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A HIGH-ORDER, ANALYTICALLY DIVERGENCE-FREE

DISCRETIZATION METHOD FOR DARCY’S PROBLEM

DANIELA SCHRÄDER AND HOLGER WENDLAND

Abstract. We develop and analyze a meshfree discretization method for
Darcy’s problem. Our approximation scheme is based upon optimal recov-
ery which leads to a collocation scheme using divergence-free positive definite
kernels. Besides producing analytically incompressible flow fields, our method
can be of arbitrary order, works in arbitrary space dimension and for arbitrary
geometries. After deriving the scheme, we investigate the approximation error
for smooth target functions and derive optimal approximation orders. Finally,
we illustrate the method by giving numerical examples.

1. Introduction

Darcy’s law is often used to describe the creeping flow of Newtonian fluids in
porous media [3]. It is given by

(1.1) u = −K

μ
∇p,

where the viscosity μ > 0 and the permeability tensor K are given and the velocity
u and the pressure p have to be determined.

We will incorporate the viscosity into the permeability tensor. Furthermore, we
will assume that the velocity field is incompressible. Then, appropriate boundary
conditions are Neumann-boundary conditions, such that Darcy’s problem can be
stated in the following way:

u+K∇p = f in Ω,(1.2)

∇ · u = 0 in Ω,(1.3)

u · n = g · n on ∂Ω.(1.4)

Here, n denotes the outer unit normal vector of the boundary ∂Ω ⊆ R
d. The

right-hand sides f and g · n and the tensor K are given. The boundary function g
must satisfy the compatibility condition

(1.5)

∫
∂Ω

g · n dS = 0.

The tensor K is supposed to be symmetric, K = KT , and strongly elliptic in the
sense that there is a constant α > 0 such that

(1.6) ξTK(x)ξ ≥ α‖ξ‖22, ξ ∈ R
d,x ∈ Ω.

The velocity u : Ω → R
d and the pressure p : Ω → R are sought.
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In the particular form ofK = const·I, which refers to isotropic and homogeneous
material, Darcy’s law also plays an important role in projection methods for dis-
cretizing the Navier-Stokes equations for incompressible Newtonian fluids, where it
is usually solved by converting it into a Poisson problem with Neumann boundary
conditions for the pressure and then defining the velocity by (1.2). However, there
are also good reasons for dealing with Darcy’s problem directly.

The goal of this paper is to derive a high-order method for solving Darcy’s prob-
lem efficiently. We will use methods based on analytically divergence-free kernels,
as they have been developed in [15] and further studied in [13, 12, 7, 6, 5]. Our
method will follow ideas from [22].

For this purpose the paper is organized as follows. In the rest of this section we
collect the necessary notation on vector-valued Sobolev spaces. The next section is
devoted to our discretization scheme, hence covering matrix-valued kernels, their
reproducing kernel Hilbert spaces and optimal recovery. In the third section, we
analyze the discretization scheme and derive error estimates. In the final section,
we give numerical examples to corroborate our theoretical estimates.

1.1. Sobolev spaces. We will work with the usual scalar-valued Sobolev spaces.
For a domain Ω ⊆ R

d, a real number r ≥ 1 or r = ∞ and an integer k ∈ N0,
we denote by W k

r (Ω) the space of all functions f ∈ Lr(Ω) having weak derivatives
Dαf ∈ Lr(Ω) for every multi-index α ∈ N

d
0 with |α| = α1 + · · ·+ αd ≤ k. We will

also work with fractional order Sobolev spaces W τ
r (Ω), particularly with τ > d/2

so that we have continuous functions. For the introduction of such fractional order
Sobolev spaces we refer, for example, to [1, 4, 21].

Since the pressure p in the solution of (1.2)–(1.4) is determined only up to a
constant we will work with the quotient spaces W τ

r (Ω)/R equipped with the norm

‖p‖W τ
r (Ω)/R := inf

c∈R

‖p+ c‖W τ
r (Ω).

We define the vector-valued Sobolev space Wτ
r (Ω) to consist of all vector-valued

functions u = (u1, . . . , un)
T : Ω → R

n, where each component uj belongs toW
τ
r (Ω).

A norm on Wτ
r (Ω) can be defined by taking the discrete �r norm of the W τ

r (Ω)
norms of the components, i.e. by

‖u‖Wτ
r (Ω) =

⎧⎨
⎩
(∑n

j=1 ‖uj‖rW τ
r (Ω)

)1/r
for 1 ≤ r < ∞,

max1≤j≤n ‖uj‖W τ
∞(Ω) for r = ∞.

Note that we do not use an index to indicate the dimension n since it will become
clear from the context. We only distinguish between scalar-valued function spaces
and vector-valued function spaces by using boldface for the latter. Finally, in the
case r = 2, we will also use the notation Hτ (Ω) = Wτ

2 (Ω).

2. The discretization scheme

In this section, we will review the necessary material on matrix-valued kernels
and the way we will use them for discretizing Darcy’s problem.

First, we will discuss the kernels, their reproducing Hilbert spaces and optimal
recovery in general form and then adapt them to our problem. For this, we will
mainly rely on material from [7, 6, 5, 22]. In the last part of this section, we will
modify the general theory such that it fits to our problem.
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2.1. Positive definite matrix-valued kernels.

