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FAMILIES OF ELLIPTIC CURVES OVER CUBIC NUMBER

FIELDS WITH PRESCRIBED TORSION SUBGROUPS

DAEYEOL JEON, CHANG HEON KIM, AND YOONJIN LEE

Abstract. In this paper we construct infinite families of elliptic curves with
given torsion group structures over cubic number fields. This result provides
explicit examples of the theoretical result recently developed by the first two
authors and A. Schweizer; they determined all the group structures which occur
infinitely often as the torsion of elliptic curves over cubic number fields. In
fact, this paper presents an efficient way of constructing such families of elliptic
curves with prescribed torsion group structures over cubic number fields.

1. Introduction

The characterization of all torsion groups of elliptic curves E over a number field
is certainly an important research problem. Mazur [8] determined all torsion groups
of elliptic curves over the rational number field Q: The torsion group E(Q)tors of
an elliptic curve E over Q is isomorphic to exactly one of the following 15 types:

(1)
Z/NZ, N = 1, . . . , 10, 12,
Z/2Z⊕ Z/2N ′Z, N ′ = 1, . . . , 4.

Each of these groups in (1) occurs infinitely often as a torsion group E(Q)tors of
E over Q. In other words, for each of the groups in (1) there are infinitely many
absolutely nonisomorphic elliptic curves with such a torsion group structure over
Q. This is mainly due to the fact that the modular curves X1(N) parametrizing
elliptic curves with such a torsion structure are rational and hence have infinitely
many Q-rational points. Kubert [7, Table 3] found an explicit parametrization for
an infinite family of elliptic curves E with such a torsion group structure over Q

for each of the 15 types in(1).
Recently, the first two authors and Schweizer [3] determined torsion group struc-

tures of elliptic curves over cubic number fields by determining the modular curves
X1(N) having infinitely many points defined over cubic number fields. In detail,
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they proved that if K varies over all cubic number fields and E varies over all el-
liptic curves over K, the group structures which appear infinitely often as torsion
groups E(K)tors are exactly the following 25 types:

(2)
Z/NZ, N = 1, . . . , 16, 18, 20,
Z/2Z⊕ Z/2N ′Z, N ′ = 1, . . . , 7.

In fact, there are infinitely many cubic number fields K and elliptic curves E with
E(K)tors = Z/NZ if and only if X1(N) is a triple cover of the projective line P1,
and similarly with the modular curve X1(2N, 2) for the torsion Z/2Z⊕ 2NZ.

The main goal of this paper is constructing explicit examples of the theoretical
result in [3]. As a matter of fact, there is no computational machinery developed
for calculating torsion groups of elliptic curves over cubic number fields. Also even
though the subject of the torsion of elliptic curves over number fields of higher order
has been studied by Kamienny and Mazur [4], Merel [9], Parent [11, 12], Zimmer
et al. [10, 16], and Jeon et al. [2, 3], there has been little known for the examples of
elliptic curves with a certain torsion group over number fields of higher order. For
achieving our main goal, it suffices to find examples corresponding to the following
ten types:

(3)
Z/NZ, N = 11, 13, . . . , 16, 18, 20,
Z/2Z⊕ Z/2N ′Z, N ′ = 5, 6, 7.

In this paper, for each of the ten groups in (3), we construct an infinite family of
elliptic curves E with such a torsion group structure over cubic number fields. This
paper also presents an efficient way of constructing such families of elliptic curves
with a prescribed torsion group structure over cubic number fields.

We briefly mention the methods used. Regarding all the cyclic torsion group
cases, we construct such a family by using the defining equations of the modular
curves X1(N) for N = 11, 13, . . . , 16, 18, 20, which are obtained from the Tate nor-
mal form of elliptic curves; this approach basically follows Reichert’s method [13].
On the other hand, for the non-cyclic torsion cases Z/2Z⊕ Z/2NZ with N = 5, 6,
we use the Kubert families [7, Table 3] and some standard methods, e.g. Theo-
rem 2.2. Finally, the last noncyclic case corresponding to Z/2Z⊕ Z/14Z is a very
hard task to deal with since no standard techniques can possibly be applied to
this case. A completely new approach was therefore needed to solve this case. So
far, there has not been even a single example found for an elliptic curve E with
E(K)tors = Z/2Z ⊕ Z/14Z. In this work, by resolving the moduli problem for
X1(14, 2), we construct an infinite family of elliptic curves that have Z/2Z⊕Z/14Z
as their torsion groups over cubic number fields.

This paper is organized as follows. We begin with the necessary basic notions in
Section 2. Section 3 presents infinite families of elliptic curves with torsion groups
in (3) except the case Z/2Z ⊕ Z/14Z, and in Section 4 we show our result for the
final case Z/2Z⊕ Z/14Z with great detail.

2. Preliminaries

We recall some classical results on elliptic curves in this section, and we can refer
to [1, 6, 7, 14] for details.

