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A NEW ERROR ANALYSIS FOR DISCONTINUOUS FINITE

ELEMENT METHODS FOR LINEAR ELLIPTIC PROBLEMS

THIRUPATHI GUDI

Abstract. The standard a priori error analysis of discontinuous Galerkin
methods requires additional regularity on the solution of the elliptic boundary
value problem in order to justify the Galerkin orthogonality and to handle
the normal derivative on element interfaces that appear in the discrete energy
norm. In this paper, a new error analysis of discontinuous Galerkin methods is
developed using only the Hk weak formulation of a boundary value problem of
order 2k. This is accomplished by replacing the Galerkin orthogonality with
estimates borrowed from a posteriori error analysis and by using a discrete
energy norm that is well defined for functions in Hk.

1. Introduction

Let Ω ⊂ R
n, be a bounded polygonal domain and f ∈ L2(Ω). For simplicity, we

assume n = 2. However, our error analysis may be extended to any n ≥ 1. To give
the motivation, consider a model problem of finding u ∈ H1

0 (Ω) such that

(1.1)

∫
Ω

∇u · ∇v dx =

∫
Ω

fv dx ∀ v ∈ H1
0 (Ω).

Many discontinuous Galerkin (DG) methods [3] have been proposed for (1.1) based
on a discrete space

Vh ⊆ {v ∈ L2(Ω) : v|T ∈ Pr(T ) ∀T ∈ Th},

where Th is a triangulation of the computational domain Ω. For these methods,
a priori error estimates are derived based on Galerkin orthogonality and Cea’s
Lemma assuming that the solution u of (1.1) has the following regularity:

u|T ∈ Hs(T ), ∀T ∈ Th, s >
3

2
.

To be more precise, consider the variational form of the symmetric interior penalty
method [22, 39, 2] : Find uh ∈ Vh such that

ah(uh, vh) =

∫
Ω

fvh dx ∀ vh ∈ Vh,(1.2)
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where

ah(w, v) =
∑
T∈Th

∫
T

∇w · ∇v dx−
∑
e∈Eh

∫
e

(
{{∇w}}[[v]] + {{∇v}}[[w]]

)
ds

+
∑
e∈Eh

∫
e

σ

he
[[w]][[v]] ds w, v ∈ Vh,

the jumps and means are defined as in Section 3 and σ is a sufficiently large positive
constant.

By writing the solution u of (1.1) as the sum of a regular part and a singular
part [27], the following integration by parts formula [15, Lemma 2.1] can be proved
under the regularity result that the solution u ∈ Hs(Ω) for s > 3/2 [27]:∫

T

∇u · ∇v dx =

∫
∂T

∇u · vnds+
∫
T

fv dx ∀T ∈ Th, ∀ v ∈ Vh.

Hence the solution u of (1.1) satisfies

ah(u, vh) =

∫
Ω

fvh dx ∀ vh ∈ Vh,

which implies the following Galerkin orthogonality:

ah(u− uh, vh) = 0 ∀ vh ∈ Vh.(1.3)

Then the following a priori error estimate [35, 15, 13, 14, 34] is obtained from
(1.3):

‖u− uh‖1,h ≤ C inf
vh∈Vh

‖u− vh‖1,h,(1.4)

where for w ∈ Hs(Ω) + Vh, s > 3/2,

‖w‖21,h =
∑
T∈Th

‖∇w‖2L2(T ) +
∑
e∈Eh

he‖{{∇w}}‖2L2(e)
+

∑
e∈Eh

σ

he
‖[[w]]‖2L2(e)

and he is the length of e. Note that the regularity result u ∈ Hs(Ω) for s > 3/2 is
needed to handle the term ‖{{∇(u− vh)}}‖L2(e) in (1.4).

We see from the discussion above that the derivation of (1.3) for discontinuous
Galerkin methods requires the nontrivial elliptic regularity theory in polygonal
domains. The goal of this paper is to provide a new type of error estimates that
does not require such regularity results. This new approach is particularly useful
for more complicated problems, such as linear interface, where u has low regularity
[31].

We will derive the new error estimates by an analog of the Berger–Scott–Strang
lemma [5] that decomposes the error into two parts in which one measures the
interpolation error and the other measures the nonconforming error and the con-
sistency error together. Thereby the analysis does not require any regularity other
than that the weak solution of a PDE of order 2k belongs to Hk(Ω). We obtain
the following error estimate for (1.2):

‖u− uh‖h ≤ C
(

inf
vh∈Vh

‖u− vh‖h +Osck(f)
)
,(1.5)

where

‖w‖2h =
∑
T∈Th

‖∇w‖2L2(T ) +
∑
e∈Eh

σ

he
‖[[w]]‖2L2(e)

w ∈ H1(Ω) + Vh
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and Osck(f) which measures the oscillations of f is defined in (2.8). Note on the
right-hand sides of (1.5) that the first term quantifies the interpolation error and
the second term measures the oscillations of f which are of the same order with the
first term (assuming that u has enough regularity) if f ∈ L2(Ω) and higher order if
f is sufficiently smooth. Our error analysis is motivated by the recent a posteriori
error analysis for discontinuous Galerkin methods [16, 18, 30, 29] and the results
of [8]. The key ingredients are the discrete local efficiency arguments [37, 38] for
a posteriori error estimators and an enriching map for piecewise smooth functions
[6, 7, 8, 9, 10].

The rest of the article is organized as follows. In Section 2, we present the main
result in an abstract lemma which enables us to decompose the error. Section 3
and Section 4 are devoted to the applications of the abstract lemma to various
nonconforming and discontinuous Galerkin methods for second and fourth order
elliptic problems, respectively. Finally, in Section 5, we present conclusions and
possible extensions.

2. Abstract result

Recall the Sobolev-Hilbert space Hk(Ω) which is the set of all L2(Ω) functions
whose distributional derivatives up to order k are in L2(Ω). Denote by V := Hk

0 (Ω),
the set of all functions in Hk(Ω) whose traces up to order k − 1 vanishes. Denote
the norm on V by ‖ · ‖V . The model problem is to find u ∈ V such that

(2.1) a(u, v) = (f, v) ∀ v ∈ V,

where a(·, ·) is the bilinear from for the underlying PDE of order 2k and (·, ·) denotes
the L2 inner product. We assume that the bilinear form a is bounded and elliptic
so that the model problem (2.1) has a unique solution u ∈ V . Denote by Th a
regular (without hanging nodes) simplicial triangulation of Ω. Let hT=diamT and
h = max{hT : T ∈ Th}. Let the discontinuous finite element space Vh be a subspace
of

V r
h = {vh ∈ L2(Ω) : vh|T ∈ Pr(T ) ∀T ∈ Th}

where Pr(D) is the space of polynomials of degree less than or equal to r restricted
to the set D. Let ‖·‖h be a mesh dependent norm on V +Vh and Vc a finite element
subspace of V associated with Th.

