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ERROR ESTIMATES FOR RAVIART-THOMAS

INTERPOLATION OF ANY ORDER

ON ANISOTROPIC TETRAHEDRA

GABRIEL ACOSTA, THOMAS APEL, RICARDO G. DURÁN, AND ARIEL L. LOMBARDI

Abstract. We prove optimal order error estimates for the Raviart-Thomas
interpolation of arbitrary order under the maximum angle condition for tri-
angles and under two generalizations of this condition, namely, the so-called
three-dimensional maximum angle condition and the regular vertex property,
for tetrahedra.

Our techniques are different from those used in previous papers on the
subject, and the results obtained are more general in several aspects. First,
intermediate regularity is allowed; that is, for the Raviart-Thomas interpola-
tion of degree k ≥ 0, we prove error estimates of order j + 1 when the vector
field being approximated has components in W j+1,p, for triangles or tetrahe-
dra, where 0 ≤ j ≤ k and 1 ≤ p ≤ ∞. These results are new even in the
two-dimensional case. Indeed, the estimate was known only in the case j = k.

On the other hand, in the three-dimensional case, results under the maximum
angle condition were known only for k = 0.

1. Introduction

The Raviart-Thomas finite element spaces were introduced in [21, 23], and ex-
tended to the three-dimensional case by Nédélec [20], to approximate second order
elliptic problems in mixed form. After publication of that paper there has been an
increasing interest in the analysis of these spaces and on the approximation prop-
erties of the associated Raviart-Thomas interpolation operator. This interest has
been motivated by the fact that, apart from the original motivation, these spaces
(or rotated versions of them in the two-dimensional case) arise in several interest-
ing applications, for example in mixed methods for plates (see [7, 8, 14]) and in
the numerical approximation of fluid-structure interaction problems [5]. Also, it
is well known that mixed methods are related to non-conforming methods [3, 19];
therefore, the Raviart-Thomas interpolation operator can be useful in some cases
to analyze these kinds of methods (see for example [1] where a non-conforming
method for the Stokes problem is analyzed).
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The original error analysis developed in [20, 21, 23] is based on the so-called
regularity assumption on the elements and therefore, the constants arising in the
error estimates in those works depend on the ratio between the outer and inner
diameter of the elements. In this way narrow or anisotropic elements, which are
very important in many applications, are excluded.

For the standard Lagrange interpolation it is known, since the pioneering works
[4, 17, 22] and many generalizations of them (see [2] and its references), that the
regularity assumption can be relaxed to a maximum angle condition in many cases.

Error estimates for the Raviart-Thomas interpolation under conditions weaker
than the regularity have been proved in several papers. In [1], the lowest order
case k = 0 was considered and optimal order error estimates were proved under
the maximum angle condition for triangles and two suitable generalizations of it for
tetrahedra, called the regular vertex property and the maximum angle condition. In
[9], error estimates for tetrahedra in the case k = 0 were proved under a condition
which, as we will show, is equivalent to the regular vertex property. Also in [9] the
authors obtained error estimates for general degree k but under the assumption
that the approximated vector field is divergence free. In [16], similar results were
obtained for prismatic elements and functions from weighted Sobolev spaces.

It is not straightforward to extend the arguments given in [1] to higher order
Raviart-Thomas approximations. In [12] it was proved that the maximum angle
condition is also sufficient to obtain optimal error estimates for the case k = 1
and n = 2 and in [15] that result was generalized to any k ≥ 0. Also in [15],
error estimates for any k ≥ 0 and n = 3 were proved assuming the regular vertex
property.

The error estimates obtained in [15] require “maximum regularity”. To be pre-
cise, let Πku be the Raviart-Thomas interpolation of degree k of u on a triangle T .
Then, it was proved in [15] that

(1.1) ‖u−Πku‖L2(T ) ≤
C

sinα
hk+1
T |u|Hk+1(T ),

where we have used the standard notation for Sobolev seminorms, α and hT are
the maximum angle and the diameter of T respectively, and the constant C is
independent of T . However, an estimate such as (1.1) but with k replaced by
j < k, only on the right hand side, cannot be proved by the arguments given in
[15], and therefore a different approach is needed. Let us remark that this kind of
estimate is important in many situations. In particular, the lowest order estimate

‖u−Πku‖L2(T ) ≤
C

sinα
hT |u|H1(T )

is fundamental in the error analysis for the scalar variable in mixed approximations
of second order elliptic problems. In particular the inf-sup condition can be obtained
from this estimate (see for example [11, 13]).

The maximum angle condition was originally introduced for triangles. For the
three-dimensional case, two different generalizations have been given. One is the
Kř́ıžek maximum angle condition, introduced in [18]: the angles between faces and
the angles in the faces are bounded away from π. Another possible extension is the
regular vertex property introduced in [1]: a family of tetrahedral elements satisfies
this condition if for each element there is at least one vertex such that the unit
vectors in the direction of the edges sharing that vertex are “uniformly” linearly
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Figure 1. Two important families of elements.

independent, in the sense that the volume determined by them is uniformly bounded
away from zero.

These two conditions are equivalent in two dimensions but not in three. Indeed,
the Kř́ıžek maximum angle condition allows for more general elements. This can
be seen in the following way: consider the two families of elements given in Figure
1, where h1, h2 and h3 are arbitrary positive numbers. Both families satisfy the
Kř́ıžek condition, but the second family does not satisfy the regular vertex property.

