
MATHEMATICS OF COMPUTATION
Volume 80, Number 273, January 2011, Pages 429–435
S 0025-5718(2010)02381-6
Article electronically published on July 20, 2010

ON THE LARGEST PRIME FACTOR OF x2 − 1

FLORIAN LUCA AND FILIP NAJMAN

Abstract. In this paper, we find all integers x such that x2−1 has only prime
factors smaller than 100. This gives some interesting numerical corollaries. For
example, for any positive integer n we can find the largest positive integer x
such that all prime factors of each of x, x+ 1, . . . , x+ n are less than 100.

1. Introduction

For any integer n we let P (n) be the largest prime factor of n with the convention
P (0) = P (±1) = 1. Our main result in this paper is the determination of all integers
x satisfying the inequality

(1) P (x2 − 1) < 100.

We also give some interesting corollaries to our main result. For simplicity, we will
consider only solutions with positive values of x.

Before stating the results, we give some history. In 1964, Lehmer [6] found all
positive integer solutions x to the inequality P (x(x + 1)) ≤ 41. Notice that this
amounts to finding all odd positive integers y = 2x + 1 such that P (y2 − 1) ≤ 41.
There are 869 such solutions. In [7], the first author found all positive integer
solutions of the similar looking equation P (x2 + 1) < 100. There are 156 of them.

In both [6] and [7], the method of attack on this question was the following.
Assume that x is a positive integer such that P (x2 ± 1) ≤ K, where K = 41 if the
sign is − and K = 100 if the sign is +. Then we can write

(2) x2 ± 1 = dy2,

where d is squarefree and P (dy) ≤ K. When the sign is −, then there are 13
possible primes p ≤ 41 which can participate in the factorization of d. When the
sign is +, then p ≤ 100 but either p = 2 or p is a prime which is congruent to 1
modulo 4. There is a total of 12 such primes. In both cases, we can write equation
(2) in the form

x2 − dy2 = ∓1.

Thus, our possible values for x appear as the first coordinate of one of the solutions
of at most 213 − 1 = 8191 Pell equations. For a given Pell equation, the sequence
(yn/y1)n≥1 forms a Lucas sequence with real roots. The Primitive Divisor Theorem
for Lucas sequences with real roots (see, for example, [3], or the more general result
from [1] which applies to all Lucas sequences) says that if n > 6, then yn has a
prime factor which is at least as large as n− 1. In particular, for the cases treated
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in [6] (and [7]), it suffices to check the first 42 (respectively 100) values of the
component x of the Pell equations involved there and among these one finds all
possible solutions of the equations considered there.

We follow the same approach in the present paper. The first step is, as previ-
ously, to determine the form of all the possible solutions. This is done as explained
above via the Primitive Divisor Theorem for the second component of the solutions
to Pell equations. Since there are 25 primes p < 100, this leads to first solving
225 − 1 Pell equations x2 − dy2 = 1, the largest one of them having d with 37 deci-
mal digits. This is clearly impossible using standard algorithms like the continued
fractions, as the computations would be too slow and the fundamental solutions
of some of the involved Pell equations would have hundreds of millions of decimal
digits. Instead, the Pell equations are solved by first computing the regulator of the
ring of integers of the corresponding quadratic field and then from the regulator
obtaining a compact representation of the fundamental solution of the Pell equa-
tion. The only algorithm known to be fast enough to compute the huge amount
of regulators needed is Buchmann’s subexponential algorithm. The output of this
algorithm gives exactly the regulator under the Generalized Riemann Hypothesis
and unconditionally is only a multiple of the regulator. Next, we check which of
the solutions to the Pell equations will lead to solutions to equation (1). Finally, a
check is performed that proves our search misses no solutions, thus eliminating the
apparent dependence of our results on the Generalized Riemann Hypothesis.

2. Application of the primitive divisor theorem

Here, we explain in more detail the applicability of the Primitive Divisor Theo-
rem, alluded to in Section 1, to our problem.

Let x be an integer such that x2 − 1 is a product of only the primes up to 97.
We can then write x2 − 1 = dy2, or, equivalently, x2 − dy2 = 1, where

d = 2a1 · 3a2 · · · 97a25 , ai ∈ {0, 1} for i = 1, . . . , 25.