The general normal form of the cubic defining an elliptic curve passing through
P = (0, 0) is

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x.
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From the calculation of the derivative y′ in the relation

(2y + a1x+ a3)y
′ = 3x2 + 2a2x+ a4 − a1y

we see that the slope of the tangent line at P is a4/a3 on E, so E is not singular
at P if and only if a3 �= 0 or a4 �= 0.

Assume that E is nonsingular. Then P is of order 2 if and only if a3 = 0 (and
therefore a4 �= 0), i.e., E has the following equation:

y2 + a1xy = x3 + a2x
2 + a4x.

If a3 �= 0, then by the admissible change of variables

(x, y) → (X,Y + a−1
3 a4X),

the curve E becomes

Y 2 + (a1 + 2a−1
3 a4)XY + a3Y = X3 + (a2 − a1a

−1
3 a4 − a−2

3 a24)X
2,

which can be rewritten as

E′ : y2 + a1xy + a3y = x3 + a2x
2.

We have
−P = (0,−a3), 2P = (−a2, a1a2 − a3)

by the chord-tangent method [6, Chapter III]; thus 3P = O (O denotes the point
at infinity) if and only if −P = 2P , which implies that P is of order 3 if and only
if a2 = 0. Assume that P is not of order 2 or 3, that is, a2 �= 0 and a3 �= 0. Under
the change of coordinates

(x, y) → (X/u2, Y/u3) with u = a−1
3 a2,

and letting b = −a−2
3 a32 and c = 1 − a−1

3 a1a2, we obtain the Tate normal form of
an elliptic curve with P = (0, 0) as follows:

E = E(b, c) : y2 + (1− c)xy − by = x3 − bx2,

and this is nonsingular if and only if b �= 0. On the curve E(b, c) we have the
following by the chord-tangent method:

P = (0, 0),(4)

2P = (b, bc),

3P = (c, b− c),

4P =
(
r(r − 1), r2(c− r + 1)

)
; b = cr,

5P =
(
rs(s− 1), rs2(r − s)

)
; c = s(r − 1),

6P =
(
−mt,m2(m+ 2t− 1)

)
; m(1− s) = s(1− r), r − s = t(1− s).

By using the Tate normal form, Reichert [13] calculated defining equations of
the modular curves X1(N) for N = 11, 13, 14, 15, 16, and 18 as follows:

Theorem 2.1. For N = 11, 13, 14, 15, 16, and 18 the modular curves X1(N) are
given by the following equations:

(i) X1(11) : V 2 + V = U3 − U2,
(ii) X1(13) : V 2 + (U3 − U2 − 1)V − U2 + U = 0,
(iii) X1(14) : V 2 = U3 + U2 − 8U + 16,
(iv) X1(15) : V 2 + (U + 1)V = U3 + U2,
(v) X1(16) : (2U3 − 2U2 − U + 1)V 2 + (2U2 − 1)V − U2 + U = 0,
(vi) X1(18) : (U2 − 2U + 1)V 2 + (−U3 + U − 1)V + U3 − U2 = 0.
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In fact, the final formula forX1(14) given in [13] is V 2+(U+1)V = U3−U , which
is birationally equivalent to the above formula. We point out that regarding the
formula for X1(16) the original formula given by Reichert [13] is not quite correct,
so we calculated the formula for X1(16) as given above.

In fact, the condition NP = O in E(b, c) gives a defining equation for X1(N).
For example, 11P = O implies 5P = −6P , so

x5P = x−6P = x6P ,

where xnP denote the x-coordinate of the n-multiple nP of P . Equation (4) implies
that

(5) rs(s− 1) = −mt.

Without loss of generality, the cases s = 1 and s = 0 may be excluded. Reversing

the substitutions made for calculating 6P , i.e., m = s(1−r)
1−s , t = r−s

1−s , Equation (5)
becomes

r2 − 4sr + 3s2r − s3r + s = 0,

which is one of the equations of X1(11), called the raw form of X1(11). By the
coordinate changes s = V/U + 1 and r = V + 1, we get the following equation:

V 2 + V = U3 − U2.

The following well-known theorem [6, Theorem 4.2] provides us with the condi-
tion for the divisibility of a given point on E by 2, and this result is very useful for
studying torsion subgroups of the form Z/2Z⊕ Z/2NZ.

Theorem 2.2. Let E be an elliptic curve defined over a field k of charateristic
�= 2, 3 given by

y2 = (x− α)(x− β)(x− γ)

with α, β, γ in k. For (x2, y2) in E(k) there exists (x1, y1) in E(k) such that
2(x1, y1) = (x2, y2) if and only if x2 − α, x2 − β, and x2 − γ are squares in k.

