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A SEMILOCAL CONVERGENCE ANALYSIS

FOR DIRECTIONAL NEWTON METHODS

IOANNIS K. ARGYROS

Abstract. A semilocal convergence analysis for directional Newton methods
in n-variables is provided in this study. Using weaker hypotheses than in
the elegant related work by Y. Levin and A. Ben-Israel and introducing the
center-Lipschitz condition we provide under the same computational cost as
in Levin and Ben-Israel a semilocal convergence analysis with the following
advantages: weaker convergence conditions; larger convergence domain; finer
error estimates on the distances involved, and an at least as precise information
on the location of the zero of the function. A numerical example where our
results apply to solve an equation but not the ones in Levin and Ben-Israel is
also provided in this study.

1. Introduction

In this study we are concerned with the problem of approximating a zero x� of a
differentiable function F defined on a convex subset D of Rn (n a natural number)
with values in R.

A large number of problems in applied mathematics and also in engineering are
solved by finding the solutions of certain equations.

More specifically, when it comes to computer graphics, we often need to compute
and display the intersection C = A∩B of two surfaces A and B in R

3 (see [5], [6]).
If the two surfaces are explicitly given by

A = {(u, v, w)T : w = F1(u, v)}
and

B = {(u, v, w)T : w = F2(u, v)},
then the solution x� = (u�, v�, w�)T ∈ C must satisfy the nonlinear equation

F1(u
�, v�) = F2(u

�, v�)

and

w� = F1(u
�, v�).

Hence, we must solve a nonlinear equation in two variables x = (u, v)T of the
form

F (x) = F1(x)− F2(x) = 0.
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The marching method can be used to compute the intersection C. In this method,
we first need to compute a starting point x0 = (u0, v0, w0)

T ∈ C, and then compute
the succeeding intersection points by succesive updating.

In mathematical programming [9], for an equality-constraint optimization prob-
lem, e.g.,

min ψ(x)
s.t. F (x) = 0,

where ψ, F : D ⊆ R
n −→ R are nonlinear functions, we need a feasible point to

start a numerical algorithm. That is, we must compute a solution of the equation
F (x) = 0.

In the case of a system of nonlinear equations G(x) = 0, with G : D ⊆ R
n −→

R
n, we may solve instead

‖G(x)‖2 = 0

if the zero of function G is isolated or locally isolated and if the rounding error is
neglected [3], [7], [10], [11], [12].

We use the directional Newton method (DNM) [5] given by

xk+1 = xk − F (xk)

∇F (xk) · dk
dk (k ≥ 0)

to generate a sequence {xk} converging to x�.
Let us explain how (DNM) is conceived. We start with an initial guess x0 ∈ U0,

where F is differentiable and a direction vector d0.
Then, we restrict F on the line A = {x0 + θ d0, θ ∈ R}, where it is a function

of one variable f(θ) = F (x0 + θ d0).
Set θ0 = 0 to obtain the Newton iteration for f , that is, the next point:

v1 = − f(0)

f ′(0)
.

The corresponding iteration for F is

x1 = x0 −
F (x0)

∇F (x0) · d0
d0.

Note that f(0) = F (x0) and f ′(0) is the directional derivative

f ′(0) = F ′(x0, d0) = ∇F (x0) · d0.
By repeating this process we arrive at (DNM).
If n = 1, (DNM) reduces to the classical Newton method [1]–[3], [7].
A semilocal convergence analysis for the (DNM) was provided in the elegant

work by Levin and Ben-Israel in [5].
The quadratic convergence of the method was established for directions dk suf-

ficiently close to the gradients ∇F (xk), and under standard Newton–Kantorovich-
type hypotheses [1]–[3], [7].

In this study, we are motivated by the paper [5] and optimization considerations.
By introducing the center-Lipschitz condition and using it, in combination with the
Lipschitz condition (along the lines of our works in [1]–[3]), we provide a semilocal
convergence analysis with the following advantages over the work in [5]:

(1) Weaker hypotheses;
(2) Larger convergence domain for (DNM);
(3) Finer error bounds on the distances ‖ xk+1 − xk ‖, ‖ xk − x� ‖ (k ≥ 0);
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(4) An at least as precise information on the location of the zero x�.

A numerical example where our results apply, but the corresponding ones in [5]
cannot is also provided in this study.

Throughout the study, we use the Euclidean inner product, the corresponding
norm ‖ x ‖, and the corresponding matrix norm ‖ A ‖, except in Section 3 where
the ∞–norm is used for vectors and matrices, denoted by ‖ x ‖∞, and ‖ A ‖∞,
respectively.