Essentially these two families of elements give all possibilities. Indeed, the family
of all elements satisfying the Kř́ıžek condition with a constant ψ̄ < π (i.e., angles
between faces and angles in the faces less than or equal to ψ̄) can be obtained
by transforming both families in the figure by “good” affine transformations (see
Theorem 2.2 for the precise meaning of this). This result was obtained in [1] in the
proof of Lemma 5.9. For the sake of clarity we will include this result as a theorem.
On the other hand, the family of all elements satisfying the regular vertex property
with a given constant (see Section 3 for the formal definition of this) is obtained
by transforming in the same way only the first family in the figure. Therefore, to
obtain general results under the Kř́ıžek maximum angle condition (resp., regular
vertex property) it is enough to prove error estimates for both families (resp., the
first family) in Figure 1 with constants independent of the relations between h1, h2

and h3.
The error estimates in [15] for the general RT k were obtained by assuming the

regular vertex property, and the arguments given in that paper cannot be extended
to treat the more general case of elements satisfying the Kř́ıžek condition. On the
other hand, as we have mentioned above, the arguments in [15] cannot be applied
to obtain error estimates for functions in Hj+1(T )n with j < k. For these reasons
we need to introduce here a different approach.

In this paper we complete the error analysis for the Raviart-Thomas interpolation
of arbitrary order k ≥ 0. We develop the analysis in the general case of Lp-based
norms, generalizing also in this aspect the results of previous papers. Our arguments
are different to those used in previous papers. The main point is to prove sharp
estimates in reference elements.
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Let us explain the idea in the two-dimensional case. Consider the reference

triangle ̂T which has vertices at (0, 0), (1, 0) and (0, 1). A stability estimate on
̂T can be used to obtain the stability in a general triangle by using the Piola
transform. Afterwards, error estimates can be proved combining stability with
polynomial approximation results.

The original proof given in [21] uses that

‖Πku‖L2( ̂T ) ≤ C‖u‖H1( ̂T ).

In this way, the constant arising in the estimate for a general element depends on
the minimum angle, and so the regularity assumption is needed. The reason for
that dependence is that the complete H1-norm appears on the right hand side.

Therefore, to improve this result one may try to obtain sharper estimates on ̂T for
each component of Πku. Denote with uj and Πk,ju, j = 1, 2, the components of u
and its Raviart-Thomas interpolation, respectively, and consider for example j = 1.
Ideally, we would like to have the estimate

‖Πk,1u‖L2( ̂T ) ≤ C‖u1‖H1( ̂T ).

However, an easy computation shows that if, for example, u = (0, x2
2), then Πku =

1
3 (x1, x2) and therefore the above estimate is not true. In other words, even for a

rectangular triangle ̂T , Πk,1u depends on both components of u. Now, the question
is: which are the essential degrees of freedom defining Πk,1u?

To answer this question one can try to “kill” degrees of freedom by modifying u
without changing Πk,1u. A key observation is that if r = (0, g(x1)), then Πk,1r =
0 (we will give the proof of this result for appropriate reference elements in the
three-dimensional case). Therefore, if v = (u1(x1, x2), u2(x1, x2)− u2(x1, 0)), then
Πk,1v = Πk,1u. But the normal component of v on the edge �2 contained in the
line {x2 = 0}, i.e. v2, vanishes, and so do all the degrees of freedom defining
Πk associated with that edge. Moreover, if we now modify the second component
defining w = (u1(x1, x2), u2(x1, x2)− u2(x1, 0)− x2α), for some α ∈ Pk−1, we still
have that w2 vanishes on �2 and that Πk,1w = Πk,1u (because we are modifying
v by adding a vector field belonging to the Raviart-Thomas space of order k).
But, as we will see, it is possible to choose α in such a way that the degrees

of freedom corresponding to integrals over ̂T also vanish. Of course, it will be
necessary to estimate some norm of α. We will give the details of the proofs in the
three-dimensional case. It is easy to see that the same arguments can be used to
complete the arguments explained above for the two-dimensional case.

The new contributions of this paper can be summarized as follows:

• We prove error estimates under the maximum angle condition with order
j + 1 if the approximated function is in W j+1,p(T )n, n = 2, 3, where 0 ≤
j ≤ k and 1 ≤ p ≤ ∞.

• Under the regular vertex property we obtain estimates of anisotropic type
also for general k ≥ 0 and 1 ≤ p ≤ ∞. We also show that this kind of
estimate is not valid under the maximum angle condition.

Let us finally mention that the interpolation error estimates of anisotropic type
are necessary when one wishes to exploit the independent element sizes h1, h2 and
h3 to treat edge singularities in elliptic problems or layers in singularly perturbed
problems. The dilemma is that such estimates hold, as we show, only for tetrahedra
with the regular vertex property, but it seems to be impossible to fill space by using
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these types of elements only. An anisotropic triangular prism (pentahedron) can,
for example, be subdivided into three tetrahedra, from which only two satisfy the
regular vertex property while the third is of the type of the element at the right hand
side of Figure 1. The only known way out so far is discussed in [16]. These authors
use pentahedral meshes or tetrahedral meshes which are obtained by a suitable
subdivision of a pentahedral mesh. Pentahedra based on a regular triangular face
satisfy the regular vertex property by construction. For the approximation on
tetrahedral elements they use a composition of two interpolation operators in order
to avoid the above-mentioned insufficiency with the tetrahedra which do not satisfy
the regular vertex property. This approach has been restricted to prismatic domains
so far.

The rest of the paper is as follows. In Section 2 we introduce notation and
give some preliminary results on the conditions on tetrahedra that we will work
with. Then, we prove stability in Lp(T )3 for the Raviart-Thomas interpolation
of arbitrary degree for functions in W 1,p(T )3. These stability results are proved
in Section 3 for elements satisfying the regular vertex property, and in Section
4 for elements satisfying the maximum angle condition. The estimates obtained
under both hypotheses are essentially different but the results are sharp. Indeed,
in Section 5, we show that anisotropic type stability estimates cannot be obtained
for the larger class of elements satisfying the maximum angle condition. Finally,
in Section 6, we derive the error estimates from the stability results and standard
approximation arguments.

2. Notation and preliminary results

In this section we recall some known results involving geometric properties of
certain degenerate tetrahedra. Most of these results were proved in [1] and [2].