Definition 2.1. A function φ : Rd → R is positive definite if for all N ∈ N, all
pairwise distinct x1, . . . ,xN ∈ R

d and all α ∈ R
N \ {0}, the quadratic form

N∑
j,k=1

αjαkφ(xj − xk)

is positive. More generally, a matrix-valued function Φ : Rd → R
n×n is said to be

positive definite if it is even Φ(−x) = Φ(x), symmetric Φ(x) = Φ(x)T and satisfies

N∑
j,k=1

αT
j Φ(xj − xk)αk > 0

for all pairwise distinct xj ∈ R
d and all αj ∈ R

n such that not all αj are vanishing.

The theory of the associated function spaces can be formulated for positive def-
inite matrix-valued functions as it can also be done for scalar-valued functions.
First, we introduce the function space

FΦ(Ω) :=

⎧⎨
⎩

N∑
j=1

Φ(· − xj)αj : xj ∈ Ω,αj ∈ R
n

⎫⎬
⎭

and equip it with the natural inner product⎛
⎝ N∑

j=1

Φ(· − xj)αj ,

M∑
k=1

Φ(· − yk)βk

⎞
⎠

Φ

:=

N∑
j=1

M∑
k=1

αT
j Φ(xj − yk)βk.

Then, the closure of FΦ(Ω) with respect to the norm stemming from this inner
product is the associated native Hilbert space.

Definition 2.2. The reproducing kernel Hilbert space (RKHS), or native space,
of a positive definite, matrix-valued kernel Φ is defined to be the closure of FΦ(Ω)
with respect to ‖ · ‖NΦ(Ω) := ‖ · ‖Φ and it will be denoted by NΦ(Ω).

For every vector-valued function f ∈ NΦ(Ω) and every α ∈ R
n and every x ∈ Ω,

we have the relations

Φ(· − x)α ∈ NΦ(Ω),

(f ,Φ(· − x)α)Φ = f(x)Tα,(2.1)

which generalize the reproducing kernel properties of the scalar-valued case.
For us, it will be important that for specific kernels these spaces can be identified

to be norm equivalent to classical Sobolev spaces. The kernels we are interested in
are defined as follows. Let φ, ψ : Rd → R be positive definite functions, where φ is
at least twice continuously differentiable. Then, we define

Φ̃ : Rd → R
d×d, Φ̃ := (−ΔI +∇∇T )φ,(2.2)

Φ : Rd → R
(d+1)×(d+1), Φ :=

(
Φ̃ 0
0 ψ

)
=: Φ̃⊗ ψ,(2.3)

where Δ is the usual Laplace operator, ∇ denotes the gradient and I the iden-
tity matrix. It is well known (see [15, 6, 5, 22]) that both matrix-valued kernels
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are positive definite. Furthermore, their reproducing kernel Hilbert spaces can be
characterized using Fourier transform; see [6, 5, 22].

Theorem 2.3. (1) Suppose φ ∈ W 2
1 (R

d) ∩ C2(Rd) is positive definite. De-

fine Φ̃ = (−ΔI + ∇∇T )φ. Then, NΦ̃(R
d) consists of all divergence-free

functions f ∈ L2(R
d) with

‖f‖2NΦ̃(Rd) = (2π)−d/2

∫
Rd

‖f̂(ω)‖22
‖ω‖22φ̂(ω)

dω < ∞.

(2) Let Φ = Φ̃⊗ ψ with a positive definite function ψ. Then,

NΦ(R
d) = NΦ̃(R

d)×Nψ(R
d)

with the norm for f = (fu, fp) given by

‖f‖2NΦ(Rd) = ‖fu‖2N
Φ̃
(Rd) + ‖fp‖2Nψ(Rd)

= (2π)−d/2

∫
Rd

[
‖f̂u(ω)‖22
‖ω‖22φ̂(ω)

+
|f̂p(ω)|2

ψ̂(ω)

]
dω.

We are particularly interested in reproducing kernel Hilbert spaces that are norm
equivalent to Sobolev spaces. A scalar-valued RKHS Nφ(R

d) is norm equivalent to
the Sobolev space Hτ (Rd) if the kernel function φ : Rd → R has a Fourier transform

φ̂ satisfying

c1(1 + ‖ω‖22)−τ ≤ φ̂(ω) ≤ c2(1 + ‖ω‖22)−τ , ω ∈ R
d,

with two constants 0 < c1 ≤ c2.

Corollary 2.4. Assume φ generates Hτ+1(Rd) and ψ generates Hσ(Rd), i.e.,
Nφ(R

d) = Hτ+1(Rd) and Nψ(R
d) = Hσ(Rd) with equivalent norms. The asso-

ciated reproducing kernel Hilbert space of the combined kernel is given by

NΦ(R
d) = H̃τ (Rd; div)×Hσ(Rd).

Here,

H̃τ (Rd; div) =

{
f ∈ Hτ (Rd; div) :

∫
Rd

‖f̂(ω)‖22
‖ω‖22

(1 + ‖ω‖22)τ+1dω < ∞
}
,

Hτ (Rd; div) =
{
f ∈ Hτ (Rd) : ∇ · f = 0

}
.