2. Semilocal convergence analysis

We need the following lemma on majorizing sequences for (DNM). The proof
can be found in the appendix.

Lemma 2.1. Assume: there exist constants L0 ≥ 0, L ≥ 0, with L0 ≤ L, and
η ≥ 0, such that:

(2.1) q0 = L η

⎧
⎪⎪⎨

⎪⎪⎩

≤ 1

2
, if L0 �= 0,

<
1

2
, if L0 = 0,

where

(2.2) L =
1

8

(

L+ 4 L0 +
√
L2 + 8 L0 L

)

.

Then, the sequence {tk} (k ≥ 0) given by

(2.3) t0 = 0, t1 = η, tk+1 = tk +
L (tk − tk−1)

2

2 (1− L0 tk)
(k ≥ 1)

is well defined, nondecreasing, bounded above by t��, and converges to its unique
least upper bound t� ∈ [0, t��], where

t�� =
2 η

2− δ
,(2.4)

1 ≤ δ =
4 L

L+
√
L2 + 8 L0 L

< 2 for L0 �= 0.(2.5)

Moreover, the following estimates hold:

L0 t� ≤ 1,(2.6)

0 ≤ tk+1 − tk ≤ δ

2
(tk − tk−1) ≤ · · · ≤

(
δ

2

)k

η (k ≥ 1),(2.7)

tk+1 − tk ≤
(
δ

2

)k

(2 q0)
2k−1 η (k ≥ 0),(2.8)

0 ≤ t� − tk ≤
(
δ

2

)k
(2 q0)

2k−1 η

1− (2 q0)2
k (2 q0 < 1), (k ≥ 0).(2.9)

Here, ∠ denotes the angle between two vectors u and v, given by

∠(u, v) = arccos
u · v

‖ u ‖ · ‖ v ‖ , u �= 0, v �= 0.

We provide the main semilocal convergence theorem for (DNM):
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Theorem 2.2. Let F : D ⊆ R
n −→ R be a differentiable function.

Assume:

(i) There exists a point x0 ∈ D, such that:

F (x0) �= 0, ∇F (x0) �= 0.

Let d0 ∈ R
n be such that ‖ d0 ‖= 1, and set

h0 = − F (x0)

∇F (x0) · d0
d0,

x1 = x0 + h0.

(ii) For F ∈ C2[D], there exist constants M0 and M such that:

‖ ∇F (x)−∇F (x0) ‖ ≤ M0 ‖ x− x0 ‖, x ∈ D,(2.10)

sup
x∈D

‖ F ′′(x) ‖= M,(2.11)

p0 = |F (x0)| M |∇F (x0) · d0|−2 ≤ 1

2
,(2.12)

and

(2.13) U0 = {x ∈ R
n : ‖ x− x0 ‖≤ t�} ⊆ D,

where

(2.14) M =
1

8

(

M + 4 M0 +
√
M2 + 8 M0 M

)

.

(iii) The sequence {xk} (k ≥ 0) given by

(2.15) xk+1 = xk + hk,

where

(2.16) hk = − F (xk)

∇F (xk) · dk
dk,

satisfies

(2.17) ∠(dk,∇F (xk)) ≤ ∠(d0,∇F (x0)), k ≥ 0,

where each dk ∈ R
n is such that ‖ dk ‖= 1.

Then the sequence {xk} remains in U0 for all k ≥ 0 and converges to a zero
x� ∈ U0 of function F .

Moreover, ∇F (x�) �= 0 unless ‖ x� − x0 ‖= t�.
Furthermore, the following estimates hold for all k ≥ 0:

(2.18) ‖ xk+1 − xk ‖≤ tk+1 − tk ≤
(
δ

2

)k

(2 p0)
2k−1 η

and

(2.19) ‖ xk − x� ‖≤ t� − tk ≤
(
δ

2

)k
(2 p0)

2k−1 η

1− (2 p0)2
k (2p0 < 1),

where the iteration {tk} is given by (2.3), for

L0 = |∇F (x0)|−1 M0, L = |∇F (x0) · d0|−1 M, η = |∇F (x0) · d0|−1 |F (x0)|.
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Note that condition (2.17) is equivalent to

(2.20)
|∇F (xk) · dk|
‖ ∇F (xk) ‖

≥ |∇F (x0) · d0|
‖ ∇F (x0) ‖

, k ≥ 0.

Proof. We shall show the following using mathematical induction on k ≥ 0:

(2.21) ‖ xk+1 − xk ‖≤ tk+1 − tk

and

(2.22) U(xk+1, t
� − tk+1) ⊆ U(xk, t

� − tk).