3. Torsion subgroups over cubic number fields

In this section, we construct infinite families of elliptic curves with prescribed
torsion groups given in (3) except the case Z/2Z⊕Z/14Z over cubic number fields.
For obtaining such families except the case Z/20Z, we basically use Theorem 2.1.
For the case Z/20Z, we first find a defining equation for X1(20) by applying Re-
ichert’s method [13] as follows:

Proposition 3.1. A defining equation of the modular curve X1(20) is given by the
following equation:

X1(20) : V 2U3 + V 3U2 − (V 3 − 4V 2 + 4V − 1)U − V 4 + 3V 3 − 3V 2 + V = 0.

Proof. In order to calculate the equation of X1(20), we set

9P = −11P.

For this we find the x-coordinates of nP with n = 9, 11. Let Nx and Dx denote the
numerator and denominator of the x-coordinate, respectively.

x9P : Nx = 2mt4 + (9m− 5)mt3 + (12m2 − 16m+ 4)mt2

+(−13m2 + 6m3 + 8m− 1)mt+ (−3m3 +m4 + 3m2 −m)m,
Dx = (m− t2 − 1 + 2t)2.
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x11P : Nx = −3mt6 − (16m− 9)mt5 − (29m2 − 39m+ 10)mt4

−(23m3 − 57m2 + 35m− 5)mt3 − (8m4 − 36m3 + 41m2 − 14m+ 1)mt2

−(m5 − 10m4 + 19m3 − 12m2 + 2m)mt− (−m5 + 3m4 − 3m3 +m2)m,
Dx = (t3 − t2 + 2mt+m2 −m)2.

From the equality x9P = x−11P = x11P , we obtain

m(m− 1 + t)(m2 −m+ 3mt− t+ t2)(t+m+m5 + 35t5 − 20t6 + 7m4t+ 20m3t2

+33m2t3 − 5m2t4 − 20mt5 + 44mt4 + 5t6m+ t5m2 − 54mt3 − 47m2t2 − 35t4

+21t3 − 4m2 − 7t2 + 6m3 − 4m4 + 34mt2 + 24m2t− 22m3t− 10mt+ 5t7) = 0.

Without loss of generality, we can exclude the case that the first three factors
are equal to zero. Then the raw form of X1(20) is given by

5t7 + (5m− 20)t6 + (m2 + 35− 20m)t5 + (−5m2 + 44m− 35)t4

+(21− 54m+ 33m2)t3 + (−7− 47m2 + 20m3 + 34m)t2

+(24m2 + 1 + 7m4 − 10m− 22m3)t+m+ 6m3 − 4m2 − 4m4 +m5 = 0.

Transforming this equation birationally by means of the transformation

m =
V 3 + UV 2 − V + 1

U + 1
, t = − (V − 1)(V + U)

U + 1
,

we obtain the following defining equation of X1(20):

X1(20) : V
2U3 + V 3U2 − (V 3 − 4V 2 + 4V − 1)U − V 4 + 3V 3 − 3V 2 + V = 0.

�

3.1. The case E(K)tors = Z/NZ with N = 11, 13, . . . , 16, 18, 20.

Theorem 3.2. For each N = 11, 13, . . . , 16, 18, 20, choose t ∈ Q such that the
corresponding polynomial fN (x) in Table 1 is irreducible over Q. Let αt be a zero
of fN (x). Let E be an elliptic curve defined by the equation

y2 + (1− cN )xy − bNy = x3 − bNx2.

Then the torsion subgroup of E over a cubic number field Q(αt) is equal to Z/NZ

for almost all t.

Remark. In the above theorem, there are indeed infinitely many values t ∈ Q

such that the polynomial fN (x) is irreducible over Q by Hilbert’s irreducibility
theorem.

Proof. We first prove this theorem for the case N = 11. From the formula in (i) of
Theorem 2.1, we note that the points (U, V ) = (αt, t) satisfy

V 2 + V = U3 − U2,

which is a defining equation of X1(11). Also the coefficients b and c of E(b, c) can
be expressed by the following:

b =
V (V + 1)(U + V )

U
, c =

V (U + V )

U
.

Substituting U = αt and V = t, we obtain the curve E over Q(αt) that contains a
point of order 11. But, in fact, this curve E over Q(αt) has no other torsion points
for almost all t since Jeon et al. [3] determined all the possible torsion structures
that occur infinitely often over cubic fields.
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Table 1. Polynomials fN (x) and Coefficients bN , cN

N Polynomials fN (x) and Coefficients bN , cN

11 f11(x) = x3 − x2 − t2 − t⎧
⎨

⎩

b11 = t(t+1)(αt+t)
αt

c11 = t(αt+t)
αt

13 f13(x) = tx3 − (t+ 1)x2 + x+ t2 − t⎧
⎨

⎩

b13 =
α2

t (αt−1)(α3
t−αt+t)(α3

t−α2
t+t)

t2(α2
t−αt+t)

c13 =
α2

t (αt−1)(α3
t−αt+t)

t(α2
t−αt+t)

14 f14(x) = x3 + x2 − 8x− t2 + 16⎧
⎨

⎩

b14 = − 8(3αt−t−4)(α2
t−2αt−2t+8)(α2

t+2αt−2t−8)