Finally, since we mainly work on bounded domains, we need, for technical rea-
sons, to extend our locally defined Sobolev functions to globally defined functions.
We will use the following result from [22].

Proposition 2.5. Let d = 2, 3. Let τ, σ ≥ 0 and let Ω ⊆ R
d be a simply-connected

domain with Ck,1 boundary, where k ≥ τ is an integer. Then there exists a contin-

uous operator E = (Ẽdiv, ES) : H
τ (Ω; div)×Hσ(Ω) → H̃τ (Rd; div)×Hσ(Rd) such

that Ev|Ω = v|Ω for all v = (u, p) ∈ Hτ (Ω; div)×Hσ(Ω) and

‖Ẽdivu‖H̃τ (Rd;div)
+ ‖ESp‖Hσ(Rd) ≤ C

(
‖u‖Hτ (Ω) + ‖p‖Hσ(Ω)

)
.

The extension operator for the pressure part is the standard Stein extension
operator ES ; see [19].
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2.2. Optimal recovery to build the approximant. We will use functionals
from the dual space NΦ(Ω)

∗ = {λ : NΦ(Ω) → R : λ is linear and continuous} to
describe our discretization scheme.

Since f = Φ(· − y)ej belongs to NΦ(Ω), where ej is the jth unit vector, we see
that the columns of Φ and, since Φ is symmetric, its rows also belong to NΦ(Ω).
Thus, we can define λyΦ(x− y) as the vector-valued function, which is generated
by applying λ with respect to y to every column of Φ. The resulting vector-valued
function is the Riesz representer of λ in NΦ(Ω) in the sense of

λ(f) = (f , λyΦ(· − y))Φ.

Thus the following result, which is well known in the context of scalar-valued
kernels, remains true for matrix-valued kernels.

Proposition 2.6. Suppose Φ : Ω ⊆ R
d → R

n×n is a positive definite, matrix-
valued kernel. Suppose further that λ1, . . . , λN ∈ NΦ(Ω)

∗ are linearly independent
and f1, . . . , fN ∈ R are given. Then, the problem of finding the solution of

(2.4) min{‖s‖NΦ(Ω) : λj(s) = fj , 1 ≤ j ≤ N}
has a unique solution, which has the representation

sf =
N∑
j=1

αjλ
y
jΦ(· − y).

The coefficients αj are determined via the interpolation conditions λi(sf ) = fi,
1 ≤ i ≤ N .

To apply this result to Darcy’s problem, we pick discretization points X =
{x1, . . . ,xN} ⊆ Ω in the interior and Y = {y1, . . . ,yM} ⊆ ∂Ω on the boundary.
For v = (u, p) we define the functionals

λ
(i)
j (v) = ui(xj) + (K∇p)i(xj)(2.5)

= ui(xj) +

d∑
k=1

Kik(xj)∂kp(xj), 1 ≤ i ≤ d, 1 ≤ j ≤ N =: Ni(2.6)

λ
(d+1)
j (v) =

d∑
k=1

uk(yj)nk(yj), 1 ≤ j ≤ M =: Nd+1,(2.7)

such that the approximant according to Proposition 2.6 becomes

(2.8) sv(x) :=

d+1∑
k=1

Nk∑
j=1

α
(k)
j (λ

(k)
j )yΦ(x− y).

The following result ensures that the so-defined functionals are linearly indepen-
dent.

Theorem 2.7. Let Ω ⊆ R
d with a Ck,1 boundary, where k ≥ 1. Assume that

the building functions φ, ψ : Rd → R are positive definite and chosen such that

NΦ(R
d) = H̃τ (Rd; div)×Hτ+1(Rd) with τ > d/2. Then, the interpolation function

sv = (su, sp)
T from (2.8) is well defined and uniquely determined by the interpola-

tion conditions (2.6) and (2.7). It satisfies Lsv(xj) = f(xj) with Lv := u +K∇p
and su(yj) · n(yj) = g(yj) · n(yj). Furthermore, we have ∇ · su = 0 in R

d.
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Proof. Since τ + 1 > d/2 + 1, we have φ, ψ ∈ C2(Rd) and thus Φ̃ ∈ C(Rd;Rd×d).
Hence, the kernel is sufficiently smooth and the functionals indeed belong to the
dual of the native space. Thus, we only have to show that the functionals are

linearly independent over NΦ(R
d) = H̃τ (Rd; div)×Hτ+1(Rd).

Let us assume that there are coefficients α
(k)
j ∈ R such that

(2.9)

d+1∑
k=1

Nk∑
j=1

α
(k)
j λ

(k)
j (γ) = 0

for all γ ∈ NΦ(R
d). We will now pick a specific test function γ for every index

pair (i, �). First, we choose γ to have compact support such that the only data site
contained in the support of this specific γ is xi (for 1 ≤ � ≤ d) or yi (for � = d+1).
Hence, in the first case, (2.9) reduces to

0 =

d∑
k=1

α
(k)
i λ

(k)
i (γ) =

d∑
k=1

α
(k)
i (Lγ)k(xi).

