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EFFICIENT AND RELIABLE HIERARCHICAL

ERROR ESTIMATES FOR THE DISCRETIZATION ERROR

OF ELLIPTIC OBSTACLE PROBLEMS

RALF KORNHUBER AND QINGSONG ZOU

Abstract. We present and analyze novel hierarchical a posteriori error es-
timates for self-adjoint elliptic obstacle problems. Our approach differs from
straightforward, but nonreliable estimators by an additional extra term ac-
counting for the deviation of the discrete free boundary in the localization
step. We prove efficiency and reliability on a saturation assumption and a
regularity condition on the underlying grid. Heuristic arguments suggest that
the extra term is of higher order and preserves full locality. Numerical com-
putations confirm our theoretical findings.

1. Introduction

Hierarchical a posteriori error estimates are based on the extension of the given
finite element space S by an incremental space V . After discretization of the actual
defect problem with respect to the extended space S + V , hierarchical splitting
and subsequent localization give rise to local defect problems associated with low-
dimensional subspaces of V . These local subproblems can be often solved exactly
providing local contributions that finally sum up to the desired a posteriori estimate
of the error. We refer to the pioneering work of Zienkiewicz et al. [32] and Deuflhard
et al. [10] or to the monographs of Verfürth [26] and Ainsworth & Oden [1].

An attractive feature of hierarchical a posteriori error estimates is their robust-
ness. For linear self-adjoint elliptic problems, local lower bounds come without
unknown constants and global upper bounds (up to higher order terms) do not
depend on jumps of the coefficients resolved by the underlying mesh [27, 28, 31].
The upper bound is often proved on the so-called saturation assumption that the
extended space S + V provides a more accurate approximation than the original
space S [4, 10]. The saturation assumption holds, if data oscillation is relatively
small [12]. A direct proof based on local L2-projections is contained in [33].

Another advantage of hierarchical error estimators is their intriguing simplicity.
As a consequence, hierarchical concepts have been applied to various nonsmooth
nonlinear problems [13, 17], in particular, to obstacle problems [14, 16, 24, 33] or
two-body contact problems in linear elasticity [23]. Surprisingly good effectivity
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ratios were observed in all of these applications. Moreover, the local contributions
resulting from the local defect problems provided effective and fully local error
indicators in adaptive refinement.

In this paper, we concentrate on scalar self-adjoint elliptic obstacle problems.
While residual-based error estimates [7, 20, 21, 22, 25] or averaging techniques [3]
are now well understood for this problem class, the analysis of hierarchical error
estimates still seems to be in its infancy. Very recently, Siebert and Veeser [24]
derived efficient and reliable hierarchical error estimates for the energy functional
in obstacle problems which were later improved by Zou et al. [33]. On the other
hand, straightforward hierarchical error estimates for the discretization error [14]
might fail to provide upper bounds at all, because reliability is lost in the localization
step (see, e.g., the counterexample at the end of Section 2). Related estimators [16]
are more reliable but mesh-independent upper bounds are still missing as well.

Here, we present an extension of the straightforward estimator [14] by an ad-
ditional extra term accounting for the deviation of the discrete free boundary in
the course of the localization step. In this way, we are able to establish mesh-
independent lower and upper bounds for the discretization error. The proof is
carried out on a saturation assumption, a discrete conforming condition, and a
regularity condition on the underlying grid. More precisely, we assume that the
off-diagonal elements of the stiffness matrix are nonpositive so that a monotonicity
argument can be applied. Numerical computations indicate that this quite restric-
tive condition seems not to be necessary for mesh-independence.

The novel extra term is a sum of local residuals associated with certain excep-
tional nodes. The exceptional nodes always lie in the coincidence set or in its
neighborhood. Hence, our a posteriori error estimates reduce to well-known re-
sults [4, 10], if no obstacle is present. Heuristic reasoning suggests that the excep-
tional nodes are concentrated at the discrete free boundary so that the extra term
is expected to be of higher order. This explains why the straightforward estima-
tor [14] works well in practice. Moreover, the extra term preserves full locality and
there is no overestimation of the error inside of the coincidence set. Our theoretical
considerations are nicely supported by numerical experiments.

Throughout this paper, “A � B” means that A can be bounded by B multi-
plied with a generic constant depending only on the shape regularity of the actual
triangulation T , and “A ∼ B” stands for “A � B” and “B � A”.

2. Hierarchical extensions and local defect problems

Let Ω ⊂ R
d, d = 2, 3, be a bounded, polygonal or polyhedral domain with

Lipschitz-continuous boundary ∂Ω and denote H = H1
0 (Ω). We consider the ob-

stacle problem

(2.1) u ∈ K : a(u, v − u) ≥ �(v − u) ∀v ∈ K,

involving the H-elliptic, symmetric bilinear form

(2.2) a(v, w) =

∫
Ω

∇v · ∇w dx, v, w ∈ H,

with the associated energy norm ‖v‖ = a(v, v)
1
2 , and a bounded linear functional

� ∈ H ′. The closed, convex subset

K = {v ∈ H | v ≥ ψ a.e. in Ω} ⊂ H
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is induced by an obstacle function ψ ∈ C(Ω) satisfying ψ ≤ 0 on ∂Ω. It is well
known [15] that (2.1) admits a unique solution u ∈ K.

Let T be a conforming and shape regular triangulation of Ω with N and let E
denote the set of all interior vertices and edges, respectively. We introduce the
space S ⊂ H of piecewise linear finite elements on T spanned by the nodal basis
{φP | P ∈ N}. Now the finite element discretization of (2.1) reads as

(2.3) uS ∈ KS : a(uS , v − uS) ≥ �(v − uS) ∀v ∈ KS

with discrete constraints

KS = {v ∈ S | v(P ) ≥ ψ(P ) ∀P ∈ N} ⊂ S.
Note that, in general, KS 
⊂ K. The discrete problem (2.3) admits a unique solution
uS which is characterized by the discrete complementarity conditions

(2.4) (ψ − uS)(P ) ≤ 0, 〈σS , φP 〉 ≤ 0, (ψ − uS)(P )〈σS , φP 〉 = 0 ∀P ∈ N
involving the discrete residual σS ∈ H ′, defined by

〈σS , v〉 = �(v)− a(uS , v), v ∈ H.