The discontinuous finite element method is to find uh ∈ Vh such that

(2.2) ah(uh, v) = (f, v) ∀ v ∈ Vh,

where the bilinear form ah(·, ·) is defined on Vh ×
(
Vc + Vh

)
.

We make the following abstract assumptions:

(N1) There is a positive constant C independent of h such that

(2.3) C‖v‖2h ≤ ah(v, v) ∀ v ∈ Vh.

(N2) There is a positive constant C independent of h such that for all w ∈ Vc,

(2.4) |a(v, w)− ah(vh, w)| ≤ C‖v − vh‖h‖w‖V ∀ v ∈ V and ∀ vh ∈ Vh.

(N3) There exists a linear map Eh : Vh → Vc satisfying

(2.5) ‖Ehv‖V ≤ C‖v‖h ∀ v ∈ Vh,

for some positive constant C independent of h.
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It can be readily seen from (2.3) that there is a unique solution uh ∈ Vh for (2.2).
We are now ready to prove an abstract lemma.

Lemma 2.1. Let u ∈ V := Hk
0 (Ω) and uh ∈ Vh be the solutions of (2.1) and (2.2),

respectively. Assume that the assumptions (N1)–(N3) hold. Then there exists a
positive constant C independent of h such that

(2.6) ‖u− uh‖h ≤ C inf
v∈Vh

[
‖u− v‖h + sup

φ∈Vh\{0}

(f, φ− Ehφ)− ah(v, φ− Ehφ)

‖φ‖h

]
.

In addition, if there exists a positive constant C independent of h such that for any
v ∈ Vh,

(2.7) sup
φ∈Vh\{0}

(f, φ− Ehφ)− ah(v, φ− Ehφ)

‖φ‖h
≤ C

(
‖u− v‖h +Osck(f)

)
,

where

(2.8) Osck(f) =

( ∑
T∈Th

h2k
T

[
inf

f̄∈Pr−k(T )
‖f − f̄‖2L2(T )

])1/2

,

then

(2.9) ‖u− uh‖h ≤ C̃
(
inf
v∈Vh

‖u− v‖h +Osck(f)
)
.

Here C̃ is a positive constant independent of h.

Proof. Let v ∈ Vh be such that v �= uh. Let ψ = uh − v. From (2.3), (2.2) and
(2.1), we get

C‖uh − v‖2h ≤ ah(uh − v, ψ)

= (f, ψ)− ah(v, ψ)

= a(u,Ehψ)− ah(v, Ehψ) + (f, ψ − Ehψ)− ah(v, ψ − Ehψ).

We obtain

‖uh − v‖h ≤ C

(
a(u,Ehψ)− ah(v, Ehψ)

‖uh − v‖h
+

(f, ψ − Ehψ)− ah(v, ψ − Ehψ)

‖uh − v‖h

)
.

Using (2.4) and (2.5), we find

|a(u,Ehψ)− ah(v, Ehψ)| ≤ C‖u− v‖h‖Ehψ‖V
≤ C‖u− v‖h‖ψ‖h
= C‖u− v‖h‖uh − v‖h,

which implies that

|a(u,Ehψ)− ah(v, Ehψ)|
‖uh − v‖h

≤ C‖u− v‖h.

It is obvious that

(f, ψ − Ehψ)− ah(v, ψ − Ehψ)

‖ψ‖h
≤ sup

φ∈Vh\{0}

(f, φ− Ehφ)− ah(v, φ− Ehφ)

‖φ‖h
.

Now a use of the triangle inequality yields the estimate (2.6). Finally, we use (2.7)
in (2.6) to complete the proof. �

We have immediately the following corollary.
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Corollary 2.2. Assume that the hypothesis for Lemma 2.1 is true. Furthermore,
assume that the oscillation Osck(f) is zero. Then, the error estimate (2.9) is quasi-
optimal in the sense that there is a positive constant C independent of h such that

‖u− uh‖h ≤ C inf
v∈Vh

‖u− v‖h.

3. Second order problems (k = 1)

Here we have V = H1
0 (Ω) and ‖v‖V = ‖∇v‖L2(Ω). For given f ∈ L2(Ω), the

model problem is to find u ∈ V such that

(3.1) a(u, v) = (f, v) ∀ v ∈ V,

where

(3.2) a(u, v) =

∫
Ω

∇u · ∇v dx.

We now introduce some notation. Denote the set of all interior edges of Th by
E i
h, the set of boundary edges by Eb

h, and define Eh = E i
h ∪ Eb

h. The length of any
edge e ∈ Eh will be denoted by he. Define a broken Sobolev space

H1(Ω, Th) = {v ∈ L2(Ω) : vT = v|T ∈ H1(T ) ∀ T ∈ Th}.

For any e ∈ E i
h, there are two triangles T+ and T− such that e = ∂T+∩∂T−. Let

n− be the unit normal of e pointing from T− to T+, and n+ = −n−. (cf. Fig. 3.1).
For any v ∈ H1(Ω, Th), we define the jump and mean of v on e by

[[v]] = v−n− + v+n+ and {{v}} =
1

2
(v− + v+), respectively,

where v± = v
∣∣
T±

. Similarly, define for w ∈ H1(Ω, Th)2 the jump and mean of w on

e ∈ E i
h by

[[w]] = w− · n− + w+ · n+, and {{w}} =
1

2
(w− + w+), respectively,

where w± = w|T± .
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Figure 3.1. Two neighboring triangles T− and T+ that share the
edge e = ∂T− ∩ ∂T+ with initial node A and end node B and unit
normal ne. The orientation of ne = n− = −n+ equals the outer
normal of T−, and hence, points into T+.
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For any edge e ∈ Eb
h, there is a triangle T ∈ Th such that e = ∂T ∩∂Ω. Let ne be

the unit normal of e that points outside T . For any v ∈ H1(T ), we set on e ∈ Eb
h,

[[v]] = vne and {{v}} = v,

and for w ∈ H1(T )2,

[[w]] = w · ne, and {{w}} = w.

