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ON THE POINCARÉ-FRIEDRICHS INEQUALITY

FOR PIECEWISE H1 FUNCTIONS IN ANISOTROPIC

DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS

HUO-YUAN DUAN AND ROGER C. E. TAN

Abstract. The purpose of this paper is to propose a proof for the Poincaré-
Friedrichs inequality for piecewise H1 functions on anisotropic meshes. By
verifying suitable assumptions involved in the newly proposed proof, we show
that the Poincaré-Friedrichs inequality for piecewise H1 functions holds inde-
pendently of the aspect ratio which characterizes the shape-regular condition
in finite element analysis. In addition, under the maximum angle condition,
we establish the Poincaré-Friedrichs inequality for the Crouzeix-Raviart non-
conforming linear finite element. Counterexamples show that the maximum
angle condition is only sufficient.

1. Introduction

In discontinuous Galerkin finite element methods (including nonconforming
methods) [8, 6, 19, 21, 7, 17], the following Poincaré-Friedrichs inequality (in two-
dimensions) for piecewise polynomials is frequently used:

(1.1) ||v||0 ≤ CPF

⎛
⎝∑

D∈P
|v|21,D +

∑
f∈F

|f |−1

∫

f

|[v]|2
⎞
⎠

1
2

,

where P = {D} is a nonoverlapped partition of a given bounded domain Ω in R
2, F

denotes the set of all sides in P, and v is of piecewiseH1 functions whose restrictions
to each D ∈ P are in H1(D) with jump [v] = v|D2

− v|D1
across f = ∂ D1 ∩ ∂ D2

for D1, D2 ∈ P. Inequality (1.1), proven in [6] (see also a recent work [15]), is a
discrete version of the well-known Poincaré-Friedrichs inequality (see [25]):

(1.2) ||v||0 ≤ C |Ω| 12 |v|1 ∀v ∈ H1
0 (Ω).

However, the inequality (1.1) was proven [6, 15] under the so-called shape-regular
condition. This condition says that the aspect ratio σD of the diameter hD of the
sub-domain D and the supremum ρD of the diameters of all balls contained in D
must be bounded from above (cf. [18, 23]), i.e., there exists a constant σ > 0 such
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that

(1.3) σD :=
hD

ρD
≤ σ ∀D ∈ P (shape-regular condition).

As a matter of fact, the proof in [6] relies on the local trace theorem, e.g., for
triangles D with side f :

(1.4) |f |
∫

f

v2 ≤ C
|f |2
|D|

(
||v||20,D + h2

D || � v||20,D
)

∀v ∈ H1(D),

where the ratio |f |2
|D| may be proportional to σD by (since D is triangle, there are

sides f whose lengths take the diameter hD, the length of the longest side of the
triangle D)

(1.5)
4

3
σD ≤ h2

D

|D| ≤ 4σD.

While the key step in the proofs in [15, 16] is the following estimation for linear
functions v on triangle D:

(1.6) |v|21,D ≤ C
h2
D

|D|

3∑
i=1

|v(ai)|2 or |v|21,D ≤ C
h2
D

|D|

3∑
i=1

|v(mi)|2,

where ai, 1 ≤ i ≤ 3, is the ith vertex of the triangle D, and mi, 1 ≤ i ≤ 3,
is the mid-point of the ith side of the triangle D. Thus, both proofs in [6, 15]
cannot deal with the case of anisotropic meshes in which the aspect ratio σD (or
equivalently, h2

D/|D|) grows to infinity on some D sub-domains when the global
mesh size h = maxD∈P hD → 0 or some parameter such as the width of boundary
layer tends to zero [5]. So, it gives rise to a naturally important question: Does (1.1)
hold in the case of anisotropic meshes where the shape-regular condition is violated?
Since (1.1) plays a prerequisite role in the stability analysis, such a question must
be resolved in advance when using anisotropic discontinuous Galerkin finite element
methods which are fundamentally instrumental in the treatment of corner and edge
singularities, boundary and interior layers and adaptive algorithms; cf. [5, 20, 17].

In this note, we propose a new proof of (1.1) for general partitions of the do-
main. The newly proposed proof shows that (1.1) holds independently of the aspect
ratio under Hypothesis H) and Condition C), and as a consequence, (1.1) holds on
anisotropic meshes. As far as we know, this is the first proof which can be used to
establish the Poincaré-Friedrichs inequality of piecewiseH1 functions on anisotropic
meshes.

Specifically, we show that (1.1) can be directly obtained from Hypothesis H)
which states the local version of the Poincaré-Friedrichs inequality with mean value
zero on the edge (a part of the sub-domain boundary) (cf. [25]) when the sub-
domains of the partition can be rearranged to satisfy an essentially local condition
labeled as Condition C). We remark that such a proof is elementary and that the
local Poincaré-Friedrichs inequality labeled as Hypothesis H) can be easily verified
through the well-known scaling argument [18, 23], while Condition C) can be ful-
filled by most anisotropic meshes in [5] which are usually graded meshes. As a
by-product, an explicit estimate can be obtained on the constant CPF , which takes
C |Ω| 1d in most cases, where C does not depend on Ω ⊂ R

d, d = 2, 3. This esti-
mation is consistent with (1.2). We should note that CPF in (1.1) was in general
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very difficult to determine and that an explicit estimate on CPF plays a physically
important role for practical purposes; see [10, 12, 28, 30] and the cited references.

In addition, under the maximum angle condition [27], we establish the Poincaré-
Friedrichs inequality for the Crouzeix-Raviart (CR) nonconforming linear finite
element [21], which is of particular interest in mixed methods for problems like the
Stokes problem or the Reissner-Mindlin plate problem [7]. We remark that the
maximum angle condition is much weaker than the usual shape-regular condition
(equivalently, the minimum angle condition [14]) and is widely adopted in finite
element analysis; see [5, 3, 4, 1, 2, 22]. But, counterexamples show that the maxi-
mum angle condition is only sufficient. Further, it is not clear whether the general
inequality (1.1) with jumps term holds or not under the maximum angle condition.

The outline of this paper is as follows. In Section 2, Condition C) in two di-
mensions is stated and is verified in anisotropic meshes. Section 3 is devoted to
the establishment of the Poincaré-Friedrichs inequalities in both two and three di-
mensions for piecewise H1 functions under Hypothesis H) and Condition C), and
the verification of the three-dimensional Condition C) in anisotropic meshes, and
the verification of Hypothesis H) for simplexes. In the last section, the Poincaré-
Friedrichs inequality is established for the CR nonconforming linear element under
the maximum angle condition.

2. Condition C) in two dimensions and its verification

in anisotropic meshes

We state Condition C) mentioned in the Introduction and verify it in a set of
examples of anisotropic meshes. To fix the idea, we consider first only the two-
dimensional case.