The error e = u− uS is the unique solution of the continuous defect problem

(2.5) e ∈ D : a(e, v − e) ≥ 〈σS , v − e〉 ∀v ∈ D

with defect constraints

D = {v ∈ H | v ≥ ψ − uS a.e. in Ω} ⊂ H.

In order to derive a computable approximation of e ∈ H, (2.5) is discretized by
another finite element space Q which should be larger than S. Following [10, 14,
16, 17], we select the space Q ⊂ H of piecewise quadratic finite elements on T .
Each function v ∈ Q is uniquely determined by its nodal values in P ∈ NQ =
N ∪ {xE | E ∈ E}, where xE stands for the midpoint of E ∈ E . We consider the
discrete defect problem

(2.6) eQ ∈ DQ : a(eQ, v − eQ) ≥ 〈σS , v − eQ〉 ∀v ∈ DQ

with discrete defect constraints

DQ = {v ∈ Q | v(P ) ≥ ψ(P )− uS(P ) ∀P ∈ NQ}.
Observe that uQ = uS + eQ ∈ Q is just the piecewise quadratic finite element
approximation which could be directly computed from

(2.7) uQ ∈ KQ : a(uQ, v − uQ) ≥ �(v − eQ) ∀v ∈ KQ

with discrete constraints

KQ = {v ∈ Q | v(P ) ≥ ψ(P ) ∀P ∈ NQ}.
It is well known [1, 2, 4, 16, 17] that the so-called saturation assumption

(2.8) ‖u− uQ‖ ≤ β‖u− uS‖, β < 1,

implies the a posteriori error estimate

(2.9) (1 + β)−1‖eQ‖ ≤ ‖u− uS‖ ≤ (1− β)−1‖eQ‖.
In particular, the saturation assumption (2.8) implicitly accounts for nonconforming
errors as resulting from KS 
⊂ K and KQ 
⊂ K. The importance of the saturation
assumption (2.8) explains the usual selection of Q: As the piecewise quadratic
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approximation uQ of u is of higher order for smooth data [6], the saturation as-
sumption (2.8) can be expected to hold true for sufficiently fine meshes. Moreover,
β even tends to zero for increasing refinement so that the a posteriori error esti-
mate ‖eQ‖ is asymptotically exact for piecewise quadratics. This is not the case
for an alternative selection of Q consisting of piecewise linear finite elements on
the uniformly refined triangulation T ′. Nevertheless, well-known optimal error es-
timates [8] indicate that (2.8) can still be expected to be satisfied for sufficiently
fine mesh size. On the other hand, for any finite dimensional space Q ⊂ H there
is a functional � ∈ H ′ such that the saturation assumption (2.8) is violated [4].
For unconstrained problems, small data oscillation implies the saturation assump-
tion [12]. For obstacle problems, this kind of practical criterion for (2.8) seems to
be wide open (however, see [33]). Moreover, even for smooth data, the order of
piecewise quadratics is not optimal but limited by 3/2. This indicates that the
saturation assumption (2.8) for obstacle problems is much more restrictive than in
the unconstrained case.

The evaluation of eQ is still far too costly to be used as an a posteriori error
estimator. In order to simplify the discrete defect problem (2.5), we exploit that Q
can be regarded as a hierarchical extension of S, i.e.,
(2.10) Q = S + V , V = span {φE | E ∈ E},
involving the quadratic bubble functions φE ∈ Q characterized by φE(P ) = δxE ,P ,
∀P ∈ NQ (Kronecker-δ). See (3.1) for a hierarchical decomposition of quadratic
nodal basis functions.

Remark 2.1. Our subsequent analysis literally carries over to hierarchical extensions
as spanned by other edge bubble functions. For example, we could as well define
φE as the piecewise linear nodal basis functions associated with the new vertices
xE ∈ N ′ \ N of the uniformly refined triangulation T ′ or, equivalently, select Q to
be the space of piecewise linear finite elements on T ′.

Using the uniquely determined splitting v = vS + vV and w = wS + wV of
v, w ∈ Q into vS , wS ∈ S and vV , wV ∈ V , we define the bilinear form

(2.11) aQ(vQ, wQ) = a(vS , wS) +
∑
E∈E

vV (xE)wV(xE)a(φE, φE)

and the associated energy norm ‖v‖Q = aQ(v, v)
1
2 on Q. Note that aQ(·, ·) is just a

two-level version of the well-known hierarchical basis preconditioner [27, 28, 30, 31].
It is a result of decoupling S and V and further diagonalization on V . The norm
equivalence

(2.12) aQ(v, v) ∼ a(v, v) ∀v ∈ Q
follows from the estimates

(2.13) ‖vS‖+ ‖vV‖ ∼ ‖v‖, ‖vV‖Q =

(∑
E∈E

vV (xE)
2a(φE , φE)

) 1
2

∼ ‖vV‖,

as obtained from related local versions [4, 10]

(2.14) ‖vS‖T + ‖vV‖T ∼ ‖v‖T ,
( ∑

E∈ET

vV(xE)
2a(φE, φE)

) 1
2

∼ ‖vV‖T ,
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where ET denotes the set of edges of T ∈ T .
It has been shown in [16] that the unique solution εQ of the associated precon-

ditioned defect problem

(2.15) εQ ∈ DQ : aQ(εQ, v − εQ) ≥ 〈σS , v − εQ〉 ∀v ∈ DQ

inherits the norm equivalence (2.12), i.e.,

(2.16) ‖εQ‖Q ∼ ‖eQ‖.

Due to the remaining coupling of S and V by the constraints DQ, the unique
solution εQ is still not available in closed form. Hence, we introduce the subset

DV = {v ∈ V | v(xE) ≥ ψ(xE)− uS(xE) ∀E ∈ E} ⊂ DQ

and the corresponding approximate discrete defect problem

(2.17) ε̃V ∈ DV : aQ(ε̃V , v − ε̃V) ≥ 〈σS , v − ε̃V 〉 ∀v ∈ DV .

