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APPROXIMATION OF THE DISCONTINUITIES

OF A FUNCTION BY ITS CLASSICAL ORTHOGONAL

POLYNOMIAL FOURIER COEFFICIENTS

GEORGE KVERNADZE

Abstract. In the present paper, we generalize the method suggested in an
earlier paper by the author and overcome its main deficiency.

First, we modify the well-known Prony method, which subsequently will
be utilized for recovering exactly the locations of jump discontinuities and
the associated jumps of a piecewise constant function by means of its Fourier
coefficients with respect to any system of the classical orthogonal polynomials.

Next, we will show that the method is applicable to a wider class of func-
tions, namely, to the class of piecewise smooth functions—for functions which
piecewise belong to C2[−1, 1], the locations of discontinuities are approximated
to within O(1/n) by means of their Fourier-Jacobi coefficients. Unlike the pre-
vious one, the generalized method is robust, since its success is independent
of whether or not a location of the discontinuity coincides with a root of a

classical orthogonal polynomial. In addition, the error estimate is uniform for
any [c, d] ⊂ (−1, 1).

To the end, we discuss the accuracy, stability, and complexity of the method
and present numerical examples.

1. Introduction

Truncated Fourier series of functions with jump discontinuous are known to ex-
hibit the Gibbs phenomenon, which makes these partial sums a poor approximation
tool. However, if the locations of the singularities and the associated jumps of the
function are known, then a number of spectral methods for the reconstruction of
the function are already available. Thus, it is essential to accurately recover the
locations of singularities and magnitudes of jumps utilizing only Fourier coefficients
of a function.

This problem was studied by several authors and the methods suggested by them
are applicable if a finite number of Fourier coefficients of a discontinuous function
with respect to the trigonometric or Jacobi polynomial system are known. (See
Banerjee and Geer [2], Bauer [3], Cai et al. [4], Eckhoff [5, 6, 7], Gelb and Tadmor
[10, 11], Kvernadze [13, 14], Mhaskar and Prestin [16, 17, 18], and the indicated
references.)

The first explicit method for recovering the singularities of a piecewise smooth
function by means of the Fourier coefficients with respect to an orthonormal system
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of algebraic polynomials, namely, the Chebyshev system, was introduced by Eckhoff
[5]. According to the proposed method, if a function has a finite number, M , of
jump discontinuities, then approximations to the locations of singularities are found
as solutions of a certain Mth degree polynomial equation. An accuracy of the order
O(1/n) for recovery of the locations of discontinuities was predicted and numerically
confirmed.

In [13] we obtained an identity determining the jumps of a piecewise continuous
function of bounded harmonic variation by means of its Fourier partial sums with
respect to a generalized Jacobi system of polynomials. In particular,

Theorem 1.1. Let r = 0, 1, · · · , α > −1, β > −1, and f ∈ HBV . Then the
identity

(1.1) lim
n→∞

(S
(α,β)
n )(2r+1)(f, x)

n2r+1
=

(−1)r(1− x2)−r−1/2

(2r + 1)π
[f ](x)

is valid for each fixed x ∈ (−1, 1).

Here, and elsewhere, S
(α,β)
n (f, x) is the nth partial sum of the Fourier series of

the function f with respect to the Jacobi system of orthonormal polynomials (see
Table 1), and [f ](x) ≡ f(x+)− f(x−). For the exact definition of HBV , the class
of functions of harmonic bounded variation, consult [22].

According to the identity (1.1), for a fixed r and sufficiently large n, the largest lo-
cal maximum of the absolute value of the differentiated partial sums of the Fourier-
Jacobi series occurs in the vicinity of the actual points of discontinuity of the
function. Hence, the locations of discontinuities may be identified and approxi-
mated “graphically”, i.e., looking for relative sharp local spikes of the graph of a
differentiated Fourier-Jacobi partial sum.

Later, Gelb and Tadmor [11], and Mhaskar and Prestin [17] proposed two new
methods. In [11] concentration kernels Kε(·) were introduced, depending on the
small parameter ε. The kernels satisfy the condition Kε ∗ f(x) = [f ](x) + O(ε)
and thus recover both the location and amplitude of all singularities. In particu-
lar, the authors have considered concentration kernels with respect to the Fourier-
Gegenbauer (with nonpositive indices) partial sums. The authors studied the ac-
curacy of approximations. For example,

|π
√
1− x2

n
(S(α,α)

n )′(f, x)− [f ](x)| ≤ Const
log n

n(1− x2)α/2+1/4
,

where −1 < α ≤ 0 and −1 + Const /n2 < x < 1− Const /n2.
Mhaskar and Prestin [17] proposed a class of algebraic polynomial frames that

can be used to detect discontinuities in derivatives of all orders of a function. A
rate of convergence of the frame operators has been studied at the vicinity of and
away from the singularity points. The locations of singularities are approximated
to within O(1/n).

In the present paper, we generalize the method suggested by us in [15] and
overcome its main deficiency.

First, we modify the well-known Prony method [19], which subsequently will be
utilized for recovering exactly the locations of jump discontinuities and the associ-
ated jumps of a piecewise constant function by means of its Fourier coefficients with
respect to any system of the classical orthogonal polynomials. For the trigonometric
system the method essentially matches the Prony method.
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Next, we will show that the method is applicable to a wider class of functions,
namely, to the class of piecewise smooth functions—for functions which piecewise
belong to C2[−1, 1], the locations of discontinuities are approximated to within
O(1/n) by means of their Fourier-Jacobi coefficients. For functions with continuous
derivatives between the jump discontinuities the accuracy of approximation is by
an order better, O(1/n2).

Unlike the previous one, the generalized method is robust, since its success is
independent of whether or not a location of the singularity of a function coincides
with a root of a classical orthogonal polynomial. In addition, the error estimate is
uniform for any [c, d] ⊂ (−1, 1).

To the end, we discuss the accuracy, stability, and complexity of the method and
present numerical examples.

2. Preliminaries

Throughout this paper we use the following general notation: N, Z+, Z, R, and
C are the sets of positive integers, nonnegative integers, integers, real numbers, and
complex numbers, respectively.

If b = (b1, b2, . . ., bM ) ∈ C
M is a column vector, then ||b|| = max1≤m≤M |bm| is

its �∞ norm. By ||A|| = sup||b||=1 ||Ab||/||b||, we denote the natural (induced) �∞
norm of the matrix A = (aij)

M
i,j=1.

By C−1[a, b] we denote the space of bounded functions that may have only a
finite number of jump discontinuities and are normalized by the condition f(x) ≡
(f(x+) + f(x−))/2 (here and elsewhere f(x+) and f(x−) denote the right-hand
and left-hand side limits of a function f at a point x). By Cr[a, b], r ∈ Z+, we
denote the space of r-times continuously differentiable functions on [a, b], where
C0[a, b] ≡ C[a, b] is the class of continuous functions on [a, b].