We recall the following trace inequality on Vh [11, 19].

Lemma 3.1. There exists a positive C independent of h such that for vh ∈ V r
h ,

(3.3) ‖vh‖L2(e) ≤ Ch−1/2
e ‖vh‖L2(T ) ∀T ∈ Th,

where e is an edge of T .

Throughout this section, Δ denotes the Laplacian.
The proof of the following lemma is similar to well-known discrete local efficiency

estimates [1, 38, 37, 30] in a posteriori error analysis of second order problems when
v = uh is the finite element solution. We state the result here and omit the proof.

Lemma 3.2. Let v ∈ Vh. Then there is a positive constant C independent of h
such that

(3.4)
∑
T∈Th

h2
T ‖f +Δv‖2L2(T ) ≤ C

( ∑
T∈Th

‖∇(u− v)‖2L2(T ) +Osc1(f)
2
)

and

(3.5)
∑
e∈Ei

h

he‖[[∇v]]‖2L2(e)
≤ C

( ∑
T∈Th

‖∇(u− v)‖2L2(T ) +Osc1(f)
2
)
,

where Osc1(f) is defined in (2.8).

Let Vc = Vh ∩ V be the conforming finite element space. The construction of an
enriching map Eh : Vh → Vc can be done by averaging [6, 7, 8]. Let p be any interior
node of the Lagrange Pr finite element space associated with the triangulation Th
and let Tp be the set of all triangles sharing the node p. For v ∈ Vh, define Ehv ∈ Vc

by

(3.6) Ehv(p) =
1

|Tp|
∑
T∈Tp

v|T (p)

where |Tp| is the cardinality of Tp. For all boundary nodes p, set Ehv(p) = 0. For
the rest of the section, we use this Eh.

We now present the applications of Lemma 2.1 to a wide range of discontinuous
finite element methods.

3.1. Classical nonconforming method. The discrete space is the Crouzeix-
Raviart [21] nonconforming P1 finite element space defined by

(3.7) Vh = {vh ∈ L2(Ω) : vh|T ∈ P1(T ) ∀T ∈ Th,
∫
e

[[v]] ds = 0 ∀ e ∈ Eh}.

Define the norm ‖ · ‖h by

(3.8) ‖v‖2h =
∑
T∈Th

∫
T

|∇v|2 dx.
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The nonconforming approximate solution uh ∈ Vh is obtained by solving

(3.9) ah(uh, v) = (f, v) ∀ v ∈ Vh,

where

(3.10) ah(w, v) =
∑
T∈Th

∫
T

∇w · ∇v dx ∀w, v ∈ Vh.

It is easy to check the assumptions (N1) and (N2). The enriching map Eh in (3.6)
satisfies [6, 7, 8, 30]

(3.11)
∑
T∈Th

h−2
T ‖Ehv − v‖2L2(T ) + ‖Ehv‖2V ≤ C‖v‖2h ∀ v ∈ Vh.

Therefore, the estimate (2.6) is valid for the nonconforming method (3.9).
We now verify the estimate (2.7). For this, let v, φ ∈ Vh and denote ψ = φ−Ehφ.

Using (3.3), (3.4), (3.5) and (3.11),

(f, ψ)− ah(v, ψ) = (f, ψ)−
∑
T∈Th

∫
T

∇v · ∇ψ dx = (f, ψ)−
∑
e∈Ei

h

∫
e

[[∇v]]{{ψ}} ds

≤ C
∑
T∈Th

‖f‖L2(T )‖φ− Ehφ‖L2(T )

+ C
∑
e∈Ei

h

‖[[∇v]]‖L2(e)‖{{φ− Ehφ}}‖L2(e)

≤ C

⎛
⎝ ∑

T∈Th

h2
T ‖f‖2L2(T ) +

∑
e∈Ei

h

he‖[[∇v]]‖2L2(e)

⎞
⎠

1/2

‖φ‖h

≤ C
(
‖u− v‖h +Osc1(f))‖φ‖h.

Therefore,

sup
φ∈Vh\{0}

(f, φ− Ehφ)− ah(v, φ− Ehφ)

‖φ‖h
≤ C

(
‖u− v‖h +Osc1(f)).

Hence, the estimate (2.9) holds for the nonconforming finite element method.

3.2. Discontinuous Galerkin (DG) methods. In this section, we present the
application of Lemma 2.1 to discontinuous Galerkin methods [3] for second order
elliptic problems.

The DG finite element space is defined by

Vh = {vh ∈ L2(Ω) : vh|T ∈ Pr(T ) ∀T ∈ Th}
for any r ≥ 1. Define the norm ‖ · ‖h on Vh by

‖v‖2h =
∑
T∈Th

∫
T

|∇v|2 dx+
∑
e∈Eh

σ

he
‖[[v]]‖2L2(e)

,

where σ > 0 is the stabilizing parameter.
The enriching map Eh in (3.6) satisfies [6, 7, 8, 30]

(3.12)
∑
T∈Th

h−2
T ‖Ehv − v‖2L2(T ) + ‖Ehv‖2V ≤ C‖v‖2h ∀ v ∈ Vh.

This validates the assumption (N3).
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In order to define DG methods, we introduce the following. Let Wh = Vh × Vh.
Given e ∈ Eh, define the local lifting operators re : L2(e)

2 → Wh and �e : L2(e) →
Wh by ∫

Ω

re(q) · τh dx =

∫
e

q · {{τh}} ds for all τh ∈ Wh,∫
Ω

�e(v) · τh dx =

∫
e

v [[τh]] ds for all τh ∈ Wh.

The global lifting operators r : L2(Eh)2 → Wh and � : L2(E i
h) → Wh,

r :=
∑
e∈Eh

re and � :=
∑
e∈Ei

h

�e

satisfy ∫
Ω

r(q) · τh dx =
∑
e∈Eh

∫
e

q · {{τh}} ds for all τh ∈ Wh,

∫
Ω

�(v) · τh dx =
∑
e∈Ei

h

∫
e

v · [[rh]] ds for all τh ∈ Wh.