For every z ∈ U(x1, t
� − t1),

‖ z − x0 ‖ ≤ ‖ z − x1 ‖ + ‖ x1 − x0 ‖
≤ t� − t1 + t1 − t0 = t� − t0

shows that z ∈ U(x0, t
� − t0).

Since, also

‖ x1 − x0 ‖=‖ h0 ‖≤ η = t1 − t0,

estimates (2.21) and (2.22) hold for k = 0.
Assume that (2.21) and (2.22) hold for all i ≤ k. Then we have:

(2.23)
‖ xk+1 − x0 ‖ ≤ ‖ xk+1 − xk ‖ + ‖ xk − xk−1 ‖ + · · ·+ ‖ x1 − x0 ‖

≤ (tk+1 − tk) + (tk − tk−1) + · · ·+ (t1 − t0) = tk+1

and

‖ xk + t (xk+1 − xk)− x0 ‖≤ tk + t (tk+1 − tk) ≤ t�, t ∈ [0, 1].

Using condition (2.10) for x = xk, we get in turn:
(2.24)

‖ ∇F (xk) ‖ ≥ ‖ ∇F (x0) ‖ − ‖ ∇F (xk)−∇F (x0) ‖
≥ ‖ ∇F (x0) ‖ −M0 ‖ xk − x0 ‖
≥ ‖ ∇F (x0) ‖ −M0(tk − t0)
≥ ‖ ∇F (x0) ‖ −M0tk > 0 (by (2.22) and Lemma 2.1).

We have the identity
∫ xk

xk−1

(xk − x) F ′′(x) dx = −(xk − xk−1) ∇F (xk−1) + F (xk)− F (xk−1)

= −hk−1 ∇F (xk−1) + F (xk)− F (xk−1)

=
F (xk−1)

(F (xk−1) · dk−1)
(dk−1 · ∇F (xk−1)) + F (xk)− F (xk−1)

= F (xk).

(2.25)

We prefer the integration to be from 0 to 1. That is why we introduce a change
of variable given by x = xk−1 + t hk−1, t ∈ [0, 1]. We can write

xk − x = xk − xk−1 − t hk−1 = hk−1 − t hk−1 = (1− t) hk−1, dx = hk−1 dt.
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Then (2.25) can be written as:

(2.26) F (xk) =

∫ 1

0

(1− t) hk−1 F ′′(xk−1 + θ hk−1) hk−1 dθ.

Using (2.11), (2.15)–(2.20), we get in turn:

‖xk+1 − xk‖ = ‖hk‖ =
|F (xk)|

|∇F (xk) · dk|

≤
|
∫ 1

0

(1− t) hk−1 F ′′(x0 + θ hk−1) hk−1 dθ|

|∇F (xk) · dk|

≤ M ‖ hk−1 ‖2
2 |∇F (xk) · dk|

≤ M ‖ hk−1 ‖2
2 ‖ ∇F (xk) ‖

‖ ∇F (x0) ‖
|∇F (x0) · d0|

≤ M ‖ hk−1 ‖2 ‖ ∇F (x0) ‖
2 (‖ ∇F (x0) ‖ −M0 tk) |∇F (x0) · d0|

≤ M ‖ hk−1 ‖2
2 (1− ‖ ∇F (x0) ‖−1 M0 tk) |∇F (x0) · d0|

≤ M (tk − tk−1)
2

2 (1− |∇F (x0) · d0|−1 M0 tk) |∇F (x0) · d0|

= tk+1 − tk,

which shows (2.21) for all k ≥ 0.
Then, for every w ∈ U(xk+2, t

� − tk+2), we obtain:

‖ w − xk+1 ‖ ≤ ‖ w − xk+2 ‖ + ‖ xk+2 − xk+1 ‖
≤ t� − tk+2 + tk+2 − tk+1 = t� − tk+1,

showing (2.22) for all k ≥ 0.
Lemma 2.1 implies that {tn} is a Cauchy sequence. It then follows from (2.21)

and (2.22) that {xn} is a Cauchy sequence too, and as such it converges to some
x� ∈ U0 (since U0 is a closed set).

The point x� is a zero of F , since

0 ≤ |F (xk)| ≤
1

2
M(tk − tk−1)

2 −→ 0 as k → ∞.

Furthermore, we prove that ∇F (x�) �= 0, except if ‖ x� − x0 ‖= t�.
Using (2.10) for x ∈ U0, (2.6), and the definition of the constant L0, we get

‖ ∇F (x)−∇F (x0) ‖ ≤ M0 ‖ x− x0 ‖
≤ M t� ≤ |∇F (x0) · d0| ≤ ‖ ∇F (x0) ‖ .

