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COUNTING CARMICHAEL NUMBERS WITH SMALL SEEDS

ZHENXIANG ZHANG

Abstract. Let As be the product of the first s primes, let Ps be the set of
primes p for which p−1 divides As but p does not divide As, and let Cs be the
set of Carmichael numbers n such that n is composed entirely of the primes
in Ps and such that As divides n − 1. Erdős argued that, for any ε > 0 and
all sufficiently large x (depending on the choice of ε), the set Cs contains more
than x1−ε Carmichael numbers ≤ x, where s is the largest number such that
the sth prime is less than lnxε/4. Based on Erdős’s original heuristic, though
with certain modification, Alford, Granville, and Pomerance proved that there
are more than x2/7 Carmichael numbers up to x, once x is sufficiently large.

The main purpose of this paper is to give numerical evidence to support the

following conjecture which shows that |Cs| grows rapidly on s: |Cs| = 22
s(1−ε)

with lims→∞ ε = 0, or, equivalently, |Cs| = A2s(1−ε′)
s with lims→∞ ε′ = 0.

We describe a procedure to compute exact values of |Cs| for small s. In
particular, we find that |C9| = 8, 281, 366, 855, 879, 527 with ε = 0.36393 . . .
and that |C10| = 21, 823, 464, 288, 660, 480, 291, 170, 614, 377, 509, 316 with ε =
0.31662 . . .. The entire calculation for computing |Cs| for s ≤ 10 took about
1,500 hours on a PC Pentium Dual E2180/2.0GHz with 1.99 GB memory and
36 GB disk space.

1. Introduction

Let bi be the ith prime. Let s ≥ 1 and let As =
∏s

i=1 bi be the product of the
first s primes. It is easy to see that (as Erdős [4] knew)

(1.1) As < e2bs .

Define sets

Ps = {prime p : p > bs, p− 1|As},(1.2)

Ns = {n > 1 : n is square free and composed entirely of the primes in Ps},(1.3)

and

(1.4) Cs = {n ∈ Ns : As|n− 1, n− 1 �= As}.
By Korselt’s criterion [6] (see also [3, Section 3.4.2]), every number n ∈ Cs is

Carmichael [2]. Since the sets Ps, Ns, and Cs are determined by the first s primes,
we say that these sets are generated by the (square-free) (prime) seeds b1, . . . , bs.
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Erdős [4] argued that, for any ε > 0 and all sufficiently large x (depending on the
choice of ε), the set Cs contains more than x1−ε Carmichael numbers ≤ x, where s
is the largest number such that bs < lnxε/4. In short, Erdős [4] made the following
Conjecture 1.

Conjecture 1 (Erdős). There are x1−o(1) Carmichael numbers up to x.

Based on Erdős’s original heuristic [4], though with certain modification, Alford,
Granville, and Pomerance [1] proved the following Theorems 1 and 2.

Theorem 1 (Alford, Granville, and Pomerance). There are more than x2/7 Carmi-
chael numbers up to x, once x is sufficiently large.

Theorem 2 (Alford, Granville, and Pomerance). Fix ε > 0. Assume that, for suffi-
ciently larger x, the arithmetic progression 1(mod d) contains more than x/(2d lnx)
primes up to x provided d < x1−ε. Then there are more than x1−2ε Carmichael
numbers up to x, once x is sufficiently large.

Note that the counts of the number of Carmichael numbers in either Conjecture
1 or Theorems 1 and 2 are functions which grow slowly on x. For x = 10n for n
up to 21 (which is as far as has been computed [7]), there are fewer than x0.348

Carmichael numbers up to x.
The main purpose of this paper is to give numerical evidence to support the

following Conjecture 2, which shows that |Cs| grows rapidly on s.

Conjecture 2. We have

(1.5) |Cs| = 22
s(1−ε)

with lims→∞ ε = 0, or, equivalently,

(1.6) |Cs| = A2s(1−ε′)

s

with lims→∞ ε′ = 0.

In Section 2, we first briefly state reasons for making Conjecture 2, which are
essentially based on the heuristics of Erdős, Alford, Granville, and Pomerance con-
cerning Erdős’s construction of Carmichael numbers. Then we describe a procedure
for finding |Cs| for small s and tabulate |Cs| and relative values for 3 ≤ s ≤ 10. In
particular, we have |C9| = 8, 281, 366, 855, 879, 527 with ε = 0.36393 . . . and

|C10| = 21, 823, 464, 288, 660, 480, 291, 170, 614, 377, 509, 316

with ε = 0.31662 . . .. The entire calculation for |Cs| for s ≤ 10 took about 1,500
hours on a PC Pentium Dual E2180/2.0GHz with 1.99 GB memory and 36 GB disk
space.