Given a general tetrahedron T ⊂ R
3, p0 will denote an arbitrary vertex and,

for 1 ≤ i ≤ 3, �i, with ‖�i‖ = 1, will be the directions of the edges sharing
p0 and hi the lengths of those edges. In other words, T is the convex hull of
{p0} ∪ {p0 + hi�i}1≤i≤3.

We will use the standard notation for Sobolev spaces W k,p(Ω) of functions with
all their derivatives up to the order k belonging to Lp(Ω), denoting by ‖ · ‖Wk,p(Ω)

the associated norm. The same notation will be used for the norm of vector fields
u ∈ W k,p(Ω)3. As is usual, we use boldface fonts for vector fields.

With Pk(T ) we denote the set of polynomials of degree less than or equal to k
defined over T ⊂ R

3. The Raviart-Thomas space of order k is defined as

RT k = Pk(T )
3 + (x1, x2, x3)Pk(T ),

and for u ∈ W 1,p(T )3 the Raviart-Thomas interpolation of order k is defined as
Πku ∈ RT k such that

∫

F

Πku · npk =

∫

F

u · npk ∀pk ∈ Pk(F ), F a face of T,(2.1)

∫

T

Πku · pk−1 =

∫

T

u · pk−1 ∀pk−1 ∈ Pk−1(T )
3.(2.2)

In the rest of the paper the letter C will denote a generic constant that may
change from line to line.

Now we introduce the different conditions on the elements that we will use. The
first one, called the “regular vertex property”, was introduced in [1].
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Definition 2.1. A tetrahedron T satisfies the “regular vertex property” with a
constant c > 0 (written RVP(c̄)) if T has a vertex p0, such that if M is the matrix
made up of �i, 1 ≤ i ≤ 3, as columns, then | detM | > c.

One can easily check that a regular family of tetrahedra (with the usual definition
of regularity given for example in [10]) verifies the regular vertex property. On the
other hand, simple examples such as that at the left hand side of Figure 1 show that
arbitrarily narrow elements are allowed in the class given by RVP(c̄) for a fixed c̄.

Despite the presence of anisotropic elements, the regular vertex property arises
as a natural geometric condition if one looks for Raviart-Thomas interpolation error
bounds. Indeed, looking at the vertex placed at p0, one can see that the family
of elements satisfying RVP(c̄) has three normal vectors (those normals to the faces
sharing p0) that are uniformly linearly independent (see [1] for more details), a
reasonable condition, since the moments of the normal components of vector fields
are used as degrees of freedom in the Raviart-Thomas interpolation. Strikingly,
as was shown in [1], the uniform independence of the normal components can be
somehow relaxed and error estimates valid uniformly for a wider class of elements
can still be obtained for Π0 (and for Πk as we will show). More precisely, we will
prove error estimates under the maximum angle condition defined below, which was
introduced by Kř́ıžek in [18] and is weaker than the RVP.

Definition 2.2. A tetrahedron T satisfies the “maximum angle condition” with a
constant ψ̄ < π (written MAC(ψ̄)) if the maximum angle between faces and the
maximum angle inside the faces are less than or equal to ψ̄.

Let us mention that the estimates obtained under RVP are stronger than those
valid under MAC. Indeed, in the first case, the estimates are of anisotropic type
(roughly speaking, this means that the estimates are given in terms of sizes in
different directions and their corresponding derivatives). On the other hand, we
will show that these kinds of estimates are not valid for the more general class of
elements verifying the MAC condition.

The definition of the maximum angle condition is strongly geometric. In order
to find an equivalent condition, more appropriate for our further computations, we
introduce the following definitions. In what follows, ei will denote the canonical
vectors.

Definition 2.3. A tetrahedron T belongs to the family F1 if its vertices are at 0,
h1e1, h2e2 and h3e3, where hi > 0 are arbitrary lengths (see Figure 1a).

Definition 2.4. A tetrahedron T belongs to the family F2 if its vertices are at 0,
h1e1 + h2e2, h2e2 and h3e3, where hi > 0 are arbitrary lengths (see Figure 1b).

Note that elements in F2 satisfy MAC(π2 ) but they do not fulfill RVP(c̄) for any
c̄.

Lemma 2.1. Let T be a tetrahedron satisfying MAC(ψ̄). Then we have

(1) If α ≤ β ≤ γ are the angles of an arbitrary face of T , then γ ≥ π
3 and

β, γ ∈ [(π − ψ̄)/2, ψ̄].
(2) If p0 is an arbitrary vertex of T and χ ≤ ψ ≤ φ are the angles between

faces passing through p0, then φ ≥ π
3 and ψ, φ ∈ [(π − ψ̄)/2, ψ̄].

Proof. See [18]. �
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For a matrix M ∈ R
3×3, ‖M‖ will denote its infinity norm. The arguments used

in the following theorem are essentially contained in the proof of Theorem 7 in [18,
page 516]. We include some details here for the sake of clarity.

Theorem 2.2. Let T be a tetrahedron satisfying MAC(ψ̄). Then there exists an

element ˜T ∈ F1 ∪ F2 that can be mapped onto T through an affine transformation
F (x̃) = M x̃+ c with ‖M‖, ‖M−1‖ ≤ C, where the constant C depends only on ψ̄.

Proof. Given a tetrahedron T we denote with pi, i = 0, 1, 2, 3, its vertices and use
the obvious notation for its faces and edges. Let p0p1p2 be an arbitrary face of T
and p3 its opposite vertex. We can assume that the maximum angle γ of the face
p0p1p2 is at the vertex p0. Then from Lemma 2.1 we have

sin γ ≥ m := min

{

sin
π − ψ̄

2
, sin ψ̄

}

.

Let t1 and t2 be unit vectors along the edges p0p1 and p0p2. We can also assume
that the angle ω between the faces p0p1p2 and p0p1p3 is not less than the angle
between p0p1p2 and p0p2p3 (otherwise we interchange the notation between the
vertices p1 and p2). Then, again from Lemma 2.1, we have

sinω ≥ m.