Since we have not yet exploited the second index �, we can now modify γ such

that (Lγ)k(xi) = δk,�, which gives α
(�)
i = 0. Since we can do the same in the case

� = d+ 1, we see that all coefficients have to be zero, showing that the functionals
are linearly independent. �

3. Error analysis

Our error analysis is mainly based on a “shift” type theorem for the analytical
solution of Darcy’s problem, which can be easily derived from a corresponding result
for elliptic problems with Neumann boundary conditions. This immediately follows
by taking the divergence of (1.2) and incorporating (1.3). The boundary conditions
follow by taking the inner product of (1.2) with the unit outer normal vector n of
∂Ω and to also use (1.4). In doing so, we see that (1.2)–(1.4) is equivalent to solving

∇ · (K∇p) = f̃ := ∇ · f in Ω,(3.1)

K
∂p

∂n
= g̃ := (f − g) · n on ∂Ω(3.2)

and defining

(3.3) u := (f −K∇p).

The compatibility conditions for the Neumann problem are satisfied since we have
with the divergence theorem and (1.5) that∫

∂Ω

g̃ dS −
∫
Ω

f̃dx =

∫
∂Ω

(f − g) · n dS −
∫
Ω

∇ · f dx =

∫
∂Ω

g · n dS = 0.

For the elliptic Neumann problem (3.1) and (3.2) the following existence and
smoothness result is well known. For integer order τ and K = I, its proof can
be found in [10, Theorem 1.10], the integer case for general tensor K follows from
[11] and the general fractional order case follows by interpolation theory in Sobolev
spaces. Though the result was originally derived for weak solutions, the higher
regularity assumption on the given data implies that it also holds for classical
solutions.
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Proposition 3.1. Let Ω be a bounded open subset of Rd with a C�τ�+1,1 boundary
∂Ω. Assume that the permeability tensor K = (Kij) satisfies (1.6), K = KT and

Kij ∈ W τ+1
r (Ω). Assume for the data that f̃ ∈ W τ

r (Ω) and g̃ ∈ W
τ+1−1/r
r (∂Ω) for

1 < r < ∞ and
∫
∂Ω

g̃dS =
∫
Ω
f̃dx. Then there exists a function p ∈ W τ+2

r (Ω)/R
solving (3.1) and (3.2), which satisfies

‖p‖W τ+2
r (Ω)/R ≤ C

{
‖f̃‖W τ

r (Ω) + ‖g̃‖
W

τ+1−1/r
r (∂Ω)

}

with a constant C = C(τ, r,Ω).

Applying this to our special situation, the existence and smoothness of the so-
lutions of Darcy’s problem follow.

Theorem 3.2. Let Ω be a bounded open subset of Rd with a C�τ�+1,1 boundary ∂Ω.

Assume that f ∈ Wτ+1
r (Ω) and that g ∈ W

τ+1−1/r
r (∂Ω) for 1 < r < ∞ satisfies∫

∂Ω
g · n dS = 0. Assume that the permeability tensor K = (Kij) satisfies (1.6),

K = KT and Kij ∈ W τ+1
r (Ω). Then there exist a velocity u ∈ Wτ+1

r (Ω) and a
pressure p ∈ W τ+2

r (Ω)/R, solutions to (1.2)–(1.4), which satisfy

‖u‖Wτ+1
r (Ω) + ‖p‖W τ+2

r (Ω)/R ≤ C
(
‖f‖Wτ+1

r (Ω) + ‖g · n‖
W

τ+1−1/r
r (∂Ω)

)
.

Proof. Our assumptions on the given data immediately yield f̃ = ∇ · f ∈ W τ
r (Ω).

Since the boundary is also assumed to be smooth enough, we have g̃ = (f − g) ·
n ∈ W

τ+1−1/r
r (∂Ω). Furthermore, we have the obvious estimates ‖f̃‖W τ

r (Ω) ≤
‖f‖Wτ+1

r (Ω) and, since the boundary is sufficiently smooth,

‖g̃‖
W

τ+1−1/r
r (∂Ω)

= ‖(f − g) · n‖
W

τ+1−1/r
r (∂Ω)

≤ ‖f‖
W

τ+1−1/r
r (∂Ω)

+ ‖g · n‖
W

τ+1−1/r
r (∂Ω)

,

≤ C
(
‖f‖Wτ+1

r (Ω) + ‖g · n‖
W

τ+1−1/r
r (∂Ω)

)
,

where we have used the standard trace theorem for Sobolev spaces. From (3.3), we
see that

‖u‖Wτ+1
r (Ω) ≤ ‖f‖Wτ+1

r (Ω) + ‖K∇p‖Wτ+1
r (Ω)

≤ ‖f‖Wτ+1
r (Ω) + C‖p‖W τ+2

r (Ω)/R.