(αt−4)3(α2
t−2αt−2t−8)2

c14 = − 8(3αt−t−4)(α2
t+2αt−2t−8)

αt(αt−4)2(α2
t−2αt−2t−8)

15 f15(x) = x3 + x2 − tx− t2 − t⎧
⎨

⎩

b15 = − αt(α
3
t+tα2

t−tαt−t2)(α3
t+tα2

t−t2)

(α2
t+αt−t)(α3

t+α2
t+tα2

t+tαt−t2)2

c15 = − αt(α
3
t+tα2

t−tαt−t2)

(α2
t+αt−t)(α3

t+α2
t+tα2

t+tαt−t2)

16 f16(x) = 2t2x3 + (−2t2 + 2t− 1)x2 + (−t2 + 1)x+ t2 − t
⎧
⎨

⎩

b16 = t(t−1)αt(αt−t)(t2αt+αt−t)
(tαt+αt−t)3

c16 = t(t−1)αt(αt−t)
(tαt+αt−t)2

18 f18(x) = (−t+ 1)x3 + (t2 − 1)x2 + (−2t2 + t)x+ t2 − t
⎧
⎨

⎩

b18 = − t(αt−t)(α2
t+t)(α2

t−tαt+t)

(α2
t−t2+t)(α2

t+tαt−t2+t)2

c18 = − t(αt−t)(α2
t−tαt+t)

(α2
t−t2+t)(α2

t+tαt−t2+t)

20 f20(x) = t2x3 + t3x2 − (t3 − 4t2 + 4t− 1)x− t4 + 3t3 − 3t2 + t
⎧
⎨

⎩

b20 = t((t2−t+1)αt+t3−t2+1)((t−1)αt+t2−t)(t2αt+t3−t+1)
(tαt+t2−t+1)(αt+1)2

c20 = ((t−1)αt+t2−t)(t2αt+t3−t+1)
(tαt+t2−t+1)(αt+1)

The other cases can be proved by using the formulas of Theorem 2.1 and Propo-
sition 3.1 and applying the same method as the case N = 11. �

3.2. The case E(K)tors = Z/2Z⊕ Z/10Z.

Theorem 3.3. Choose t ∈ Q such that the polynomial f(x) = 8x3 − 8x2 + 1 − t2

is irreducible over Q. Let αt be a zero of f(x). Let E be an elliptic curve defined
by the equation

y2 + (1− c)xy − by = x3 − bx2,

where {
b = αt

3(2αt
2−3αt+1)

(αt
2−3αt+1)2 ,

c = −αt(2αt
2−3αt+1)

αt
2−3αt+1 .
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Then the torsion subgroup of E over a cubic number field Q(αt) is equal to
Z/2Z⊕ Z/10Z for almost all t.

Proof. We first note that the elliptic curve E defined as above satisfies the parame-
trization given in [7, Table 3] for having Z/10Z as its torsion subgroups. We thus
have that P = (0, 0) is a torsion point on E of order 10. By the coordinate change
x → x and y → y + c−1

2 x+ b
2 , the curve E becomes

(6) y2 = x3 +
(c− 1)2 − 4b

4
x2 +

b(c− 1)

2
x+

b2

4
.

Since 5P is a Q(αt)-rational point of order 2, the right hand side of (6) should
have a linear factor and a quadratic factor over Q(αt). By a simple calculation,

one can show that the quadratic factor splits over Q(
√
8α3

t − 8α2
t + 1), and this

implies that E has two more 2-torsion points over Q(
√
8αt

3 − 8αt
2 + 1). In fact,

Q(
√
8αt

3 − 8αt
2 + 1) is equal to Q since αt satisfies 8α

3
t − 8α2

t +1 = t2. Therefore,
E has the torsion subgroup Z/2Z⊕ Z/10Z over Q(αt). �

3.3. The case E(K)tors = Z/2Z⊕ Z/12Z.

Theorem 3.4. Choose t ∈ Q such that the polynomial f(x) = x3−4x2+6x−3−t2

is irreducible over Q. Let αt be a zero of f(x). Let E be an elliptic curve defined
by the equation

y2 + (1− c)xy − (c+ c2)y = x3 − (c+ c2)x2,

where c = − (αt−1)(αt−2)2

α2
t (α

2
t−3αt+3)

. Then the torsion subgroup of E over a cubic number

field Q(αt) is equal to Z/2Z⊕ Z/12Z for almost all t.

Proof. From [7, Table 3] we see that the Tate normal form

y2 + (1− c)xy − (c+ c2)y = x3 − (c+ c2)x2

defines an elliptic curve having a Q-rational point (0, 0) of order 6. The coordinate

changes given by x → x and y → y + (c−1)
2 x+ (c2+c)

2 yield the following form:

(7) y2 = x3 − 3c2 + 3c− 1

4
x2 +

c3 − c

2
x+

c4 + 2c3 + c2

4
.