The variational form of the DG methods [17] is to find uh ∈ Vh such that

(3.13) ah(uh, v) = (f, v) ∀ v ∈ Vh,

where for w, v ∈ Vh,

ah(w, v) =
∑
T∈Th

∫
T

∇w · ∇v dx−
∑
e∈Eh

∫
e

(
{{∇w}}[[v]] + θ{{∇v}}[[w]]

)
ds

+
∑
e∈Ei

h

∫
e

(
β · [[w]][[∇v]] + [[∇w]]β · [[v]]

)
ds

+

∫
Ω

α
[
r
(
[[w]]

)
+ �

(
β · [[w]]

)]
·
[
r
(
[[v]]

)
+ �

(
β · [[v]]

)]
ds

+
∑
e∈Eh

∫
e

σ

he
[[w]][[v]] ds

for θ = ±, α ∈ {0, 1}, β ∈ R
2 and σ > 0. Here θ = 1, β = (0, 0) and α = 0 give the

symmetric interior penalty method (SIPG) [22, 39, 2], θ = −1, β = (0, 0) and α = 0
give the nonsymmetric interior penalty method (NIPG) [36], and θ = 1, β ∈ R

2

and α = 1 give the local discontinuous Galerkin method (LDG) [20, 17].
Under the assumption σ ≥ σ∗ > 0 (σ∗ is sufficiently large for SIPG and σ∗ > 0

for NIPG and LDG), it is known [3] that there is a positive constant C such that
C‖v‖2h ≤ ah(v, v) for all v ∈ Vh. This verifies the assumption (N1).

For v ∈ V , w ∈ Vc and vh ∈ Vh, note that

a(v, w)− ah(vh, w) =
∑
T∈Th

∫
T

∇(v − vh) · ∇w dx−
∑
e∈Eh

∫
e

{{∇w}}[[v − vh]]ds

+
∑
e∈Ei

h

∫
e

β · [[∇w]][[v − vh]] ds
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where we have used the fact that for all e ∈ Eh, [[v]] = 0. A use of the trace
inequality (3.3) implies that

|a(v, w)− ah(vh, w)| ≤
∑
T∈Th

‖∇(v − vh)‖L2(T )‖∇w‖L2(T )

+
∑
e∈Eh

‖{{∇w}}‖L2(e)‖[[v − vh]]‖L2(e)

+
∑
e∈Ei

h

‖β · [[∇w]]‖L2(e)‖[[v − vh]]‖L2(e)

≤
∑
T∈Th

‖∇(v − vh)‖L2(T )‖∇w‖L2(T )

+ Cσ∗,β

( ∑
T∈Th

‖∇w‖2L2(T )

)1/2(∑
e∈Eh

σ

he
‖[[v−vh]]‖2L2(e)

)1/2

.

Hence, the assumption (N2) holds.
We now verify the estimate (2.7). Let v, φ ∈ Vh and denote ψ = φ−Ehφ. Then

(f, ψ)− ah(v, ψ) =
∑
T∈Th

∫
T

(
f +Δv)ψ dx−

∑
e∈Ei

h

∫
e

[[∇v]]{{ψ}} ds

+ θ
∑
e∈Eh

∫
e

{{∇ψ}}[[v]]ds −
∑
e∈Eh

∫
e

σ

he
[[v]][[ψ]] ds

−
∑
e∈Ei

h

∫
e

α
(
β · [[v]][[∇ψ]] + [[∇v]]β · [[ψ]]

)
ds

−
∫
Ω

[
r
(
[[v]]

)
+ �

(
β · [[v]]

)]
·
[
r
(
[[ψ]]

)
+ �

(
β · [[ψ]]

)]
ds.

Using the bounds for r and � in [3] that

‖r([[v]])‖2L2(Ω) ≤ C
∑
e∈Eh

1

he
‖[[v]]‖2L2(e)

∀ v ∈ Vh,

‖�(β · [[v]])‖2L2(Ω) ≤ C
∑
e∈EI

h

1

he
‖[[v]]‖2L2(e)

∀ v ∈ Vh,

the trace inequality (3.3), (3.12) and Lemma 3.2, we obtain

sup
φ∈Vh\{0}

(f, φ− Ehφ)− ah(v, φ− Ehφ)

‖φ‖h
≤ C

(
‖u− v‖h +Osc1(f))

and hence we conclude the error estimate in (2.9) for the DG methods in (3.13).

3.3. Weakly over-penalized symmetric interior penalty (WOPSIP)
method. Here we highlight that the above analysis is also applicable to over-
penalized interior penalty methods. We consider the weakly over-penalized sym-
metric interior penalty method in [15]. For any v ∈ H1(Ω, Th), define on e ∈ Eh,

πe([[v]]) =
1

he

∫
e

[[v]]ds.
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Note that πe([[u]]) = 0 for all e ∈ Eh. Define

Vh = {vh ∈ L2(Ω) : vh|T ∈ P1(T ) ∀T ∈ Th},

and the norm ‖ · ‖h on Vh by

‖v‖2h =
∑
T∈Th

∫
T

|∇v|2 dx+
∑
e∈Eh

1

h2
e

πe

(
[[v]]

)2
.

The WOPSIP method is to find uh ∈ Vh such that

ah(uh, v) = (f, v) ∀ v ∈ Vh,

where for w, v ∈ Vh,

ah(w, v) =
∑
T∈Th

∫
T

∇w · ∇v dx+
∑
e∈Eh

1

h2
e

πe([[w]])πe([[v]]).

Let Eh : Vh → Vc be defined as in (3.6), where Vc is the conforming P1 finite
element space. Then it can be seen [6, 7, 8] that∑

T∈Th

h−2
T ‖Ehv − v‖2L2(T ) + ‖Ehv‖2V ≤ C‖v‖2h ∀ v ∈ Vh.

Note that

ah(v, v) = ‖v‖2h ∀ v ∈ Vh

and for v ∈ V , w ∈ Vc and vh ∈ Vh,

|a(v, w)− ah(vh, w)| =
∑
T∈Th

∫
T

∇(v − vh) · ∇w dx ≤ C‖v − vh‖h‖w‖V .

We now verify a variant of (2.7). Let v, φ ∈ Vh and ψ = φ − Ehφ. Then using
(3.4) and (3.5), we get

(f, ψ)− ah(v, ψ) = (f, ψ)−
∑
T∈Th

∫
T

∇v · ∇ψ dx−
∑
e∈Eh

1

h2
e

πe([[v]])πe([[ψ]])

=
∑
T∈Th

∫
T

fψ dx−
∑
e∈EI

∫
e

[[∇v]]{{ψ}} ds

−
∑
e∈Ei

h

∫
e

{{∇v}}πe([[ψ]]) ds+
∑
e∈Eh

1

h2
e

πe([[u− v]])πe([[ψ]])

≤ C
(
‖u− v‖h+Osc1(f)

)
‖φ‖h+C

( ∑
T∈Th

h2
T ‖∇u‖2L2(T )

)1/2

‖φ‖h.