Now consider the triangle p0p1p3 and choose k ∈ {0, 1} so that the angle ξ at the
vertex pk is not less than that at the vertex p1−k. Using again Lemma 2.1 we
obtain

sin ξ ≥ m.

We now take t3 as the unit vector along pkp3 and define M0 as the matrix made
up with t1, t2 and t3 as its columns. Since the columns of M0 are unitary vectors,
we have ‖M0‖ ≤ 3. Also, the adjugate matrix of M0 has coefficients with absolute
value bounded by 2 and therefore, ‖M−1

0 ‖ ≤ 6/| detM0|. Then, to obtain the
desired bound for ‖M−1

0 ‖ it is enough to show that | detM0| is bounded below by
a constant which depends only on ψ̄.

Consider the parallelepiped generated by the vectors t1, t2 and t3. Let z be
its height in the direction perpendicular to t1 and t2 and y the height of the face
generated by t1 and t3 in the direction perpendicular to t1.

Since ‖ti‖ = 1 we have

| detM0| = z sin γ = y sinω sin γ = sin ξ sinω sin γ ≥ m3,

as we wanted to prove.
Obviously, the same properties are satisfied by the matrix M1 made up of t2,−t1

and t3 as its columns.
Now, if k = 0, define h1 = |p0p1|, h2 = |p0p2| and h3 = |p0p3| and take

˜T ∈ F1 with vertices at 0, h1e1, h2e2 and h3e3; while if k = 1, define h1 = |p0p2|,
h2 = |p0p1| and h3 = |p1p3| and take ˜T ∈ F2 with vertices at 0, h1e1 + h2e2, h2e2
and h3e3. Then, for any case, we have that x̃ 
→ Mkx̃+ pk maps ˜T onto T . �

As mentioned above, the regular vertex property is stronger than the maximum
angle condition. Indeed, the following theorem shows that, under RVP(c̄), the
reference family in the previous theorem can be restricted to F1.
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Theorem 2.3. Let T be a tetrahedron satisfying RVP(c̄). Then, there exists an

element ˜T ∈ F1 that can be mapped onto T through an affine transformation
F (x̃) = M x̃ + p0 with ‖M‖, ‖M−1‖ ≤ C, where the constant C depends only
on c̄. Furthermore, if hi, i = 1, 2, 3 are the lengths of the edges of T sharing the

vertex p0, we can take ˜T ∈ F1 such that, for i = 1, 2, 3, hi is the length in the
direction ei.

Proof. Let p0 and �i be as in the definition of RVP(c̄) and hi be the length of the
edge of T with direction �i.

Take M as the matrix made up with �i as its columns. Since | det(M)| > c̄ and
�i are unitary vectors, then it is easy to check that ‖M‖ ≤ C and ‖M−1‖ ≤ C with
a constant C depending only on a lower bound of | det(M)| and therefore on c̄.

Then, if ˜T is the tetrahedron of F1 with lengths hi in the directions ei, the affine

transformation F (x̃) = M x̃+ p0 maps ˜T onto T . �
Remark 2.1. It is not difficult to see that the converses of Theorems 2.2 and 2.3
hold true. Namely, the family of elements obtained by transforming F1 ∪F2 (resp.
F1) by affine maps x̃ 
→ M x̃+c, where ‖M‖, ‖M−1‖ ≤ C, satisfies MAC(ψ̄) (resp.
RVP(c̄)) for some ψ̄ (resp. c̄) which depends only on C.

Let us mention that error estimates for the Raviart-Thomas interpolation were
obtained also in [9] by Buffa, Costabel and Dauge. In the next section we will
compare the results in [9] with ours. In order to do that we recall here their

assumption on the elements. Let ̂T be the tetrahedron with vertices at (0, 0, 0),
(1, 0, 0), (0, 1, 0) and (0, 0, 1).

Definition 2.5. A tetrahedron T satisfies the condition BCD with a constant c̄1
(written BCD(c̄1)), if there exists an affine transformation FT mapping ̂T onto T
with the following property:

There exists a local Cartesian system associated to T such that, if x̂ are the

canonical coordinates of a point in ̂T and xT are the coordinates of FT (x̂) in the
local system, then

xT = Ax̂+ p0

for some p0 ∈ R
3 and a matrix A ∈ R

3×3 which can be written as A = BD = DB̆
with ‖B‖, ‖B−1‖, ‖B̆‖, ‖B̆−1‖ ≤ c̄1.

We will show by the following two lemmata that the BCD condition is equivalent
to the RV P .

Lemma 2.4. If an element T satisfies BCD(c̄1), then it satisfies RV P (c̄) for a
constant c̄ depending only on c̄1.

Proof. With the notation introduced in Definition 2.5, and denoting by x the co-
ordinates of FT (x̂) in the canonical system, we have x = CxT , where C is an
orthogonal matrix. Therefore, x = CBDx̂ + Cp0 with ‖B‖, ‖B−1‖ ≤ c̄1. Observ-

ing that x̃ = Dx̂ transforms ̂T into a tetrahedron in the family F1 we conclude
that the map CBx̃+ Cp0 satisfies the properties of the map in Remark 2.1. Con-
sequently, T satisfies the regular vertex property with a constant depending only
on c̄1. �
Lemma 2.5. If an element T satisfies RV P (c̄), then it satisfies BCD(c̄1) for a
constant c̄1 depending only on c̄.
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Proof. Suppose that T satisfies RV P (c̄). According to Theorem 2.3 there exists a

transformation mapping ̂T onto T which, in canonical global coordinates x̂ and x,
can be written as x = MDx̂+p0 with ‖M‖, ‖M−1‖ ≤ C and D = diag(h1, h2, h3).
Moreover, we can assume without loss of generality that h1 ≥ h2 ≥ h3.