By substituting c = 10−2k
k2−9 into (7), the cubic polynomial of the right hand side of

(7) splits as follows:

(8) y2 =

(
x+

2(k − 1)2

(k + 3)2(k − 3)

)(
x+

2(k − 5)

(k − 3)(k + 3)

)(
x+

(k − 5)(k − 1)2

4(k + 3)(k − 3)2

)
.

Note that the elliptic curve defined by (8) has the point P = (0,− c2+c
2 ) of order

6. By Theorem 2.2, for a number field K, there exists a K-rational point Q with
2Q = P if and only if both 2

k−3 and k−5
k+3 are squares in K. Set k = 2l2 + 3; then

2
k−3 = 1

l2 and k−5
k+3 = l2−1

l2+3 are squares in Q

(√
l2−1
l2+3

)
and c = 1−l2

l4+3l2 . Thus the

elliptic curve defined by y2 +(1− c)xy− (c+ c2)y = x3− (c+ c2)x2 with c = 1−l2

l4+3l2

contains Z/2Z⊕Z/12Z as its torsion group over the field Q

(√
l2−1
l2+3

)
. Now we need

to find an l such that l generates a cubic number field Q(l) and l2−1
l2+3 is a square in
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Q(l); the latter condition is equivalent to (l2 − 1)(l2 + 3) being a square in Q(l).
Consider the following equation:

(9) Y 2 = (X2 − 1)(X2 + 3) = X4 + 2X2 − 3.

Substituting X = x
x−2 and Y = 4y

(x−2)2 , (9) becomes

(10) y2 = x3 − 4x2 + 6x− 3.

Since αt is a zero of f(x), the point (x, y) = (αt, t) satisfy (10). Then the point
(X,Y ) = ( αt

αt−2 ,
4t

(αt−2)2 ) satisfies (9). Thus we can take l to be αt

αt−2 , and then

c = − (αt−1)(αt−2)2

α2
t (α

2
t−3αt+3)

. The result follows as desired. �

4. Moduli problem and the case E(K)tors = Z/2Z⊕ Z/14Z

Let X1(2N, 2) be the modular curve belonging to the congruence subgroup
Γ1(2N) ∩ Γ(2). When K is a number field, the K-rational points on the curve
X1(2N, 2) parametrize elliptic curves E over K such that E(K)tors contains a sub-
group Z/2Z⊕ Z/2NZ. There are forgetful maps from X1(2N, 2) to X1(2N) which
send (E,P,R) to (E,P ) where P (resp. R) is a K-rational 2N (resp. 2) torsion
point.

In order to find the elliptic curves with noncyclic torsion groups Z/2Z⊕Z/2NZ

as their torsion subgroups overK, we use forgetful maps fromX1(2N, 2) toX1(2N).
For example, in the case N = 3, consider the forgetful map X1(6, 2) → X1(6). It
follows from the Tate normal form that there is a canonical bijection P1 → X1(6)
which sends t �→ (Et, Pt), where

Et : y
2 + (1 + t)xy + (t− t2)y = x3 + (t− t2)x2, Pt = (0, 0).

Viewed as a modular function, t(z) has the following q-expansion [5]:

1

9
(1− 8q + 24q2 − 24q3 − 40q4 + 144q5 + · · · ).

Meanwhile, the curve X1(6, 2) has genus 0, and thus its function field over Q is
equal to Q(f), where f(z) is the Hauptmodul for Γ1(6, 2) with the q-expansion

f(z) = q−
1
2 + 2q

1
2 + q

3
2 − 2q

7
2 − 2q

9
2 + · · · .

Comparing q-expansions of t(z) and f(z), we obtain t = f2−9
9(f2−1) . Thus we see that

Ef : y2 + (1 + t)xy + (t− t2)y = x3 + (t− t2)x2, where t =
f2 − 9

9(f2 − 1)

gives a family of elliptic curves which have torsion subgroups Ef (Q)tors = Z/2Z⊕
Z/6Z.

Now, in order to settle our problem, we need to construct the forgetful map
from X1(14, 2) to X1(14) by following the above method. But the situation is quite
different from the previous case. Note that X1(14, 2) (resp. X1(14)) has genus 4
(resp. genus 1). Since the modular curve X1(14, 2) has genus greater than 0, the
function field generators for the curve are not uniquely determined. Since X1(14) is
an elliptic curve over Q, it is parametrized by modular functions. The modularity
of X1(14, 2) is heavily affected by the choice of function field generators and the
modular parametrizations.

In the following we construct the forgetful map from X1(14, 2) to X1(14) which
reflects the correct modularity. For this purpose, we need to consider the modular
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curves XΔ(N). Let Δ be a subgroup of (Z/NZ)∗ that contains −1. We write
XΔ(N) for the modular curve belonging to the group

{(
a b
c d

)
∈ SL2(Z) : N |c and a ∈ Δ

}
.