By [f ](x) ≡ f(x+) − f(x−) �= 0, we denote the jump of the function f ∈
C−1[a, b] at the point a < x < b. By M ≡ M0 ≡ M(f), we denote the number

of discontinuities of the function f ∈ C−1[a, b] and by xm ≡ x
(0)
m ≡ xm(f), m =

1, 2, . . .,M , we denote the points of discontinuity of the function f ∈ C−1[a, b]

arranged in increasing order. For simplicity, Mi ≡ M(f (i)) and x
(i)
m ≡ xm(f (i)),

m = 1, 2, . . .,Mi.
By K we denote constants, possibly depending on some fixed parameters and in

general distinct in different formulas. Sometimes the important arguments ofK will
be written explicitly in the expressions for it. For quantities An and Bn, possibly
depending on some other variables as well, we write An = o(Bn) or An = O(Bn),
if limn→∞ An/Bn = 0 or supn∈N |An/Bn| < ∞, respectively.

2.1. The classical orthogonal polynomials. A function w is called a weight
(function) on [a, b] if w(x) ≥ 0 for x ∈ [a, b] and (n ∈ Z+)

0 <

∫ b

a

xnw(x)dx < ∞.

We say that a system of polynomials σ(w) ≡ (Pn(w, x))
∞
n=0 ≡ (Pn(x))

∞
n=0,

degree(Pn(w, x)) = n, with positive leading coefficients, is orthogonal with respect
to the weight w if (n �= m)∫ b

a

Pn(w, x)Pm(w, x)w(x)dx = 0.
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It is well known [21, p. 42, Theorem 3.2.1] that all orthogonal polynomials satisfy
the recurrence formula: There exist constants An(w), Bn(w), and Cn(w) such that

(2.1) xPn(w, x) = An(w)Pn+1(w, x) +Bn(w)Pn(w, x) + Cn(w)Pn−1(w, x)

for n ∈ N and x ∈ R.
Let A(x) be a polynomial degree of no more than one and let B(x) be a polyno-

mial degree of no more than two. The weight functions which satisfy the boundary
value problem (x ∈ [a, b])

w′(x)

w(x)
=

A(x)

B(x)
,(2.2)

w(a+)B(a+) = w(b−)B(b−) = 0(2.3)

are called the classical weights [20, Section 1, p. 44]. Up to a linear transformation,
they are the Jacobi, Laguerre, and Hermite weights. The systems of polynomials
orthogonal with respect to the classical weights are named correspondingly; see
Table 1 (cf. [21, pp. 71, 101, and 106]).

Table 1. The classical orthogonal polynomials.

System Jacobi Laguerre Hermite

A(x) in (2.2) (β − α)− (α+ β)x α− x −2x

B(x) in (2.2) 1− x2 x 1

w(x) in (2.2) (1− x)α(1 + x)β , α > −1, β > −1 xαe−x, α > −1 e−x2

[a, b] [−1, 1] [0,∞) (−∞,∞)

(Pn(w, x))∞n=0 (P
(α,β)
n (x))∞n=0 (L

(α)
n (x))∞n=0 (Hn(x))

∞
n=0

cn(w) in (2.4) (−1)n

n!2n
1
n!

(−1)n

An(w) in (2.1) 2(n+1)(n+α+β+1)
(2n+α+β+1)(2n+α+β+2)

−n− 1 1
2

Bn(w) in (2.1) β2−α2

(2n+α+β+2)(2n+α+β)
2n+ α+ 1 0

Cn(w) in (2.1) 2(n+α)(n+β)
(2n+α+β+1)(2n+α+β)

−n− α n

In what follows, we always assume that (Pn(w, x))
∞
n=0 is a system of classical

polynomials, orthogonal on [a, b] ≡ [−1, 1], [0,∞), or (−∞,∞), with respect to a
corresponding classical weight w, unless it is mentioned otherwise.

Following are the results well known for the classical orthogonal polynomials.
Rodrigues’s formula [20, Theorem 2.2, p. 55] (n ∈ Z+) is

(2.4) w(x)Pn(w, x) = cn(w)
dn

dxn
[w(x)Bn(x)],

where cn(w) is specified in Table 1.
It is easy to check (see Table 1) that if (Pn(w, x))

∞
n=0 is a system of the classical

polynomials orthogonal with respect to a weight w, then the system of polynomials
(i ∈ N)

(2.5) (Pi,n(x))
∞
n=0 ≡ (Pi,n(w, x))

∞
n=0,
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orthogonal with respect the weight wi(x) ≡ w(x)Bi(x), is also classical. In fact,

P
(α,β)
i,n (x) = P

(α+i,β+i)
n (x), L

(α)
i,n (x) = L

(α+i)
n (x), and Hi,n(x) = Hn(x). The coef-

ficients in recurrence formula (2.1) for the system (Pi,n(w, x))
∞
n=0 will be denoted

by Ai,n ≡ Ai,n(w), etc.
Besides, by virtue of (2.4), (2.5), and Table 1

(2.6) w(x)Pn(w, x) =
cn(w)

cn−i(w)

di

dxi
[wi(x)Pi,n−i(w, x)]

and

(2.7)
dk

dxk
[wi(x)Pi,n(w, x)]|x=a+ =

dk

dxk
[wi(x)Pi,n(w, x)]|x=b− = 0

for i, n ∈ N and k < i.
If xk,n(w), k = 1, 2, . . ., n, are the zeros of the polynomial Pn(w, x), then [21,

Theorem 3.3.2, p. 46]

(2.8) xk,n+1(w) < xk,n(w) < xk+1,n+1(w).

The estimate

(2.9) |P (α,β)
n−1 (x)| < K(α, β)n−1/2((1−x)1/2+n−1)−α−1/2((1+x)1/2+n−1)−β−1/2

holds for x ∈ [−1, 1] and n ∈ N (cf. [1, p. 226]).

(2.10) P (β,α)
n (x) = (−1)nP (α,β)

n (−x)

for n ∈ N [21, p. 59].
The asymptotic formula [21, Theorem 8.21.8, p. 196]

(2.11) P (α,β)
n (cos τ ) = n−1/2κ(α, β, τ ) cos (ñτ + γ) +O(n−3/2)

holds as n → ∞, where κ(α, β, τ ) = π−1/2 sin−α−1/2 (τ/2) cos−β−1/2 (τ/2), ñ =
n+(α+β+1)/2, γ = −(2α+1)π/4, and 0 < τ < π. The bound for the error term
holds uniformly in the interval [ε, π − ε], 0 < ε < π/2.

Lemma 2.1. Let [c, d] ⊂ (−1, 1). Then
(2.12)

((P (α,β)
n (x))2 + (P

(α,β)
n+1 (x))2)−

1
2 = π

1
2 2−

α+β
2 n

1
2 (w(−α+1/2,−β+1/2)(x) +O(n−1))−

1
2

for all x ∈ [c, d], where w(α,β)(x) ≡ (1− x)α(1 + x)β.