Given a bounded domain Ω ⊂ R
2 with boundary ∂ Ω. Let PN , N = 1, 2, · · · ,

denote a family of partitions of Ω: PN = {DN
i ; 1 ≤ i ≤ nN}, Ω̄ =

⋃nN

i=1 D̄N
i . We

denote by FN the collection of all sides in PN . In what follows, when we mention a
generic partition or sub-domain, we shall omit its superscripts and (or) subscripts.
We denote by |f | and |D| the d − 1 and d-dimensional volumes of f ∈ F and
D ∈ P, respectively, and by hD the diameter of D, and by [v] the jump of v across
an f ∈ F : [v] = v|D2

− v|D1
along f ⊆ D̄2

⋂
D̄1, and [v] = v|D if f ⊆ D̄

⋂
∂ Ω. The

L2-norm is denoted by || · ||0,D, with || · ||0 := || · ||0,Ω, and |v|1,D = || � v||0,D for
v ∈ H1(D) := {v ∈ L2(D),� v ∈ (L2(D))2}, with |v|1 := |v|1,Ω. We set the global
mesh-size h := maxD∈P hD.

Below we state Condition C). To that goal, we rearrange the sub-domains of P
in the following way of ‘level decomposition’.

Level decomposition. Let P be divided into K levels such that each level
1 ≤ k ≤ K has mk sub-domains: Di;k, 1 ≤ i ≤ mk, and these sub-domains are
connected by a subset Fc

k = {fi−1,i;k ∈ F ; 1 ≤ i ≤ mk}, such that D1;k has a side
f0,1;k on ∂ Ω and fi−1,i;k ⊂ ∂ Di−1;k and fi−1,i;k ⊂ D̄i;k, for 2 ≤ i ≤ mk. Let Fc

denote the union of Fc
1 , · · · ,Fc

K .
Condition C). We require that the above ‘level decomposition’ holds for all

levels 1 ≤ k ≤ K with m = mk:

(2.1)

m∑
i=2

i−1∑
r=1

|Di|h2
Dr

|Dr|
≤ C1(Ω),

where C1(Ω) depends on Ω, but it does not depend on m and k, 1 ≤ k ≤ K.
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→ x1

↑x2

Figure 1. A partition with N = 3

Remark 1. The level decomposition aims at decomposing the two-dimensional par-
titions into a sequence of ‘one-dimensional’ partitions, so that we can obtain the
Poincaré-Friedrichs inequality in two dimensions directly from the sum of its ‘one-
dimensional’ version on each ‘one-dimensional’ level.

Regarding Condition C), if all the sub-domains in P have comparable areas, it
would be roughly stated as m

∑m
i=1 h2

Di
≤ C(Ω), which essentially says that

(2.2)
∑
D∈P

h2
D ≤ C(Ω),

since we may have m
∑m

i=1 h2
Di

≤ C
∑

D∈P h2
D. For triangles we see that if the

shape-regular condition (1.3) holds, i.e., if h2
D/|D| ≤ C for all D ∈ P holds (see

(1.5)), we immediately have (2.2) from the following inequality which holds trivially:

(2.3)
∑
D∈P

|D| ≤ C |Ω| (
∑

D∈P |D| = |Ω| for nonoverlapped partitions).

So, roughly speaking, the shape-regular condition (1.3) implies Condition C). But,
the converse is in general not true. In fact, we will see that Condition C) itself (or
the rough form (2.2)) is quite general and can hold even if the partitions do not
satisfy any known shape-regular conditions such as minimum-angle condition (i.e.,
(1.3)) and maximum-angle condition [27]. �

Here we give a very simple example so that readers can obtain some intuitive
observations about the level decomposition and the constant C1(Ω) in Condition
C). We usually have

(2.4) C1(Ω) = C1 |Ω| or C1 μ
2 or C1 �

2,

where μ denotes the diameter of Ω and � represents the directional diameter of
Ω along some direction, say along the x1 direction in the O − x1x2 coordinates
system. Let us consider the example. Let Ω = [0, 1]2 be partitioned into n = (2N )2

(N = 1, 2, · · · ) squares (cf. Fig. 1). Along the x2 direction we have K = 2N levels
and each level has mk = 2N = K sub-domains (along the x1 direction). Clearly,
|D| = h2 for all D, with h = 1/K, and |Ω| = h2 n = h2 K2. Condition C) holds
with C1(Ω) = |Ω|, since

∑mk

i=1 |Di;k| = mk h
2 ≤ |Ω| and

∑mk

i=2 (i − 1) |Di;k| =∑mk

i=2

∑i−1
r=1 |Di;k|h2

Dr;k
/|Dr;k| = h2 mk (mk − 1)/2 ≤ m2

k h
2/2 = |Ω|/2.

Before studying a set of examples of anisotropic meshes where the shape-regular
condition (1.3) does not hold but Condition C) does, we give two variants of Con-
dition C).
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(V1) Assume that the sub-domains Di, 1 ≤ i ≤ m, in each level have comparable
areas, i.e., |Di| ≈ the same (up to multiplicative constants), for 1 ≤ i ≤ m, or
satisfy |Di| ≤ C |Dr| for 1 ≤ r ≤ i and 1 ≤ i ≤ m for each level. Condition C) can
be stated as follows:

Condition C∗) We assume that there holds for all levels:

(2.5)
m∑
i=2

i−1∑
r=1

h2
Dr

≤ C∗
1 (Ω).

(V2) Assume that the sub-domains of each level have comparable ρD as defined
in (1.3). For triangles we have |D| ≈ hD ρD, and we have the following variant of
Condition C) for triangles:

Condition C∗∗) We assume that there holds for all levels:

(2.6)
m∑
i=2

i−1∑
r=1

hDi
hDr

≤ C∗∗
1 (Ω).

Remark 2. Conditions C∗) or C∗∗) often holds for graded meshes [5], the most
widely used meshes in anisotropic finite element methods. Moreover, we may in-
troduce a sequence of numbers, δi,r := |Di|/|Dr|, and γi,r := ρDi

/ρDr
, these num-

bers would be less than one, and the general forms
∑m

i=2

∑i−1
r=1 δi,r h

2
Dr

≤ C and∑m
i=2

∑i−1
r=1 γi,r hDi

hDr
≤ C would be useful.

In addition, for general but nongraded partitions, the general rule for checking
Condition C) is to choose K � mk for all 1 ≤ k ≤ K, so that the estimate on the
sum involved in Condition C) could be more easily done (cf. Example 4 below).
Sometimes, a better level decomposition like the one in the above example as shown
in Fig. 1 also helps to check Condition C). For this reason, it would be desirable
to introduce a rectangle R containing Ω, with edge length μ being the diameter of
Ω, we may partition the outside of Ω referring to the partition P of Ω. Then we
check Condition C) on R, with some constant C1(R) (but |R| = μ2). Note that the
piecewise H1 function defined on Ω can be extended to R with values zero outside
Ω, so that the Poincaré-Friedrichs inequality for the u on Ω can be obtained from
the one for the extended u on R. �

We are now in a position to verify Condition C) for anisotropic meshes by giving
the following set of Examples 1-4. The prototype of these anisotropic meshes can
be found in [5].

Example 1 (Babus̆ka-Aziz-Dobrowolski’s partition). Let Ω = [0, a]2 be partitioned
into triangles to form a family of partitions PN , N = 1, 2, · · · , with hx2

= a/4N

and hx1
= a/2N and with the global mesh size h = a

2N ; see Fig. 2.