The solution ε̃V ∈ V of (2.17) is explicitly given by

(2.18) ε̃V(xE) =

{ −dE‖φE‖−1 ∀E ∈ E1 = {E ∈ E | ρE ≤ −dE},

ρE‖φE‖−1 ∀E ∈ E2 = {E ∈ E | ρE > −dE},
where we have set

(2.19) dE = (uS(xE)− ψ(xE))‖φE‖, ρE = 〈σS , φE〉‖φE‖−1, E ∈ E .

From a heuristic point of view, the midpoints xE of E ∈ E1 can be regarded as
approximate coincidence nodes, because (uS + ε̃V)(xE) = ψ(xE). Accordingly, the
midpoints xE of E ∈ E2 can be regarded as approximate noncoincidence nodes.

The resulting straightforward a posteriori estimate

(2.20) ‖ε̃V‖2Q =
∑
E∈E

η2E , ηE = |ε̃V(xE)|‖φE‖, E ∈ E ,

for the discretization error ‖u − uS‖2 has been suggested in [14]. The local con-
tributions ηE have also been used successfully as refinement indicators. In the
unconstrained case, we get εQ = ε̃V so that, by (2.9) and (2.16) the error estimate
(2.20) is efficient and reliable on the saturation assumption (2.8). However, this is
no longer true for obstacle problems. The following counterexample shows that, in
general, ‖εQ‖Q is not bounded by ‖ε̃V‖Q at all.

Let Ω = (0, 1), a(v, w) =
∫ 1

0
v′w′ dx, ψ = 0, and

�(v) =

∫ 1
4

0

(−3)v(x) dx+

∫ 3
4

1
4

v(x) dx+

∫ 1

3
4

(−3)v(x) dx.

The piecewise linear finite element approximation resulting from S = span {φP },
P = 1

2 , is uS = 0, because �(φP ) = 0. The corresponding piecewise quadratic finite

element approximation eQ of the error u− uS cannot be zero, because 〈σS , φ
Q
P 〉 =

�(φQ
P )−a(0, φQ

P ) > 0 holds for the quadratic nodal basis function φQ
P . On the other

hand, we compute 〈σS , φE〉 < 0 for E = [1, 1/2] and E = [1/2, 1] so that ε̃V = 0.
One might conclude that the hierarchical error estimate (2.20) needs some ex-

tension accounting for the deviation from ‖εQ‖Q to ‖ε̃V‖Q in the localization step
from (2.15) to (2.17). This will be the subject of the following section.
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3. Efficiency and reliability

For each P ∈ N and E ∈ E , we define

ωP = supp φP , γP = {E′ ∈ E | P ∈ E′}, ωE = supp φE .

We will make use of the hierarchical representation

(3.1) φQ
P = φP −

∑
E∈γP

φP (xE)φE

of the piecewise quadratic nodal basis function φQ
P ∈ Q associated with P . We

further introduce the subset of exceptional nodes

Nb = {P ∈ N | ρP > 0} ⊂ N ,

denoting

(3.2) ρP = 〈σS , φ̃P 〉‖φP ‖−1, φ̃P = φP −
∑

E∈γ1
P

φP (xE)φE , γ1
P = γP ∩ E1.

Now we are ready to state the main result of this paper.

Theorem 3.1. Assume that the saturation assumption (2.8) is satisfied, that the
discrete conforming condition

(3.3) uS ∈ KQ

holds, and that T satisfies the regularity condition

(3.4) a(φP , φP ′) ≤ 0 ∀P, P ′ ∈ N , P 
= P ′.

Then the hierarchical error estimator (2.20) is efficient and reliable in the sense
that

(3.5) ‖u− uS‖2 ∼
∑
E∈E

η2E +
∑

P∈Nb

ρ2P

holds with ηE and ρP defined in (2.20) and (3.2), respectively.

According to condition (3.3) there is no nonconforming error in the piecewise
linear approximation uS of uQ. By definition, (3.3) can be reformulated as 0 ∈ DQ
or, equivalently, dE ≥ 0 (cf. (2.19)). This property will be used in the proofs of
Lemma 3.5 and Proposition 3.6 below. It is difficult to check the discrete conforming
condition (3.3) a priori. However, it can be guaranteed by additional assumptions
on ψ, for example, that ψ is convex along the edges of T .

It is well known that the regularity condition (3.4) is satisfied in d = 2 space
dimensions, if (and only if with some possible rare exceptions near the boundary) T
is a Delaunay triangulation [9]. Xu and Zikatanov [29] extended this characteriza-
tion to arbitrary space dimensions. It is sufficient in d = 2 or d = 3 dimensions that
T consists of nonobtuse triangles or tetrahedra, respectively, [18]. A tetrahedron
is called nonobtuse, if all of its six dihedral angles between faces are nonobtuse.
It is not easy to preserve nonobtuse angles and thus the regularity condition (3.4)
under adaptive refinement. In d = 2 dimensions the classical red/green refinement
strategy usually destroys the Delaunay property: Red refinement preserves interior
angles but green closure does not. Longest edge bisection preserves nonobtuse tri-
angles only in very special cases such as, e.g., the initial partition of the unit square
into four congruent subtriangles. Nonobtuse adaptive refinement is even harder in
d = 3 space dimensions. We refer to Korotov et al. [18, 19] for further information.
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Remark 3.2. The local contributions ηE and ρP to the a posteriori error estimate
(3.5) are explicitly computable from (2.20) and (3.2). Moreover, in light of the
following heuristic arguments, the additional term

∑
P∈Nb

ρ2P can be expected to
be of higher order.

Assume that no coincidence occurs in the neighboring midpoints xE of P in the
sense that E ∈ E2 holds for all E ∈ γP or, equivalently, γ1

P = ∅. Then φ̃P = φP .