The only restriction for d above is that not all the ai’s can be zero. This is a Pell
equation, so (x, y) = (xn, yn), where xn + yn

√
d = (x1 + y1

√
d)n for some positive

integer n and x1+y1
√
d is the fundamental solution. As we have 225−1 possibilities

for d, to get a finite number of possible solutions for our equation, we need an upper
bound for n.

Let d be fixed, η = x1 + y1
√
d, and ζ = x1 − y1

√
d. It can be easily seen that{

xn + yn
√
d = (x1 + y1

√
d)n = ηn,

xn − yn
√
d = (x1 − y1

√
d)n = ζn.

From here, we deduce that

xn =
ηn + ζn

2
and yn =

ηn − ζn

2
√
d

.

It is easy to see that y1 divides yn. We define un = yn/y1. As un = (ηn−ζn)/(η−ζ),
it follows that (un)n≥0 is a Lucas sequence of the first kind with real roots η and
ζ. By a result of Carmichael (see [3]) known as the Primitive Divisor Theorem, it
follows that if n > 12, then un has a primitive divisor p. This primitive divisor has
several particular properties, the most important one for us being that it satisfies
the congruence p ≡ ±1 (mod n). This implies that for n > 98, there exists a prime
p ≥ 101 dividing un. Thus, n ≤ 98.
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3. The algorithm

We now give our algorithm. Let

S = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, . . . , 97}

be the set of all primes p ≤ 100. The set S has 25 elements. Let Rd be the
regulator of the ring of integers of the quadratic field Q(

√
d) and let x1 + y1

√
d be

the fundamental solution of the Pell equation x2 − dy2 = 1.

For all D ∈ P(S)
{
1. d =

∏
p∈D p

2. Compute mRd

3. Compute a compact representation of xm + ym
√
d

4. For i = 1 to 25 compute ordpi
ym

5. z = 2ordp1ym · . . . 97ordp25ym

6. Compute all the convergents pn/qn of the continued fraction expansion of
√
d having

qn < z, and check whether p2n − dq2n = 1

7. If Rd − log 2− log
√
d ≈ log z

{
m = 1 and x1 is a solution
8. For i = 2 to 98
{
For j = 1 to 25 compute ordpj

yi
z = 2ordp1yi · . . . 97ordp25yi

If i ·Rd − log 2− log
√
d ≈ log z, xi is a solution

}
}
}

The algorithm searches through all 225 − 1 possible d’s.
In step 1, a value for d is chosen.
In step 2, Buchmann’s subexponential algorithm is used to compute Rd. This

algorithm returns a multiple mRd of the regulator Rd, unconditionally . If the Gen-
eralized Riemann Hypothesis is true, then m = 1. We will remove the dependence
of our algorithm on the Generalized Riemann Hypothesis in step 6.

A compact representation of an algebraic number β ∈ Q(
√
d) is a representation

of β of the form

(3) β =
k∏

j=1

(
αj

dj

)2k−j

,

where dj ∈ Z, αj = (aj + bj
√
d)/2 ∈ Q(

√
d), aj , bj ∈ Z, j = 1, . . . , k, and k, α,

and dj have O(log
√
d) digits.

In step 3, a compact representation of xm + ym
√
d is constructed using the

algorithms described in [8]. The reason for using compact representations is that
the standard representation of the fundamental solution of the Pell equation has
O(

√
d) digits. Using the standard representation would make these computations

impossible. More details about compact representations can be found in [5].
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Since we only have the compact representation of the xm+ym
√
d, in step 4, we use

algorithms from [9] to perform modular arithmetic on the compact representation.
The p-adic valuations of ym when p is one of the first 25 primes are computed in the
following way. We define v =

∏25
i=1 pi. We first compute ym (mod v). If ym ≡ 0

(mod v), we conclude that ym is divisible by all 25 primes. Next, for all primes
that we now know divide ym, we compute ym (mod pci ), where c is a sufficiently
large constant. We first take c = 15 and if ym ≡ 0 (mod pci ) still, we then replace
c by 2c and repeat the computation.

In step 5, z, which is defined to be the part of ym divisible by the first 25 primes,
is computed.