The above partition is quite a representative example of anisotropic partitions,
and does not fulfill any shape-regular conditions known in the literature, such as
the minimum and maximum angle conditions:

θmin = arctan (h/a) → 0,

θmax = arccos
(
1− 2/(1 + h2/a2)

)
→ arccos(−1) = π as h → 0,

while the aspect ratio σD = hD

ρD
≈ 2

θmin
→ ∞ as h → 0. Moreover, the two angles

of those triangles having the bottom sides parallel to the x2 direction approximate
π/2 as h → 0, i.e. θ = arccos h√

a2+h2 → arccos 0 = π
2 as h → 0.
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→ x1

↑ x2
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D3 D4
D5

D6

D′
2 D′

5

) θmin

θmax	
θ
	

N = 1 N = 3

Figure 2. Babus̆ka-Aziz-Dobrowolski’s partition

The level decomposition is taken as K = 2 × 4N (along the x2 direction) and
mk = 2N × 3 (along the x1 direction), 1 ≤ k ≤ K, for example, with N = 1 in
Fig. 2, we have K = 2 × 4, mk = 2 × 3, and the first two consecutive (over-
lapped) levels are: D1, D2, D3, D4, D5, D6 and D1, D

′
2, D3, D4, D

′
5, D6. Since all

sub-domains are triangles and have the same areas a2

23N+2 , we can verify Condition
C∗) with

mk∑
i=2

i−1∑
r=1

h2
Dr;k

≤
mk∑
i=2

(i− 1)
a2

22N
=

mk (mk − 1)

2

a2

22N
≤ 9

2
a2 =

9

2
|Ω|.

Example 2 (An anisotropic partition for boundary layers). Let Ω = [0, a]2 be
partitioned into four rectangular domains: [0, a − ε0] × [0, ε0], [a − ε0, a] × [0, ε0],
[a − ε0, a] × [ε0, a], [0, a − ε0] × [ε0, a], where ε0 > 0 represents some parameter
which is usually chosen as ε |ln ε| with 0 < ε � 1 being the width of the boundary
layer. Note that the boundary layer phenomenon occurs in the advection-diffusion
problem or the Reissner-Mindlin plate problem and some numerical methods; cf. [5].
These four rectangle domains are uniformly hierarchically refined as follows: they
are first partitioned into (2N )2 rectangles and each rectangle is then partitioned
into 2 triangles; see Fig. 3. Such meshes are related to the Bakhvalov-Shishkin
mesh [5]. The partition of Ω is anisotropic in the sense that the aspect ratio for the
rectangle domain [0, a− ε0]× [0, ε0] is σD = hD

ρD
≈ a−ε0

ε0
→ ∞ as ε0 → 0.

For this example we choose a level decomposition as follows: K = 2× 2N (along
the x2 direction) and mk = mk1 + mk2, with mk1 = mk2 = 2 × 2N (from left to
right along the x1 direction), for 1 ≤ k ≤ K. Since |Di| ≤ |Dr| for all r ≤ i, where
1 ≤ i ≤ mk, 1 ≤ k ≤ K, we can easily check Condition C∗) with C∗

1 (Ω) = C |Ω|,
where C does not depend on the parameter ε0.

Example 3 (An anisotropically graded partition for singularities). Let Ω =
[−a, a]2 \ [0, a]× [−a, 0] be partitioned by applying the cross product of the graded
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ε0
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Figure 3. An anisotropic partition in boundary layers
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1

Ω∗
1

k : 1 2 3 4 5Ω∗
1Ω∗

2

Ω∗
3

Ω∗
4 Ω∗

5

Ω∗
6

Figure 4. An anisotropically graded partition for corner and edge singularities

one-dimensional meshes. The graded mesh for the interval [0, a] is given by h∗
1 >

· · · > h∗
N ; see Fig. 4 for the case N = 5.

The whole domain Ω can be partitioned into the union of Ω∗
j , 1 ≤ j ≤ 6, as shown

in Fig. 4, where Ω∗
1 and Ω∗

2 are overlapped along the diagonal direction and the same
for the other two pairs (Ω∗

3,Ω
∗
4) and (Ω∗

5,Ω
∗
6). The graded partition is anisotropic,

since in the finer region (e.g., k = 5, see Ω∗
1 in Fig. 4), the aspect ratio h∗

1/h
∗
N

grows to infinity as the global mesh size → 0. The Poincaré-Friedrichs inequality
for the whole Ω can be obtained by combining those for the six sub-domains Ω∗

j ,
1 ≤ j ≤ 6, since, the jumps term in the Poincaré-Friedrichs inequalities for all Ω∗

j ,
for example, for Ω∗

1 as shown in Fig. 4, does not involve the top part (along the
diagonal direction) and the left and right parts of the boundary of Ω∗

1; see Remark 4
later on. The level decomposition for each Ω∗

j is chosen as K = N , with each level
sub-divided into two sub-levels which are overlapped in the same way as shown in
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h*
1

h*
2

h*
3

h*
4

h*
5

(a) (b)

Figure 5. (a) An anisotropic partition with a vertex (center
point) shared by triangles, the number of which tends to infinity
as the partition is refined. (b) Each level has five fixed triangles.

Fig. 2, and each sub-level has k × 3 triangles, 1 ≤ k ≤ K. With the above level
decomposition, we know that the triangles of each sub-level have comparable ρD.
In fact, ρD ≈ h∗

k for each level 1 ≤ k ≤ K. Noting that for each level 1 ≤ k ≤ K
we have hDi,k

≈ h∗
1 for 1 ≤ i ≤ 3, hDi,k

≈ h∗
2 for 4 ≤ i ≤ 6, and so on, we can easily

verify Condition C∗∗) with C∗∗
1 (Ω) = C |Ω|.

Example 4 (An anisotropic partition). Given Ω = [0, 1]2. Let two interior squares
be fixed, respectively, at 1/3 and 2/3 of the half-diagonal line of Ω. The three
squares are mutually parallel. Along the boundary ∂ Ω, the graded one-dimensional
partition is applied, where the graded mesh for the interval [0, 1/2] is given by
h∗
1, · · · , h∗

N , and then the partition of Ω is generated by connecting the center
point (1/2, 1/2) of Ω with the points on ∂ Ω, where each resulting quadrilateral is
further bisected into two triangles by connecting two opposite vertices. See Fig.
5 for the case N = 5. The partition is obviously anisotropic because the number
of the triangles sharing the center point of Ω tends to infinity as the partition is
being refined. The level decomposition is chosen as K = 8N (along ∂ Ω), and the
number of triangles in each level is fixed, i.e., mk = 5, for k = 1, · · · ,K = 8N and
for N = 1, 2, · · · . It is thus very easy to verify Condition C) with C1(Ω) = C |Ω|.

3. Poincaré-Friedrichs inequalities in two and three dimensions

We establish the Poincaré-Friedrichs inequality for piecewise H1 functions with
their restrictions to each D ∈ P being in H1(D), under Condition C) and the
following hypothesis:

Hypothesis H) (A local Poincaré-Friedrichs inequality) For all PN ,
N = 1, 2, · · · , we assume that for any v ∈ H1(DN

i ) and any f ∈ FN with f ⊂ D̄N
i

(Closure of DN
i ), 1 ≤ i ≤ nN , if

∫
f
v = 0, there exists a constant C2 > 0 indepen-

dent of f,DN
i and v such that

(3.1) ||v||20,DN
i
≤ C2 h

2
DN

i
|v|21,DN

i
.
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Remark 3. Hypothesis H) is a local Poincaré-Friedrichs inequality. It plays a key
role in proving Lemma 1 below. This lemma essentially establishes one-dimensional
Poincaré-Friedrichs inequalities along each ‘one-dimensional’ level; what is really
needed is (3.13) resulting from Hypothesis H). (3.13) just says (for example, for
linear polynomials)

(3.2) (u(p1)− u(p2))
2 ≤ |p1 − p2|2 | � u|2,

where p1 and p2 are two opposite points on two opposite sides f1 and f2 of some
sub-domain D, such that u(pj) =

∫
fj

u/|fj |, j = 1, 2.