All of this, together with Proposition 3.1, gives

‖u‖Wτ+1
r (Ω) + ‖p‖W τ+2

r (Ω)/R ≤ ‖f‖Wτ+1
r (Ω) + C‖p‖W τ+2

r (Ω)/R

≤ C
(
‖f‖Wτ+1

r (Ω) + ‖g · n‖
W

τ+1−1/r
r (∂Ω)

)
,

which is the desired estimate. �

Using again the notation v = (u, p) and Lv = u + K∇p, the estimate from
Theorem 3.2 can be rewritten in the form

‖u‖Wη+1
r (Ω) + ‖p‖Wη+2

r (Ω)/R ≤ C
(
‖Lv‖Wη+1

r (Ω) + ‖u · n‖
W

η+1−1/r
r (∂Ω)

)

for any 0 ≤ η ≤ τ . We will use this for v − sv instead of v, i.e.,
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‖u− su‖Wη+1
r (Ω) + ‖p− sp‖Wη+2

r (Ω)/R

≤ C
(
‖L(v − sv)‖Wη+1

r (Ω) + ‖(u− su) · n‖Wη+1−1/r
r (∂Ω)

)
.(3.4)

To estimate the two terms on the right-hand side of the last equation, we first
observe that we have

(Lv − Lsv)(xj) = 0, 1 ≤ j ≤ N,

(u− su) · n(yj) = 0, 1 ≤ j ≤ M.

Hence, we are dealing with smooth functions that have a large number of zeros.
In the first case we have functions defined on a bounded region of Rd, while in the
second case we are dealing with functions on a manifold. For such functions, we
can apply the following “sampling inequalities”.

To state them, we have to introduce a measure for the data density on Ω and
∂Ω. In the first case we introduce the “fill distance”

hX,Ω := sup
x∈Ω

min
xj∈X

‖x− xj‖2.

The following result comes from [2, 16, 17] in its vector-valued form from [22].

Lemma 3.3. Let 1 < r < ∞, and τ, η ∈ R with τ > d/2 and 0 ≤ η ≤ τ − d(1/2−
1/r)+. Suppose Ω ⊆ R

d is a bounded domain having a Lipschitz boundary. Let
X ⊆ Ω be a discrete set with fill distance hX,Ω sufficiently small. Assume that
u ∈ Hτ (Ω) satisfies u|X = 0. Then we also have

‖u‖Wη
r (Ω) ≤ ch

τ−η−d(1/2−1/r)+
X,Ω ‖u‖Hτ (Ω).

Proposition 3.4. Let Ω be a bounded, simply connected, open subset of Rd with
a C�τ�+1,1 boundary ∂Ω where d = 2, 3. Let the permeability tensor K = Kij

satisfy (1.6), K = KT and Kij ∈ Hτ+1(Ω). Assume that the data satisfy f ∈
Hτ+1(Ω), g ∈ Hτ+1/2(∂Ω) and

∫
∂Ω

g · n dS = 0. Suppose that the kernel Φ is

chosen such that NΦ(R
d) = H̃τ (Rd; div) × Hτ+1(Rd) with τ > d/2. Then, for

0 ≤ η ≤ τ − d(1/2− 1/r)+ − 1 and for 1 < r < ∞ we have

‖Lv − Lsv‖Wη+1
r (Ω) ≤ ch

τ−η−1−d(1/2−1/r)+
X,Ω

(
‖f‖Hτ (Ω) + ‖g · n‖Hτ−1/2(∂Ω)

)
.

Proof. First, we have

‖Lv − Lsv‖Wη+1
r (Ω) ≤ Chτ−η−1−d(1/2−1/r)+‖Lv − Lsv‖Hτ (Ω).

To bound the latter norm we first extend the function v to Ev = (Ẽdivu, ESp) ∈
H̃τ (Rd; div) × Hτ+1(Rd) and note that the generalized interpolant sv coincides
with sEv on Ω. Furthermore, if we pick the representer p for the pressure such that
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‖p‖Hτ+1(Ω) = ‖p‖Hτ+1(Ω)/R then we have

‖Lv − Lsv‖Hτ (Ω) = ‖LEv − LsEv‖Hτ (Ω)

≤ ‖Ẽdivu− sẼdivu
‖Hτ (Ω) + ‖K(∇ESp−∇sESp)‖Hτ (Ω)

≤ ‖Ẽdivu− sẼdivu
‖Hτ (Ω) + C‖ESp− sESp‖Hτ+1(Ω)

≤ ‖Ẽdivu− sẼdivu
‖
H̃τ (Rd;div)

+ C‖ESp− sESp‖Hτ+1(Rd)

≤ C‖Ev − sEv‖NΦ(Rd)

≤ C‖Ev‖NΦ(Rd)

≤ C
(
‖Ẽdivu‖H̃τ (Rd;div)

+ ‖ESp‖Hτ+1(Rd)

)

≤ C
(
‖u‖Hτ (Ω) + ‖p‖Hτ+1(Ω)

)
≤ C

(
‖f‖Hτ (Ω) + ‖g · n‖Hτ−1/2(∂Ω)

)
,

where we have used Theorem 3.2 in the last step. �

To bound the boundary part ‖(u− su) ·n‖Wη+1−1/r
r (∂Ω)

in the estimate (3.4) we

have to carry the concept of Lemma 3.3 to the manifold ∂Ω. This has been done in
[8] for the special case of ∂Ω being the sphere in R

d and in a more general context
in [9].