Remark 1.1. Alford (see [5]) took L = 26 · 33 · 52 · 72 · 11, determined 155 primes
p for which p − 1 divides L, and then established that there are at least 2128 − 1
Carmichael numbers made up from them. However, Alford did not express the
number of Carmichael numbers as a function of L. Granville [5] mentioned: “It
can be shown that if L = As for some sufficiently large s, then we can obtain more
than 2 ln3 L primes in Ps, and so we’d expect more than

(1.7) Lln2 L

Carmichael numbers in Cs.” The estimate (1.7) seems to be the only estimate for
|Cs| in the literature, which grows much more slowly than that in Conjecture 2.



COUNTING CARMICHAEL NUMBERS 439

2. Evaluating |Cs|
Since the probability of a number ≤ m to be prime is greater than 1/ lnm and

since As has 2s−1 even divisors, it is reasonable to conjecture that

(2.1) |Ps| = 2s (1−o(1)).

Given s ≥ 3, let ZAs
= {0, 1, 2, . . . , As − 1} and let

(2.2) Z
∗
As

= {r ∈ ZAs
: gcd(As, r) = 1} =

{
1 = u1 < u2 < . . . < uϕ(As)

}
,

where ϕ(·) is the Euler function. Define the set

Rs = {r ∈ ZAs
: r ≡ n mod As for some n ∈ Ns}.

Then Rs ⊆ Z
∗
As

and |Rs| ≤ ϕ(As). For r ∈ Z
∗
As

, define the function

fs(r) = #{n ∈ Ns : n ≡ r mod As}.
Then we have

(2.3) |Cs| =
{
fs(1)− 1, if As + 1 ∈ Ps;

fs(1), otherwise.

Let

(2.4) as =
|Ns|
ϕ(As)

=
2|Ps| − 1

ϕ(As)
,

gs,1 = max{fs(r) : r ∈ Z
∗
As

}, and gs,2 = min{fs(r) : r ∈ Z
∗
As

}.
Let βs be such that

(2.5) gs,1 − gs,2 = aβs
s .

Numerical evidence (see Table 1) suggests that

(2.6) βs < 0.6 for s ≥ 8,

which implies that

gs,1 − gs,2 = o(as) and lim
s→∞

gs,2/gs,1 = lim
s→∞

|Cs|/as = 1.

Note that (2.6) gives an explicit and extended version of Erdős’s argument [4] that
members of the set Ns are roughly equi-distributed mod As.

Combining (2.3), (1.1), (2.1), and (2.6), we have Conjecture 2. Based on (2.3),
we use the following procedure to compute |Cs| for small s.

PROCEDURE 1. Finding |Cs|;
{input s ≥ 3, output gs,1, gs,2, and |Cs|, etc.}
BEGIN Compute As and ϕ(As);

Determine the set Ps = {p1 < p2 < ... < pm};
i ← 0;
For r:=1 To As − 1 Do

begin If gcd(As, r) = 1 Then Begin i ← i+ 1; ui ← r; hr ← i End
end;

For i := 1 To ϕ(As) Do H(i) ← 0;
i ← 1; t ← 1; H(hp1

) ← 1;
Repeat i ← i+ 1; p ← pi mod As; H0 ← H;

For j := 1 To ϕ(As) Do
begin If H0(j) > 0 Then
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Begin r ← p · uj mod As;
If H(hr) = 0 Then t ← t+ 1;
H(hr) ← H(hr) +H0(j)

End
end;

If H(hp) = 0 Then t ← t+ 1;
H(hp) ← H(hp) + 1;
g1 ← max{H(j) : 1 ≤ j ≤ ϕ(As)};
If t < ϕ(As) Then g2 ← 0 Else g2 ← min{H(j) : 1 ≤ j ≤ ϕ(As)};
Output(i, pi, g1, g2, H(1))

Until i = |Ps|;
gs,1 ← g1; gs,2 ← g2; fs(1) ← H(1);
Determine |Cs| by (2.3)

END.

The Delphi-Pascal program (with multi-precision package partially written in
Assembly language) ran about 1,500 hours on a PC Pentium Dual E2180/2.0GHz
(with 1.99 GB memory and 36 GB disk space) to get |Cs| and relative values for
3 ≤ s ≤ 10 tabulated in Table 1.

Table 1. |Cs| and relative values for 3 ≤ s ≤ 10

s As ϕ(As) |Ps| |Rs| 	as
 gs,1 gs,2 fs(1) |Cs|
3 30 8 3 4 0 2 0 1 0
4 210 48 5 16 0 2 0 1 0
5 2310 480 9 192 1 6 0 3 2

s As ϕ(As) = |Rs| |Ps| �as�
6 30030 5760 17 22
7 510510 92160 28 2912
8 9699690 1658880 50 678710881
9 223092870 36495360 78 8281366587523928

10 6469693230 1021870080 144 21823464288660475450593208749832817

s gs,2 gs,1 − gs,2 βs

6 9 30 1.10033 . . .
7 2728 381 0.74502 . . .
8 678670201 95809 0.56403 . . .
9 8281366006950486 921747209 0.56317 . . .