If ‖ x− x0 ‖< t�, then by (2.10), we obtain:

‖ ∇F (x)−∇F (x0) ‖≤ M0 ‖ x− x0 ‖< M0 t
� ≤ ‖ ∇F (x0) ‖,
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or

‖ ∇F (x0) ‖ > ‖ ∇F (x)−∇F (x0) ‖,
which shows ∇F (x) �= 0.

The left-hand side inequality in (2.20) follows from (2.19) by using standard
majorization techniques [3], [6], [8], [9].

That completes the proof of Theorem 2.2. �

Note that t� in (2.13) can be replaced by t�� given in closed form by (2.4).
It follows from the proof of Theorem 2.2, and Lemma 2.1, that

(2.27) ‖ hk+1 ‖ ≤ δ

2
‖ hk ‖ (k ≥ 0).

Therefore, if we define the nested balls

Sk = {x ∈ R
n : ‖ x− xk+1 ‖ ≤ ‖ hk ‖},

the proof given in [5] applies for Theorem 2.2 by simply replacing
1

2
by

δ

2
.

However, we decided to provide a proof for Theorem 2.2 different than the cor-
responding one in [5].

Definition 2.3. Let F : D ⊆ R
n −→ R be a differentiable function, where D is a

convex region. The function ∇F is said to be Lipschitz continuous if there exists a
constant M ≥ 0 such that:

(2.28) ‖ ∇F (x)−∇F (y) ‖ ≤ M ‖ x− y ‖ for all x, y ∈ D.

Note that in view of (2.28), there exists a center-Lipschitz constant M0 ≥ 0 such
that (2.10) holds.

Clearly,

(2.29) M0 ≤ M

holds in general, and
M

M0
can be arbitrarily large [1]–[3].

Remark 2.4. If F is twice differentiable, the Lipschitz constant M in (2.28) can
replace the corresponding constant in hypothesis (2.11). Note also that in view of
the proof of Theorem 2.2, the constant L0 can be defined by the more precise:

L0 =‖ ∇F (x0) ‖−1 M0.

Remark 2.5. Our Theorem 2.2 improves Theorem 1 in [5, pages 252–253].

(1) Case M = M0: Theorem 1 in [5] uses the stronger, and more difficult to verify
than (2.17) condition:

(2.30) ∠(dk+1,∇F (xk+1) ≤ ∠(dk,∇F (xk) (k ≥ 0),

or equivalently

(2.31)
|∇F (xk+1) · dk+1|

‖ ∇F (xk+1) ‖
≥ |∇F (xk) · dk|

‖ ∇F (xk) ‖
(k ≥ 0).

(1) Case M0 < M : Theorem 1 in [5] again uses (2.30) instead of the weaker condi-
tion (2.17).
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Theorem 1 in [5] uses the condition

(2.32) p = |F (x0)| M |∇F (x0) · d0|−2 ≤ 1

2

corresponding to our condition (2.12).
But, we have

(2.33) M < M.

That is,

(2.34) p ≤ 1

2
=⇒ p0 ≤ 1

2
,

but not necessarily vice versa (unless M0 = L).
Define the sequence {sk} (k ≥ 0) by

(2.35) s0 = 0, sk+1 = sk+ ‖ hk ‖ .

It was shown in [5] (under (2.32)) that

(2.36) ‖ hk+1 ‖ ≤ 1

2
‖ hk ‖,

i.e.,

(2.37) sk+2 − sk+1 ≤ 1

2
(sk+1 − sk).

It turns out from the proof of our Theorem 2.2 that a finer sequence {tk} than
{sk} could have been used in [5], given by

(2.38) t0 = 0, t1 = η, tk+1 = tk +
L (tk − tk−1)

2

2 (1− L0 tk)
(k ≥ 1).

Note that L0 ≤ L, since M0 ≤ M . We showed in [2, page 392]:

(2.39) tk ≤ tk,

(2.40) tk+1 − tk ≤ tk+1 − tk,

and

(2.41) t� ≤ t
�
= lim

k→∞
tk.

Moreover, strict inequality holds in (2.39) and (2.40) if M0 < M (i.e., if L0 < L).
Note that the convergence in Theorem 2.2 is quadratic, whereas it was only

shown to be linear in the corresponding Theorem 1 in [5] (see also (2.8), (2.9), and
(2.36)).

Finally, it follows from Lemma 2.1 and the proof of Theorem 2.2 that the se-
quence

(2.42) γ0 = 0, γ1 = η, γk+1 = γk +
L1 (γk − γk−1)

2

2 (1− L γk)
(k ≥ 1)

is a finer majorizing sequence for {xk} than {tk}, where

(2.43) L1 =

{
L0, if k = 1,
L, if k > 1.