We will represent the boundary ∂Ω by a finite atlas consisting of smooth diffeo-
morphisms with a slight abuse of terminology. To be more precise, we assume that

∂Ω =
⋃J

j=1 Vj , where Vj ⊆ ∂Ω are relatively open sets. Moreover, the sets Vj are

images of Ck,s-diffeomorphism

ϕj : B → Vj ,

where B = B(0, 1) denotes the unit ball in R
d−1 and k and s are to be specified.

Finally, suppose {wj} is a partition of unity with respect to {Vj}. Then, the Sobolev
norms on ∂Ω can equivalently be defined via

‖u‖p
Wμ

p (∂Ω)
=

J∑
j=1

‖(uwj) ◦ ϕj‖pWμ
p (B)

.

It is well known that this norm is independent of the chosen atlas {Vj , ϕj} but this
is of less importance here, since we will assume that the atlas is fixed.

We will measure the density of the points Y on ∂Ω by introducing the mesh
norm

hY,∂Ω := max
1≤j≤J

hTj ,B

with Tj = ϕ−1
j (Y ∩Vj) ⊆ B. As mentioned before, we will assume the atlas is fixed

and hence we do not have to worry about the dependence of hY,∂Ω on the atlas.

If u ∈ W τ
2 (Ω), then u ∈ W

τ−1/2
2 (∂Ω) and if τ > d/2, then this together with the

Sobolev embedding theorem guarantees that u is continuous on the boundary ∂Ω.
The proof of [9, Theorem 3.10] implies the following result. We give an extended

version which also deals with non-integer orders η. Its proof can be found in [22].

Lemma 3.5. Let 1 < r < ∞ and τ = k + s > d/2, where k ∈ N0 and 0 < s ≤ 1.
Let Ω ⊆ R

d be a bounded domain having a Ck,s smooth boundary. Assume that
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Y ⊆ ∂Ω with hY,∂Ω sufficiently small. Then there is a constant c > 0 such that for
all u ∈ Hτ (Ω) with u|Y = 0 we have for 0 ≤ η ≤ τ − 1/2− (d− 1)(1/2− 1/r)+ that

‖u‖Wη
r (∂Ω) ≤ ch

τ−1/2−η−(d−1)(1/2−1/r)+
Y,∂Ω ‖u‖Hτ (Ω).

Now, the same procedure as the one employed in the proof of Proposition 3.4
leads to the following result.

Proposition 3.6. Let d = 2, 3. Assume that Ω, K and f ,g satisfy the smoothness
assumptions of Proposition 3.4. Suppose that the kernel Φ is chosen such that

NΦ(R
d) = H̃τ (Rd; div)×Hτ+1(Rd) with τ > d/2. Then

‖(u− su) · n‖Wη+1−1/r
r (∂Ω)

≤ Ch
τ−η−1−1/2+1/r−(d−1)(1/2−1/r)+
Y,∂Ω

(
‖f‖Hτ (Ω) + ‖g · n‖Hτ+1/2(∂Ω)

)
with C > 0 independent of u and su, where 1 < r < ∞ and 0 ≤ η ≤ τ − 1/2 −
(d− 1)(1/2− 1/r)+ − 1 + 1/r.

Proof. First, since the boundary of Ω is C�τ�+1,1 it is also Ck,s with τ + 1 = k+ s,
k ∈ N0 and 0 < s ≤ 1 by the embedding theorem for Hölder spaces.

The domain Ω has a C�τ�+1,1 boundary, therefore the normals n ∈ C�τ�,1(∂Ω)
exist almost everywhere and can be extended to a vector field ñ ∈ C�τ�,1(Ω) with
ñ|∂Ω = n. This means that n ∈ H�τ�(∂Ω) and ñ ∈ H�τ�+1/2(Ω).

This enables us to apply Lemma 3.5 to derive

‖(u− su) · n‖Wη+1−1/r
r (∂Ω)

≤ Ch
τ−η−1−1/2+1/r−(d−1)(1/2−1/r)+
Y,∂Ω ‖(u− su) · ñ‖Hτ (Ω).

Then

‖(u− su) · ñ‖Hτ (Ω) ≤ ‖ñ‖Hτ (Ω)‖u− su‖Hτ (Ω) ≤ C‖u− su‖Hτ (Ω)

and, according to the proof of Proposition 3.4, we also have

‖u− su‖Hτ (Ω) ≤
(
‖f‖Hτ (Ω) + ‖g · n‖Hτ−1/2(∂Ω)

)
;

our proof is complete. �
After estimating both parts in (3.4) we have proven our main result.

Theorem 3.7. Let Ω be a bounded, simply connected, open subset of Rd, d = 2, 3,
with a C�τ�+1,1 boundary ∂Ω. Suppose that Φ is chosen such that its native space is

NΦ(R
d) = H̃τ (Rd; div)×Hτ+1(Rd) and the permeability tensor K = Kij satisfies

(1.6), K = KT and Kij ∈ Hτ+1(Ω). Furthermore, assume that the data satisfy

f ∈ Hτ+1(Ω), g ∈ Hτ+1/2(∂Ω) and
∫
∂Ω

g · n dS = 0, where τ > d/2. Then, the
error between the true solution and the collocation approximation can be bounded
by