Proof. Without loss of generality, due to (2.10), let us assume that x ∈ [0, d]. Next,
by (2.11) we have (x ≡ cos τ )

(2.13) κ2(α, β, τ ) = π1/22α+β+1w(−α−1/2,−β−1/2)(x)

and

(2.14) (P (α,β)
n (x))2 = n−1κ2(α, β, τ ) cos2 (ñτ + γ) +O(n−2)

uniformly for x ∈ [0, d]. Thus,

(P (α,β)
n (x))2 + (P

(α,β)
n+1 (x))2 = κ2(α, β, τ )

× [n−1 cos2 (ñτ + γ) + ((n+ 1)−1 − n−1 + n−1) cos2 ((ñ+ 1)τ + γ)] +O(n−2)

= n−1κ2(α, β, τ )[cos2 (ñτ + γ) + cos2 ((ñ+ 1)τ + γ)] +O(n−2).

(2.15)
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Since

2 ≥ cos2 (ñτ + γ) + cos2 ((ñ+ 1)τ + γ)

= 1 +
1

2
cos 2(ñτ + γ) +

1

2
cos 2((ñ+ 1)τ + γ)

= 1 + cos τ cos ((2ñ+ 1)τ + 2γ) ≥ 1− cos τ = 1− x,

(2.16)

combining (2.13)–(2.16), we obtain (2.12). �

Finally, if
∫ b

a
f2(x)w(x)dx < ∞, then by

(2.17) an(f) ≡ an(w, f) ≡
∫ b

a

f(t)Pn(w, t)w(t)dt

we denote the nth Fourier coefficient of the function f .

3. A modified Prony method

In this section we describe a method of how to recover the values xm, m = 1, 2,

· · · ,M , if the sequence a
(0)
n ≡

∑M
m=1 λmfn(xm), n ∈ Z, is given. (We are assuming

that the functions fn are given and λm, m = 1, 2, · · · ,M , are unknown, but fixed
numbers in the sum.) The method essentially is based on Prony’s idea [19]. We
will show that the suggested technique is applicable to a wide class of functions
(fn)

∞
n=−∞. Subsequently, this method will be utilized to recover exactly the loca-

tions of discontinuities and the associated jumps of a piecewise constant function by
means of its Fourier coefficients with respect to a system of the classical orthogonal
polynomials.

Lemma 3.1. Let (a
(0)
n )∞n=−∞ and (A

(l)
n )∞n=−∞, l = −L,−L + 1, · · · , L, for a

given L ∈ Z+, be sequences of complex numbers. Suppose for each given n ∈ Z,

a
(k)
n (t1, t2, . . . , tk), k ∈ N, is generated by the recurrence formula

(3.1)

a(k)n (t1, t2, . . . , tk) ≡ tka
(k−1)
n (t1, t2, . . . , tk−1) +

L∑
l=−L

A(l)
n a

(k−1)
n+l (t1, t2, . . . , tk−1),

and let

(3.2) a(k)n ≡ a(k)n (0, 0, · · · , 0).
Then

(3.3) a(k)n (t1, t2, . . . , tk) =

∞∑
i=−∞

q
(k)
i a(i)n ,

where q
(k)
i ≡ q

(k)
i (t1, t2, · · · , tk) are defined as follows:

(3.4) (x+ t1)(x+ t2)· · ·(x+ tk) =

∞∑
i=−∞

q
(k)
i xi.

Proof. Let us establish a simple relation between q
(k+1)
i and q

(k)
i . Since

(x+ t1)(x+ t2) · · · (x+ tk)(x+ tk+1) = [(x+ t1)(x+ t2) · · · (x+ tk)](x+ tk+1),

by virtue of (3.4) we have
∑∞

i=−∞ q
(k+1)
i xi = (x+ tk+1)

∑∞
i=−∞ q

(k)
i xi, i.e.,

(3.5) q
(k+1)
i = q

(k)
i−1 + q

(k)
i tk+1

for i ∈ Z.
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We will prove identity (3.3) by mathematical induction. Let k = 1. Then (3.4)

implies that q
(1)
1 = 1, q

(1)
0 = t1, and q

(1)
i = 0 for i < 0 and i > 1.

From (3.1) and (3.2), on the other hand, we have (n ∈ Z)

a(1)n (t1) = t1a
(0)
n +

L∑
l=−L

A(l)
n a

(0)
n+l = t1a

(0)
n +a(1)n = q

(1)
0 a(0)n +q

(1)
1 a(1)n =

∞∑
i=−∞

q
(1)
i a(i)n .

Now we assume that identity (3.3) holds for k and we will prove it for k + 1.
According to (3.1)–(3.3) and (3.5) we have

a(k+1)
n (t1, . . . , tk+1)

= tk+1a
(k)
n (t1, t2, · · · , tk) +

L∑
l=−L

A(l)
n a

(k)
n+l(t1, t2, · · · , tk)

= tk+1

∞∑
i=−∞

q
(k)
i a(i)n +

L∑
l=−L

A(l)
n

∞∑
i=−∞

q
(k)
i a

(i)
n+l

=

∞∑
i=−∞

q
(k)
i (tk+1a

(i)
n +

L∑
l=−L

A(l)
n a

(i)
n+l) =

∞∑
i=−∞

q
(k)
i (tk+1a

(i)
n + a(i+1)

n )

=

∞∑
i=−∞

(q
(k)
i tk+1a

(i)
n + q

(k)
i a(i+1)

n ) =

∞∑
i=−∞

((q
(k+1)
i − q

(k)
i−1)a

(i)
n + q

(k)
i a(i+1)

n )

=

∞∑
i=−∞

q
(k+1)
i a(i)n −

∞∑
i=−∞

q
(k)
i−1a

(i)
n +

∞∑
i=−∞

q
(k)
i a(i+1)

n =

∞∑
i=−∞

q
(k+1)
i a(i)n ,

since the second and the third sums cancel out (i shifted to i+1), and that completes
the proof. �

Lemma 3.2. Let (xm)Mm=1, (λm)Mm=1, and (A
(l)
n )∞n=−∞, l = −L,−L + 1, · · · , L,

for given M ∈ N and L ∈ Z+, be sequences of complex numbers. Also, suppose
the functions g and (fn)

∞
n=−∞, with domains containing the set {x1, x2, · · · , xM},

satisfy the identity (n ∈ Z)

(3.6) g(x)fn(x) =

L∑
l=−L

A(l)
n fn+l(x).

If

(3.7) a(0)n ≡
M∑

m=1

λmfn(xm), n ∈ Z,

then

(3.8) a(k)n (t1, t2, . . . , tk) =
M∑

m=1

λmfn(xm)
k∏

s=1

(ts + g(xm))

for n ∈ Z and k ∈ N, where a
(k)
n (t1, t2, . . . , tk) is defined by (3.1).
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Proof. By virtue of (3.1), (3.6), and (3.7) we have

a(1)n (t1) =t1a
(0)
n +

L∑
l=−L

A(l)
n a

(0)
n+l =

M∑
m=1

λm(t1fn(xm) +
L∑

l=−L

A(l)
n fn+l(xm))

=
M∑

m=1

λmfn(xm)(t1 + g(xm))

for n ∈ Z.
The rest may be easily completed by mathematical induction. �

Now, in Theorem 3.3, we describe the recovery process.