Therefore,

sup
φ∈Vh\{0}

(f, φ− Ehφ)− ah(v, φ− Ehφ)

‖φ‖h
≤ C

(
‖u− v‖h + Osc1(f)

)

+ C

( ∑
T∈Th

h2
T ‖∇u‖2L2(T )

)1/2

.
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Hence,

‖u− uh‖h ≤ C

⎡
⎣ inf
v∈Vh

‖u− v‖h +Osc1(f) +

( ∑
T∈Th

h2
T ‖∇u‖2L2(T )

)1/2
⎤
⎦ .

The error estimate in (3.3) is slightly different compared to the other DG methods.
However, the estimate is still optimal up to the regularity of u.

Remark 3.3. We note that analogous error estimates hold for other DG formulations
in [3, Table 3.2] and in [13].

4. Fourth order problems (k = 2)

The model problem is to find u ∈ H2
0 (Ω) such that

(4.1) a(u, v) = (f, v) ∀ v ∈ H2
0 (Ω),

where

a(w, v) =

∫
Ω

D2w : D2v dx ∀w, v ∈ H2
0 (Ω),

D2w : D2v =
2∑

i,j=1

∂2w

∂xi∂xj

∂2v

∂xi∂xj
.

Therefore, for this section V = H2
0 (Ω) and the norm ‖ · ‖V = | · |H2(Ω).

We define the Sobolev space Hs(Ω, Th) associated with the triangulation Th as
follows:

Hs(Ω, Th) = {v ∈ L2(Ω) : vT = v|T ∈ Hs(T ) ∀ T ∈ Th}.
For this section, we slightly alter the definition of the jumps and means.

For any e ∈ E i
h, there are two triangles T+ and T− such that e = ∂T+ ∩ ∂T−.

Let ne be the unit normal of e pointing from T− to T+ (cf. Fig. 3.1). For any
v ∈ H2(Ω, Th), we define the jump and mean of the normal derivative of v on e by[[

∂v

∂n

]]
=

∂v+
∂ne

∣∣∣∣
e

− ∂v−
∂ne

∣∣∣∣
e

and

{{
∂v

∂n

}}
=

1

2

(
∂v+
∂ne

∣∣∣∣
e

+
∂v−
∂ne

∣∣∣∣
e

)
,

where v± = v
∣∣
T±

.

Similarly, for any v ∈ H3(Ω, Th), we define the jump and mean of the second
order normal derivative across e by[[

∂2v

∂n2

]]
=

∂2v+
∂n2

e

∣∣∣∣
e

− ∂2v−
∂n2

e

∣∣∣∣
e

and

{{
∂2v

∂n2

}}
=

1

2

(
∂2v+
∂n2

e

∣∣∣∣
e

+
∂2v−
∂n2

e

∣∣∣∣
e

)
.

For any edge e ∈ Eb
h, there is a triangle T ∈ Th such that e = ∂T ∩ ∂Ω. Let ne

be the unit normal of e that points outside T . For any v ∈ H2(T ), we set[[
∂v

∂n

]]
= −∂vT

∂ne
,

and for any v ∈ H3(T ), we set {{
∂2v

∂n2

}}
=

∂2v
T

∂n2
e

.

Let Vc ⊂ H2
0 (Ω) be the Hsieh-Clough-Tocher finite element space associated with

Th [19, 11]. As in the previous section, the linear map Eh : Vh −→ Vc is constructed
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by averaging [12, 16]. Let N be any (global) degree of freedom of Vc, i.e., N is either
the evaluation of a shape function or its first order derivatives at an interior node
of Th, or the evaluation of the normal derivative of a shape function at a node on
an interior edge. For vh ∈ Vh, we define

(4.2) N(Ehvh) =
1

|TN |
∑

T∈TN

N(vT ),

where TN is the set of triangles in Th that share the degree of freedom, N and |TN |
is the number of elements of TN .

We now derive the following discrete local efficiency estimates.

Lemma 4.1. Let v ∈ Vh. Then there is a positive constant C independent of h
such that ∑

T∈Th

h4
T ‖f −Δ2v‖2L2(T ) ≤ C

( ∑
T∈Th

‖D2(u− v)‖2L2(T ) +Osc2(f)
2
)
,(4.3)

∑
e∈Ei

h

he‖[[∂2v/∂n2]]‖2L2(e)
≤ C

( ∑
T∈Th

‖D2(u− v)‖2L2(T ) +Osc2(f)
2
)
,(4.4)

where Osc2(f) is defined in (2.8).

Proof. The proof is again based on bubble function techniques [16, 38].
Let v ∈ Vh and f̄ ∈ Pr−2(T ) for an arbitrary T ∈ Th. Let bT ∈ P6(T )∩H2

0 (T ) be
the bubble function defined on T such that bT (xT ) = 1, where xT is the barycenter
of T . Let φ = bT (f̄ − Δ2v) on T and extend it to be zero on Ω\T . We have for
some mesh independent constants C1 and C2 that

C1‖f̄ −Δ2v‖L2(T ) ≤ ‖φ‖L2(T ) ≤ C2‖f̄ −Δ2v‖L2(T ).

It follows from (4.1) and integration by parts that

(f −Δ2v, φ) =

∫
Ω

fφ dx−
∫
T

Δ2v φ dx

=

∫
Ω

D2u : D2φ dx−
∫
T

D2v : D2φ dx =

∫
T

D2(u− v) : D2φ dx.

Using a standard inverse estimate [11, 19], we find

C1‖f̄ −Δ2v‖2L2(T ) ≤
∫
T

(f̄ −Δ2v)φ dx =

∫
T

(f̄ − f)φ dx+

∫
T

(f −Δ2v)φ dx

=

∫
T

(f̄ − f)φ dx+

∫
T

D2(u− v) : D2φ dx

≤ ‖f − f̄‖L2(T )‖φ‖L2(T ) + |u− v|H2(T )|φ|H2(T )

≤
(
‖f − f̄‖L2(T ) + Ch−2

T |u− v|H2(T )

)
‖φ‖L2(T )

≤ C
(
‖f − f̄‖L2(T ) + h−2

T |u− v|H2(T )

)
‖f̄ −Δ2v‖L2(T ),

which implies

h2
T ‖f̄ −Δ2v‖L2(T ) ≤ C

(
|u− v|H2(T ) + h2

T ‖f − f̄‖L2(T )

)
.