Theorem 1. Assume that Hypothesis H) and Condition C) hold. Then, for any
piecewise H1 function u defined on P (the partition of Ω ⊂ R

2), there exists a

constant C(Ω) =
√
max(32C2C1(Ω) + 2C2 h2, 8C1(Ω), 4C |Ω|) such that

(3.3) ||u||0 ≤ C(Ω)

⎛
⎝∑

D∈P
|u|21,D +

∑
f∈Fc

|f |−2

(∫

f

[u]

)2
⎞
⎠

1
2

.

Let u be any given piecewise H1 function, whose restrictions to each sub-domain
of P are denoted as ui;k, 1 ≤ i ≤ mk, 1 ≤ k ≤ K, in the same way as the
level decomposition. We define two piecewise constant functions ū± ∈ L2(Ω) sub-
domain-by-sub-domain in the same way as the level decomposition as follows:

ū+
i−1;k|Di;k

:=
1

|fi−1,i;k|

∫

fi−1,i;k

ui;k, 1 ≤ i ≤ mk, 1 ≤ k ≤ K,(3.4)

ū−
0;k = 0, ū−

i;k|Di;k
:=

1

|fi,i+1;k|

∫

fi,i+1;k

ui;k, 1 ≤ i ≤ mk − 1, 1 ≤ k ≤ K.

(3.5)

Lemma 1. Assume that Hypothesis H) and Condition C) hold. Given u, a piece-
wise H1 function defined on P, with ū± defined by (3.4) and (3.5). We have

||ū+||20 ≤ 2C |Ω|
K∑

k=1

(ū+
0;k)

2 + 16C2 C1(Ω)
∑
D∈P

|u|21,D

+ 4C1(Ω)
K∑

k=1

mk−1∑
i=1

(ū+
i;k − ū−

i;k)
2.

(3.6)

Proof. We first see that for 1 ≤ i ≤ mk and 1 ≤ k ≤ K,

(3.7) ū+
i−1;k = ū+

0;k +
i−1∑
r=1

(ū+
r;k − ū+

r−1;k),

where

ū+
r;k − ū+

r−1;k = ū+
r;k − ū−

r;k + ū−
r;k − ū+

r−1;k,(3.8)

ū−
r;k − ū+

r−1;k = ū−
r;k − ur;k + ur;k − ū+

r−1;k.(3.9)

Since from (3.4) and (3.5),

(3.10)

∫

fr,r+1;k

(ū−
r;k − ur;k) = 0,

∫

fr−1,r;k

(ur;k − ū+
r−1;k) = 0,
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we have from Hypothesis H)

||ū−
r;k − ur;k||20,Dr;k

≤ C2 h
2
Dr;k

|ur;k|21,Dr;k
,(3.11)

||ur;k − ū+
r−1;k||20,Dr;k

≤ C2 h
2
Dr;k

|ur;k|21,Dr;k
,(3.12)

and we have from (3.9), (3.11), (3.12) and the Cauchy inequality

(3.13) ||ū−
r;k − ū+

r−1;k||20,Dr;k
≤ 4C2 h

2
Dr;k

|ur;k|21,Dr;k
.

We thus have from the Cauchy inequality, (3.8) and (3.13),
(

i−1∑
r=1

(ū+
r;k − ū+

r−1;k)

)2

≤ 2

(
i−1∑
r=1

(ū+
r;k − ū−

r;k)

)2

+ 2

(
i−1∑
r=1

(ū−
r;k − ū+

r−1;k)

)2

≤ 2

(
i−1∑
r=1

h2
Dr;k

|Dr;k|

) (
i−1∑
r=1

|Dr;k|
h2
Dr;k

(ū+
r;k − ū−

r;k)
2

)

+ 2

(
i−1∑
r=1

h2
Dr;k

|Dr;k|

) (
i−1∑
r=1

|Dr;k|
h2
Dr;k

(ū−
r;k − ū+

r−1;k)
2

)

= 2

(
i−1∑
r=1

h2
Dr;k

|Dr;k|

) (
i−1∑
r=1

|Dr;k|
h2
Dr;k

(ū+
r;k − ū−

r;k)
2

)

+ 2

(
i−1∑
r=1

h2
Dr;k

|Dr;k|

) (
i−1∑
r=1

h−2
Dr;k

||ū−
r;k − ū+

r−1;k||20,Dr;k

)

≤ 2

(
i−1∑
r=1

h2
Dr;k

|Dr;k|

) (
i−1∑
r=1

(ū+
r;k − ū−

r;k)
2

)

+ 8C2

(
i−1∑
r=1

h2
Dr;k

|Dr;k|

) (
i−1∑
r=1

|ur;k|21,Dr;k

)
,

(3.14)

where, in obtaining the first part of the last inequality we have used the following
obvious fact: For any D ∈ P in two dimensions since D can be contained in the
square with side length being hD we have

(3.15) |D| ≤ h2
D.

Hence, we have from (3.7), the Cauchy inequality and (3.14),

(3.16)

mk∑
i=1

||ū+
i−1;k||20,Di;k

=
mk∑
i=1

(ū+
i−1;k)

2 |Di;k|

≤ 2
mk∑
i=1

(ū+
0;k)

2 |Di;k|+ 4
mk∑
i=1

|Di;k|
(

i−1∑
r=1

h2
Dr;k

|Dr;k|

) (
i−1∑
r=1

(ū+
r;k − ū−

r;k)
2

)

+16C2

mk∑
i=1

|Di;k|
(

i−1∑
r=1

h2
Dr;k

|Dr;k|

) (
i−1∑
r=1

|ur;k|21,Dr;k

)

≤ 2 (ū+
0;k)

2
mk∑
i=1

|Di;k|+ 4

(
mk∑
i=2

|Di;k|
i−1∑
r=1

h2
Dr;k

|Dr;k|

)
mk−1∑
i=1

(ū+
i;k − ū−

i;k)
2

+16C2

(
mk∑
i=2

|Di;k|
i−1∑
r=1

h2
Dr;k

|Dr;k|

)
mk−1∑
i=1

|ui;k|21,Di;k
.
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We finally obtain from (3.16),

K∑
k=1

mk∑
i=1

||ū+
i−1;k||20,Di;k

≤ 2
K∑

k=1

(ū+
0;k)

2
mk∑
i=1

|Di;k|

+ 4
K∑

k=1

(
mk∑
i=2

i−1∑
r=1

|Di;k|h2
Dr;k

|Dr;k|

)
mk−1∑
i=1

(ū+
i;k − ū−

i;k)
2

+ 16C2

K∑
k=1

(
mk∑
i=2

i−1∑
r=1

|Di;k|h2
Dr;k

|Dr;k|

)
mk−1∑
i=1

|ui;k|21,Di;k
.