Theorem 3.3. Let, for a given M ∈ N, (xm)Mm=1 be a sequence of distinct complex
numbers and (λm)Mm=1 be a sequence of nonzero complex numbers. In addition, let

(A
(l)
n )∞n=−∞, l = −L,−L + 1, · · · , L, for a given L ∈ Z+, be sequences of complex

numbers. Suppose the functions g and (fn)
∞
n=−∞, with domains containing the set

{x1, x2, · · · , xM}, satisfy the identity (3.6), where the function g is invertible and

(3.9)

M∏
m=1

fn(xm) �= 0

for some n ∈ Z.

If a
(0)
n ≡

∑M
m=1 λmfn(xm) and a

(k)
n , k ∈ N, are defined by (3.1) and (3.2), then

the system of linear equations, for n ∈ Z guaranteeing (3.9), (j = 0, 1, · · ·M − 1)

(3.10)

M−1∑
i=0

a(i+j)
n q

(M)
i (n) + a(M+j)

n = 0

has the unique solution (q
(M)
0 (n), q

(M)
1 (n), · · · , q(M)

M−1(n)), and the roots of the poly-
nomial equation

(3.11) xM +

M−1∑
i=0

q
(M)
M−i(n)x

M−i = 0

are −g(xm), m = 1, 2, · · · ,M .

Proof. First, let us show that coefficient matrix A
(M)
n ≡ (a

(i+j)
n )M−1

i,j=0 of the linear

system (3.10) is nonsingular. Indeed, by virtue of (3.2) and (3.8) (k ∈ N)

(3.12) a(k)n =

M∑
m=1

λmfn(xm)gk(xm).

Hence, (3.12) implies (δi,j = 1 if i = j and δi,j = 0 if i �= j)

(3.13) A(M)
n = (gj(xi+1))

M−1
j,i=0 · (λiδi,j)

M
i,j=1 · (fn(xi)δi,j)

M
i,j=1 · (gj(xi+1))

M−1
i,j=0.

The matrix (gj(xi+1))
M−1
j,i=0 is a Vandermonde type, and it is easy to verify that

Det(gj(xi+1))
M−1
j,i=0 =

∏
1≤i<j≤M

(g(xj)− g(xi)).

Therefore, invertibility of g guarantees its nonsingularity. Invertibility of the re-
maining matrices in the product (3.13) follows from the conditions (3.9) and λm �= 0,
m = 1, 2, . . . ,M .
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Next, by (3.5)

q
(M+1)
i (t1, t2, · · · , tM , 0) = q

(M)
i−1 (t1, t2, · · · , tM )

or

(3.14) q
(M+j)
i (t1, t2, · · · , tM , 0, · · · , 0) = q

(M)
i−j (t1, t2, · · · , tM ).

Now, (3.3), (3.4), and (3.14) imply

a(M+j)
n (t1, t2, · · · , tM , 0, · · · , 0) =

∞∑
i=−∞

a(i)n q
(M+j)
i (t1, t2, · · · , tM , 0, · · · , 0)

=

∞∑
i=−∞

a(i)n q
(M)
i−j (t1, t2, · · · , tM )

=

∞∑
i=−∞

a(i+j)
n q

(M)
i (t1, t2, · · · , tM )

=
M−1∑
i=0

a(i+j)
n q

(M)
i (t1, · · · , tM ) + a(M+j)

n .

(3.15)

On the other hand, (3.8) yields

a(M+j)
n (−g(x1),−g(x2), · · · ,−g(xM ), 0, · · · , 0) = 0,

which, combined with (3.15), implies the following identities (j = 0, 1, · · · ,M − 1):

M−1∑
i=0

a(i+j)
n q

(M)
i (−g(x1),−g(x2), · · · ,−g(xM )) + a(M+j)

n

= a(M+j)
n (−g(x1),−g(x2), · · · ,−g(xM ), 0, · · · , 0) = 0.

(3.16)

Thus, according to the identities (3.16), the system (3.10) has the unique solu-

tion q
(M)
i (n) = q

(M)
i (−g(x1),−g(x2), · · · ,−g(xM )), i = 0, 1, · · · ,M − 1; and, the

solutions of polynomial equation (3.11), i.e., (3.4), are −g(xm), m = 1, 2, · · · ,M .
Besides, due to (3.8),

a(M−1)
n (−g(x2), · · · ,−g(xM )) = λ1fn(x1)

M∏
s=2

(g(x1)− g(xs)).

Hence, λ1, and similarly λm, m = 2, 3, · · · ,M , can be recovered exactly as well.
In the end, let us mention that once the sequence (3.12) is generated, recovering

g(xm), m = 1, 2, . . . ,M , via the linear system (3.10) and the polynomial equation
(3.11) closely follows Prony’s method. �

Let us give examples of functions g and (fn)
∞
n=−∞ satisfying the identity (3.6).

• For any given invertible function g(x), the system of functions (gn(x))∞n=0

obviously will satisfy (3.6). In particular, if g(x) = x, then fn(x) = xn, or if
g(x) = eıx, then fn(x) = eınx, ı ≡ (0, 1), i.e., the trigonometric system. Let us
add, that Theorem 3.3 essentially matches Prony’s method for the trigonometric
system.

• As is well known, any system of orthogonal polynomials (Pn(w, x))
∞
n=0 satisfies

the recurrence relation (2.1). Hence, g(x) = x in this case.
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• If g is a polynomial degree L, monotone on a segment containing the set
{x1, x2, · · · , xM}, then (fn)

∞
n=0 may be any basis for the set of polynomials.

4. Main results

Now, we will show how to apply the recovery process to a system of the classical
orthogonal polynomials.

4.1. Recovering the discontinuities of a piecewise constant function. Es-
sentially, we have to show that (normalized) Fourier coefficients with respect to the
classical orthogonal polynomials of a piecewise constant function can be represented
in the form (3.7) and that the classical orthogonal polynomials satisfy the identity
(3.6).

Utilizing integration by parts, it is easy to check that (see (2.5)–(2.7) and (2.17))
a Fourier coefficient of the function (i ∈ Z+)

χi(x, t) ≡
{

0, if a < t < x,
(t−x)i

i! , if x < t < b,

with respect to a system σ(w) of the classical orthogonal polynomials can be ex-
pressed as follows:

(4.1) an(w, χi(x, ·)) = (−1)i+1 cn(w)

cn−i−1(w)
wi+1(x)Pi+1,n−i−1(w, x)

for n > i.
If the function f is piecewise constant on [a, b], with jump discontinuities at the

points xm, m = 1, 2, · · · ,M , then it may be represented as

(4.2) f(x) =
M∑

m=1

[f ](xm)χ0(xm, x) + f(a+).

Next, by (4.1) and (4.2), a normalized Fourier coefficient of the function f with
respect to a system of the classical orthogonal polynomials is represented as (com-
pare to (3.7))

a(0)n ≡ a(0)n (f) ≡ − cn(w)

cn+1(w)
an+1(w, f) = − cn(w)

cn+1(w)

M∑
m=1

[f ](xm)an+1(w, χ0(xm, ·))

= − cn(w)

cn+1(w)

M∑
m=1

[f ](xm)(−1)
cn+1(w)

cn(w)
w1(xm)P1,n(xm)

=
M∑

m=1

[f ](xm)w1(xm)P1,n(xm).