Using the triangle inequality, we obtain

h2
T ‖f −Δ2v‖L2(T ) ≤ C

(
|u− v|H2(T ) + h2

T ‖f − f̄‖L2(T )

)
which implies (4.3).
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We now prove the second estimate (4.4). Let e ∈ E i
h and T± be two triangles

sharing the edge e. Let Te be the set of the two triangles T± and let ne denote the
unit normal of e pointing from T− to T+. (cf. Fig. 3.1).

Let β be the jump [[∂2v/∂n2]] across e and extend it outside e so that it is
constant along the lines perpendicular to e. Let ζ1 ∈ Pr−1(T+ ∪ T−) be defined by

(4.5) ζ1 = 0 on the edge e and
∂ζ1
∂ne

= β.

A simple scaling argument shows that

|ζ1|H1(T±) ≈
(∫

e

he

[[
∂2v

∂n2

]]2
ds
)1/2

,(4.6)

‖ζ1‖L∞(T±) ≈
(∫

e

he

[[
∂2v

∂n2

]]2
ds
)1/2

.(4.7)

Next we define ζ2 ∈ P8(T+ ∪ T−) by the following properties:

(i) ζ2 vanishes to the first order on (∂T+∪∂T−)\e (i.e., the union of the closed
line segments AP+, AP−, BP+ and BP− in Fig. 3.1).

(ii) ζ2 is positive on the (open) edge e.

(iii)

∫
T+∪T−

ζ2 dx = |T+|+ |T−|.

By scaling we have ∫
e

ζ2 ds ≈ |e|,(4.8)

|ζ2|H1(T±) ≈ 1 ≈ ‖ζ2‖L∞(T±).(4.9)

It follows from (4.1), property (i) in the definition of ζ2, (4.5), (4.8), and inte-
gration by parts that

C

∫
e

[[
∂2v

∂n2

]]2
ds ≤

∫
e

β2ζ2 ds =

∫
e

[[
∂2v

∂n2

]]
∂ζ1
∂ne

ζ2 ds =

∫
e

[[
∂2v

∂n2

]]
∂(ζ1ζ2)

∂ne
ds

(4.10)

= −
∑
T∈Te

(∫
T

D2v : D2(ζ1ζ2) dx+

∫
T

(
∇ ·D2v

)
· ∇(ζ1ζ2) dx

)

= −
∑
T∈Te

(∫
T

D2v : D2(ζ1ζ2) dx−
∫
T

Δ2v (ζ1ζ2) dx

)

=
∑
T∈Te

∫
T

D2(u− v) : D2(ζ1ζ2) dx−
∑
T∈Te

∫
T

D2u : D2(ζ1ζ2) dx

+
∑
T∈Te

∫
T

Δ2v (ζ1ζ2) dx

=
∑
T∈Te

∫
T

D2(u− v) : D2(ζ1ζ2) dx−
∑
T∈Te

∫
T

(f −Δ2v)(ζ1ζ2) dx.

In view of the Poincaré inequality

‖ζ1ζ2‖L2(T±) ≤ Ch2
T |ζ1ζ2|H2(T±)
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and the inverse inequality

|ζ1ζ2|H2(T±) ≤ Ch−1
T |ζ1ζ2|H1(T±) ≤ Ch−1

e |ζ1ζ2|H1(T±),

we deduce from (4.10),

∫
e

[[
∂2v

∂n2

]]2
ds ≤ C

∑
T∈Te

(
|u− v|H2(T ) + h2

T ‖f −Δ2v‖L2(T )

)
|ζ1ζ2|H2(T )

(4.11)

≤ C
∑
T∈Te

(
|u− v|H2(T ) + h2

T ‖f −Δ2v‖L2(T )

)
h−1
e |ζ1ζ2|H1(T±).

From (4.6), (4.7) and (4.9) we have

|ζ1ζ|H1(T±) ≤ |ζ1|L∞(T±)|ζ2|H1(T±) + |ζ1|H1(T±)|ζ2|L∞(T±)

≤ C

(∫
e

he

[[
∂2v

∂n2

]]2
ds

)1/2

,

which together with (4.11) implies

(4.12)

(∫
e

he

[[
∂2v

∂n2

]]2
ds

)1/2

≤ C
∑
T∈Te

(
|u− v|H2(T ) + h2

T ‖f −Δ2v‖L2(T )

)
.

The estimate (4.4) now follows from (4.3) and (4.12). �

We will now present the applications of Lemma 2.1 to a few discontinuous finite
element methods for fourth order problems.

4.1. Morley nonconforming method. The discrete space [32] is

Vh = {v ∈ L2(Ω) : v|T ∈ P2(T ) ∀T ∈ Th,
v is continuous at all the vertices of Th,
∂v/∂n is continuous at the midpoints of the edges of Th,
v = 0 at all the vertices on ∂Ω,

∂v/∂n = 0 at all the midpoints of the edges on ∂Ω} .

The nonconforming method is to find uh ∈ Vh such that

ah(uh, v) = (f, v) ∀ v ∈ Vh,

where for w, v ∈ Vh,

ah(w, v) =
∑
T∈Th

∫
T

D2w : D2v dx.

Note that ah is also well defined on Vc. Define the norm ‖v‖h by ‖v‖2h = ah(v, v).
To verify (N2), let v ∈ V , w ∈ Vc and vh ∈ Vh. We then note that

|a(v, w)− ah(vh, w)| ≤
∑
T∈Th

∫
T

|D2(v − vh)| |D2w| dx ≤ ‖v − vh‖h‖w‖V .
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The map Eh defined in (4.2) satisfies the estimate [12, 16]∑
T∈Th

(
h−4
T ‖v − Ehv‖2L2(T ) + h−2

T |v − Ehv|2H1(T )

)

+ ‖Ehv‖2V ≤ C‖v‖2h ∀ vh ∈ Vh.

(4.13)

Let v, φ ∈ Vh and ψ = φ − Ehφ. For any v ∈ Vh and for all vertices p in Th, we
have

(4.14) Ehv(p) = v(p).

We find that

ah(v, φ− Ehφ) =
∑
T∈Th

∫
T

D2v : D2(φ− Ehφ) dx

=
∑
T∈Th

∫
∂T

( ∂2v

∂n2

∂(φ− Ehφ)

∂n
+

∂2v

∂τ∂n

∂(φ− Ehφ)

∂τ

)
ds

= −
∑
e∈Ei

h

∫
e

[[
∂2v

∂n2

]]{{
∂(φ− Ehφ)

∂n

}}
ds.