Now using the QR-decomposition M = QR, where Q is an orthogonal matrix
and R is upper triangular, we obtain x = QRDx̂ + p0. Therefore, if we introduce
the local coordinates xT = QTx we have xT = RDx̂+QTp0.

Let us check that this local coordinate system satisfies the conditions from
Definition 2.5. It is easy to see that B := R has the desired properties since
‖B‖ = ‖R‖ = ‖QTM‖ ≤ ‖Q‖‖M‖ ≤ ‖M‖ ≤ C and ‖B−1‖ = ‖R−1‖ = ‖M−1Q‖ ≤
‖M−1‖‖Q‖ ≤ C.

On the other hand, if BD = DB̆ we have B̆ = D−1RD. Then, the entries of B̆

are given by b̆ij = rijhj/hi if j ≥ i, and bij = 0 if j < i. Since h1 ≥ h2 ≥ h3 and

‖R‖ ≤ C we have maxij |b̆ij | ≤ maxij |rij | ≤ C, i.e. ‖B̆‖ ≤ C. In the same way we

obtain the boundedness of B̆−1 = D−1R−1D from the boundedness of R−1. �

3. Stability under the regular vertex property

The goal of this section is to prove the stability in Lp for the Raviart-Thomas
interpolation of arbitrary order of functions in W 1,p(T )3, for families of elements
satisfying the regular vertex property. Throughout this section, the reference ele-

ment ̂T is defined as the tetrahedron with vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0) and
(0, 0, 1).

The main result of this section is the following theorem.

Theorem 3.1. Let k ≥ 0 and T be a tetrahedron satisfying RVP(c̄). If p0 is
the regular vertex, �i, i = 1, 2, 3 are unitary vectors with the directions of the edges
sharing p0, hi, i = 1, 2, 3, the lengths of these edges, and hT the diameter of T , then
there exists a constant C depending only on k and c̄ such that, for all u ∈ W 1,p(T )3,
1 ≤ p ≤ ∞,

‖Πku‖Lp(T ) ≤ C

⎛

⎝‖u‖Lp(T ) +
∑

i,j

hj

∥

∥

∥

∥

∂ui

∂�j

∥

∥

∥

∥

Lp(T )

+ hT ‖divu‖Lp(T )

⎞

⎠ .

Let us mention that a similar result was proved in [9]. There the authors assume
the condition BCD mentioned in the previous section (see Definition 2.5). As we
have seen in Lemmata 2.4 and 2.5, this assumption is equivalent to the RVP(c̄).
Nevertheless, our result is stronger since the estimates given in [9] for general degree
k were proved only for divergence free vector fields u.

Coming back to our error analysis let us mention that Theorem 3.1 will follow
from Theorem 2.3 once we have proved error estimates for elements in the family
F1.

First we will prove appropriate estimates in the reference element ̂T . This is the
object of the next two lemmas. Afterwards, estimates for elements in F1 will be
obtained by scaling arguments.

We denote with ̂Fi the face of ̂T normal to ni, with n1 = (−1, 0, 0),n2 =
(0,−1, 0),n3 = (0, 0,−1) and n4 = 1√

3
(1, 1, 1). We will use the same notation

for a function of two variables than for its extension to ̂T as a function independent

of the other variable, for example, f(x2, x3) will denote a function defined on ̂F1 as
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well as one defined in ̂T (anyway, the meaning in each case will be clear from the
context). In the same way, the same notation will be used to denote a polynomial
pk on a face and a polynomial in three variables such that its restriction to that face

agrees with pk. For example, for pk ∈ Pk( ̂F4) we will write pk(1− x2 − x3, x2, x3).

In what follows, ̂Πk,iu denotes the i-th component of ̂Πku.

Lemma 3.2. Let f ∈ Lp( ̂F1), g ∈ Lp( ̂F2), and h ∈ Lp( ̂F3). If

u(x1, x2, x3) = (f(x2, x3), 0, 0), v(x1, x2, x3) = (0, g(x1, x3), 0),

and
w(x1, x2, x3) = (0, 0, h(x1, x2)),

then their Raviart-Thomas interpolations are of the same form; namely, there exist

qi ∈ Pk( ̂Fi), i = 1, 2, 3, such that

̂Πku = (q1(x2, x3), 0, 0), ̂Πkv = (0, q2(x1, x3), 0),

and
̂Πkw = (0, 0, q3(x1, x2)).

Proof. Let us prove for example the first equality; the other two are obviously

analogous. Since divu = 0, we have that div ̂Πku = 0 and therefore, from a well-
known property of the Raviart-Thomas interpolation (see for example [7, 13]), it

follows that ̂Πku ∈ Pk(̂T )
3.

On the other hand, now using (2.1) for i = 2, 3, and that u2 = u3 = 0, we have
∫

̂Fi

̂Πk,iu pk = 0 ∀pk ∈ Pk(Fi), i = 2, 3,

and then, taking pk = ̂Πk,iu, we conclude that ̂Πk,iu| ̂Fi
= 0 for i = 2, 3. Therefore

̂Πk,iu = xiri for some ri ∈ Pk−1(̂T ) and so, now using (2.2) and again that u2 =

u3 = 0, we obtain that, for i = 2, 3, ̂Πk,iu = 0 in ̂T as we wanted to show.

Finally, since div ̂Πku = 0, it follows that
∂ ̂Πk,1u
∂x1

= 0 and so, ̂Πk,1u is indepen-
dent of x1. �

Lemma 3.3. There exists a constant C depending only on k such that, for all

u = (u1, u2, u3) ∈ W 1,p( ̂T )3,

‖̂Πk,iu‖Lp( ̂T ) ≤ C
(

‖ui‖W 1,p( ̂T ) + ‖divu‖Lp( ̂T )

)

, i = 1, 2, 3.(3.1)

Proof. From the previous lemma we know that, if

v = (u1, u2 − u2(x1, 0, x3), u3 − u3(x1, x2, 0)),

then ̂Πk,1u = ̂Πk,1v.