(4.3)

Besides, due to (2.1),

(4.4) xP1,n(w, x) = A1,n(w)P1,n+1(w, x)+B1,n(w)P1,n(w)+C1,n(w)P1,n−1(w, x),

i.e., the classical orthogonal polynomials satisfy the identity (3.6) with g(x) = x.
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Therefore, if a
(0)
n , n ∈ N, is a normalized Fourier coefficient of a piecewise con-

stant function f , defined by (4.3), then due to (4.4), a
(k)
n (t1, t2, · · · , tk) will be

generated as follows (compare to (3.1)):

a(k)n (t1, t2, · · · , tk) ≡ tka
(k−1)
n (t1, t2, · · · , tk−1) +A1,n(w)a

(k−1)
n+1 (t1, t2, · · · , tk−1)

+B1,n(w)a
(k−1)
n (t1, t2, · · · , tk−1)

+ C1,n(w)a
(k−1)
n−1 (t1, t2, · · · , tk−1).

(4.5)

Now, by virtue of Theorem 3.3, if

(4.6)
M∏

m=1

P1,n(w, xm) �= 0

for some n ∈ N, then the discontinuity locations x1, x2, · · · , xM , as well as the
magnitudes of associated jumps, can be recovered exactly. It is easy to check that
knowledge of any consecutive 4M − 1 Fourier coefficients is sufficient to perform
the proposed method, subject to the condition (4.6).

Obviously, the recovery process depends on whether or not a singularity location
represents a root of a classical polynomial; see (4.6). To avoid this dependency, we
consider a modified linear system of equations (compare to (3.10))

(4.7)
M−1∑
i=0

b(i+j)
n q

(M)
i (n) + b(M+j)

n = 0,

where b
(i+j)
n ≡ a

(i+j)
n + ıa

(i+j)
n+1 .

Then, as is easy to verify (see (3.13)), the coefficient matrix B
(M)
n ≡ B

(M)
n (f) ≡

(b
(i+j)
n )M−1

i,j=0 of the system (4.7) now may be factored as

B(M)
n =((xj

i+1))
M−1
j,i=0 · ([f ](xi)w1(xi)δi,j)

M
i,j=1

· ((P1,n(w, xi) + ıP1,n+1(w, xi))δi,j)
M
i,j=1 · ((x

j
i+1))

M−1
i,j=0

(4.8)

and due to (2.8), it is never singular. Thus, the linear system of equations (4.7) is
consistent regardless of the locations of singularities of a function.

Summarizing all the above, we have the following theorem.

Theorem 4.1. Let f be a piecewise constant function defined on a segment [a, b]
with a finite number, M , of discontinuities. Then the solutions of the polynomial
equation (3.11), the coefficients of which are the solution of the linear system (4.7),
represent the discontinuity locations of the function f .

4.2. Approximating the discontinuities of a piecewise smooth function. If
a given function is not piecewise constant, with jump discontinuities at x1, x2, · · · ,
xM , then (j = 0, 1, · · · ,M − 1)

a(M+j)
n (−x1,−x2, · · · ,−xM , 0, 0, · · · , 0) �= 0

(see (3.16)). However, we will show that for functions which piecewise belong to
C2[−1, 1],

lim
n→∞

a(M+j)
n (−x1,−x2, · · · ,−xM , 0, 0, · · · , 0) = 0.
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Thus, solving the homogeneous linear system (4.7) for sufficiently large n, instead
of (j = 0, 1, · · · ,M − 1)

M−1∑
i=0

b(i+j)
n q

(M)
i (−x1,−x2, · · · ,−xM ) + b(M+j)

n

= b(M+j)
n (−x1,−x2 · · · ,−xM , 0, · · · , 0) ≈ 0,

we find the coefficients of the polynomial equation (3.11) approximately. Cor-
respondingly, the solutions of (3.11) will represent approximations to xm, m =
1, 2, · · · ,M .

The following theorem addresses the accuracy of the approximation to the loca-
tions of discontinuities for a piecewise smooth function.

Theorem 4.2. Suppose the function f piecewise belongs to C2[−1, 1] with a finite
number, M , of jump discontinuities at the points xm, m = 1, 2, ...,M . In addition,

let us assume that the coefficient matrix B
(M)
n of the linear system of equations

(4.7) is determined by means of Fourier coefficients of the function f with respect
to the Jacobi system σ(α,β). Then

xm(n) = xm+O(
1

n3/2
)

||(B(M)
n )−1||∏M

i,j=1;i<j(xi − xj)

× (

M1∑
m=1

|[f ′](x(1)
m )|w(α/2+3/4,β/2+3/4)(x(1)

m ) + o(1))

(4.9)

and

||(B(M)
n )−1|| = O(n1/2) max

1≤m≤M

(w(−α−1/2,−β−1/2)(xm) +O(n−1))−1/2

|[f ](xm)|w(α+1,β+1)(xm)

× max
1≤m≤M

M∏
k=1;k �=m

1

(xk − xm)2

(4.10)

where xm(n), m = 1, 2, . . .,M , are the roots of the polynomial equation (3.11)
with the coefficients being the solution of the linear system of equations (4.7) and
w(α,β)(x) = (1− x)α(1 + x)β.

For functions with continuous derivative between the points of singularity, i.e.,

xm = x
(1)
m , M = M1, O(n−3/2) should be changed by O(n−5/2) in estimate (4.9).

Proof. Since the function f piecewise belongs to C2[−1, 1], then

(4.11) f(x) =

2∑
i=0

Mi∑
m=1

[f (i)](x(i)
m )χi(x

(i)
m , x) + fc(x) ≡ χ(x) + Fc(x),

where fc ∈ C2[−1, 1], χ(x) ≡
∑M

m=1[f ](xm)χ0(xm, x), and Fc ∈ C[−1, 1].
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Due to (2.5), (4.1), (4.3), (4.4), (4.11), and Table 1, we have

a(0)n ≡ a(0)n (f) ≡ 2(n+ 1)a
(α,β)
n+1 (f)

=

M∑
m=1

[f ](xm)w(α+1,β+1)(xm)P (α+1,β+1)
n (xm)

+
1

2n

M1∑
m=1

[f ′](x(1)
m )w(α+2,β+2)(x(1)

m )P
(α+2,β+2)
n−1 (x(1)

m )

+
1

4n(n− 1)

M2∑
m=1

[f ′′](x(2)
m )w(α+3,β+3)(x(2)

m )P
(α+3,β+3)
n−2 (x(2)

m )

+ a(0)n (fc)

= a(0)n (χ) + a(0)n (Fc),

(4.12)

where a
(0)
n (χ) ≡

∑M
m=1[f ](xm)w(α+1,β+1)(xm)P

(α+1,β+1)
n (xm).