Note that for Δ = {±1} this is just X1(N). Let Δ = {±1,±(2N + 1)}. Then
we observe that XΔ(4N) is the modular curve corresponding to the subgroup
Γ0(4N) ∩ Γ1(2N). Conjugating the group Γ1(2N, 2) with the matrix ( 1 0

0 2 ), we
obtain a birational map, defined over Q, from X1(2N, 2) to XΔ(4N). In the mod-
uli interpretation this corresponds to dividing an elliptic curve with a distinguished
subgroup Z/2NZ⊕Z/2Z by the 2-torsion point that generates Z/2Z and obtaining
an elliptic curve with a cyclic 4N -isogeny and a distinguished underlying 2N -torsion
point.

The first two authors and Schweizer [3] calculate a defining equation of XΔ(28)
by using the modular forms of weight 2 corresponding to ΓΔ(28) as follows:

(11) (x2 − 1)(y3 − 9y) + (x3 + 2x2 − 9x− 2)(y2 − 1) = 0.

Note that the defining equation of the modular curve X1(14) is as follows:

(12) X1(14) : v2 + uv + v = u3 − u.

Now we construct the forgetful map from X1(14, 2) to X1(14) by finding the
corresponding map between the curves defined by the equations in (11) and (12).
For this purpose, we need to know the q-expansions of modular functions onXΔ(28)
and X1(14).

Yang [15] developed a method to find the equations of modular curves by using
the generalized Dedekind η-functions. More precisely, he devised an algorithm
to generate modular functions from the generalized Dedekind η-functions and then
obtained an equation of modular curves by finding two modular functions satisfying
some conditions of the orders of the pole at infinity. The generalized Dedekind η-
functions are defined by

(13) Eg(τ ) = q
NB(

g
N

)

2

∞∏

m=1

(
1− q(m−1)N+g

) (
1− qmN−g

)

where N is a fixed positive integer, g is not congruent to 0 modulo N , q = e2πiτ ,
and B(x) = x2 − x+ 1

6 .
In particular, the equation of X1(14) in (12) can be computed by the following

two modular functions:

u =
E5E6

E1E2
,(14)

v = −E5E6

E1E2
− E2

6E7

E1E2
2

− 1.

Using the infinite product in (13), we can obtain q-expansions of u and v as
follows:

u =
1

q2
+

1

q
+ 2 + 2q + 3q2 + 2q3 + 2q4 + q5 − 2q7 − 3q8 − 4q9 − 4q10 + · · · ,

v = − 1

q3
− 2

q2
− 4

q
− 6− 8q − 9q2 − 10q3 − 8q4 − 6q5 − q6 + 5q7 + 12q8 + · · · .



588 DAEYEOL JEON, CHANG HEON KIM, AND YOONJIN LEE

Also we can get the q-expansions of modular functions x and y which give the
equation in (11) as follows:

x = 1− 2q + 2q4 − 2q6 + 4q9 − 2q10 − 2q11 + 4q14 − 4q15 − 2q17 + 4q18 + · · · ,

y = −2

q
− 1 + 2q2 − 2q4 − 2q5 + 2q10 + 2q11 − 2q12 − 4q13 − 2q14 + 4q15 + · · · .

Now we are ready to construct the forgetful map. An algorithm for finding such
a map is as follows:

Algorithm.

(1) Put

u =
f1(x, y)

f2(x, y)
, v =

g1(x, y)

g2(x, y)

where fi(x, y), gi(x, y) ∈ Z[x, y] with i = 1, 2.
(2) Input the q-expansions of u, v, x, and y in the following two equations:

f1(x, y) = uf2(x, y), g1(x, y) = vg2(x, y).

(3) Compare the coefficients, and set two systems of linear equations.
(4) Find fi(x, y) and gi(x, y) with i = 1, 2 by solving the above systems of linear

equations.

Following this algorithm, we obtain the following result.

Proposition 4.1. The forgetful map from XΔ(28) to X1(14) is given as follows:

u =
−2 + 2y

3 + x+ y − xy
,

v =
−y − 3y2 − x− 4xy + xy2 − x2 + x2y

1 + 4y + y2 + 3x+ 2xy − xy2 − 2x2y
.%endarray

(15)

Proof. First of all, we need to introduce a defining equation of X1(14, 2) which
shows its modularity explicitly. Each point (u, v) on X1(14) corresponds to the
elliptic curve E(b, c) with a torsion point P = (0, 0) of order 14, where

(16)
b =

(v − u2 + u)(−v − 1 + u2)(−v + u− 1)

(−v − u− 1 + u2)2(u− 1)3
,

c =
(v − 1− u2)(−v + u− 1)

(−v − u− 1 + u2)u(u− 1)2
.

By replacing y by y+ (c−1)
2 x+ b

2 in the equation of E(b, c), we have the following
form:

(17) E : y2 = x3 +
1

4
(c2 − 2c+ 1− b)x2 +

1

2
b(c− 1)x+

b2

4
.