Here we have used the following consequence of (4.14):∑
T∈Th

∫
∂T

∂2v

∂τ∂n

∂(φ− Ehφ)

∂τ
ds =

∑
T∈Th

∑
e∈∂T

∂2v

∂τ∂n

∫
e

∂(φ− Ehφ)

∂τ
ds = 0,(4.15)

where ∂/∂τ denotes the tangential derivative along ∂T .

Using (4.3) and (4.4), we find that

(f, ψ)− ah(v, ψ) = (f, ψ) +
∑
e∈Ei

h

∫
e

[[
∂2v

∂n2

]]{{
∂ψ

∂n

}}
ds

≤ C

⎛
⎝ ∑

T∈Th

h4
T ‖f‖2L2(T ) +

∑
e∈Ei

h

he‖[[∂2v/∂n2]]‖2L2(e)

⎞
⎠

1/2

‖φ‖h

≤ C (‖u− v‖h +Osc2(f)) ‖φ‖h.
Therefore,

sup
φ∈Vh\{0}

(f, φ− Ehφ)− ah(v, φ− Ehφ)

‖φ‖h
≤ C (‖u− v‖h +Osc2(f)) .

Hence, the estimate (2.9) holds true.

4.2. C0 interior penalty method. Define the space Vh as

Vh = {v ∈ H1
0 (Ω) : v|T ∈ P2(T ) ∀T ∈ Th}

and the norm ‖ · ‖h on Vh by

‖v‖2h =
∑
T∈Th

∫
T

D2v : D2v dx+
∑
e∈Eh

∫
e

σ

he
[[∂v/∂n]]2ds ∀v ∈ Vh,

where σ > 0 is the stabilizing parameter.
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The C0 interior penalty method [12, 23] for (4.1) is to find uh ∈ Vh such that

ah(uh, v) = (f, v) ∀v ∈ Vh,

where for wh, vh ∈ Vh,

ah(wh, vh) =
∑
T∈Th

∫
T

D2wh : D2vh dx+
∑
e∈Eh

∫
e

{{
∂2wh

∂n2

}}[[
∂vh
∂n

]]
ds

(4.16)

+
∑
e∈Eh

∫
e

{{
∂2vh
∂n2

}}[[
∂wh

∂n

]]
ds+

∑
e∈Eh

σ

he

∫
e

[[
∂wh

∂n

]] [[
∂vh
∂n

]]
ds.

Note that ah is well defined on Vc. The method is stable when σ is sufficiently
large. More precisely,

(4.17) ah(v, v) ≥ C‖v‖2h ∀ v ∈ Vh

for σ ≥ σ∗ > 0 and σ∗ sufficiently large.
The map Eh defined in (4.2) satisfies the estimate [12, 16]∑

T∈Th

(
h−4
T ‖v − Ehv‖2L2(T ) + h−2

T |v − Ehv|2H1(T )

)

+ ‖Ehv‖2V ≤ C‖v‖2h ∀ vh ∈ Vh.

(4.18)

Let v ∈ V , w ∈ Vc and vh ∈ Vh. Then

a(v, w)− ah(vh, w) =
∑
T∈Th

∫
T

D2(v − vh) : D
2w dx+

∑
e∈Eh

∫
e

{{
∂2w

∂n2

}}[[
∂vh
∂n

]]
ds

≤ Cσ∗‖v − vh‖h‖w‖V .

Again, using the fact that for any v ∈ Vh, Ehv(p) = v(p) for all v ∈ Vh and
vertices p in Th, we find the following analog of (4.15) for v, φ ∈ Vh and ψ = φ−Ehφ:

∑
T∈Th

∫
T

D2v : D2ψ dx =
∑
T∈Th

∫
∂T

( ∂2v

∂n2

∂ψ

∂n
+

∂2v

∂τ∂n

∂ψ

∂τ

)
ds(4.19)

= −
∑
e∈Eh

∫
e

{{
∂2v

∂n2

}}[[
∂ψ

∂n

]]
ds−

∑
e∈Ei

h

∫
e

{{
∂ψ

∂n

}}[[
∂2v

∂n2

]]
ds.

Then using (4.18) and Lemma 4.1, we find

(f, ψ)− ah(v, ψ) = (f, ψ) +
∑
e∈Ei

h

∫
e

[[
∂2v

∂n2

]]{{
∂ψ

∂n

}}
ds

−
∑
e∈Eh

∫
e

{{
∂2ψ

∂n2

}}[[
∂v

∂n

]]
ds−

∑
e∈Eh

σ

he

∫
e

[[
∂v

∂n

]] [[
∂ψ

∂n

]]
ds

≤ Cσ∗

(
‖u− v‖h +Osc2(f)

)
‖φ‖h.

Hence, the assumption (2.7) is valid and the estimate (2.9) holds.
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4.3. Discontinuous Galerkin methods. The model problem (4.1) is rewritten
in the following form. Find u ∈ H2

0 (Ω) such that

a(u, v) = (f, v) ∀ v ∈ H2
0 (Ω),

where

a(w, v) =

∫
Ω

ΔwΔv dx ∀w, v ∈ H2
0 (Ω),

and Δ denotes the Laplacian. Set V = H2
0 (Ω) and ‖v‖V = |Δv|L2(Ω) for all v ∈ V .

For this last section, we switch back to the definitions of jump and mean in Section
3.

We now prove the following lemma.

Lemma 4.2. Let v ∈ Vh. Then there is a positive constant C independent of h
such that

∑
T∈Th

h4
T ‖f −Δ2v‖2L2(T ) ≤ C

( ∑
T∈Th

‖Δ(u− v)‖2L2(T ) +Osc2(f)
2
)
,(4.20)

∑
e∈Ei

h

he‖[[Δv]]‖2L2(e)
≤ C

( ∑
T∈Th

‖Δ(u− v)‖2L2(T ) +Osc2(f)
2
)
,(4.21)

and

(4.22)
∑
e∈Ei

h

h3
e‖[[∇Δv]]‖2L2(e)

≤ C
( ∑
T∈Th

‖Δ(u− v)‖2L2(T ) +Osc2(f)
2
)
,

where Osc2(f) is defined in (2.8).

Proof. The proofs of (4.20) and (4.21) are similar to the proofs of (4.3) and (4.4),
respectively, and hence we omit the proofs.