Furthermore, by virtue of (2.6) and integration by parts (twice), we have

a(0)n (fc) = 2(n+ 1)a
(α,β)
n+1 (fc) = 2(n+ 1)

∫ 1

−1

fc(t)P
(α,β)
n+1 (t)w(α,β)(t)dt

= −
∫ 1

−1

fc(t)d[P
(α+1,β+1)
n (t)w(α+1,β+1)(t)]

= −fc(t)P
(α+1,β+1)
n (t)w(α+1,β+1)(t)|1−1

+

∫ 1

−1

P (α+1,β+1)
n (t)w(α+1,β+1)(t)dfc(t)

=

∫ 1

−1

f ′
c(t)P

(α+1,β+1)
n (t)w(α+1,β+1)(t)dt

= − 1

2n

∫ 1

−1

f ′
c(t)d[P

(α+2,β+2)
n−1 (t)w(α+2,β+2)(t)]

=
1

2n

∫ 1

−1

P
(α+2,β+2)
n−1 (t)w(α+2,β+2)(t)df ′

c(t)

=
1

2n

∫ 1

−1

f ′′
c (t)P

(α+2,β+2)
n−1 (t)w(α+2,β+2)(t)dt.

(4.13)

Next, it is well known that [21, p. 68] (n ∈ N)

(4.14) P̂ (α,β)
n (t) ≡

√
(2n+ α+ β + 1)Γ(n+ 1)Γ(n+ α+ β + 1)

2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1)
P (α,β)
n (t)

represents the orthonormal system of Jacobi polynomials and

(4.15) K1n
1/2 <

√
(2n+ α+ β + 1)Γ(n+ 1)Γ(n+ α+ β + 1)

2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1)
< K2n

1/2.

Since f ′′
c ∈ C[−1, 1], then, say, by Bessel’s inequality

a
(α+2,β+2)
n−1 (f ′′

c ) =

∫ 1

−1

f ′′
c (t)P̂

(α+2,β+2)
n−1 (t)w(α+2,β+2)(t)dt = o(1),



2278 GEORGE KVERNADZE

which combined with (4.13), (4.14), and (4.15) yields

a(0)n (fc) =
1

2n

∫ 1

−1

f ′′
c (t)P

(α+2,β+2)
n−1 (t)w(α+2,β+2)(t)dt

=O(n−3/2)

∫ 1

−1

f ′′
c (t)P̂

(α+2,β+2)
n−1 (t)w(α+2,β+2)(t)dt = o(n−3/2).

(4.16)

By (4.4), (4.5), and (4.12) we have

a(1)n (−x1) =(−x1)a
(0)
n +A(α+1,β+1)

n a
(0)
n+1 +B(α+1,β+1)

n a(0)n + C(α+1,β+1)
n a

(0)
n−1

=

M∑
m=2

[f ](xm)w(α+1,β+1)(xm)P (α+1,β+1)
n (xm)(xm − x1)

+
1

2

M1∑
m=1

[f ′](x(1)
m )w(α+2,β+2)(x(1)

m )

× [
A

(α+1,β+1)
n

n+ 1
P (α+2,β+2)
n (x(1)

m ) +
B

(α+1,β+1)
n − x1

n
P

(α+2,β+2)
n−1 (x(1)

m )

+
C

(α+1,β+1)
n

n− 1
P

(α+2,β+2)
n−2 (x(1)

m )]

+ . . .+ a(1)n (fc,−x1) ≡ I1 + I2 + I3 + a(1)n (fc,−x1).

(4.17)

Since (see Table 1)

(4.18) |A(α+1,β+1)
n |, |B(α+1,β+1)

n |, |C(α+1,β+1)
n | = O(1),

due to (2.9), we get

|I2| = O(
1

n
)

M1∑
m=1

|[f ′](x(1)
m )|w(α+2,β+2)(x(1)

m )

×max (|A(α+1,β+1)
n |, |B(α+1,β+1)

n |, |C(α+1,β+1)
n |)

×
n∑

i=n−2

|P (α+2,β+2)
i (x(1)

m )|=O(
1

n3/2
)

M1∑
m=1

|[f ′](x(1)
m )|w(α/2+3/4,β/2+3/4)(x(1)

m ).

(4.19)

Analogously, I3 = O(n−5/2), and |a(1)n (fc,−x1)| = o(n−3/2) by virtue of (4.16)
and (4.18).

Combining (4.17) and (4.19), we obtain

a(1)n (−x1) =

M∑
m=2

[f ](xm)w(α+1,β+1)(xm)P (α+1,β+1)
n (xm)(xm − x1)

+O(
1

n3/2
)(

M1∑
m=1

|[f ′](x(1)
m )|w(α/2+3/4,β/2+3/4)(x(1)

m ) + o(1)).
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Following the arguments presented above, we have

a(M+j)
n (−x1, . . .,−xM , 0, ..., 0)

= O(
1

n3/2
)(

M1∑
m=1

|[f ′](x(1)
m )|w(α/2+3/4,β/2+3/4)(x(1)

m ) + o(1)).
(4.20)

By virtue of (3.16) and (4.20), we conclude that the coefficients q
(M)
i , i =

0, 1, . . .,M − 1, of the polynomial (3.4) satisfy the system of linear equations (j =
0, 1, · · · ,M − 1)

M−1∑
i=0

a(i+j)
n q

(M)
i +a(M+j)

n = a(M+j)
n (−x1, . . .,−xM , 0, ..., 0)

= O(
1

n3/2
)(

M1∑
m=1

|[f ′](x(1)
m )|w(α/2+3/4,β/2+3/4)(x(1)

m ) + o(1))

(4.21)

or

M−1∑
i=0

b(i+j)
n q

(M)
i + b(M+j)

n = b(M+j)
n (−x1, . . .,−xM , 0, ..., 0)

= O(
1

n3/2
)(

M1∑
m=1

|[f ′](x(1)
m )|w(α/2+3/4,β/2+3/4)(x(1)

m ) + o(1)).

(4.22)

Hence, in view of (4.7) and (4.22) we obtain

B(M)
n (q(M)(n)− q(M)) = r(n)

or due to ||A ·B|| ≤ ||A||||B|| (cf. [12, p. 70])

(4.23) ||q(M)(n)− q(M)|| = ||(B(M)
n )−1r(n)|| ≤ ||(B(M)

n )−1||||r(n)||,

where q(M)(n) ≡ (q
(M)
0 (n), . . ., q

(M)
M−1(n)), q

(M) ≡ (q
(M)
0 , . . ., q

(M)
M−1), and (see (4.22))

(4.24) ||r(n)|| = O(
1

n3/2
)(

M1∑
m=1

|[f ′](x(1)
m )|w(α/2+3/4,β/2+3/4)(x(1)

m ) + o(1)).