Let α, β ∈ Pk−1( ̂T ) be such that

(3.2)

∫

̂T

(v2 − x2α) pk−1 = 0 and

∫

̂T

(v3 − x3β) pk−1 = 0 ∀pk−1 ∈ Pk−1( ̂T ).

Observe that those α and β exist. Indeed, it is easy to prove uniqueness (and
therefore existence) of the solution of the square linear systems of equations defining
them.

Now define w = (v1, v2−x2α, v3−x3β). Since (0, x2α, x3β) ∈ RT k(̂T ) it follows

that ̂Πk,1v = ̂Πk,1w and therefore ̂Πk,1u = ̂Πk,1w.
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Taking into account that w2| ̂F2
= 0 and w3| ̂F3

= 0 and the equations (3.2), it

follows that ̂Πw is determined by the equations

∫

̂T

̂Πk,1w pk−1 =

∫

̂T

w1 pk−1 ∀pk−1 ∈ Pk−1( ̂T ),

∫

̂T

̂Πk,2w pk−1 = 0 ∀pk−1 ∈ Pk−1(̂T ),

∫

̂T

̂Πk,3w pk−1 = 0 ∀pk−1 ∈ Pk−1(̂T ),(3.3)

∫

̂F1

̂Πk,1w pk =

∫

̂F1

w1 pk ∀pk ∈ Pk( ̂F1),

∫

̂F2

̂Πk,2w pk = 0 ∀pk ∈ Pk( ̂F2),

∫

̂F3

̂Πk,3w pk = 0 ∀pk ∈ Pk( ̂F3),

∫

̂F4

(̂Πk,1w + ̂Πk,2w + ̂Πk,3w) pk =

∫

̂F4

(w1 + w2 + w3) pk ∀pk ∈ Pk( ̂F4).

Now, for pk ∈ Pk( ̂T ), we have

∫

̂T

divwpk = −
∫

̂T

w · ∇pk +

∫

∂ ̂T

w · n pk,

= −
∫

̂T

w · ∇pk +
1√
3

∫

̂F4

(w1 + w2 + w3)pk +

∫

∂ ̂T\ ̂F4

w · n pk,

but, from the definition of w, we have

−
∫

̂T

w · ∇pk = −
∫

̂T

w1
∂pk
∂x1

and

∫

∂ ̂T\ ̂F4

w · n pk = −
∫

̂F1

w1 pk.

Therefore, for all pk ∈ Pk( ̂T ),

(3.4)
1√
3

∫

̂F4

(w1 + w2 + w3)pk =

∫

̂T

divw pk +

∫

̂T

w1
∂pk
∂x1

+

∫

̂F1

w1 pk.

But,

divw = div v − div (0, x2α, x3β) = divu− div (0, x2α, x3β).

So, using (3.4), (3.3), and standard arguments, we obtain

‖̂Πk,1u‖Lp( ̂T ) = ‖̂Πk,1w‖Lp( ̂T )

≤ C
(

‖u1‖W 1,p( ̂T ) + ‖divu‖Lp( ̂T ) + ‖div (0, x2α, x3β)‖Lp( ̂T )

)

.

Then, to obtain (3.1) for i = 1, it is enough to show that

(3.5) ‖div (0, x2α, x3β)‖Lp( ̂T ) ≤ C(‖u1‖W 1,p( ̂T ) + ‖divu‖Lp( ̂T )).
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For pk ∈ Pk(̂T ) we have

0 =

∫

̂T

(0, v2 − x2α, v3 − x3β) · ∇pk

= −
∫

̂T

div (0, v2 − x2α, v3 − x3β) pk

+

∫

∂ ̂T

[(v2 − x2α)n2 + (v3 − x3β)n3] pk.

Now we take pk(x1, x2, x3) = (1− x1 − x2 − x3)pk−1 with pk−1 ∈ Pk−1(̂T ). Then,

since pk = 0 on ̂F4, (v2 − x2α)n2 = 0 on ∂ ̂T \F4 and (v3 − x3β)n3 = 0 on ∂ ̂T \F4,
it follows that, in the last equation, the boundary integral vanishes. Then,

∫

̂T

(1− x1 − x2 − x3) div (0, v2 − x2α, v3 − x3β) pk−1 = 0.

That is, for all pk−1 ∈ Pk−1( ̂T ),
∫

̂T

(1−x1−x2−x3) div (0, x2α, x3β) pk−1 =

∫

̂T

(1−x1−x2−x3) div (0, v2, v3) pk−1.

Therefore, taking pk−1 = div (0, x2α, x3β) and applying the Hölder inequality we
obtain

∫

̂T

(1− x1 − x2 − x3) |div (0, x2α, x3β)|2

≤ C‖div (0, v2, v3)‖Lp( ̂T ) ‖div (0, x2α, x3β)‖Lp′ ( ̂T ).

But, since all the norms on Pk−1(̂T ) are equivalent, we conclude that

(3.6) ‖div (0, x2α, x3β)‖Lp( ̂T ) ≤ C‖div (0, v2, v3)‖Lp( ̂T ).

Now, observe that div (0, v2, v3) = div (0, u2, u3) and

‖div (0, u2, u3)‖Lp( ̂T ) ≤ C
(

‖divu‖Lp( ̂T ) + ‖u1‖W 1,p( ̂T )

)

.

Then, (3.5) follows from (3.6).

Clearly, the estimates for ̂Πk,2u and ̂Πk,3u can be proved analogously. �

From the previous lemma and a change of variables we obtain estimates for
elements in F1.

The Raviart-Thomas operators on the elements ̂T and ˜T will be denoted by ̂Πk

and ˜Πk, respectively. Analogous notation will be used for variables and derivatives

or differential operators on ̂T and ˜T whenever needed for clarity.