We can also show the following convergence result for (DNM):
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Theorem 2.6. Under the hypotheses of Theorem 2.2 for the operator F ∈ C1[D],
and (2.11) replaced by (2.28), further assume that there exist constants M0 > 0,
M > 0, β0 > 0, β > 0, such that:

|∇F (x0) · d0| ≥
1

β0
,(2.44)

|∇F (x) · d| ≥ 1

β
, for all x ∈ U ⊂ D, d ∈ R

n, ‖ d ‖= 1,(2.45)

and

(2.46) α =
M β t1

2
≤ 1.

Set

(2.47) a =
M0 β0

M β
.

Then, the following estimates hold:

(2.48) ‖ xk+1 − xk ‖ ≤ a2
k−1

α2k−1t1

and

(2.49) ‖ x� − xk ‖ ≤ a2
k−1

α2k−1t1

1− a2k−1α2k−1
for all k ≥ 1 (α < 1).

Proof. According to Theorem 2.2: xk ∈ U0 (k ≥ 0). Using (2.15), (2.16), (2.44),
and (2.45), we get in turn:

(2.50)
‖ xk+1 − xk ‖ =

|F (xk)|
|∇F (xk) · dk|

≤ β1 |F (x1)|
= β1 |F (xk)− F (xk−1)−∇F (xk−1) (xk − xk−1)|,

where

(2.51) β1 =

{
β0, if k = 1,
β, if k > 1.

Multiplying both sides of

(2.52) xk − xk−1 = − F (xk−1)

∇F (xk−1) · dk−1
dk−1

by ∇F (xk−1), we obtain

(2.53)

‖ x2 − x1 ‖≤ β1 M0

2
‖ x1 − x0 ‖2 =

a β1 M

2
‖ x1 − x0 ‖2 = a2

0

α21−1t1,

‖ x3 − x2 ‖≤ β1 M

2
‖ x2 − x1 ‖2 ≤ β1 M

2
a t1 α2 = a2

1

α22−1t1,

‖ xk+1 − xk ‖≤ a2
k−1

α2k−1t1.

That is, we showed

(2.54) ‖ xk+1 − xk ‖ ≤ a2
k−1

α2k−1t1 for k = 1, 2.



336 IOANNIS K. ARGYROS

Assume it is correct up to k − 1. Then, we have:

‖ xk+1 − xk ‖ ≤ β1 M

2
‖ xk − xk−1 ‖2

≤ β1 M

2

(

a2
k−2

α2k+1−1t1

)2

= a2
k−1

α2k−1t1,

which completes the induction for (2.54) and shows (2.48).
Let m > k. Then using (2.48), we can obtain in turn for α < 1:

(2.55)

‖ xm − xk ‖ ≤‖ xm − xm−1 ‖ + ‖ xm−1 − xm−2 ‖ + · · ·+ ‖ xk+1 − xk ‖

≤
(

a2
m−2

α2m−1−1 + a2
m−3

α2m−2−1 + · · ·+ a2
k−1

α2k−1

)

t1

≤ a2
k−1

α2k−1

(

1 + a2
k−1

α2k +

(

a2
k−1

α2k
)2

+ · · ·

+

(

a2
k−1

α2k
)m−k−1)

t1

= a2
k−1

α2k−1

1−
(

a2
k−1

α2k
)m−k

1− a2k−1α2k
η

≤ a2
k−1

α2k−1 η

1− a2k−1α2k
.

By letting m −→ ∞ in (2.55), we obtain (2.49).
That completes the proof of Theorem 2.6. �

Remark 2.7. If β0 = β and M0 = M , then a = 1, and our Theorem 2.6 reduces to
a weaker version of Theorem 2 in [5].

Note that even in this case it is weaker, since (2.20) is used instead of (2.31).
Otherwise (i.e., if β0 < β, M0 = M , or if β0 = β, M0 < M , or if β0 < β, M0 < M)
the ratio of the quadratic convergence is improved since a ∈ (0, 1).

3. Special cases and applications

The gradient method is now stated as a special case of Theorem 2.2:

Corollary 3.1. Define direction dk and step hk for all k ≥ 0 by:

dk =
∇F (xk)

‖ ∇F (xk) ‖
and

hk = − F (xk)

‖ ∇F (xk) ‖2
∇F (xk).