If F (x1, x2, · · · , xM ) = (q
(M)
0 , q

(M)
1 , · · · , q(M)

M−1) is the function mapping the real
distinct roots of a monic polynomial on its coefficients, with the domain {(x1, x2,
· · · , xM ) : −1 < x1 < x2 < · · · < xM < 1}, then it is easy to obtain the estimate
(cf. [15])

(4.25) ||x− x(n)|| < K(M)
||q(M) − q(M)(n)||∏M

i,j=1;i<j(xj − xi)
,

where x ≡ (x1, x2, . . ., xM ) and x(n) ≡ (x1(n), x2(n), . . ., xM (n)). Combining
(4.23), (4.24), and (4.25), we obtain (4.9).

Now let us estimate ||(B(M)
n )−1||. Due to (4.12), the coefficient matrix B

(M)
n can

be represented as

(4.26) B(M)
n = B(M)

n (f) = B(M)
n (χ) +B(M)

n (Fc).
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Equations (4.12) and (2.9) imply
(4.27)

a(0)n (Fc) = O(
1

n3/2
)(

M1∑
m=1

|[f ′](x(1)
m )|w(α/2+3/4,β/2+3/4)(x(1)

m ) + o(1)) = O(n−3/2).

Then, by (4.5), (4.18), and (4.27) we obtain

b(k)n (Fc) = a(k)n (Fc) + ıa
(k)
n+1(Fc) = O(n−3/2)

for k ∈ N.
As is known, ||A|| = max1≤i≤M

∑M
j=1|aij | (cf. [12, p. 70]). Therefore,

(4.28) ||B(M)
n (Fc)|| = max

1≤i≤M

M∑
j=1

|b(i+j)
n (Fc)| = O(n−3/2).

On the other hand, by (4.12)

b(0)n (χ) =
M∑

m=1

[f ](xm)w(α+1,β+1)(xm)(P (α+1,β+1)
n (xm) + ıP

(α+1,β+1)
n+1 (xm)).

Thus, in view of (4.8),

B(M)
n (χ) = ((xi+1)

j)M−1
j,i=0([f ](xi)w

(α+1,β+1)(xi)(P
(α+1,β+1)
n (xi)

+ ıP
(α+1,β+1)
n+1 (xi))δi,j)

M
i,j=1((xi+1)

j)M−1
i,j=0

≡ X · FPn ·Xt,

(4.29)

and therefore

||X||−1||FPn||−1||Xt||−1 ≤ ||B(M)
n (χ)||−1

≤ ||(B(M)
n (χ))−1|| ≤ ||X−1||||FP−1

n ||||(Xt)−1||.
(4.30)

It is known [8] that

(4.31) ||X−1|| ≤ max
1≤m≤M

∏
k=1;k �=m

1 + |xk|
|xm − xk|

.

On the other hand, by virtue of (2.12)

(4.32) ||FP−1
n || = O(n1/2) max

1≤m≤M

(w(−α−1/2,−β−1/2)(xm) +O(n−1))−1/2

|[f ](xm)|w(α+1,β+1)(xm)
.

Now, the Perturbation Lemma [12, p. 74] combined with (4.26), (4.28), and

(4.32) yields that B
(M)
n (f) is invertible as well and

(4.33) ||(B(M)
n (f))−1|| ≤ ||(B(M)

n (χ))−1||
1− ||(B(M)

n (χ))−1||||B(M)
n (Fc)||

.

Therefore, (4.28), (4.30), (4.31), (4.32), and (4.33) lead to (4.10).
For the estimate for functions with continuous derivatives between the points of

singularities, we refer to the proof of Theorem 3.2 in [15] as it is essentially the
same. �
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5. Description of the algorithm and numerical examples

Let us give a detailed description of the suggested algorithm utilizing the Fourier-
Jacobi coefficients of a given piecewise smooth function. As we will show below,
the method is unstable for the Laguerre and Hermite systems.

Algorithm

(1) Given a finite number of Fourier-Jacobi coefficients a
(α,β)
n (f) of the function

f which piecewise belongs to C2[−1, 1], we set a
(0)
n ≡ 2(n+1)a

(α,β)
n+1 (f) and

generate a
(k)
n via the recurrence formula

(5.1) a(k)n ≡ A(α+1,β+1)
n a

(k−1)
n+1 +B(α+1,β+1)

n a(k−1)
n + C(α+1,β+1)

n a
(k−1)
n−1 .

Then b
(k)
n ≡ a

(k)
n + ıa

(k)
n+1.

(2) In order to identify the number, M , of discontinuities, following Eckhoff,

we pick a trial number M̃ , large enough to guarantee that M̃ > M . Then

the rank of the matrix B
(M̃)
n = (b

(i+j)
n )M̃−1

i,j=0 will equal M . In addition, this
number may be checked against the sharp local relative spikes of differen-
tiated Fourier-Jacobi partial sums; see (1.1).

(3) Next, solve the linear system of equations (j = 0, 1, · · · ,M − 1)

(5.2)
M−1∑
i=0

b(i+j)
n q

(M)
i (n) + b(M+j)

n = 0.

(4) Use the solution of (5.2) as the coefficients of the polynomial equation

(5.3) xM +

M−1∑
i=0

q
(M)
M−i(n)x

M−i = 0

and solve it.
(5) The roots xm(n) of the polynomial equation (5.3) represent approximations

to the locations of jump discontinuities xm,m = 1, 2, · · · ,M , of the function
f .

Stability. If, in evaluating b
(0)
n , we encounter roundoff error en, then our com-

puted value b̃
(k)
n by formula (5.1) yields

|e(k)n | ≡ |b̃(k)n − b(k)n | = |A(α+1,β+1)
n e

(k−1)
n+1 +B(α+1,β+1)

n e(k−1)
n + C(α+1,β+1)

n e
(k−1)
n−1 |

≤ (|A(α+1,β+1)
n |+|B(α+1,β+1)

n |+ |C(α+1,β+1)
n |)max(|e(k−1)

n+1 |, |e(k−1)
n |, |e(k−1)

n−1 |).

(5.4)

It is easy to check that limn→∞(|A(α+1,β+1)
n |+ |B(α+1,β+1)

n |+ |C(α+1,β+1)
n |) =

1; in particular, for the Gegenbauer polynomials (see Table 1), |A(α+1,β+1)
n | +

|B(α+1,β+1)
n |+ |C(α+1,β+1)

n | < 1 for all n ∈ N.

If we assume that the roundoff errors e
(0)
n , n ∈ N, are bounded by some constant

ε > 0, then (5.4) leads to |b(k)n − b̃
(k)
n | ≤ ε, k, n ∈ N; thus the method is stable,

generating the coefficients of the linear system of equations (5.2). Although the

coefficient matrix B
(M)
n of the linear system (5.2) is symmetric, it in not necessarily,

say, positive definite [12, p. 61], which would guarantee the stability of Gaussian
elimination computations with respect to the growth of roundoff errors.
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For the Laguerre and Hermite systems, however, |A1,n|+ |B1,n|+ |C1,n| > n; see
Table 1. Thus, the method is unstable with respect to those systems.

Complexity. Since the matrix (a
(i+j)
n )M−1

i,j=0 is symmetric, calculating a
(2M−1)
n ,

we calculate all the entries of the matrix: a total of 12M2− 8M +2 multiplications
and 8M2 − 8M + 2 additions. The rest of the steps of the algorithm are standard.