The purpose of step 6 is to remove the dependence of this algorithm on the
Generalized Riemann Hypothesis. If the Generalized Riemann Hypothesis is false,
it is possible that, without this check, we could miss some solutions in our search.
Suppose therefore that m > 1 and that yk is such a solution that we are missing,
meaning that yk is divisible only by some of the first 25 primes for some k that
is not a multiple of m. But y1 | yk, so y1 is divisible only by some of the first 25
primes. Also y1 | ym, meaning that y1 divides the part of ym that is divisible by
the first 25 primes, which in our notation is z. In other words, y1 | z, implying
y1 < z. As y1 has to be the denominator of a convergent of the continued fraction
expansion of

√
d, it follows that by checking that the relation p2n − dq2n 	= 1 holds

for all n satisfying qn < z, we arrive at a contradiction. This proves that either
m = 1 or that yk has a prime factor larger than 100 for all positive integers k. This
implies that our algorithm finds all solutions to equation (1) unconditionally, and
if ym = z, then m = 1. In practice, z will be a relatively small number, so usually
only about 10 convergents will need to be computed.

Since x1 ≈ y1
√
d, it follows that

Rd = log(x1 + y1
√
d) ≈ log(2y1

√
d) = log 2 + log

√
d+ log y1,

so we can determine whether y1 = z by the test in step 7. In this test, we took
that a ≈ b if |a− b| < 0.5. If y1 	= z, then y1 ≥ 101 · z, so log y1 > 4.61+ log z. This
shows that great numerical precision is not needed here. Just in case, we used 10
digits of precision.

Step 8 checks whether any of the xn are solutions for n = 2 to 98. With the
purpose of speeding up the algorithm, the fundamental solution was not powered
when computing ordpj

yi. Instead, we computed the fundamental solution modulo
the appropriate integer and then powering modulo that integer. Also, usually not
all n have to be checked. This is a consequence of the fact that if a prime p divides
yk, then it divides ylk for every positive integer l. For example, if we get that y2 is
divisible by a prime larger than 100, then y4, y6, . . . do not need to be checked.

The running time of the algorithm is dominated by the computation of the
regulator in step 2. Step 2 makes the algorithm run in subexponential time. It
is the only part of the algorithm that is not polynomial. The computations were
performed on an Intel Xeon E5430. The computation of the regulators took around
12 days of CPU time, while the rest of the computations took around 3 days of
CPU time.

Suppose that one wants to find the solutions of P (x2 − 1) < K using this algo-
rithm. By the Prime Number Theorem, there are approximately K/ logK primes
up to K. This means that the algorithm will loop 2K logK times. The product of all
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these primes will be of size O(eK). This means that step 2 will run in O(e
√
K logK).

Thus, the time complexity of the algorithm is O(exp(K/ logK +
√
K logK)).

4. Results

Theorem 1. a) The largest three solutions x of the equation P (x2 − 1) < 100 are

x =

⎧⎨
⎩
19182937474703818751,
332110803172167361,
99913980938200001.

b) The largest solution x of P (x4 − 1) < 100 is x = 4217.
c) The largest solution x of P (x6 − 1) < 100 is x = 68.
d) The largest n such that P (x2n − 1) < 100 has an integer solution x > 1 is

n = 10, the solution being x = 2.
e) The largest n such that P (x2n − 1) < 100 has an integer solution x > 2 is

n = 6, the solution being x = 6.
f) The equation P (x2 − 1) < 100 has 16167 solutions.
g) The greatest power n of the fundamental solution of the Pell equation (x1+

y1
√
d)n which leads to a solution of our problem is (2+

√
3)18; i.e., n = 18

for d = 3. The case d = 3 also gives the most solutions, namely 10 of them.

Proof. The proof is achieved via a computer search using the algorithm from Section
3. Part b) is proved by finding the largest square of all the x, c) by finding the
largest a cube, etc. �

The largest solution x has 20 decimal digits, and the second largest has 18 digits,
followed by 5 solutions with 17 digits and 10 solutions with 16 digits. All of the
mentioned large solutions are odd. The largest even solution x has 15 digits.

Theorem 2. Write the equation (1) as

x2 − 1 = 2a1 · · · 97a25 .

Then the following hold:

a) The solution with the largest number of ai 	= 0 is x = 9747977591754401.
For this solution, 17 of the ai’s are non-zero.

b) The solution with the largest
∑25

i=1 ai is x = 19182937474703818751. For

this solution,
∑25

i=1 ai = 47.
c) The single largest ai appearing among all solutions is a1 = 27 and corre-

sponds to the solution x = 4198129205249.