Therefore, complementarity (2.4) implies 〈σS , φ̃P 〉 = 〈σS , φP 〉 ≤ 0 and thus P 
∈ Nb.
Conversely, assume that coincidence takes place in all neighboring midpoints xE of
P in the sense that E ∈ E1 holds for all E ∈ γP or, equivalently, γ1

P = γP . Then

φ̃P = φQ
P . Similar to σS , the discrete quadratic residual σQ = �− a(uQ, ·) satisfies

〈σQ, φ̃P 〉 = 〈σQ, φ
Q
P 〉 ≤ 0. For nondegenerate problems, even inequality holds, if

uQ(P ) = ψ(P ). In this case, we can expect 〈σS , φ̃P 〉 ≤ 0 and thus P 
∈ Nb, if
〈σQ − σS , φ

Q
P 〉 ≤ ‖uQ − uS‖‖φQ

P ‖ is small enough.
As a consequence of the above heuristic reasoning, the set of exceptional nodes

Nb can be expected to concentrate along the continuous free boundary, if the mesh
size h is sufficiently small. In addition, we have ρ2P = O(hd+2), if P is close to the
free boundary. Hence, we can expect

∑
P∈Nb

ρ2P = O(h3), i.e. that the additional
term is of higher order.

The remainder of this section is devoted to the proof of Theorem 3.1. In light of
the basic error estimate (2.9), the equivalence (2.16), and the representation (2.20),
it is sufficient to show

(3.6) ‖εQ‖2Q ∼ ‖ε̃V‖2Q +
∑

P∈Nb

ρ2P .

We start to prove (3.6) by collecting some local properties of the solution εQ of the
preconditioned defect problem (2.15).

Lemma 3.3. The inequality εQ(xE) > ψ(xE)− uS(xE) implies

(3.7) aQ(εQ, φE) = 〈σS , φE〉.
Let εQ = εS + εV denote the hierarchical splitting of εQ into εS ∈ S and εV ∈ V.
Then

(3.8) εV(xE) = max{ρE‖φE‖−1, ψ(xE)− (uS + εS)(xE)}
holds for all E ∈ E .

Proof. Inserting v = εQ + φE ∈ DQ into (2.15), we get

(3.9) aQ(εQ, φE) ≥ 〈σS , φE〉, ∀E ∈ E .
If εQ(xE) > ψ(xE) − uS(xE), then there is a sufficiently small α > 0 such that
εQ(xE)−αφE(xE) ≥ ψ(xE)−uS(xE). Inserting v = (εQ(xE)−αφE(xE))φE ∈ DQ
into (2.15), we get the converse inequality

aQ(εQ,−αφE) ≥ 〈σS ,−αφE〉.
In order to show (3.8), we start with the splitting εQ = εS + εV . By definition of
aQ(·, ·) and ρE in (2.11) and (2.19), respectively, (3.9) can be rewritten as

εV(xE) ≥ ρE‖φE‖−1.

We have just shown that equality holds, if εQ(xE) > ψ(xE) − uS(xE) or, equiva-
lently, εV(xE) > ψ(xE)− (uS + εS)(xE). This concludes the proof. �
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Note that the inequality εQ(P ) > ψ(P )− uS(P ) does not imply

aQ(εQ, φP ) = 〈σS , φP 〉.
Indeed, we have εQ − αφP /∈ DQ for all α > 0, if εQ(xE) = ψ(xE)− uS(xE) holds
for some E ∈ γP .

In the next two lemmata we further analyze the components εS ∈ S and εV ∈ V
of the hierarchical splitting εQ = εS + εV ∈ DQ.

Lemma 3.4. Assume that the regularity condition (3.4) is satisfied. Then

εS ≥ 0.

Proof. We decompose εS = ε+S + ε−S into its positive part ε+S ∈ S and its negative

part e−S ∈ S with the nodal values

ε+S (P ) = max(0, εS(P )), ε−S (P ) = min(0, εS(P )), P ∈ N .

It is sufficient to show ε−S = 0. Inserting v = εQ + φP ∈ DQ into (2.15) we get

a(εS , φP ) = aQ(εQ, φP ) ≥ 〈σS , φP 〉 ∀P ∈ N
so that ε−S (P ) ≤ 0 yields

a(εS , ε
−
S ) ≤ 〈σS , ε

−
S 〉.

According to (2.4), uS(P ) > ψ(P ) implies 〈σS , φP 〉 = 0, and uS(P ) = ψ(P ) leads
to ε−S (P ) = 0. Thus we have shown e−S (P )〈σS , φP 〉 = 0 for all P ∈ N and therefore

(3.10) a(εS , ε
−
S ) ≤ 〈σS , ε

−
S 〉 =

∑
P∈N

e−S (P )〈σS , φP 〉 = 0.

Utilizing the regularity condition (3.4), i.e., a(φP1
, φP2

) ≤ 0 for P1 
= P2 and the
identity ε+S (P1)ε

−
S (P2) = 0 for P1 = P2, we obtain

−a(ε+S , ε
−
S ) =

∑
P1,P2∈N

ε+S (P1)(−ε−S (P2))a(φP1
, φP2

) ≤ 0.

The above two estimates yield

a(ε−S , ε
−
S ) = a(εS , ε

−
S )− a(ε+S , ε

−
S ) ≤ 0.

This concludes the proof. �
As a direct consequence of the preceding two lemmata, we can now compare the

piecewise quadratic components εV and ε̃V .

Lemma 3.5. Assume that the discrete conforming condition (3.3) and the regular-
ity condition (3.4) are satisfied. Then

(3.11) ρE‖φE‖−1 ≤ εV(xE) ≤ ε̃V (xE) ∀E ∈ E .
Moreover, ε̃V(xE) ≤ 0 holds for all E ∈ E1 and both inequalities in (3.11) hold with
equality for all E ∈ E2.
Proof. From Lemma 3.3 it is known that

εV(xE) = max{ρE‖φE‖−1, ψ(xE)− (uS + εS)(xE)}
while

ε̃V(xE) = max{ρE‖φE‖−1, ψ(xE)− uS(xE)}
holds by (2.18). Now (3.11) follows from Lemma 3.4. The remaining assertions are
obtained from the representation (2.18) of ε̃V (xE) and the conforming condition
(3.3). �
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In light of Lemma 3.5, E2 can be regarded as a subset of the piecewise quadratic
approximation of noncoincidence nodes in the sense that

(3.12) εQ(xE) > ψ(xE)− uS(xE) ∀E ∈ E2.
On the other hand, E ∈ E1 does not necessarily imply εQ(xE) = ψ(xE)− uS(xE).