(3.17)

Therefore, we conclude that (3.6) holds from the above inequality and (2.1) in

Condition C) and the obvious fact in (2.3):
mk∑
i=1

|Di;k| ≤ C |Ω|. �

Proof of Theorem 1. Since from (3.4),

(3.18)

∫

fi−1,i;k

(ui;k − ū+
i−1;k) = 0,

we have from Hypothesis H) and the Cauchy inequality

(3.19) ||ui;k||20,Di;k
≤ 2C2 h

2
Di;k

|ui;k|21,Di;k
+ 2 ||ū+

i−1;k||20,Di;k
,

and we have

||u||20 =

K∑
k=1

mk∑
i=1

||ui;k||20,Di;k
≤ 2C2

K∑
k=1

mk∑
i=1

h2
Di;k

|ui;k|21,Di;k

+ 2
K∑

k=1

mk∑
i=1

||ū+
i−1;k||20,Di;k

,

(3.20)

where
K∑

k=1

mk∑
i=1

h2
Di;k

|ui;k|21,Di;k
≤ max

D∈P
h2
D

(
K∑

k=1

mk∑
i=1

|ui;k|21,Di;k

)
= h2

∑
D∈P

|u|21,D.

We then have from Lemma 1,

||u||20 ≤ (32C2 C1(Ω) + 2C2 h
2)

∑
D∈P

|u|21,D

+ 8C1(Ω)
K∑

k=1

mk−1∑
i=1

|fi,i+1;k|−2

(∫

fi,i+1;k

[u]

)2

+ 4C |Ω|
K∑

k=1

|f0,1;k|−2

(∫

f0,1;k

u

)2

.

(3.21)

The proof is finished. �

Remark 4. Note that the jumps term in the Poincaré-Friedrichs inequality obtained
in Theorem 1 involves only some subsets of the whole set of sides/faces. Consider-
ing the example in Fig. 1, we see that only approximately 50% of the sides enter
into the jumps term, and that those sides on the bottom, top and right (boundary)
of Ω are not involved. In addition, our proof does not require the partitions to be



130 HUO-YUAN DUAN AND ROGER C. E. TAN

nonoverlapped. Overlapped partitions may arise from Mortar and domain decom-
position methods and elsewhere [13, 31, 26]. We point out that the proofs in [6, 15]
do not cover the case of overlapped partitions. �

For three-dimensional domains Ω ⊂ R
3, by stating similar Condition C) and

Hypothesis H), we can establish the Poincaré-Friedrichs inequality for piecewise
H1 functions defined with respect to the partitions P of Ω. In fact, for three-
dimensional domains, Hypothesis H) has the same form as that for two dimensions.
To state Condition C), we need level decomposition as follows:

3D Level decomposition. Let P = {D}, the partition of Ω, be firstly divided
into L levels and then each level 1 ≤ l ≤ L be divided into Kl levels such that
each level 1 ≤ k ≤ Kl has mk,l sub-domains: Di;k,l, 1 ≤ i ≤ mk,l, and these sub-
domains are connected by a subset Fc

k,l = {fi−1,i;k,l ∈ F ; 1 ≤ i ≤ mk,l}, such that

D1;k,l has a face f0,1;k,l on ∂ Ω and fi−1,i;k,l ⊂ ∂ Di−1;k,l and fi−1,i;k,l ⊂ D̄i;k,l, for
2 ≤ i ≤ mk,l. Let Fc denote the union of Fc

k,l, 1 ≤ k ≤ Kl, 1 ≤ l ≤ L.

3D Condition C). We require that the above ‘level decomposition’ makes

(3.22) max
( m∑

i=2

i−1∑
r=1

|Di|h2
Dr

|Dr|
,

m∑
i=2

i−1∑
r=1

|Di|
|fr,r+1|

1
2

,

m∑
i=1

|Di|
|f0,1|

1
2

)
≤ C1(Ω)

for all levels 1 ≤ k ≤ Kl and 1 ≤ l ≤ L with m = mk,l, where C1(Ω) depends on
Ω, but it does not depend on m and k, l, 1 ≤ k ≤ Kl, 1 ≤ l ≤ L. We usually have
C1(Ω) = C1 |Ω|

2
3 , or C1 μ

2, or C1 �
2, where μ denotes the diameter of Ω and �

represents the directional diameter of Ω along some direction.
Similar to the two-dimensional case (See (3.14) and (3.15) in proving Lemma 1

for two dimensions), if

(3.23)
|D|
h2
D

≤ C |f | 12 for f ∈ F with f ⊂ D̄,

the above Condition C) can then be replaced by the following unified form as in
two dimensions:

(3.24)

m∑
i=2

i−1∑
r=1

|Di|h2
Dr

|Dr|
≤ C1(Ω).

Equation (3.23) is obviously true for those commonly used triangulations (i.e.,
conforming partitions [18]) composed of tetrahedra and hexahedra, since |D| ≤
C |f |hD (the bottom area × the height) ≤ C |f |1/2 h2

D.
For the three-dimensional case, just following the same argument as in proving

Theorem 1, we have

Theorem 2. Assume that Hypothesis H) in three dimensions and 3D Condition
C) hold. Then, for any piecewise H1 function u defined on P (the partition of

Ω ⊂ R
3), there exists a constant C(Ω) =

√
max(32C2C1(Ω) + 2C2 h2, 8C1(Ω))

such that

(3.25) ||u||0 ≤ C(Ω)

⎛
⎝∑

D∈P
|u|21,D +

∑
f∈Fc

|f |− 3
2

(∫

f

[u]

)2
⎞
⎠

1
2

.

In what follows we consider two examples of anisotropic meshes in three dimen-
sions to verify Condition C) as in (3.24).
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Figure 6. An anisotropic partition for a thick L-domain with a
‘singular’ edge

Example 5 (An anisotropically graded partition for edge singularities). Let Ω =
([−a, a]2 \ [0, a]× [−a, 0])× [−a, a] be the thick L-domain in R

3. Ω has a ‘singular’
edge. Let Ω be partitioned as follows (See Fig. 6): along the plane (x1, x2) the
cross product of the anisotropically graded one-dimensional meshes for the interval
[0, a] with h∗

1 > h∗
2 > · · · > h∗

N , satisfying h∗
1/h

∗
N → ∞ as N → ∞, while along

the x3 direction the uniform coarser partition of the interval [0, a] with hz = a/Nz,
with some Nz such that

(3.26) hz ≥ C h∗
1.

For simplicity, we do not further sub-partition each cuboid into six tetrahedra. Due
to the symmetry, we need only consider the part of [0, a]3. The level decomposition
is chosen as follows: along the x2 (opposite) direction, l = 1, 2, · · · , N , and then
along the x1 (opposite) direction k = 1, 2, · · · , N , and then along the x3 (opposite)
direction i = 1, 2, · · · , Nz. Each ‘one-dimensional’ level has Nz cuboids, and all of
the cuboids have the same volumes and have the same diameters ≈ hz (because of
(3.26)). For example, along the level P2P5 (i.e., l = N = 5 and k = 1) there are
Nz = 4 cuboids of the same volume h∗

N × h∗
1 × hz and the same diameter ≈ hz

(because of hz ≤
√
(h∗

N )2 + (h∗
1)

2 + (hz)2 ≤ C hz). We verify (3.24) by computing
with m = Nz,

m∑
i=2

i−1∑
r=1

|Di|h2
Dr

|Dr|
=

Nz∑
i=2

i−1∑
r=1

h2
z = h2

z

Nz(Nz − 1)

2
≤ h2

z N
2
z = a2 ≤ C |Ω|2/3.