Proposition 3.4. Let ˜T ∈ F1 be the element with vertices at 0, h1e1, h2e2 and
h3e3, where hi > 0. There exists a constant C depending only on k such that, for

ũ = (ũ1, ũ2, ũ3) ∈ W 1,p( ˜T )3 and i = 1, 2, 3,

‖˜Πk,iũ‖Lp( ˜T ) ≤ C

⎛

⎝‖ũi‖Lp( ˜T ) +

3
∑

j=1

hj

∥

∥

∥

∥

∂ũi

∂x̃j

∥

∥

∥

∥

Lp( ˜T )

+ hi‖˜div ũ‖Lp( ˜T )

⎞

⎠ .
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Proof. Let û ∈ W 1,p( ̂T )3 be defined via the Piola transform by

ũ(x̃) =
1

detB
Bû(x̂), x̃ = Bx̂, with B =

⎛

⎝

h1 0 0
0 h2 0
0 0 h3

⎞

⎠ .

It is known that (see for example [13, 21])

(3.7) ˜Πkũ(x̃) =
1

detB
B ̂Πkû(x̂)

and

(3.8) ˜div ũ(x̃) =
1

detB
̂div û(x̂).

Consider for example i = 1 (the other cases are of course analogous). Using (3.1)
we have

∥

∥

∥

˜Πk,1ũ
∥

∥

∥

p

Lp( ˜T )
=

h1h2h3

hp
2h

p
3

∥

∥

∥

̂Πk,1û
∥

∥

∥

p

Lp( ̂T )

≤ C
h1h2h3

hp
2h

p
3

(

‖û1‖pW 1,p( ̂T )
+ ‖̂div û‖p

Lp( ̂T )

)

≤ C

⎛

⎝‖ũ1‖pLp( ˜T )
+

3
∑

j=1

hp
j

∥

∥

∥

∥

∂ũ1

∂x̃j

∥

∥

∥

∥

p

Lp( ˜T )

+ hp
1‖˜div ũ‖

p

Lp( ˜T )

⎞

⎠

as we wanted to show. �

We are finally ready to prove the main theorem of this section.

Proof of Theorem 3.1. To simplify notation we assume p0 = 0. From Theorem 2.3

we know that, if ˜T ∈ F1 is the element with vertices at 0, h1e1, h2e2 and h3e3,

there exists a matrix M such that the associated linear transformation maps ˜T onto
T . Moreover, Mei = �i, i = 1, 2, 3.

Now, given u ∈ W 1,p(T )3 we define ũ ∈ W 1,p(˜T )3 via the Piola transform;
namely,

u(x) =
1

detM
M ũ(x̃), x = M x̃ .

Using Proposition 3.4 after the change of variables x 
→ x̃ we have

‖Πku‖pLp(T ) ≤ C
‖M‖p

(detM)p−1

⎛

⎝‖ũ‖p
Lp( ˜T )

+

3
∑

j=1

hp
j

∥

∥

∥

∥

∂ũ

∂x̃j

∥

∥

∥

∥

p

Lp( ˜T )

+ hp
˜T
‖˜div ũ‖p

Lp( ˜T )

⎞

⎠ ,

where h
˜T is the diameter of ˜T and ∂ũ

∂x̃j
denotes the vector

(

∂ũ1

∂x̃j
, ∂ũ2

∂x̃j
, ∂ũ3

∂x̃j

)t

. But,

(3.9)
∂ũ

∂x̃j
= detM M−1 ∂u

∂�j
, divu(x) =

1

detM
˜div ũ(x̃),

and h
˜T ≤ ‖M−1‖hT . Therefore we arrive at

‖Πku‖pLp(T ) ≤ C‖M‖p‖M−1‖p
⎛

⎝‖u‖pLp(T ) +

3
∑

j=1

hp
j

∥

∥

∥

∥

∂u

∂�j

∥

∥

∥

∥

p

Lp(T )

+ hp
T ‖divu‖

p
Lp(T )

⎞

⎠

and recalling that ‖M‖, ‖M−1‖ ≤ C with C depending only on c̄, we conclude the
proof. �
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4. Stability under the maximum angle condition

In this section we prove a stability result weaker than that obtained in the
previous section but which is valid for families of elements satisfying the maximum
angle condition.

The estimate obtained here, although uniform in the class of elements satisfying
MAC(ψ̄), is weaker than the estimate obtained in Theorem 3.1 under the stronger
RVP(c̄) hypothesis. Indeed, in front of each derivative, the diameter hT appears
instead of the length of the edge in the direction of the derivative. However, our
result is optimal. In fact, we will show in the next section that estimates such as
those in Theorem 3.1 are not valid in general under the maximum angle condition.

The main result of this section is the following theorem.

Theorem 4.1. Let k ≥ 0 and let T be a tetrahedron with diameter hT satisfying
MAC(ψ̄). There exists a constant C depending only on k and ψ̄ such that, for all
u ∈ W 1,p(T )3, 1 ≤ p ≤ ∞,

(4.1) ‖Πku‖Lp(T ) ≤ C
(

‖u‖Lp(T ) + hT ‖∇u‖Lp(T )

)

.

The steps to prove this theorem are similar to those followed in Section 3. Now

our reference element ̂T is the tetrahedron with vertices at 0, e1 + e2, e2 and e3.
For n1 = (1, 0, 0),n2 = 1√

2
(1,−1, 0),n3 = (0, 0, 1) and n4 = 1√

2
(0, 1, 1) we denote

with ̂Fi the face of ̂T normal to ni and with F 2 the projection of ̂F2 onto the plane
given by x2 = 0.