We are now ready to prove the efficiency of our hierarchical error estimator.

Proposition 3.6. Assume that the discrete conforming condition (3.3) and the
regularity condition (3.4) are satisfied. Then the following estimate holds:

(3.13) ‖ε̃V‖2Q +
∑

P∈Nb

ρ2P � ‖εQ‖2Q.

Proof. By Lemma 3.5, we have

|ε̃V(xE)| ≤ |εV(xE)| ∀E ∈ E
and therefore

‖ε̃V‖2Q ≤ ‖εV‖2Q ≤ ‖εQ‖2Q.
It remains to show that

∑
P∈Nb

ρ2P � ‖εQ‖2Q. Let P ∈ Nb. Note that φ̃P =

φQ
P +

∑
E∈γP∩E2

φP (xE)φE . Inserting εQ + φQ
P ∈ DQ into (2.15), we get

〈σS , φ
Q
P 〉 ≤ aQ(εQ, φ

Q
P )

which, in combination with (3.12) and (3.7), leads to

〈σS , φ̃P 〉 = 〈σS , φ
Q
P 〉+

∑
E∈γP∩E2

φP (xE)〈σS , φE〉 ≤ aQ(εQ, φ̃P ).

Now we insert the definitions of aQ(·, ·) and φ̃P to obtain

0 < 〈σS , φ̃P 〉 ≤ a(εS , φP )−
∑

E∈γ1
P

φP (xE)εV(xE)a(φE, φE)

≤ ‖εS‖ωP
‖φP ‖+

∑
E∈γ1

P

|εV(xE)|‖φE‖2

exploiting the Cauchy-Schwarz inequality, the triangle inequality and |φP (xE)| ≤ 1.
Another application of the Cauchy-Schwarz inequality provides that

ρ2P � ‖εS‖2ωP
+

∑
E∈γ1

P

|εV(xE)|2‖φE‖2.

We sum up this estimate for all P ∈ Nb and exploit shape regularity, to get∑
P∈Nb

ρ2P �
∑

P∈Nb

‖εS‖2ωP
+

∑
P∈Nb

∑
E∈γ1

P

|εV(xE)|2‖φE‖2

� ‖εS‖2 + ‖εV‖2Q = ‖εQ‖2Q.
This concludes the proof. �

In preparation of proving reliability, we state two further lemmata.

Lemma 3.7. The inequality εQ(P ) > ψ(P )− uS(P ) implies

(3.14) aQ(εQ, φ
Q
P ) = 〈σS , φ

Q
P 〉, aQ(εQ, φ̃P ) = 〈σS , φ̃P 〉

with φQ
P and φ̃P defined in (3.1) and (3.2), respectively.
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Proof. As φQ
P (P

′) = δP,P ′ for all P, P ′ ∈ NQ, the left equality in (3.14) can be
shown in a similar way as (3.7). Exploiting (3.12)

aQ(εQ, φ̃P ) = aQ(εQ, φ
Q
P ) +

∑
E∈γP∩E2

φP (xE)aQ(εQ, φE)

= 〈σS , φ
Q
P 〉+

∑
E∈γP∩E2

φP (xE)〈σS , φE〉 = 〈σS , φ̃P 〉

then follows from the left equality in (3.14) and (3.7). �

Lemma 3.8. The estimate

(3.15) |v(P )− v(xE)| � ‖v‖ωP
‖φP ‖−1

holds for all P ∈ N , E ∈ γP and v ∈ Q.

Proof. Let P ∈ N , E ∈ γP and v = vS + vV ∈ Q with vS ∈ S and vV ∈ V . Since

v(xE) = vV(xE) + vS(xE) = vV (xE) +
∑

P ′∈N
vS(P

′)φP ′(xE),

and
∑

P ′∈N φP ′(xE) = 1, it is clear that

(3.16) v(xE)− v(P ) = vV(xE) +
∑

P ′∈N ,P ′ �=P

(vS(P
′)− vS(P ))φP ′(xE).

Note that φP ′(xE) 
= 0, if and only if P ′ ∈ ωP . Select T ∈ T such that P, P ′ ∈ T ⊂
ωP and let hT = diam T . Then shape regularity implies

|vS(P ′)− vS(P )| ≤ hT |∇vS |T | � h
1−d/2
T ‖vS‖ωP

,

because ∇vS |T is constant. Utilizing again shape regularity, we get ‖φP ‖ ∼ h
d/2−1
T

and therefore

|vS(P ′)− vS(P )| � ‖φP ‖−1‖vS‖ωP
.

Now choose T ∈ T such that xE ∈ T ⊂ ωP . Then

|vV (xE)| ≤
( ∑

E′∈ET

vV(xE′)2

) 1
2

� h
1−d/2
T ‖vV‖T � ‖φP ‖−1‖vV‖ωP

follows from ‖φE′‖ ∼ h
d/2−1
T and the equivalence (2.14) of local norms. Inserting

these estimates into (3.16), we get

|v(xE)− v(P )| � (‖vV‖ωP
+ ‖vS‖ωP

)‖φP ‖−1.

Now the assertion follows from the left estimate in (2.14) and the shape regularity
of T . �

We are now ready to prove the reliability of our hierarchical error estimator.