If considering tetrahedra partitions, just sub-partitioning each cuboid into 6
tetrahedra of the same volumes, we have two sub-levels of tetrahedra in each level
of cuboids from the above level decomposition for cuboids, where each cuboid con-
tains three consecutively connected tetrahedra of each sub-level; see the right-hand
side figure in Fig. 8 below. All the tetrahedra in each sub-level have the same
volume and the same diameter, so we have the same estimates as above, up to a
multiplicative constant.

Example 6 (An anisotropically graded partition for corner and edge singularities).
Let Ω be the Fichera-corner domain: Ω = [−a, a]3 \ ([0, a] × [−a, 0] × [0, a]). Let
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Figure 7. An anisotropic partition for Fichera-corner domain
with ‘singular’ corners and edges.

Figure 8. Left: Two ‘tetrahedra’: P − P2P4O and P − P2P5O,
with overlapped cuboids along the common plane PP2O.
Right: Three consecutively connected tetrahedra in a cuboid:
Q−Q2Q4A,Q−Q2Q5A, and Q−Q3Q5A.

P of Ω be the tensor cross product (all the directions of x1, x2 and x3) of the
anisotropically graded one-dimensional partition of the interval [0, a] with h∗

1 >

h∗
2 > · · · > h∗

N , satisfying
∑N

i=1 h∗
i = a and h∗

1/h
∗
N → ∞ as N → ∞; see Fig. 7.

This example is basically analyzed following the same argument as in Example
3. We only consider part of [0, a]3: PP2P4P1 − P3P5OP6. We further divide
PP2P4P1 − P3P5OP6 into 6 overlapped ‘tetrahedra’: P − P2P5O, P − P2P4O,
and P − P3P5O, P − P3P6O, and P − P1P4O, P − P1P6O, where each cuboid
in the overlapped part is overlapped at most 5 times, and where P − P2P5O and
P −P2P4O are overlapped along the common plane PP2O, see the left-hand side in
Fig. 8, and the same for the other two groups of ‘tetrahedra’ (i.e., P − P3P5O and
P −P3P6O are overlapped along the plane PP3O, and P −P1P4O and P −P1P6O
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are overlapped along the plane PP1O). It suffices to verify Condition C) for each
‘tetrahedron’, say P − P2P4O, and to establish the Poincaré-Friedrichs inequality
on such ‘tetrahedron’. The Poincaré-Friedrichs inequality on Ω is obtained just by
summing all the ones on these 7× 6 = 42 ‘tetrahedra’.

To verify Condition C) for ‘tetrahedron’ P −P2P4O, we have the following level
decomposition: along x2 (opposite) direction l = 1, 2, · · · , N , and then along x1

(opposite) direction k = 1, 2, · · · , l, and then along x3 (opposite) direction i =
1, 2, · · · , k. In each ‘one-dimensional’ level, there are k cuboids in all, and each
cuboid Di has the volume h∗

l × h∗
k × h∗

i and has the diameter ≈ h∗
i , where the

diameter ≈ h∗
i is calculated by h∗

i ≤
√
(h∗

l )
2 + (h∗

k)
2 + (h∗

i )
2 ≤

√
3 (h∗

i )
2 =

√
3h∗

i ,
because l ≥ k ≥ i and h∗

l ≤ h∗
k ≤ h∗

i . We verify Condition C) as in (3.24) by
computing with m = k

m∑
i=2

i−1∑
r=1

|Di|h2
Dr

|Dr|
=

k∑
i=2

i−1∑
r=1

h∗
l × h∗

k × h∗
i

h∗
l × h∗

k × h∗
r

(h∗
r)

2

=

k∑
i=2

i−1∑
r=1

h∗
i h

∗
r ≤

(
N∑
i=1

h∗
i

)2

= a2 ≤ C |Ω|2/3.

For other tetrahedra, we can verify Condition C) in the same way as above and we
have the same estimates, but with different level decompositions. For P − P2P5O
along the x2 (opposite) direction l = 1, 2, · · · , N , and then along the x3 (opposite)
direction k = 1, 2, · · · , l, and then along the x1 (opposite) direction i = 1, 2, · · · , k;
for P−P3P5O: along the x3 (opposite) direction l = 1, 2, · · · , N , and then along the
x2 (opposite) direction k = 1, 2, · · · , l, and then along the x1 (opposite) direction
i = 1, 2, · · · , k and for P−P3P6O: along the x3 (opposite) direction l = 1, 2, · · · , N ,
and then along the x1 (opposite) direction k = 1, 2, · · · , l, and then along the x2

(opposite) direction i = 1, 2, · · · , k; for P−P1P6O, along the x1 (opposite) direction
l = 1, 2, · · · , N , and then along the x3 (opposite) direction k = 1, 2, · · · , l, and then
along the x2 (opposite) direction i = 1, 2, · · · , k and for P − P1P4O, along the x1

(opposite) direction l = 1, 2, · · · , N , and then along the x2 (opposite) direction
k = 1, 2, · · · , l, and then along the x3 (opposite) direction i = 1, 2, · · · , k.

If considering tetrahedra partitions, as in Example 5, we have two sub-levels
of tetrahedra in each level of cuboids. For such deduced tetrahedra partitions
Q = {T}, to verify Condition C) it suffices to consider the ‘tetrahedron’ P−P2P4O,
with the level decomposition: along the x2 (opposite) direction l = 1, 2, · · · , N , and
then along the x1 (opposite) direction k = 1, 2, · · · , l, and we need only consider
either of the two sub-levels of tetrahedra in each level of cuboids, say, along the x3

(opposite) direction i = 1, 2, · · · , 3 k. We introduce a fourth variable j = 1, 2, · · · , k,
corresponding to the j-th cuboid in the level of k cuboids. Then the three tetra-
hedra: i = 3j − 2, 3j − 1, 3j belong to the same j-th cuboid, and these three
consecutively connected tetrahedra have the same volume h∗

l ×h∗
k ×h∗

j/6 and have
the same diameter ≈ h∗

j , see the right-hand side in Fig. 8. We verify Condition C)
as in (3.24) by computing with m = 3k,

m∑
i=2

i−1∑
r=1

|Ti|h2
Tr

|Tr|
= 3

k∑
j=1

(h∗
j )

2 + 9
k∑

j=2

j−1∑
s=1

h∗
j h

∗
s ≤ 12 a2 ≤ C |Ω|2/3.
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p2
p1

****A1

A2A3

Figure 9. A partition with two hanging nodes: p1, p2

In what follows, we shall address the verification of Hypothesis H), which has the
same form for both two- and three-dimensional domains. In practice, we can easily
verify Hypothesis H). In fact, the partitions are usually equivalent families [18], in

the sense that there is a fixed finite number of reference domains D̂j and invertible

mappings Fj , 1 ≤ j ≤ J , such that for any D ∈ P it holds that D = F(D̂) for

some pair (D̂,F). Such Fj and D̂j exist, e.g., when all D are simplexes (or each
D is composed of a fixed finite number of simplexes), Fj ≡ F is an affine mapping

(or a piecewise affine mapping) and D̂j ≡ D̂ is a simplex (or a polygon/polyhedron
composed of a fixed finite number of simplexes).

