
=|b3 log σ1 + log σ2|

with σ1 = ε
r1t2/δ
1 ε

−r1s1/δ
2 and σ2 = γr1t2/δε

−t1s1/δ
2 . Hence we have to consider

a linear form in two logarithms, which imposes an application of the following
theorem (Corollary 2 in [13]):

Theorem 5. Let α1 and α2 be two positive, real, multiplicatively independent ele-
ments in a number field of degree D over Q. For i = 1 and i = 2, let logαi be any
determination of the logarithm of αi, and let Ai > 1 be a real number satisfying

logAi ≥ max{h(αi), | logαi|/D, 1/D}.

Further, let b1 and b2 be two positive integers. Define

b′ =
b1

D logA2
+

b2
D logA1

and log b = max

{
log b′ + 0.14, 21/D,

1

2

}
.

Then

|b2 logα2 − b1 logα1| ≥ exp
(
−24.34D4(log b)2 logA1 logA2

)
.

We make our choice for A1 and A2 as follows. First, we compute the bounds for
r1t2, r1s1 and s1t1 given in Theorem 4:

r1t2
δ

≤ 396.21129162(log log t)1/3,

r1s1
δ

≤ 530.38875262(log log t)1/3,

s1t1
δ

≤ 2487.0186727 log t(log log t)1/3.

These bounds now yield

h(σ1) ≤
r1t2
δ

h(ε1) +
r1s1
δ

h(ε2) ≤ 698.46(log log t)1/3 = logA1

and

h(σ1) ≤
r1t2
δ

h(γ) +
t1s1
δ

h(ε2) ≤ 4899.335 log t(log log t)1/3 = logA2.

Therefore we find

b′ =≤ 1

logA1
+

c13 log t

logA2
=

2.070725565 · 1013
(log log t)1/3

.
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Hence

log b = max{log b′ + 0.14,
21

16
,
1

2
}

≤ log

(
2.070725565 · 1013
(log log 107)1/3

)
+ 0.14 < 30.46069518,

and therefore we have

log

∣∣∣∣r1t2δ Λ

∣∣∣∣ > −5.064759008 · 1015 log t(log log t)2/3.

Compairing this lower bound with the upper bound (20) for |Λ|, we deduce n2 ≤
1.9229009·1015 log t(log log t)2/3. By inequality (18), the bounds for n2 found in this
section and Lemma 5 together with Corollary 2, we immediately obtain Theorem 1.

Note that the asymptotic expression of the upper bound for n2 found in this sec-
tion is larger than the bound found by Matveev’s theorem (Theorem 3). However,
for small t the new bound is about 1/1000 smaller than the old one. So we still
have a significant improvement, at least for small t.

8. Quadratic fields with large discriminant

The aim of this section is to learn something about lower bounds for funda-
mental units of certain families of quadratic fields. These lower bounds will yield
Corollary 1.

We start with the following proposition, which is a composition of various results
due to Halter-Koch [9]:

Proposition 2. Let

t = (lpkq + c) + 4pkq

with integers k, q ≥ 2 and l, c ≥ 1. Let p = 1+ lc and lq + lqc+ lc odd. Then t ≡ 1
mod 4, and we have

(1) If q and c are relative prime and p and q are multiplicatively independent,
then

log η >

(
log

√
t

2

)3

6 log p log q
.

(2) Assume q and c are relative prime, l = 1, p = rs and q = dp + r with
d ≥ 1 and s, r ≥ 2. Further assume r, s and ds + 1 are multiplicatively
independent. Then

log η >

(
log

√
t

2

)4

24 log p log q log(s(ds+ 1))
.

Proof. This proposition is a combination of [9, Theorem 1], in particular the first
displayed formula of [9, page 177] and [9, Propositon 1.i and 1.ii]. Note that the
choice of p1 and p2, respectively p1, p2 and p3, can be found by reading the proof
of [9, Proposition 1].

By the first displayed formula of [9, page 177] we are left to estimate

S =
∑

e1,...,en

(
log

√
t

2
−

n∑
i=1

ei log pi

)
,
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where the sum runs over all nonnegative integers e1, . . . , en with
∑n

i=1 ei log pi ≤
log

√
t

2 . But this sum is an upper Darboux sum of the integral

I =

∫
B

(√
t

2
−
∑

xi log pi

)
dx1 . . . dxn,

where

B =

{
(x1, . . . , xn) ∈ Rn : xi ≥ 0,

n∑
i=1

xi log pi ≤ log

√
t

2

}
.