Proposition 3.9. Assume that the discrete conforming condition (3.3) and the
regularity condition (3.4) are satisfied. Then the following estimate holds:

(3.17) ‖εQ‖2Q � ‖ε̃V‖2Q +
∑

P∈Nb

ρ2P .
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Proof. Using the splitting εQ = εS + εV , we obtain

aQ(εQ, εQ) = aQ(εQ, εS) +
∑
E∈E

εV (xE)aQ(εQ, φE)

by definition (2.11) of aQ(·, ·). As a consequence of aQ(εQ, φE) = εV(xE)‖φE‖2
and Lemma 3.5 this leads to

aQ(εQ, εQ) = aQ(εQ, εS) +
∑
E∈E1

εV(xE)aQ(εQ, φE) +
∑
E∈E2

ρ2E .

Utilizing the splitting E1 = E+
1 ∪ E−

1 ,

E+
1 = {E ∈ E1 | εQ(xE) > 0}, E−

1 = {E ∈ E1 | εQ(xE) ≤ 0},
and εV(xE) = εQ(xE)− εS(xE), we rewrite this identity according to

(3.18) aQ(εQ, εQ) = I1 + I2 + I3 + I4,

where

I1 = aQ(εQ, εS)−
∑
E∈E1

εS(xE)aQ(εQ, φE)

and

I2 =
∑

E∈E+
1

εQ(xE)aQ(εQ, φE), I3 =
∑

E∈E−
1

εQ(xE)aQ(εQ, φE), I4 =
∑
E∈E2

ρ2E .

We will treat these four terms in the given order.
In the first step, we consider the terms I1 and I2. We start with the first

expression aQ(εQ, εS) occurring in I1. Let

N1 = {P ∈ N | γ1
P 
= ∅}.

Note that Nb ⊂ N1, because P ∈ N \N1 implies φ̃P = φP and thus P ∈ N \Nb. Let
us consider some P ∈ N \N1 and assume that εQ(P ) = εS(P ) > 0 ≥ ψ(P )−uS(P ).

As φ̃P = φP , Lemma 3.7 provides

aQ(εQ, φP ) = 〈σS , φP 〉 ≤ 0.

As εS(P ) < 0 does not occur (cf. Lemma 3.4), we have shown

(3.19) aQ(εQ, εS) =
∑
P∈N

εS(P )aQ(εQ, φP ) ≤
∑

P∈N1

εS(P )aQ(εQ, φP ).

Let us consider the second expression occurring in I1. We insert the nodal repre-
sentation εS(xE) =

∑
P∈NE

εS(P )φP (xE) with NE = {P ∈ N | φP (xE) 
= 0} and
rearrange terms to obtain

(3.20)

∑
E∈E1

εS(xE)aQ(εQ, φE) =
∑
E∈E1

( ∑
P∈NE

εS(P )φP (xE)
)
aQ(εQ, φE)

=
∑

P∈N1

εS(P )aQ
(
εQ,

∑
E∈γ1

P

φP (xE)φE

)
.

Combining (3.19) and (3.20), we have shown

I1 ≤
∑

P∈N1

εS(P )aQ(εQ, φ̃P ).

Now Lemma 3.7 yields

aQ(εQ, φ̃P ) = 〈σS , φ̃P 〉
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for all P ∈ N1 ⊂ N satisfying εQ(P ) = εS(P ) > 0 ≥ ψ(P )−uS(P ). By Lemma 3.4
the case εS(P ) < 0 does not occur. Hence, by the definition of Nb ⊂ N1, we have

(3.21) I1 ≤
∑

P∈N1

εS(P )aQ(εQ, φ̃P ) =
∑

P∈Nb

εS(P )〈σS , φ̃P 〉.

Now let P ∈ Nb. As Nb ⊂ N1, it is clear that γ
1
P 
= ∅. Hence, there exists EP ∈ γ1

P

with the property

εQ(xEP
) = min{εQ(xE) | E ∈ γ1

P }.
By Lemma 3.8, we have

|εQ(P )− εQ(xEP
)| � ‖εQ‖ωP

‖φP ‖−1.

Either EP ∈ E−
1 leads to

εS(P ) = εQ(P ) ≤ εQ(P )− εQ(xEP
)

� ‖εQ‖ωP
‖φP ‖−1,

or EP ∈ E+
1 provides

εS(P ) = εQ(P ) = εQ(P )− εQ(xEP
) + εQ(xEP

)

� ‖εQ‖ωP
‖φP ‖−1 + εQ(xEP

).

These two inequalities can be rewritten as

εS(P ) ≤ ‖εQ‖ωP
‖φP ‖−1 +max{0, εQ(xEP

)}.

We insert this estimate into (3.21) and apply the Cauchy-Schwarz inequality to
obtain

(3.22)

I1 ≤
∑

P∈Nb

‖εQ‖ωP
ρP +

∑
P∈Nb

max{0, εQ(xEP
)}〈σS , φ̃P 〉

� ‖εQ‖
( ∑

P∈Nb

ρ2P

) 1
2

+
∑

P∈Nb,EP∈E+
1

εQ(xEP
)〈σS , φ̃P 〉.

We now concentrate on the second term in (3.22). Let EP ∈ E+
1 . Then γ1

P ⊂ E+
1 .

Exploiting the definition of EP and the conforming condition (3.3), we obtain

εQ(xE) ≥ εQ(xEP
) > 0 ≥ ψ(xE)− uS(xE) ∀E ∈ E+

1 .

Hence, Lemma 3.3 provides

(3.23) aQ(εQ, φE) = 〈σS , φE〉 ∀E ∈ E+
1 .