Let F , x0, U0, M0, M , β0, β, p0 be as in Theorems 2.2 and 2.6. Then, the
following gradient method:

xk+1 = xk −
F (xk)

‖ ∇F (xk) ‖2
∇F (xk) (k ≥ 0)

satisfies the conclusions of Theorems 2.2 and 2.6.



A SEMILOCAL CONVERGENCE ANALYSIS FOR DNM 337

Following [5], as a second application, the direction dk in each iteration is chosen

as the unit vector along the maximal value | ∂F
∂xk

|. The proof of Theorems 2.2 and

2.6 applies here, by replacing each occurrence of |∇F (xk) · dk| by ‖ ∇F (xk) ‖∞,
and by using the ∞–norm instead of the Euclidean norm. The following is the
analog of Theorem 2.2.

Theorem 3.2. Let F : D ⊆ R
n −→ R be a differentiable function. If x0 ∈ D is

such that

F (x0) �= 0, ∇F (x0) �= 0,

let m(0) be an index such that

|F ′
�(x0)| = | ∂F

∂xm(0)
(x0)| = max

j=1,··· ,n
| ∂F
∂xj

(x0)|.

Define:

h0[k] =

⎧
⎪⎪⎨

⎪⎪⎩

− F (x0)

|F ′
�(x0)|

if k = m(0),

0 if k �= m(0),

x1 = x0 + h0,

and

U0 = {x : ‖ x− x0 ‖∞≤ t�}.
Assume F ∈ C2[D],

sup
x∈D

‖ F ′′(x) ‖∞= M,

‖ ∇F (x)−∇F (x0) ‖∞ ≤ M0 ‖ x− x0 ‖∞ for all x ∈ D,

p0 = |F (x0)| M | ∂F

∂xm(0)
(x0)|−2 ≤ 1

2
,

and

U0 ⊆ D,

where M is given by (2.14).
Define sequences {xk}, {hk} as follows:

Let m(k) be an index of the maximal modulus of
∂F

∂xm(k)
(xk),

|F ′
�(xk)| = | ∂F

∂xm(k)
(xk)| = max

j=1,...,n
| ∂F
∂xj

(xk)|,

hk[j] =

⎧
⎪⎪⎨

⎪⎪⎩

− F (xk)

|F ′
�(xk)|

, if j = m(k),

0, if j �= m(k),

and

xk+1 = xk + hk.

Then, the sequence {xk} remains in U0 for all k ≥ 0 and converges to a zero
x� ∈ U0 of function F .
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Moreover, ∇F (x�) �= 0 unless ‖ x� − x0 ‖∞ = t�. Furthermore, the following
estimates hold for all k ≥ 0:

‖ xk+1 − xk ‖∞ ≤ M

2 ‖ ∇F (xk) ‖∞
‖ xk − xk−1 ‖2∞

≤ tk+1 − tk ≤
(
δ

2

)k

(2 p0)
2k−1 η,

and

‖ xk − x� ‖∞ ≤ M

2 ‖ ∇F (xk) ‖∞
‖ xk − xk−1 ‖2∞

≤ t� − tk ≤
(
δ

2

)k
(2 p0)

2k−1 η

1− (2 p0)2
k (2 p0 < 1),

where the iteration {tk} is given by (2.3), for

L0 =‖ ∂F

∂xm(0)
(x0) ‖−1

∞ M0, L =‖ ∂F

∂xm(0)
(x0) ‖−1

∞ M,

η =‖ ∂F

∂xm(0)
(x0) ‖−1

∞ |F (x0)|.

A result similar to Theorem 2.6 can be stated under analogous conditions and
proof.

The advantages of our results over the corresponding ones in [5, see Section 3,
Theorem 3] have already been stated in Remarks 2.5 and 2.7.

We now refer the motivated reader to Section 4 in [5] for further applications
(see also [7]–[12]). Clearly, the applicability of the results listed in [5] has now
been expanded in view of our results. More applications and other relevant work
can be found in [7]–[12]. Maple programs for the methods mentioned here can be
downloaded from [4].

We provide an example where our Theorem 2.2 can apply to solve an equation,
but not the corresponding Theorem 1 in [5].

Example 3.3. Let n = 2. Here, we use the Euclidean inner product and the
corresponding norm for both the vector and matrix. Choose:

x0 = (1, 1)T , D = {x : ‖ x− x0 ‖≤ 1− b} for b ∈ [0, 1),

and define function F on D by

(3.1) F (x) =
θ31 + θ32

2
− b, x = (θ1, θ2)

T .

Then, the gradient ∇F of the operator F is given by

(3.2) ∇F (x) =
3

2
(θ21, θ

2
2)

T .