Therefore we have

log η > S > I =

(
log

√
t

2

)n+1

(n+ 1)! log p1 · · · log pn
. �

Now we specialice to two families. In particular in view of Proposition 2 we
choose for the first family c = l = 1, p = 2 and q = 3, and for the second family we
make the choice c = 5, l = 1 and p = 6 = rs with r = 3 and s = 2; hence for d = 3
we obtain q = dp+ r = 21. Then we immediately obtain by Proposition 2:

Lemma 7. (1) Let t = (3 · 2k + 1)2 + 12 · 2k, then we have

log η >

(
log

√
t

2

)3

6 log 2 log 3
.

(2) Let t = (21 · 6k + 5)2 + 84 · 6k, then we have

log η >

(
log

√
t

2

)4

24 log 6 log 21 log 14
.

We end this section by proving Corollary 1. First, we consider the family t =
(3 · 2k +1)2+12 · 2k. By Lemmas 5 and 7 and inequality (18) we deduce that Thue
equation (1) has only trivial solutions if

9.98887706 · 1016 log t(log log t)2/3
(log t− 1.38629437)3

< 1,

provided log t < 4.709 · 1050. For the other t’s we obtain similar inequalities which
obviously hold. This inequality is fulfilled for all t with log t > 8.661040129689 ·108.
Since log t > 2k log 2 + log 9, we find k ≥ 624761981.

Now let us investigate the family t = (21 · 6k +5)2 +84 · 6k. In this case we have
to consider the inequality

1.51072166 · 1019 log t(log log t)2/3
(log t− 1.38629437)4

< 1.

This inequality is fulfilled for all t with log t > 4.53416732171 ·106, and since log t >
2k log 6 + log 441 we have k ≥ 1265282. This completes the proof of Corollary 1.
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9. Final computations

This section is devoted to the proof of Theorem 2 for k ≤ 1265281. For this
purpose we again use the method of Baker-Davenport described in section 5. In
contrast to section 5, here we cannot compute δ2 for large k. Note that for k → ∞
we have log γ ∼ k log 6. For our needs it is sufficient to compute only an asymptotic
expansion of log γ. In order to make error terms “exact”, we use following notation:
For two functions g(t) and h(t) we write g(t) = L(h(t)) if |g(t)| ≤ h(t) for all t. We
use this notation in the middle of an expression in the same way as it is usually
done with the O-notation.

Let us note that γ is a rational function in the
√
t and has coefficients in

Q(
√
2,
√
3,
√
5). By estimating lower terms we find (in the case of j = 1) that

log γ = log

(
B1t

8 + L(1.342 · 106t15/2)
B2t15/2 + L(5.938 · 106t7)

)

= log(B1)− log(B2) +
log t

2
+ L(92.291t−1/2),

where

B1 = 13389 + 7728
√
3 + 5985

√
5 + 3456

√
15,

B2 = 49710
√
2 + 28700

√
6 + 22302

√
10 + 12876

√
30,

and we use log(g + L(h)) = log(g) + L(2h/g), provided g > 2|h|. Also note that

log t = log
(
6k(441 + 294 · 6−k + 25 · 6−2k)

)
=k log 6 + log 441 + L(1.3339 · 6−2k).

(27)

So, in practice we are able to compute log γ and hence δ2 for each k.
Next, we cannot precompute the values for q and κ for all k because the lower and

upper bounds would yield contradictions. So we compute the first sixty convergents
to δ1 similar to section 5. But now we consider for each k with 3 ≤ k ≤ 1265281
(for k = 1, 2 we have t < 107) only those q’s such that

‖qδ1‖ < (2 · 1.9229009 · 1015 log t(log log t)2/3)−1.

We consider those q’s to ensure κ > 1. In order to find them we use formula (27).
But, on the other hand, we have

q < κ · 1.9229009 · 1015 log t(log log t)2/3,

hence we have a lower bound for κ. Now for a certain k we consider only those q’s
such that the lower bound is smaller than the upper bound and the lower bound
is larger than 300. We make this additional assumption to ensure that the first
q in our list is applicable with a high probability in the sense of Lemma 4. Note
that this lemma now yields a new lower bound for n2 which is usually rather small.
Indeed, by computing the lower bounds for all k ≤ 1265281, it never happens that
the lower bound n2 ≥ cn2

log t = 4 log t

log(2+
√
3)

(see equation (14)) does not exceed the

upper bound, as found by the method of Baker and Davenport, i.e. there are no
nontrivial solutions for k ≥ 3. Running an implementation in Mathematica took
about two hours on a common work station (Dual Core 2.8 Ghz, 4 GB Memory)
to check all cases.
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