We verify Hypotheses H) using the standard scaling argument (see [18, 23]):
first establishing it on reference domains and then using the invertible mappings
to obtain it on physical sub-domains. Note that the constant C2 appearing in
Hypothesis H) possibly depends on σD as defined in (1.3), because of the use of
the scaling argument. Fortunately, however, for practical polyhedra partitions we
need only verify Hypothesis H) for simplexes and other affine equivalent families
of partitions (see Remark 6 later on) and in that case, the constant C2 does not
depend on the shape-regular condition (1.3); see Proposition 1 in the below.

Assume that Ω is polygonal (or polyhedral) and is partitioned into triangles

(or tetrahedra). Let D̂ denote the reference domain (a triangle with vertices
(0, 0), (1, 0), (0, 1) or a tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1))

such that for any D ∈ P we have D = FD(D̂), where FD is the affine mapping.

For any function u defined on D we associate a function û defined on D̂ satisfying
û = u◦FD. Denote by DFD ∈ R

d×d the first-order derivatives matrix of FD on D̂,
with (DFD)kl = ∂ (FD)k/∂ x̂l and by JF the Jacobian of DFD. Note that DFD

and JF are constant quantities on D̂. Here we do not assume conforming partitions
(i.e., any face of any D1 in P is either a subset of ∂ Ω, or a face of another D2 in
P, cf. [18]). Nonconforming partitions with hanging nodes are allowed (See Fig. 9
below).

Propostion 1. For any partitions whose sub-domains are triangles (or tetrahedra)
and for any piecewise polynomials, Hypothesis H) holds, with C2 being independent
of D (thus, independent of the aspect ratio σD defined as in (1.3)).

Proof. Let û = u ◦ FD ∈ Ps(D̂), where Ps(D̂) is the space of polynomials in d
variables of degree ≤ s (here s ≥ 1 is an integer, while for s = 0 Hypothesis H)
holds trivially). Noting that

∫
f
u = 0 leads to (only for affine mappings)

∫

f̂

û = 0, or û(p̂) = 0 with some p̂ ∈ f̂ ,
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and the from Taylor’s expansion to get

−û(x̂) = û(p̂)− û(x̂) = � û(x̂) · (p̂− x̂) +
∑

2≤|α|≤s

(p̂− x̂)α

α!

(
∂

∂ x̂

)α

û(x̂),

where α is the usual multi-index of nonnegative integers, and |p̂− x̂| ≤ hD̂ =
√
2,

we have

(3.27)

∫

D̂

û2 ≤ Ĉ

∫

D̂

| � û|2,

where we used the fact that |û|l,D̂ ≤ Ĉ |û|1,D̂, 2 ≤ l ≤ s, for all û ∈ Ps(D̂), and the

constant Ĉ depends only on s and the H l-and H1 semi-norms on D̂ of the basis
functions of Ps(D̂), but s and those semi-norms on D̂ are constants independent of
D. We thus have

(3.28) ||u||20,D = JF

∫

D̂

û2 ≤ JF Ĉ || � û||2
0,D̂

≤ C Ĉ ||DFD||2∞,D̂
|| � u||20,D,

from which ||DFD||∞,D̂ ≤ C hD and we conclude that Hypothesis H) holds. �

Remark 5. Note that the objective function u is in general of piecewise polynomials
in practice. For piecewise linear polynomials on general partitions of general shapes,
since u(p) = 0 with some p ∈ f from

∫
f
u = 0, Hypothesis H) holds with

(3.29)

∫

D

u2 =

∫

D

| � u · (p− x)|2 ≤ h2
D

∫

D

| � u|2.

On the other hand, Proposition 1 is still valid for any piecewise H1 functions in
the case where the partitions are conforming. In fact, what we need to do is to
show (3.27), and this can be done with the use of the following argument: Setting

¯̂uD̂ :=
∫
D̂

û

|D̂| and ¯̂uf̂ :=
∫
f̂

û

|f̂ | = 0, we have

||û||2
0,D̂

= ||û− ¯̂uf̂ ||
2
0,D̂

≤ 2 ||û− ¯̂uD̂||2
0,D̂

+ 2 ||¯̂uD̂ − ¯̂uf̂ ||
2
0,D̂

,

where, using the trace theorem on D̂,

(3.30)

∫

f̂

|v̂|2 ≤ Ĉt (||v̂||20,D̂ + |v̂|2
1,D̂

) ∀v̂ ∈ H1(D̂),

where the trace-theorem constant Ĉt depends on the geometry of D̂, we have

||¯̂uD̂ − ¯̂uf̂ ||
2
0,D̂

= |D̂|
(∫

f̂
(¯̂uD̂ − û)

|f̂ |

)2

≤ |D̂|
|f̂ |

∫

f̂

(¯̂uD̂ − û)2

≤ Ĉt
|D̂|
|f̂ |

(
||¯̂uD̂ − û||2

0,D̂
+ |û|2

1,D̂

)

≤ Ĉ (||¯̂uD̂ − û||2
0,D̂

+ |û|2
1,D̂

),

since |D̂|
|f̂ | ≤ 1

d , with d = 2 (two dimensions) or d = 3 (three dimensions), for

conforming partitions with |D̂| = 1/2, |f̂ | = 1 or |f̂ | =
√
2 (d = 2) or |D̂| = 1/6,

|f̂ | = 1/2 or |f̂ | =
√
3/2 (d = 3). Hence, we have

(3.27)′ ||û||2
0,D̂

≤ Ĉ (||¯̂uD̂ − û||2
0,D̂

+ |û|2
1,D̂

) ≤ Ĉ |û|2
1,D̂

,
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since (cf. [11]) ||¯̂uD̂ − û||0,D̂ ≤ hD̂

π |û|1,D̂ =
√
2

π |û|1,D̂.
We should note that for nonconforming partitions, the above argument does

seem applicable, because we do not know how Ĉt depends on f̂ and because the

ratio |D̂|
|f̂ | may be not bounded from above since f̂ may be only a very small part

of a side or a face of D̂ (for example, in Fig. 9, f = A1p1 is a very small part of

the side A1A2 of the triangle DA1A2A3
, and accordingly f̂ = F−1

D (f) is a very small

part of the side Â1Â2 of the reference triangle D̂Â1Â2Â3
= F−1

D (DA1A2A3
), where

F−1
D denotes the inverse of FD).

Remark 6. For other commonly used polyhedra but nonsimplex partitions in prac-
tice, for affine mappings (the invertible mapping involved in the equivalent fam-
ilies), the same argument in Proposition 1 can be employed to verify Hypothesis
H); for nonaffine mappings such as quadrilaterals partitions, we do not necessarily
verify Hypothesis H) for these nonsimplexes, because we can obtain the Poincaré-
Friedrichs inequality for such partitions from the one for simplex partitions. Taking
quadrilateral partitions as an example, we may divide each quadrilateral into two
or four triangles just by connecting the vertices of the quadrilateral, and we then
obtain triangles partitions. On such deduced triangles partition we may estab-
lish the Poincaré-Friedrichs inequality, and we then obtain the Poincaré-Friedrichs
inequality for the original quadrilateral partitions, due to the fact that the objec-
tive piecewise H1 function has zero jumps across interior sides newly added in the
interiors of quadrilaterals.