Using (2.10), (2.11), (3.1), and (3.2), we obtain the parameters:

M = 3 (2− b)
√
2, M0 =

3 (3− b)
√
2

2
, ‖ ∇F (x0) ‖ =

3
√
2

2
,

and

F (x0) = 1− b and η =

√
2

3
F (x0).
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We can choose the directions dk by

dk =
∇F (xk)

‖ ∇F (xk) ‖
,

so that condition (2.20) is satisfied as an equality.
Then, condition (2.32) used in [5] is violated for say b = .6166, since

L = 2.7668, η = .180736493,

and

p = Lη =
2
√
2

3
(2− b) (1− b) = .500061729 > .5.

Hence, there is no guarantee that (DNM) starting at x0 converges to a zero x�

of the function F .
However, our conditions hold.
We have:

L0 = 2.3834, L = 2.50910088, δ = 1.050097978.

That is,

q0 = .453486093 < .5 and t�� = .38053712 < 1− b = .3834.

Hence, the hypotheses of Theorem 2.2 are satisfied. We found x� = (.851140338,
.851140338).

That is, our Theorem 2.2 guarantees the existence of a zero x� in U0 of function
F , obtained as the limit of (DNM) starting at x0.

Remark 3.4. The results can be extended in a Hilbert space setting. Indeed, let F
be a differentiable operator defined on a convex subset D of a Hilbert space H with
values in R. Here x · y denotes the inner product of elements x and y in H, and
‖ x ‖ = (x · x)1/2.

Moreover, instead of condition (2.17) or (2.20), assume:

‖ dk ‖ = 1,

and, there exists ξ ∈ [0, 1] such that:

|∇F (xk) · dk| ≥ ξ ‖ ∇F (xk) ‖ .

Note that in the case of (2.17), we can always set:

ξ =
|∇F (xk) · dk|
‖ ∇F (x0) ‖

≤ 1.

In the case of Theorems 2.2 and 2.6, set

L0 =
M0

ξ ‖ ∇F (x0) ‖
, L =

M

ξ ‖ ∇F (x0) ‖
, and η =

|F (x0)|
ξ ‖ ∇F (x0) ‖

.

Then, due to the proofs of Theorems 2.2 and 2.6, the results in Section 2 hold
in this more general setting. A similar extension can follow for the results of this
section.
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Appendix

Proof of Lemma 2.1. If L0 = 0, then for L > 0, an induction argument shows that

tk+1 − tk =
2

L
(2 q0)

2k (k ≥ 0).

Therefore, we get

tk+1 = t1 + (t2 − t1) + · · ·+ (tk+1 − tk) =
2

L

k∑

m=0

(2 q0)
2m

and

t� = lim
k→∞

tk =
2

L

∞∑

k=0

(2 q0)
2k .

Clearly, this series converges, since k ≤ 2k, 2q0 < 1, and is bounded above by
the number

2

L

∞∑

k=0

(2 q0)
k =

4

L (2− L η)
.

If L = 0, since 0 ≤ L0 ≤ L, we deduce: L0 = 0, and t� = tk = η (k ≥ 1).
In the rest of the proof, we assume that L0 > 0.
The result until estimate (2.7) follows from Lemma 1 in [2] (see also [1], [3]).
Note that, in particular, Newton–Kantorovich-type convergence condition (2.1)

is given in [2, page 387, Case 3 for δ given by (2.5). The factor η is missing from
the left-hand side of the inequality three lines before the end of page 387].

In order for us to show (2.8), we first need the estimate:

(A.1)

1−
(
δ

2

)k+1

1− δ

2

η ≤ 1

L0

(

1−
(
δ

2

)k−1
L

4 L

)

(k ≥ 1).

For k = 1, estimate (A.1) becomes
(

1 +
δ

2

)

η ≤ 4 L− L

4 L L0

or (

1 +
2 L

L+
√
L2 + 8 L0 L

)

η ≤ 4 L0 − L+
√
L2 + 8 L0 L

L0 (4 L0 + L+
√
L2 + 8 L0 L)

.

In view of hypothesis (2.1), it suffices to show:

L0 (4 L0 + L+
√
L2 + 8 L0 L) (3 L+

√
L2 + 8 L0 L)

(L+
√
L2 + 8 L0 L) (4 L0 − L+

√
L2 + 8 L0 L)

≤ 2 L,

which is true as an equality.
Let us now assume that estimate (A.1) is true for all integers smaller than or

equal to k. We must show that (A.1) holds for k replaced by k + 1:

1−
(
δ

2

)k+2

1− δ

2

η ≤ 1

L0

(

1−
(
δ

2

)k
L

4 L

)

(k ≥ 1)



A SEMILOCAL CONVERGENCE ANALYSIS FOR DNM 341

or

(A.2)

(

1 +
δ

2
+

(
δ

2

)2

+ · · ·+
(
δ

2

)k+1)

η ≤ 1

L0

(

1−
(
δ

2

)k
L

4 L

)

.