10 21823464288660451215882006081060134 36359681036872185925 0.56963 . . .

s gs,2/gs,1 fs(1) = |Cs| ε ε′

6 0.23076923 . . . 30 0.61753 . . . 1.26665 . . .
7 0.87745255 . . . 2896 0.49663 . . . 1.10306 . . .
8 0.99985884 . . . 678687138 0.39066 . . . 0.95774 . . .
9 0.99999988 . . . 8281366855879527 0.36393 . . . 0.89654 . . .

10 0.99999999 . . . 21823464288660480291170614377509316 0.31662 . . . 0.81926 . . .

Remark 2.1. For s ≤ 9, we save the set {ui} (see (2.2)) in an array with each
entry 4 bytes, which takes ϕ(A9) · 4 = 145, 981, 440 bytes of memory, and save the
set {hr : 1 ≤ r < As, hr = i if r = ui} also in an array with each entry 4 bytes,
which takes (A9 − 1) · 4 = 892, 371, 476 bytes of memory, since A9 = 223, 092, 870
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and ϕ(A9) = 36, 495, 360 are 4-byte (32-bit) LongWords. Since 232 < g9,1 =
8, 281, 366, 928, 697, 695 < 263, we save functions H and H0 in arrays with each
entry 8 bytes, which take ϕ(A9) · 8 · 2 = 583, 925, 760 bytes of memory. In total, for
saving these variables and functions, it takes about 1.63 GB of memory which is
fit for my PC Pentium Dual E2180/2.0GHz with 1.99 GB of memory. It took only
about 0.5 hours on my PC for computing |Cs| and relative values for 3 ≤ s ≤ 9.

Remark 2.2. For s = 10, the computation becomes much harder. Since

A10 = 6, 469, 693, 230 > 232 and ϕ(A10) = 1, 021, 870, 080,

neither the set {hr} nor the set {ui} could be fit in the 1.99 GB of memory of my
PC. We have to take a new approach for s = 10 different from that for s ≤ 9. Note
that A8 = 9, 699, 690 and ϕ(A8) = 1, 658, 880. Write

Z
∗
A8

= {1 = v1 < v2 < ... < vϕ(A8)}.

For r ∈ Z
∗
A8

, define h
(8)
r = i if r = vi for some 1 ≤ i ≤ ϕ(A8). Let

R = {1 ≤ r < A10 : gcd(A8, r) = 1} = {1 = r1 < r2 < . . . < r|R|},
which is a set a little larger than Z

∗
A10

and contains 1 ≤ r < A10 with 23|r or 29|r.
Then |R| = ϕ(A8) · 23 · 29 = 1, 106, 472, 960. For r ∈ R define

ξ(r) = 	r/A8
 · ϕ(A8) + h
(8)
r mod A8

.

For 1 ≤ j ≤ |R| define

η(j) =

{
A8 · 	(j − 1)/ϕ(A8)
+ vϕ(A8), if ϕ(A8)|j,
A8 · 	(j − 1)/ϕ(A8)
+ vj mod ϕ(A8), otherwise.

Then for r ∈ R and 1 ≤ j ≤ |R|, we have η(ξ(r)) = r and ξ(η(j)) = j. Now the
function ξ(r) serves for s = 10 as hr serves for s ≤ 9, and the function η(j) serves
for s = 10 as uj serves for s ≤ 9. The differences are that, for s = 10, both ξ(r)

and η(j) are computed instantly and frequently, and only the sets {vi} and {h(8)
r }

are saved as arrays in memory, which take only

(A8 − 1) · 4 + ϕ(A8) · 4 = 45, 434, 276

bytes of memory. In the “Repeat . . . Until” loop of Procedure 1, the “For j := 1
To ϕ(L) Do begin . . . end” sub-loop is replaced by the following code:

For j := 1 To |R| Do
begin If (H0(j) > 0) And (gcd(η(j), 23 · 29) = 1) Then

Begin r ← p · η(j) mod A10;
If H(ξ(r)) = 0 Then t ← t+ 1;
H(ξ(r)) ← H(ξ(r)) +H0(j)

End
end.

Remark 2.3. In any event, the arrays H(j) and H0(j) (1 ≤ j ≤ |R|) for s = 10
could not be saved in the memory of my PC. They are saved in disk files. Since

264 < g10,1 = 21, 823, 464, 288, 660, 487, 575, 563, 042, 953, 246, 059 < 2128,

it takes |R| · 2 · 128/8 ≈ 36 GB disk space to store H(j) and H0(j) for 1 ≤ j ≤ |R|.
Since 263 − 1 = 9, 223, 372, 036, 854, 775, 807 is the maximum integer in Delphi 6.0,
a multi-precision package is needed for s = 10.
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