Proof. Again, this is done via a computer search using the algorithm from Section
3. �

Dabrowski [4] considered a similar problem, where the prime factors of x2 − 1
consist of the first k primes p1, . . . , pk. He formulated the following conjecture.

Conjecture 3. The Diophantine equation

x2 − 1 = pα1
1 · · · pαk

k

has exactly 28 solutions (x;α1, . . . , αk) in positive integers, as follows:

a) (3; 3),
b) (5; 3, 1), (7; 4, 1), (17; 5, 2),
c) (11; 3, 1, 1), (19; 3, 2, 1), (31; 6, 1, 1), (49; 5, 1, 2), (161; 6, 4, 1),
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d) (29; 3, 1, 1, 1), (41; 4, 1, 1, 1), (71; 4, 2, 1, 1), (251; 3, 2, 3, 1), (449; 7, 2, 2, 1),
(4801; 7, 1, 2, 4), (8749; 3, 7, 4, 1),

e) (769; 9, 1, 1, 1, 1), (881; 5, 2, 1, 2, 1), (1079; 4, 3, 1, 2, 1), (6049; 6, 3, 2, 1, 2),
(19601; 5, 4, 2, 2, 2),

f) (3431; 4, 1, 1, 3, 1, 1), (4159; 7, 3, 1, 1, 1, 1), (246401; 8, 6, 2, 1, 1, 2),
g) (1429; 3, 1, 1, 1, 1, 1, 1), (24751; 5, 2, 3, 1, 1, 1, 1), (388961; 6, 4, 1, 4, 1, 1, 1),
h) (1267111; 4, 3, 1, 1, 3, 1, 1, 2).

The main result of [4] is that Conjecture 3 is true for k ≤ 5. From our data, we
confirm Dabrowski’s conjecture in a much wider range.

Theorem 4. Conjecture 3 is true for k ≤ 25.

Proof. This is done by simply factoring all x2 − 1, where x is a solution of (1). �

The next corollary also follows trivially from our results. Recall that a positive
integer n is K-smooth if P (n) ≤ K. In particular, the main result of our paper is
the determination of all the 100-smooth positive integers of the form x2 − 1.

Corollary 5. Let t be the largest odd solution, t = 19182937474703818751, and let
s be the largest even solution, s = 473599589105798, of equation (1).

a) The largest consecutive 100-smooth integers are x and x + 1 where x =
(t− 1)/2 is the largest solution of P (x(x+ 1)) < 100.

b) The largest consecutive even 100-smooth integers are t− 1 and t+ 1.
c) The largest consecutive odd 100-smooth integers are s− 1 and s+ 1.
d) The largest triangular 100-smooth integer is (t2 − 1)/8.

As we mentioned in the Introduction, the problem of finding two consecutive
K-smooth integers was examined by Lehmer in [6] in the 1960s. At that time, he
was able to solve the above problem for the values K ≤ 41. The advance of both
computing power and theoretical arguments (namely, the compact represenations)
allow us to solve the much harder problem of finding consecutive K-smooth integers
for any K ≤ 100. Note that, as was already mentioned at the end of Section 3, the
difficulty of this problem grows exponentially with K.

Our results can also be applied to finding k consecutive K-smooth integers, for
any integer k. We obtain the following results.

Corollary 6. The largest integer x satisfying

P (x(x+ 1) . . . (x+ n)) < 100,

for a given n, is given in the following table:

n x
1 9591468737351909375
2 407498958
3 97524
4 7565
5 7564
6 4896
7 4895
8 284
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Proof. To find k consecutive 100-smooth integers, we first create a list of all pairs
of consecutive 100-smooth integers. Every odd solution of our starting problem will
give us one such pair. This is because if x is an odd solution, then (x − 1)/2 and
(x+ 1)/2 are consecutive 100-smooth integers. Once this list is created, we search
for overlaps in these pairs and obtain our results. �

In the recent paper [10], Shorey and Tijdeman proved several extensions of some
irreducibility theorems due to Schur. The main results of [10] rely heavily on
Lehmer’s results from [6]. Thus, replacing, for example Lemma 2.1 in [10] by our
results, it is likely that the main results from [10] can be extended in a wider range.

Remark. The tables produced by our computations can be found on line using the
“Table supplement” link to this article.
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