Utilizing 〈σS , φP 〉 ≤ 0 from (2.4) and that 〈σS , φE〉 ≤ 0 holds for all E ∈ E1 by
definition (2.18) of E1 and dE ≥ 0 (cf. (3.3)), we now obtain

εQ(xEP
)〈σS , φ̃P 〉 ≤ εQ(xEP

)〈σS ,−
∑

E∈γ1
P

φP (xE)φE〉

≤
∑

E∈E+
1 ∩γ1

P

εQ(xE)〈σS ,−φP (xE)φE〉

=
∑

E∈E+
1 ∩γ1

P

εQ(xE)aQ(εQ,−φP (xE)φE).
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We have used Lemma 3.3 in the last step. Summation over P ∈ Nb, rearranging
terms, and φP (xE) ≤ 1 leads to

∑
P∈Nb,EP∈E+

1

εQ(xEP
)〈σS , φ̃P 〉 ≤

∑
P∈Nb

∑
E∈E+

1 ∩γ1
P

φP (xE)εQ(xE)aQ(εQ,−φE)

=
∑

E∈E+
1

( ∑
P∈Nb∩NE

φP (xE)

)
εQ(xE)aQ(εQ,−φE)

≤ −
∑

E∈E+
1

εQ(xE)aQ(εQ, φE) = −I2.

In light of (3.22) and the norm equivalence (2.12), we have shown

I1 + I2 �
( ∑

P∈Nb

ρ2P

) 1
2 ‖εQ‖Q.(3.24)

In the second step, we consider I3. Exploiting (3.3), |εQ(xE)| = −εQ(xE) ≤
uS(xE)−ψ(xE) = dE‖φE‖−1 holds for all E ∈ E−

1 . Hence, the identity aQ(εQ, φE)
= εV(xE)‖φE‖2, the definition (2.20) of ηE , the Cauchy-Schwarz inequality, and
the estimate ‖εV‖Q ≤ (‖εV‖2Q + ‖εS‖2)1/2 = ‖εQ‖Q yield

I3 =
∑

E∈E−
1

εQ(xE)aQ(εQ, φE) ≤
∑

E∈E−
1

dE |εV(xE)|‖φE‖

≤
( ∑

E∈E1

η2E

) 1
2

‖εQ‖Q.
(3.25)

In the third step, we consider I4. According to Lemma 3.5, εV (xE) = ε̃V(xE) =
ρE‖φE‖−1 holds for all E ∈ E2. Hence, the definition (2.20) of ηE , the Cauchy-
Schwarz inequality and the estimate ‖εV‖Q ≤ ‖εQ‖Q yield

(3.26) I4 =
∑
E∈E2

ρ2E =
∑
E∈E2

ηE |εV (xE)|‖φE‖ ≤
( ∑

E∈E2

η2E

) 1
2

‖εQ‖Q.

To conclude the proof, we insert the estimates (3.24), (3.25), and (3.26) into the
representation (3.18) and obtain

‖εQ‖Q �
( ∑

P∈Nb

ρ2P

) 1
2

+
( ∑

E∈E1

η2E

) 1
2

+
( ∑

E∈E2

η2E

) 1
2

.

Now the assertion follows from the Cauchy-Schwarz inequality and the representa-
tion (2.20) of ‖ε̃V‖Q. �

4. Numerical results

In our numerical experiments, we will consider sequences of triangulations Tj ,
j = 0, 1, . . . , J , as resulting from j local refinement steps of an initial triangulation
T0. The subscript j will always refer to the corresponding triangulation Tj as, for
example, in Nj , Ej , Sj , uSj

, and so on. We either apply uniform refinement, i.e., we
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connect the midpoints of all edges E ∈ Ej , or we apply local adaptive refinement
based on the local contributions η2E , ρ

2
P to the hierarchical error estimator

η2j =
∑
E∈Ej

η2E + ρ2j , ρ2j =
∑

P∈Nj,b

ρ2P ,

as introduced in Theorem 3.1. Here, we use a variant of the following refinement
strategy suggested by Dörfler [11]. First, the local contributions η2E , ρ

2
P are ordered

according to their size. Then, proceeding from the largest to smaller contributions,
we collect all entries from this list until they sum up to (1 − θ)2η2j . Finally, if η2E
or ρ2P are contained in this collection, then all triangles in the support of φE or φP

are marked for refinement. Like Dörfler [11], we select θ = 0.2 in our computations.
Note that, in general, this strategy does not preserve symmetry, because only the
first of more than one entry with equal size might be collected for refinement.

4.1. Constant obstacle. Following Nochetto et al. [21], we consider the constant
obstacle ψ ≡ 0, the domain Ω = (0, 1)2, and the radially symmetric right-hand side

�(v) =

∫
Ω

fv dx, f(x) =

{
−4(2|x|2 + 2(|x|2 − r2)), |x| > r,

−8r2(1− (|x|2 − r2)), |x| ≤ r,

providing the radially symmetric exact solution

u(x) = (max{|x|2 − r2, 0})2

with corresponding boundary conditions. Like Nochetto et al. [21], we select r = 0.7
in our numerical computations. In our first experiment, the triangulations Tj ,
j = 1, . . . , 9, are obtained by uniform refinement of an initial triangulation T0
consisting of four congruent triangles.
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Figure 1. Comparison of the squared error ‖u − uSj
‖2 with the

hierarchical estimator η2j , and distribution of the exceptional nodes
N9,b.

The left picture in Figure 1 shows the squared discretization error ‖u − uSj
‖2,

the hierarchical estimator η2j , and the extra term ρ2j over the number of unknowns
nj . The true error seems to be approximated reasonably well. More precisely, for
j = 1, . . . , 9 the effectivity ratios ‖u − uSj

‖2/η2j are ranging from 0.63 to 0.79 and
seem to saturate at 0.79. This behavior is in perfect agreement with saturation (2.8)
and preconditioning (2.12). Like the squared error, the estimator η2j is proportional
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to n−1
j = O(h2

j) with hj denoting the mesh size of Tj . Moreover, we observe

ρ2j = O(n
−3/2
j ) = O(h3

j), i.e., the extra term ρj is of higher order, as predicted in
Remark 3.2.

On the other hand, the distribution of exceptional nodes Nb, as illustrated in the
right picture in Figure 1, is partly surprising at first. A subset of the exceptional
nodes is concentrated at the circular free boundary of uS which is supporting the
heuristic reasoning in the discussion of Theorem 3.1. However, there is another
subset of exceptional nodes located along the diagonals which seems to contradict
our expectation that there are no exceptional nodes inside the coincidence set.
The reason is that quadratic finite elements might generate spurious discrete free
boundaries. Indeed, for exceptional points P located inside the coincidence set, i.e.,
with uS = ψ = 0 on ωP , we have φ̃P = φQ

P and therefore

(4.27) 0 < ρP ‖φP ‖ = 〈σS , φ
Q
P 〉 = �(φQ

P ) =

∫
Ω

fφQ
P dx.