Note that 7P is of order 2 and the x-coordinate of 7P is as follows:

x7P = − (−v + u− 1)u(u2 − u− v)

(−v − u− 1 + u2)(u− 1)4
.

The cubic polynomial in the right hand side of (17) is divisible by x − x7P , and
we have a quadratic factor q(x). Then the torsion subgroup of the elliptic curve E
defined over the field K = Q(u, v) contains the group Z/2Z⊕ Z/14Z if and only if
the quadratic factor q(x) splits over K, and it holds if and only if the discriminant
Δ(u, v) of q(x) is a square in K. Since the denominator of Δ(u, v) is a square, it is
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equivalent to the numerator of Δ(u, v), say d(u, v), being a square in K. Note that
d(u, v) is given by

d(u, v) = v8+(8+8u+12u2−20u3)v7+(28−56u+96u2−132u3−6u4+8u5+6u6)v6+(56−168u+324u2−

372u3−136u4+324u5−300u6+252u7−88u8+12u9)v5+(70−280u+600u2−580u3−584u4+1404u5−1182u6+

288u7 +u12+ 767u8 − 832u9 +336u10 − 56u11)v4 +(56− 280u+660u2 − 540u3 − 1096u4 +2560u5 − 1668u6 −

1188u7+3288u8−1908u9−652u10−584u12+108u13−4u14+1248u11)v3+(28−168u+432u2−300u3−1054u4+

2376u5−1006u6−2748u7+4368u8−740u9−3350u10+2684u11+44u12−996u13+532u14−108u15+6u16)v2+

(8−56u+156u2 −92u3 −512u4 +1116u5 −200u6 −2056u7 +2432u8 +780u9 −3348u10 +1464u11 +1508u12 −

1624u13 +212u14 +412u15 −252u16 +56u17 −4u18)v+(1−8u−12u3 +24u2 −100u4 +212u5 +14u6 −532u7 +

498u8+456u9−1006u10+128u11+837u12−524u13−242u14+364u15−77u16−72u17+50u18−12u19+u20).

Therefore a defining equation of the modular curve X1(14, 2) is given by

(18)

{
w2 = d(u, v),
v2 + uv + v = u3 − u.

It is enough to show that each point (x, y) on XΔ(28) is sent via the map in (15)
to a point (u, v) on X1(14) such that d(u, v) is a square.

By using the q-expansions of u and v, we have the followig q-expansion of d(u, v):

d(u, v) =
1

q40
+

24

q39
+

304

q38
+

2696

q37
+

18764

q36
+

109000

q35
+

549060

q34
+

2461000

q33
+ · · · .

Consider the function w(u, v) which satisfies

w(u, v)2 = d(u, v).

Using the computer algebra system MAPLE, we can obtain the q-expansion of
w(u, v) as follows:

w(u, v) =
1

q20
+

12

q19
+

80

q18
+

388

q17
+

1526

q16
+

5148

q15
+

15402

q14
+

41748

q13
+

104015

q12
+ · · · .

By using the algorithm to find our forgetful map, we can express w(u, v) as a
function of x and y, say w(x, y). Then w(x, y) is given by the following:

w(x, y) = (383853934x−54063026260x3+1379413578y−123255399692x4−167914xy9−31428348264x2y+

19230671876x2y2 + 694312x2y7 + 492414x2y8 + 159008209164x6y2 + 16065416x4y6 − 106840989252x5y

+ 158946584916x5y2 − 22472013304x7y3 − 24523541364x8y2 − 84492576104x3y + 62620354220x3y2

+ 2949480x3y6 − 1947000x3y7 + 759365284x5y4 − 165655676x5y5 + 140747568536x6y − 4784831510xy

+ 932698396xy2 − 179242xy8 − 10900521880x6y3 + 1867038484x6y4 + 133076830500x4y2

−53533212x4y5+218660344216x7y−65277977844x7y2−99647268612x4y−12427018434x2−177287357856x6−

604790904y2 +65277977844x7 −169528920088x5 +24523541364x8 −167914y9 +321578392)/(28−130978226x+

14284x10+333488x9y−596841706x2y+1066214497x2y2−148235x2y7+33555x2y8−719758869x2−2265027x8y+

16714462667x6y2+5196294278x7+2446411x4y6−12468749230x5y+8576723560x5y2−220632x9−1877501054x3

− 2069563299x7y3 − 2277572804x8y2 − 5239206172x3y + 2181375376x3y2 − 1831371x3y6 + 14015x3y7

−19137109x5y4 −14969541x5y5 +5310496290x6y−609156369xy+14356616xy2−33555xy8−18535760799x6−

207071073x6y3 + 191054373x6y4 − 7419757485x4 + 8645284145x4y2 − 575703x4y5 + 20304995860x7y

− 5205074905x7y2 + 2278124061x8 − 4555739890x4y − 8833344818x5) .