4. The case of nonconforming elements

In this section we derive the Poincaré-Friedrichs inequality for Crouzeix-Raviart
(CR) nonconforming linear finite element [21] under the so-called maximum angle
condition [27].

Let Th denote the triangulation (conforming partition [18]) of the polygonal or
polyhedral Ω ⊂ R

d (d = 2, 3) into triangles or tetrahedra. Denote by F the set of
all sides or faces in Th. Recall the CR nonconforming linear element [21],

(4.1) Uh =

{
v ∈ L2(Ω); v|T ∈ P1(T ), ∀T ∈ Th,

∫

f

[v] = 0, ∀f ∈ F
}

and the lowest-order Raviart-Thomas flux element [29]

(4.2) Xh = {v ∈ H(div; Ω);v|T ∈ (P0(T ))
d + xP0(T ), ∀T ∈ Th},

where

H(div; Ω) = {v ∈ (L2(Ω))d; div v ∈ L2(Ω)}.
From [29] we know that there exists an operator Π : (H1(Ω))d → Xh such that

(4.3)

∫

f

Π v · n =

∫

f

v · n ∀f sides or faces of T , ∀T ∈ Th,

and for all vh ∈ Xh,

(4.4) vh · n|f = constant ∀f sides or faces of T , ∀T ∈ Th,
with n denoting the outward unit normal vector to f , and

(4.5) divΠ v = P0 div v,
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where P0 stands for the L
2 orthogonal projection onto the piecewise constant space,

satisfying

(4.6) ||v − P0 v||0,T ≤ C hT || � v||0,T ∀v ∈ H1(T ).

The maximum angle condition in three-dimensions [27]. Denote by
α0
h(T ) the maximum angle of all triangular faces of the tetrahedron T ∈ Th and

by β0
h(T ) the maximum angle between faces of T . We require that there exists a

constant γ̄ such that

(4.7) α0
h(T ) ≤ γ̄ < π, β0

h(T ) ≤ γ̄ < π ∀T ∈ Th, ∀h.

There is a similar statement of the maximum angle condition in two dimensions [9].

Lemma 2 ([3]). Assuming the maximum angle condition. For all v ∈ (H1(Ω))d

we have

(4.8) ||Π v||0,T ≤ C ||v||1,T

where the constant C > 0 depends on γ̄, but it is independent of T and h.

Propostion 2 ([24, 23]). For any convex polygon or polyhedron Ω with the boundary
∂ Ω the following elliptic problem with any given f ∈ L2(Ω),

−Δu = f in Ω, u|∂ Ω = 0

has a solution u ∈ H2(Ω), satisfying

||u||2 ≤ C ||f ||0.

Theorem 3. Assume that the maximum angle condition holds. There exists a
positive constant CPF only depending on γ̄ and Ω in (4.7), such that

(4.9) ||v||0 ≤ CPF

( ∑
T∈Th

|| � v||20,T

) 1
2

∀v ∈ Uh.

Proof. Let the cuboid R contain Ω, and we may assume that Th is a triangulation
of R. We then define v on R by setting its value zero outside Ω, and we obtain the
Poincaré-Friedrichs inequality (4.9) of v ∈ Uh on Ω from the one of the extended v
on R.

We consider the elliptic problem: To find u ∈ H1
0 (R) such that

−Δu = v in R, u|∂ R = 0.



138 HUO-YUAN DUAN AND ROGER C. E. TAN

From Proposition 2 we have u ∈ H2(R) and we set p := � u ∈ (H1(R))d. We thus
have from Lemma 2

||v||20 = (v,−Δu) = −(v, divp) = (v, divΠp− divp)− (v, divΠp)

= (v, P0 divp− divp) +
∑
T∈Th

(� v,Πp)0,T −
∑
f∈F

∫

f

[v] Πp · n

= (v − P0 v,−divp) +
∑
T∈Th

(� v,Πp)0,T

≤ C

( ∑
T∈Th

h2
T || � v||20,T

) 1
2

||divp||0

+ C

( ∑
T∈Th

|| � v||20,T

) 1
2

||p||1,

(4.10)

from which ||divp||0 + ||p||1 ≤ C ||v||0 (See Proposition 2), and we obtain the
desired result. �

Remark 7. It can be seen that the maximum angle condition holds for Examples
2 and 4 in Section 2, and the Poincaré-Friedrichs inequality (4.9) holds for the CR
nonconforming linear element (but the constant CPF therein does not depend on
such a constant γ̄ in (4.7)). On the other hand, the maximum angle condition is
only sufficient, because Examples 1 and 3 in Section 2 show that (4.9) holds where
the constant CPF only depends on Ω (up to some universe positive constant) and is
independent of the maximum angle and the minimum angle, while both conditions
are no longer true in these two examples.

Remark 8. We put forward an open problem: Does the Poincaré-Friedrichs inequal-
ity hold under the maximum angle condition for general piecewise H1 functions
which do not satisfy the jumps condition as in Uh? We have proven (4.9) using the
argument motivated by [3] and [6] for the CR nonconforming linear element, but
this argument seems unable to treat the general case, because the difficulty is that
the estimation of the term

∑
f∈F

∫
f
[v] Πp · n relies on the use of the local trace

theorem as mentioned in the Introduction where the aspect ratio will be inevitably
involved which may grow to infinity as the global mesh size tends to zero in the
case of anisotropic meshes. Note that such a term disappears if v ∈ Uh.
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Galerkin finite element methods. Comput. Methods Appl. Mech. Engrg., 195 (2006), 3293–
3310 MR2220920 (2006m:65256)

18. P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam,
New York, 1978. MR0520174 (58:25001)

19. B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent
convection-diffusion systems. SIAM J. Numer. Anal., 35 (1998), 2440–2463. MR1655854
(99j:65163)

20. B. Cockburn, G. Karniadakis and C.-W. Shu, Discontinuous Galerkin Methods: Theory,
Computation and Applications, Lecture Notes in Computational Science and Engineering,
volume 11, Springer, 2000. MR1842160 (2002b:65004)

21. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for
solving the stationary Stokes equations, RAIRO Anal. Numér., 7 (1973), 33–75. MR0343661
(49:8401)

22. R. G. Durán and A. L. Lombardi, Error estimates on anisotropic Q1 elements for functions
in weighted Sobolev spaces. Math. Comp., 74 (2005), 1679–1706. MR2164092 (2006e:65216)

23. V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory
and Algorithms, Springer-Verlag, Berlin, 1986. MR851383 (88b:65129)

24. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, MA, 1985.
MR775683 (86m:35044)

25. O. A. Ladyzhenskaya and N. N. Uraltseva, Linear and Quasilinear Elliptic Equations, Aca-
demic Press, New York, London, 1968. MR0244627 (39:5941)

26. Y.-J. Liu, C.-W. Shu, E. Tadmor and M. Zhang, Central discontinuous Galerkin methods on
overlapping cells with a nonoscillatory hierarchical reconstruction. SIAM J. Numer. Anal. 45

(2007), 2442–2467. MR2361897 (2009a:15256)
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