‖u− su‖Wη+1
r (Ω) + ‖p− sp‖Wη+2

r (Ω)/R

≤ C
(
h
τ−η−1−d(1/2−1/r)+
X,Ω + h

τ−η−1−1/2+1/r−(d−1)(1/2−1/r)+
Y,∂Ω

)

×
(
‖f‖Hτ (Ω) + ‖g · n‖Hτ−1/2(∂Ω)

)
for 1 < r < ∞ and 0 ≤ η ≤ τ − d(1/2− 1/r)+ − 1. If r ≥ 2 and h = hX,Ω ≈ hY,∂Ω,
this reduces to

‖u− su‖Wη+1
r (Ω) + ‖p− sp‖Wη+2

r (Ω)/R

≤ Chτ−η−1−d(1/2−1/r)
(
‖f‖Hτ (Ω) + ‖g · n‖Hτ−1/2(∂Ω)

)
.
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4. Numerical examples

We will test the theoretical error estimates for two numerical examples. Our
first example will deal with homogeneous and isotropic permeability, where K re-
duces to a constant times the identity matrix. Our second example will deal with
inhomogeneous but still isotropic material.

We will employ Wendland functions φ2,� ∈ C2�(R2) for both φ and ψ, which

generate Sobolev spaces H�+3/2(R2). Thus by choosing φ = ψ = φ2,�, we have

NΦ(R
d) = H�+1/2(Rd; div)×H�+3/2(Rd),

which means τ = �+ 1/2. To ensure that a sufficient amount of collocation points
is in the support of the basis functions, we scale them with δ := 10. Moreover, since
the error estimates only exist for the case φ = ψ, we choose φ = ψ = φ2,�(

·
δ ) for all

numerical examples. We will concentrate on the L∞ and L2 error only. Hence, we
want to verify the estimates

‖u− su‖Hk(Ω) + ‖p− sp‖Hk+1(Ω)/R ≤ Cf ,gh
τ−k = Cf ,gh

�+ 1
2−k,

‖u− su‖Wk
∞(Ω) + ‖p− sp‖Wk+1

∞ (Ω)/R ≤ Cf ,gh
τ−k−d/2 = Cf ,gh

�− 1
2−k.

Note that the first estimate was only shown for k ≥ 1 in Theorem 3.7. Moreover,
the second estimate is actually not justified by our theoretical analysis.

In all cases the notation eu = u−su and ep = p−sp is used. The numerical tests
were run on a sequence of equidistant grids Xn = ( 1nZ)

2 ∩ Ω. The computational
approximation orders are derived by

log(en/en+1)

log(n/(n+ 1))
,

where en is the error on an n× n input grid.

4.1. Homogeneous permeability. In our first example, we choose Ω = [0, 1]2

and K = I and f and g such that the true solution is given by

u(x, y) = (−2x3y, 3x2y2)T , p(x, y) = x3y2.

We tested this for a variety of basis functions as explained above. The error has
been computed using discretized versions of the various norms on a fine 300× 300
grid. From the classical stability analysis for radial basis function interpolation (see
[14, 18, 6]) we have to expect ill-conditioned matrices. Hence, to avoid any negative
influence from such ill-conditioning, as a precaution, all computations were done
using quad double precision.

The results are presented in Tables 1 to 4 and in Figure 1. They indicate that
the numerical approximation orders more than match the theoretical ones.

Table 1. Approximation errors with φ = ψ = φ2,2.

n ‖eu‖L2 ‖eu‖L∞ ‖eu‖H1 ‖eu‖H2 ‖∇ep‖L2 ‖∇ep‖L∞

4 1.6335e-01 7.7583e-01 1.1289e+00 6.8905e+00 2.9920e-01 2.1715e+00

8 2.9333e-02 2.1230e-01 4.6740e-01 5.3876e+00 4.9407e-02 6.9474e-01

16 4.7724e-03 5.5458e-02 1.6321e-01 3.7585e+00 6.9639e-03 1.8473e-01

32 6.5486e-04 1.3832e-02 4.7138e-02 2.2668e+00 8.8743e-04 4.4247e-02

64 7.9729e-05 3.0498e-03 1.2110e-02 1.2395e+00 1.0140e-04 9.2248e-03
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Table 2. Approximation orders with φ = ψ = φ2,2.

‖eu‖L2 ‖eu‖L∞ ‖eu‖H1 ‖eu‖H2 ‖∇ep‖L2 ‖∇ep‖L∞

computed 2.4774 1.8697 1.2722 0.3550 2.5983 1.6442

2.6197 1.9366 1.5179 0.5195 2.8267 1.9111

2.8655 2.0033 1.7918 0.7295 2.9722 2.0618

3.0380 2.1813 1.9606 0.8710 3.1296 2.2620

estimated 2.5 1.5 1.5 0.5 2.5 1.5

Table 3. Approximation errors with φ = ψ = φ2,3.

n ‖eu‖L2 ‖eu‖L∞ ‖eu‖H1 ‖eu‖H2 ‖∇ep‖L2 ‖∇ep‖L∞

4 1.0127e-01 3.6764e-01 7.0026e-01 4.1830e+00 2.1525e-01 1.4904e+00

8 8.6886e-03 4.3353e-02 1.4323e-01 1.7673e+00 1.2082e-02 1.8352e-01

16 6.6247e-04 5.3868e-03 2.4002e-02 6.3930e-01 7.6629e-04 2.0568e-02

32 4.0582e-05 5.8268e-04 3.0337e-03 1.7604e-01 4.1610e-05 1.7658e-03

64 2.2916e-06 5.6109e-05 3.3587e-04 4.0901e-02 2.1316e-06 8.3619e-05

Table 4. Approximation orders φ = ψ = φ2,3.