In order to test the theoretical results, i.e., the exact recovery of the locations of
discontinuities and the associated jumps of a piecewise constant function by means
of its Fourier coefficients with respect to a system of orthogonal polynomials, we
utilized Mathematica. We have tested several piecewise constant functions with a
wide variety of a number of discontinuities and jump magnitudes. In some examples,
the singularities clustered within 10−4 distance and the jumps ranging from 10−2

to 100. All discontinuity locations, as well as the associated jumps, of the function
have been recovered exactly symbolically using its Fourier coefficients with respect
to various systems of the classical orthogonal polynomials.

The examples below illustrate the application of the method, Theorem 4.2, to
various piecewise smooth functions. All computations are performed in double
precision ((−k) ≡ 10−k).

The function (5.5) has two jump discontinuities at x1 = −3/5 and x2 = 1/5.
Below we will illustrate a step-by-step application of the algorithm to the function.

(5.5) f1(x) =

⎧⎨
⎩

0 if −1 < x < −3/5,
(2x+ 3)1/3 if −3/5 < x < 1/5,
0 if 1/5 < x < 1.

In order to identify the number, M , of singularities of the function f1, we pick
M̃ = 5 and apply QR factorization to the coefficient matrix of the system of linear
equations (5.2).

The following is the triangular matrix of QR factorization of the
matrix (5.2) for M̃ = 5:⎛

⎜⎜⎜⎝
0.34 0.02− 0.12ı 0.05− 0.04ı 0.02− 0.03ı 0.01− 0.01ı
0. 0.13 0.05− 7.8(−8)ı 0.03− 3.7(−7)ı 0.02− 3.2(−7)ı
0. 0. −2.1(−7) −2.1(−7) + 7.4(−8)ı −1.8(−7) + 6.4(−8)ı
0. 0. 0. −1.5(−7) −1.2(−7) + 1.1(−8)ı
0. 0. 0. 0. 2.0(−10)

⎞
⎟⎟⎟⎠

It is plausible that M = 2.
Now, the system of linear equations (5.2) is solved and the results are given in

Table 2.

Table 2. The solutions of the system of linear equations (5.2) for
various values of n with errors in the estimates to the coefficients
q0 = −3/25 and q1 = −2/5 of the polynomial (5.3).

n 32 64 128

q0(n) −0.119943− 4.5(−7)ı −0.119984 + 1.6(−6)ı −0.119996− 1.9(−9)ı

|q0(n)− q0| 5.6(−5) 1.5(−5) 3.8(−6)

q1(n) −0.400378 + 1.0(−6)ı −0.400093 + 2.5(−7)ı −0.400024 + 1.0(−7)ı

|q1(n)− q1| 3.7(−4) 9.3(−5) 2.4(−5)
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Finally, the polynomial equation (5.3) is solved with the coefficients presented
in Table 2. The final results are presented in Table 3.

Table 3. The solutions of the polynomial equation (5.3) for var-
ious values of n with errors in the estimates to the discontinuity
locations x1 = −3/5 and x2 = 1/5 for function (5.5).

n 32 64 128

x1(n) −0.600213 + 1.8(−7)ı −0.600050 + 2.2(−6)ı −0.600013 + 7.4(−8)ı

|x1 − x1(n)| 2.1(−4) 5.0(−5) 1.3(−5)

x2(n) 0.199834 + 8.2(−7)ı 0.199957− 2.0(−6)ı 0.199988 + 2.8(−8)ı

|x2 − x2(n)| 1.6(−4) 4.2(−5) 1.1(−5)

The following is a piecewise smooth function with three jump discontinuities:

(5.6) f2(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−x− 2/3 if −1 < x < −2/3,
(x+ 2/3)2 if −2/3 < x < −1/4,
ex if −1/4 < x < 1/3,
sinx if 1/3 < x < 2/3,
lnx if 2/3 < x < 1.

Below we present the absolute values of the errors in the estimation of the points
of discontinuity of function (5.6) obtained by applying the suggested method and
summarized in Table 4. Since the singularity locations are real, we consider only
the real part of xm(n) for approximating xm. The results are obviously better, but
somewhat irregular.

Table 4. Errors in the estimates to the discontinuity locations for
function (5.6) using its Fourier-Legendre coefficients.

n 32 64 128 256

x1 = −1/4 1.4(−2) 1.0(−2) 9.5(−3) 3.6(−3)

x2 = 1/3 1.6(−1) 4.1(−2) 1.7(−2) 1.6(−2)

x3 = 2/3 2.9(−2) 1.1(−2) 6.6(−3) 4.1(−3)

This is a piecewise polynomial function with five jump discontinuities:

(5.7) f3(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2 + 2x/3 + 10/9 if −1 < x < −1/3,
x/6 + 7/144 if −1/3 < x < −1/4,
x3 − 1 if −1/4 < x < −1/10,
−1001/1000 if −1/10 < x < 0,
4x4 − 4x+ 1 if 0 < x < 1/4,
(x− 1/4)6 + 1/64 if 1/4 < x < 1/2,
9x5 − 12x3 + 5 if 1/2 < x < 2/3,
3/4− x if 2/3 < x < 3/4,
x2 − 3x/2 + 9/16 if 3/4 < x < 1.
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Table 5. Errors in the estimates to the discontinuity locations for
function (5.7) using its Fourier-Legendre coefficients.

n 32 64 128 256

x1 = −1/3 1.6(−2) 6.3(−3) 4.4(−3) 1.4(−3)

x2 = −1/4 6.3(−2) 1.8(−2) 7.4(−4) 5.9(−3)

x3 = 0 7.4(−3) 7.6(−3) 3.8(−3) 1.1(−3)

x4 = 1/2 1.2(−4) 5.0(−4) 7.5(−4) 6.0(−4)

x5 = 2/3 6.9(−4) 1.4(−3) 1.9(−4) 4.9(−4)

The absolute value of the errors in the computed singularity locations for function
(5.7) is given in Table 5.

As expected, due to (4.9) and (4.10), the locations of singularities for both
functions f2 and f3 were approximated to within O(1/n). The accuracy of approx-
imation is by an order better for the function f1, O(1/n2), since its derivative is
continuous between the points of singularities.

6. Conclusion

We have studied a new method for approximating the jump discontinuity loca-
tions of a piecewise smooth function, if a finite number of its Fourier coefficients with
respect to a system of the classical orthogonal polynomials are known. The method
is based on a general but relatively simple modified Prony recovery technique—a
three-term linear recurrence formula, a system of linear equations, and a polynomial
equation. A utilization of this technique leads to a single unified method for exact
recovery of the locations of singularities, as well as the magnitudes of associated
jumps, of a piecewise constant function by means of its Fourier coefficients with re-
spect to any system of the classical orthogonal polynomials and the trigonometric
system.

Although unstable for piecewise smooth functions in general, the method still
exactly identifies the locations of discontinuities of a piecewise constant function by
means of Fourier coefficients with respect to the polynomial systems orthogonal on
unbounded regions, namely, the Laguerre and Hermite systems.
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