By the induction hypothesis to show estimate (A.2), it suffices to have:

1

L0

(

1−
(
δ

2

)k−1
L

4 L

)

+

(
δ

2

)k+1

η ≤ 1

L0

(

1−
(
δ

2

)k
L

4 L

)

or
(
δ

2

)k+1

η ≤ 1

L0

((
δ

2

)k−1

−
(
δ

2

)k)
L

4 L
or

δ2 η ≤ L (2− δ)

2 L L0

.

In view of hypothesis (2.1), we can show instead:

2 L L0 δ2

L (2− δ)
≤ 2 L,

which holds as an equality by the choice of δ given in (2.5).
That completes the induction for estimate (A.1).
We shall show (2.8) using induction on k ≥ 0: estimate (2.8) is true for k = 0

by (2.1), (2.3), and (2.5). In order for us to show estimate (2.8) for k = 1, since

t2 − t1 =
L (t1 − t0)

2

2 (1− L0 t1)
, it suffices that

L η2

2 (1− L0 η)
≤ δ L η2

or
L

1− L0 η
≤ 8 L L

L+
√
L2 + 8 L0 L

(η �= 0)

or

η ≤ 1

L0

(

1− L+
√
L2 + 8 L0 L

8 L

)

(L0 �= 0, L �= 0).

But by (2.1) we have:

η ≤ 4

L+ 4 L0 +
√
L2 + 8 L0 L

.

It then suffices to show that

4

L+ 4 L0 +
√
L2 + 8 L0 L

≤ 1

L0

(

1− L+
√
L2 + 8 L0 L

8 L

)

or
L+

√
L2 + 8 L0 L

8 L
≤ 1− 4 L0

L+ 4 L0 +
√
L2 + 8 L0 L

or
L+

√
L2 + 8 L0 L

8 L
≤ L+

√
L2 + 8 L0 L

L+ 4 L0 +
√
L2 + 8 L0 L

,

which is true as an equality by (2.2).
Let us assume that (2.8) holds for all integers smaller than or equal to k. We

shall show that (2.8) holds for k replaced by k + 1.
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Using (2.3), and the induction hypothesis, we have in turn

tk+2 − tk+1 =
L

2 (1− L0 tk+1)
(tk+1 − tk)

2

≤ L

2 (1− L0 tk+1)

((
δ

2

)k

(2 q0)
2k−1 η

)2

≤ L

2 (1− L0 tk+1)

((
δ

2

)k−1

(2 q0)
−1 η

)((
δ

2

)k+1

(2 q0)
2k+1−1 η

)

≤
(
δ

2

)k+1

(2 q0)
2k+1−1 η,

since

(A.3)
L

2 (1− L0 tk+1)

((
δ

2

)k−1

(2 q0)
−1 η

)

≤ 1 (k ≥ 1).

Indeed, we can show instead of (A.3):

tk+1 ≤ 1

L0

(

1−
(
δ

2

)k−1
L

4 L

)

,

which is true, since by (2.7) and the induction hypotheses:

tk+1 ≤ tk +
δ

2
(tk − tk−1)

≤ t1 +
δ

2
(t1 − t0) + · · ·+ δ

2
(tk − tk−1)

≤ η +

(
δ

2

)

η + · · ·+
(
δ

2

)k

η

=

1−
(
δ

2

)k+1

1− δ

2

η

≤ 1

L0

(

1−
(
δ

2

)k−1
L

4 L

)

.

That completes the induction for estimate (2.8).
Using estimate (2.8) for j ≥ k, we obtain in turn for 2 q0 < 1:

tj+1 − tk = (tj+1 − tj) + (tj − tj−1) + · · ·+ (tk+1 − tk)

≤
((

δ

2

)j

(2 q0)
2j−1 +

(
δ

2

)j−1

(2 q0)
2j−1−1 + · · ·+

(
δ

2

)k

(2 q0)
2k−1

)

η

≤
(

1 + (2 q0)
2k +

(

(2 q0)
2k
)2

+ · · ·
) (

δ

2

)k

(2 q0)
2k−1 η

=

(
δ

2

)k
(2 q0)

2k−1 η

1− (2 q0)2
k .

(A.4)

Estimate (2.9) follows from (A.4) by letting j −→ ∞.
That completes the proof of Lemma 2.1. �
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