We can also express d(u, v) as a function of x and y by using the map in (15),
say d(x, y). Then one can check that d(x, y) and w(x, y)2 define the same function
on XΔ(28). Therefore we can finally conclude that the map in (15) is the forgetful
map. �
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In the following theorem, we obtain an infinite family of elliptic curves over cubic
number fields whose torsions are Z/2Z⊕ Z/14Z.

Theorem 4.2. Choose t ∈ Q such that the polynomial

f(x) = (t2 − 1)x3 + (t3 + 2t2 − 9t− 2)x2 − 9(t2 − 1)x− t3 − 2t2 + 9t+ 2

is irreducible over Q. Let αt be a zero of f(x). Let E be an elliptic curve defined
by the equation

y2 + (1− c)xy − by = x3 − bx2,

where b is given by

b = (5+ 13αt −αt
3 +16t− 12αt

2t+5αt
2t2 +αt

3t2 − 4αtt− 13αtt
2 −αt

2 − 9t2 − 4t3 +4αtt
3)(−3− t−

αt + αtt)
2(−5 − 12αt + 4αt

3 − 25t + αt
4 + 26αt

2t + 26αt
2t2 + 8αt

3t − 12αt
3t2 − 24αtt + 28αtt

2 − αt
4t2 −

αt
4t−4αt

2 −25t2 +17t3 +6t4 +16αtt
3 −8t4αt −18t3αt

2 +2αt
2t4 +αt

4t3)(−5t4 +7t4αt −3αt
2t4 +αt

3t4 +

6t3αt
2 − 4αtt

3 − 4αt
3t3 − 15t3 +αt

4t3 +3t2 +8αt
2t2 +10αtt

2 − 3αt
4t2 − 2αt

3t2 +10αt
2t− 36αtt+3αt

4t+

12αt
3t−37t−10−7αt

3−αt
4−21αt

2−41αt)/[(1+8αt+4αt
3−5t+αt

4+6αt
2t+30αt

2t2+4αt
3t−4αt

3t2−

20αtt − 4αtt
2 − αt

4t2 − αt
4t + 2αt

2 − 37t2 + 5t3 + 4t4 + 20αtt
3 − 4t4αt − 6t3αt

2 − 4αt
3t3 + αt

4t3)2(−1 −

4t − t2 − 3αt − 2αtt + αtt
2 + 2αt

2t)(t − 5 − αt + αtt)
3],

and c is given by

c = (5 + 12αt − 4αt
3 + 25t − αt

4 − 26αt
2t − 26αt

2t2 − 8αt
3t + 12αt

3t2 + 24αtt − 28αtt
2 + αt

4t2 +

αt
4t+4αt

2 +25t2 − 17t3 − 6t4 − 16αtt
3 +8t4αt +18t3αt

2 − 2αt
2t4 −αt

4t3)(−3− t−αt +αtt)
2(5 + 13αt −

αt
3 +16t− 12αt

2t+5αt
2t2 +αt

3t2 − 4αtt− 13αtt
2 −αt

2 − 9t2 − 4t3 +4αtt
3)/[(1 + 8αt +4αt

3 − 5t+αt
4 +

6αt
2t+30αt

2t2 +4αt
3t− 4αt

3t2 − 20αtt− 4αtt
2 −αt

4t2 −αt
4t+2αt

2 − 37t2 +5t3 +4t4 +20αtt
3 − 4t4αt −

6t3αt
2 − 4αt

3t3 +αt
4t3)(3t− 3t2 − t3 −αtt− 3αtt

2 +αtt
3 +2αt

2t2 +1+3αt − 2αt
2t)(t− 5−αt +αtt)

2].

Then the torsion subgroup of E over a cubic number field Q(αt) is equal to Z/2Z⊕
Z/14Z for almost all t.

Proof. Substituting y = t into the defining equation of XΔ(28), we have a cubic
polynomial f(x) as above. For the irreducible cubic polynomial f(x) with a rational
number t and its root αt, the point (αt, t) on XΔ(28) is defined over the cubic
number field Q(αt).

If the point (αt, t) is mapped via the forgetful map of Proposition 4.1 to a point
Q on X1(14), then the elliptic curve E(b, c) corresponding to this point Q has the
torsion subgroup Z/2Z⊕ Z/14Z over a cubic number field Q(αt). �
Example 4.3. Let t = 0. Then f(x) = −x3 − 2x2 +9x+2. If we let α = α0, then
b and c are given by

b = − 73

128
α2 − 149

128
α+

357

64
, c =

13

32
α2 +

25

32
α− 65

16
.

Then the cubic equation in (17) splits over Q(α) as follows:

(16x− 47 + 10α+ 5α2)(2048x− 1190 + 163α+ 207α2)(4x+ 18− 3α− 2α2)

131072
.

Therefore the torsion subgroup of E(b, c) should be Z/2Z⊕ Z/14Z over Q(α).
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