As a consequence, uQ cannot be zero on ωP , because (4.27) would contradict (2.7)
otherwise. Hence, there must be a spurious free boundary along the diagonals.
As contributions from exceptional nodes account for the deviation of ε̃V from the
piecewise quadratic approximation eQ = uQ−uS of the error and not from the true
error u − uS , it is clear that the exceptional nodes Nb cluster along the spurious
free boundary as well. This is exactly what we observe. Note that the spurious
contributions ρ2P at the diagonals are several magnitudes smaller than the others.

The reason why estimates of the form (4.27) and thus spurious free boundaries
might occur is that quadratic nodal basis functions φQ

P could be negative. This is not
the case for nodal basis functions of piecewise linear finite elements on a uniformly
refined triangulation T ′. Hence, the unexpected behavior ofNb observed in Figure 1
can be avoided by replacing the quadratic bubble functions by piecewise linear
ones. We emphasize that all of our theoretical considerations including efficiency
and reliability literally carry over to this case (cf. Remark 2.1).

Figure 2. Adaptively refined triangulations T6, T10, T12.

In order to illustrate the locality of the hierarchical error estimator ηj , Figure 2
shows the triangulations Tj , j = 6, 10, 12, as a result of the adaptive refinement
strategy described above. Note that the quadratic instability hardly influences the
refinement process, because the corresponding local contributions are very small.
However, effects of quadratic instability become slightly visible with increasing
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refinement. Though the adaptively refined triangulations no longer fulfill the regu-
larity condition (3.4), we observe that the effectivity ratios ‖u− uSj

‖2/η2j are still
quite reasonable, ranging from 0.63 to 0.82, and that the extra term ρj is still of
higher order.

4.2. Lipschitz obstacle. Following Nochetto et al. [21] again, we consider the
domain Ω = {x ∈ R

2 | |x1| + |x2| < 1}, the right-hand side �(v) = −5
∫
Ω
v(x) dx,

the Lipschitz obstacle
ψ(x) = dist(x, ∂Ω)− 1

5 ,

and homogeneous Dirichlet boundary conditions. The triangulations Tj , j = 1, 2,
. . . , 12, are resulting from local adaptive refinement of the initial triangulation T0
consisting of four congruent triangles.

The final approximate solution u12 is depicted in the left picture in Figure 3
while the right picture shows the corresponding free boundary. Observe the cusps
approximated by “antennae” of sole edges. Note that this effect can be regarded
as a lack of regularity of the discrete coincidence set [5].

Figure 3. Approximate solution u12 with obstacle function ψ and
associated free boundary
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Figure 4. The hierarchical estimator η2j over the number of un-
knowns nj for the initial triangulation T1 resolving the singularities
of ψ: Uniform refinement (left) and adaptive refinement (right).
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Figure 5. Adaptively refined triangulations T6, T9, and a zoom
into the upper corner of T12.

As no exact solution is available, we cannot compare our estimator with the true
error. Hence, Figure 4 just shows the hierarchical estimator η2j and the extra term

ρ2j over the number of unknowns nj . Let us first consider the left picture where
the underlying sequence of grids is obtain by uniform refinement. Even though the
solution is only in Hs(Ω) with s < 3/2, we observe η2j = O(h2

j) = O(n−1
j ) which

suggests optimal order of convergence. The reason is that the obstacle ψ, and thus
the singularity of the solution along the diagonals, is exactly resolved by the grid.
Note that the extra term ρ2j is of higher order again and, in contrast to the first
example, the exceptional nodes Nj,b are now concentrated along the approximate
free boundary. In the right picture in Figure 4, the underlying grid is obtained by
adaptive refinement. As expected, the hierarchical error estimator decays with the
same (optimal) order as in the uniform case.
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Figure 6. The hierarchical estimator η2j over the number of un-

knowns nj for the perturbed initial triangulation T̃1 not resolving
the singularities of ψ: Uniform refinement (left) and adaptive re-
finement (right).

The strong locality of the hierarchical error estimator is illustrated in Figure 5
showing T6, T9, and a zoom into the upper corner of T12. In contrast to related
residual indicators [21], the hierarchical indicators do not produce any refinement
within the coincidence set, where the obstacle ψ and thus the solution is repre-
sented exactly. Instead, adaptive refinement concentrates at the free boundary,
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Figure 7. Adaptively refined triangulations T̃6, T̃9, and a zoom
into the upper corner of T̃17 for the perturbed initial triangulation
T̃0.

particularly at the cusps, which perfectly reflects the corresponding lack of regu-
larity. According to Figure 4, the gain from a reduced number of unknowns in the
coincidence set is even compensated by overrefinement in the neighborhood of the
singularities. In this example, the efficiency of the underlying adaptive refinement
strategy could be improved by selecting a larger θ (marking fewer triangles for
refinement), but this is not our interest here.

In order to study a more general situation, we now start from the initial trian-
gulation T̃1 as obtained by connecting the midpoints of the edges of T0 and then
moving the interior vertices away from the diagonals. As a consequence, the sin-
gularities of ψ and thus of the solution inside of the coincidence set are no longer
resolved. This immediately affects the evolution of the error estimator η2j in course
of refinement, as illustrated in Figure 6. In the left picture, associated with uniform

refinement of T̃1, we now observe η2j = O(hj) = O(n
−1/2
j ). This nicely reflects the

reduced regularity of the continuous solution. It is interesting to see that adaptive
refinement based on the hierarchical error indicators now preserves the optimal
order η2j = O(n−1

j ). As shown in Figure 7, adaptive refinement no longer concen-
trates on the free boundary but on the dominating singularity along the diagonals.
Theoretical justification of these observations will be the subject of future research.
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