We will prove (4.22) using the bubble function techniques [38, 16, 26]. Let e ∈ E i
h

and T± be the triangles sharing this edge e. Denote by Te the patch of the two
triangles T± (cf. Fig. 3.1). Consider [[∇Δv]] on e and extend it to T± by constants
along the lines orthogonal to e. Denote the resulting function ζ1 ∈ Pr−3(Te). It
is then obvious that ζ1 = [[∇Δv]] on e. Construct a piecewise polynomial bubble
function ζ2 ∈ H2

0 (Te) such that ζ2(xe) = 1, where xe is the midpoint of e. Denote
φ = ζ1ζ2 and extend it to be zero on Ω\Te. We have by scaling [37],

C‖φ‖L2(Te) ≤
(∫

e

he[[∇Δv]]2ds

)1/2

,(4.23)
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for some mesh independent constant C. Then, using (4.1), Poincaré’s inequality
and a standard inverse inequality, we have

∫
e

[[∇Δv]]2ds ≤ C

∫
e

[[∇Δv]]ζ1ζ2ds = C

( ∑
T∈Te

∫
T

(
∇Δv · ∇φ+Δ2v φ

)
dx

)

= C

( ∑
T∈Te

∫
T

(
−ΔvΔφ+Δ2v φ

)
dx

)
+ C

∑
T∈Te

∫
∂T

[[Δv]]{{∇φ}} ds

= C

( ∑
T∈Te

∫
T

Δ(u− v)Δφ dx−
∑
T∈Te

∫
T

(f −Δ2v)φ dx

)

+ C
∑
T∈Te

∫
∂T

[[Δv]]{{∇φ}} ds

≤ C

( ∑
T∈Te

(
h4
T ‖f −Δ2v‖2L2(T ) + |Δ(u− v)|2L2(T )

))1/2

h−2
e ‖φ‖L2(Te)

+ C

( ∑
T∈Te

∫
∂T

he[[Δv]]2ds

)1/2

h−2
e ‖φ‖L2(Te)

and then we use (4.20) and (4.21) to complete the proof of (4.22). �

4.3.1. Symmetric interior penalty galerkin (SIPG) method. Let

Vh = {v ∈ L2(Ω) : v|T ∈ Pr(T ) ∀T ∈ Th}

and define the norm ‖ · ‖h on Vh by

‖v‖2h =
∑
T∈Th

∫
T

|Δv|2 dx+
∑
e∈Eh

∫
e

1

he
[[∇v]]2ds+

∑
e∈Eh

∫
e

1

h3
e

[[v]]2ds ∀v ∈ Vh.

The symmetric interior penalty method [4, 24, 33] is to find uh ∈ Vh such that

ah(uh, v) = (f, v) ∀v ∈ Vh,

where for w, v ∈ Vh,

ah(w, v) =
∑
T∈Th

∫
T

ΔwΔv dx+
∑
e∈Eh

∫
e

{{∇Δw}}[[v]]ds −
∑
e∈Eh

∫
e

{{Δw}}[[∇v]]ds

+
∑
e∈Eh

∫
e

{{∇Δv}}[[w]]ds −
∑
e∈Eh

∫
e

{{Δv}}[[∇w]]ds

+
∑
e∈Eh

σ1

he

∫
e

[[∇w]][[∇v]]ds +
∑
e∈Eh

σ2

h3
e

∫
e

[[w]][[v]]ds

and σ1 > 0, σ2 > 0 are penalty parameters.
For sufficiently large σ1 and σ2, it holds that

ah(v, v) ≥ C‖v‖2h ∀v ∈ Vh,
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where C is a mesh independent constant. Note for v ∈ V , w ∈ Vc and vh ∈ Vh that

a(v, w)− ah(vh, w) =
∑
T∈Th

∫
T

Δ(v − vh)Δw dx+
∑
e∈Eh

∫
e

{{∇Δw}}[[v − vh]]ds

−
∑
e∈Eh

∫
e

{{Δw}}[[∇(v − vh)]]ds

≤ C‖v − vh‖h‖w‖V .

The map Eh defined in (4.2) satisfies the estimate [12, 16, 26]∑
T∈Th

(
h−4
T ‖v − Ehv‖2L2(T ) + h−2

T |v − Ehv|2H1(T )

)

+ ‖Ehv‖2V ≤ C‖v‖2h ∀ vh ∈ Vh.

(4.24)

Let v, φ ∈ Vh and ψ = φ− Ehφ. Then after two integration by parts and using
earlier arguments with (4.20)–(4.22), we find that

(f, ψ)− ah(v, ψ) =
∑
T∈Th

∫
T

(f −Δ2v)ψ dx+
∑
e∈Eh

∫
e

[[∇Δv]]{{ψ}}ds

−
∑
e∈Eh

∫
e

[[Δv]]{{∇ψ}}ds −
∑
e∈Eh

∫
e

{{∇Δψ}}[[v]]ds

+
∑
e∈Eh

∫
e

{{Δψ}}[[∇v]]ds −
∑
e∈Eh

σ1

he

∫
e

[[∇v]][[∇ψ]]ds

−
∑
e∈Eh

σ2

h3
e

∫
e

[[v]][[ψ]]ds

≤ C
(
‖u− v‖h +Osc2(f)

)
‖φ‖h.

Therefore, the assumption (2.7) is valid and hence the estimate (2.9) holds.

5. Conclusions

We have developed a new approach to discontinuous finite element methods and
proved that all the well-known classical nonconforming methods and discontinuous
Galerkin methods for second and fourth order elliptic problems are quasi-optimal up
to higher order data oscillations, using only the weak formulations of the boundary
value problems. Since the analysis involves techniques from a priori error analysis
and a posteriori error analysis, it may be referred to as a medius error analysis.

This approach puts discontinuous finite element methods on an equal footing
with conforming finite element methods in the sense that the first stage of the a
priori error analysis does not require the elliptic regularity theory. It is particularly
useful for more complicated problems (such as interface problems) where the exact
solution u has low regularity, i.e., u ∈ Hs(Ω), where s ≤ 3/2 for second order
problems and s ≤ 7/2 for fourth order problems.

To keep the technicalities to a minimum, the results in this paper are presented
for simple model problems. With appropriate modifications these results can be
extended to second order mixed boundary value problems, interface problems, non-
homogeneous Dirichlet problems and fourth order problems with different boundary
conditions.
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The application of this new approach to hp error estimates and nonconforming
meshes will be investigated in the near future.
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