‖eu‖L2 ‖eu‖L∞ ‖eu‖H1 ‖eu‖H2 ‖∇ep‖L2 ‖∇ep‖L∞

computed 3.5430 3.0841 2.2896 1.2430 4.1550 3.0217

3.7132 3.0086 2.5771 1.4670 3.9788 3.1575

4.0289 3.2087 2.9840 1.8606 4.2029 3.5420

4.1464 3.3764 3.1751 2.1057 4.2869 4.4003

estimated 3.5 2.5 2.5 1.5 3.5 2.5

Table 5. Approximation errors with φ = ψ = φ2,4.

n ‖eu‖L2 ‖eu‖L∞ ‖eu‖H1 ‖eu‖H2 ‖∇ep‖L2 ‖∇ep‖L∞

4 6.1153e-02 2.0845e-01 4.3615e-01 2.8112e+00 2.0304e-01 1.2941e+00

8 2.3251e-03 1.1990e-02 4.1046e-02 5.5070e-01 3.2751e-03 5.0862e-02

16 7.9533e-05 7.1673e-04 3.0418e-03 9.1047e-02 9.5225e-05 2.7176e-03

32 2.3199e-06 3.8217e-05 1.7927e-04 1.1659e-02 2.4788e-06 1.0642e-04

64 7.4599e-08 1.1181e-06 1.2205e-05 1.6011e-03 1.0738e-07 3.4691e-06

Table 6. Approximation orders with φ = ψ = φ2,4.

‖eu‖L2 ‖eu‖L∞ ‖eu‖H1 ‖eu‖H2 ‖∇ep‖L2 ‖∇ep‖L∞

computed 4.7171 4.1198 3.4095 2.3518 5.9541 4.6693

4.8696 4.0643 3.7543 2.5966 5.1040 4.2262

5.0994 4.2291 4.0847 2.9652 5.2636 4.6745

4.9588 5.0951 3.8765 2.8643 4.5289 4.9390

estimated 4.5 3.5 3.5 2.5 4.5 3.5
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Figure 1. Approximation orders for φ = ψ = φ2,2 (upper left),
φ = ψ = φ2,3 (upper right) and φ = ψ = φ2,4.

4.2. Inhomogeneous permeability. Our second example deals with inhomoge-
nous and isotropic material, meaning that K = κI with a non-constant function
κ. Our example is motivated by a similar example from [20] and describes the flow
through a two-dimensional cylinder with varying permeability. To be more precise,
pressure, velocity and permeability are given by

p(x, y) =
p1 − p0

L
x+ p0,

u(x, y) =

(
p0 − p1
Lμ

(y − ya)(y − yb), 0

)T

,

κ(x, y) = (y − ya)(y − yb),

where μ is the viscosity and L the length of the cylinder. Obviously, these quantities
satisfy (1.1) and ∇ ·u = 0. The permeability is constant along horizontal lines and
is zero at the top and bottom boundary of the cylinder. The flow is also horizontal;
see Figure 2.

For our computations, we set L = 1, ya = 0, yb = 1, μ = 1, p1 = 2 and p0 = 1.
For φ = ψ we have chosen the C6 compactly supported function.

The results are represented in Tables 7 and 8 and in Figure 3.
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Figure 2. The schematic set up for the second example.

Table 7. Approximation errors for the inhomogeneous problem

n ‖eu‖L2 ‖eu‖L∞ ‖eu‖H1 ‖eu‖H2 ‖∇ep‖L2 ‖∇ep‖L∞

4 6.2920e-03 2.3987e-02 5.2479e-02 5.1676e-01 4.9587e-02 1.2463e-01

8 5.3211e-04 4.6569e-03 8.8350e-03 1.3797e-01 2.2983e-03 9.9190e-03

16 4.0233e-05 5.5241e-04 1.4920e-03 4.5095e-02 1.8430e-04 1.4879e-03

32 2.9049e-06 5.3613e-05 2.3020e-04 1.3925e-02 1.7299e-05 2.4952e-04

64 1.8260e-07 4.1769e-06 3.0837e-05 3.8451e-03 1.5696e-06 3.8521e-05

Table 8. Approximation orders for the inhomogeneous problem.

‖eu‖L2 ‖eu‖L∞ ‖eu‖H1 ‖eu‖H2 ‖∇ep‖L2 ‖∇ep‖L∞

computed 3.5637 2.3648 2.5705 1.9052 4.4313 3.6513

3.7253 3.0756 2.5660 1.6133 3.6404 2.7370

3.7918 3.3651 2.6963 1.6953 3.4133 2.5760

3.9917 3.6821 2.9001 1.8566 3.4623 2.6954

estimated 3.5 2.5 2.5 1.5 3.5 2.5
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Figure 3. Convergence for the inhomogeneous example.
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