Lemma 4.2. Let f ∈ Lp( ̂F1), g ∈ Lp(F 2), and h ∈ Lp( ̂F3). If

u(x1, x2, x3) = (f(x2, x3), 0, 0), v(x1, x2, x3) = (0, g(x1, x3), 0),

and

w(x1, x2, x3) = (0, 0, h(x1, x2)),

then their Raviart-Thomas interpolations are of the same form; namely, there exist

qi ∈ Pk( ̂Fi), i = 1, 3, and q2 ∈ Pk(F 2) such that

̂Πku = (q1(x2, x3), 0, 0), ̂Πkv = (0, q2(x1, x3), 0),

and
̂Πkw = (0, 0, q3(x1, x2)).

Proof. The proof is similar to that of Lemma 3.2. We will prove the first equality;
the other two follow in an analogous way.

First, we have that div ̂Πku = 0 and therefore ̂Πku ∈ Pk(̂T )
3. Then, proceeding

exactly as in the proof of Lemma 3.2, we obtain that ̂Πk,3u = 0 in ̂T . Analogously,

now using (2.1) for i = 4 we have (̂Πk,2u+ ̂Πk,3u)| ̂F4
= 0, and so

̂Πk,2u+ ̂Πk,3u = (1− x2 − x3)r

for some r ∈ Pk−1( ̂T ). Consequently, now using (2.2) and that u2 = u3 = 0, we

obtain ̂Πk,2u + ̂Πk,3u = 0 in ̂T . Then, since we already know that ̂Πk,3u = 0, we

conclude that ̂Πk,2u = 0 in ̂T .

Therefore, ̂Πku = (q, 0, 0) for some q ∈ Pk(̂T ) but, since div ̂Πku = 0, it follows

that ̂Πk,1 is independent of x1. �
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Lemma 4.3. There exists a constant C1 depending only on k such that, for all

u = (u1, u2, u3) ∈ W 1,p( ̂T )3,

‖̂Πk,1u‖L2( ̂T ) ≤ C1

(

‖u1‖W 1,p( ̂T ) + ‖divu‖Lp( ̂T )

)

,(4.2)

‖̂Πk,2u‖L2( ̂T ) ≤ C1

(

‖u2‖W 1,p( ̂T ) +

∥

∥

∥

∥

∂u1

∂x1

∥

∥

∥

∥

Lp( ̂T )

+

∥

∥

∥

∥

∂u3

∂x3

∥

∥

∥

∥

Lp( ̂T )

)

,(4.3)

‖̂Πk,3u‖Lp( ̂T ) ≤ C1

(

‖u3‖W 1,p( ̂T ) + ‖divu‖Lp( ̂T )

)

.(4.4)

In particular, for i = 1, 2, 3,

(4.5) ‖̂Πk,iu‖L2( ̂T ) ≤ C2

⎛

⎜

⎝‖ui‖W 1,p( ̂T ) +

3
∑

j=1

j �=i

∥

∥

∥

∥

∂uj

∂xj

∥

∥

∥

∥

Lp( ̂T )

⎞

⎟

⎠

for another constant C2 which depends only on k.

Proof. Let v = (u1, u2 − u2(x1, x1, x3), u3 − u3(x1, x2, 0)) and α, β ∈ Pk−1(̂T ) such
that
(4.6)
∫

̂T

(v2 − (x1 − x2)α)pk−1 = 0 and

∫

̂T

(v3 − x3β)pk−1 = 0 ∀pk−1 ∈ Pk−1( ̂T ),

and define

w = (u1, u2 − u2(x1, x1, x3)− (x1 − x2)α, u3 − u3(x1, x2, 0)− x3β).

Then, since (0, (x1 − x2)α, x3β) ∈ RT k, it follows from Lemma 4.2 that

̂Πk,1u = ̂Πk,1w.

Now, taking into account the definition of w and (4.6), we have that ̂Πkw is defined
by

∫

̂T

̂Πk,1w pk−1 =

∫

̂T

w1 pk−1 ∀pk−1 ∈ Pk−1(̂T ),

∫

̂T

̂Πk,2w pk−1 = 0 ∀pk−1 ∈ Pk−1( ̂T ),

∫

̂T

̂Πk,3w pk−1 = 0 ∀pk−1 ∈ Pk−1( ̂T ),(4.7)

∫

̂F1

̂Πk,1w pk =

∫

̂F1

w1 pk ∀pk ∈ Pk( ̂F1),

∫

̂F2

(̂Πk,1w − ̂Πk,2w) pk =

∫

̂F2

w1 pk ∀pk ∈ Pk( ̂F2),

∫

̂F3

̂Πk,3w pk = 0 ∀pk ∈ Pk( ̂F3),

∫

̂F4

(̂Πk,2w + ̂Πk,3w) pk =

∫

̂F4

(w2 + w3) pk ∀pk ∈ Pk( ̂F4).
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But, using again (4.6) we have, for pk ∈ Pk(̂T ),

∫

̂T

div (0, w2, w3)pk = −
∫

̂T

(0, w2, w3) · ∇pk

+

∫

∂ ̂T\ ̂F4

(w2n2 + w3n3)pk +
1√
2

∫

̂F4

(w2 + w3)pk

=
1√
2

∫

̂F4

(w2 + w3)pk.(4.8)

Then, it follows from (4.7) and (4.8) that

‖̂Π1,kw‖Lp( ̂T ) ≤ C
(

‖w1‖W 1,p( ̂T ) + ‖div (0, w2, w3)‖Lp( ̂T )

)

≤ C
(

‖u1‖W 1,p( ̂T ) + ‖divu‖Lp( ̂T )

+‖div (0, (x1 − x2)α, x3β)‖Lp( ̂T )

)

.

Therefore, to conclude the proof of (4.2), it is enough to show that

(4.9) ‖div (0, (x1 − x2)α, x3β)‖Lp( ̂T ) ≤ C (‖u1‖W 1,p( ̂T ) + ‖divu‖Lp( ̂T )).

But, for all pk ∈ Pk( ̂T ), we have

0 =

∫

̂T

(0, w2, w3) · ∇pk = −
∫

̂T

div (0, w2, w3) +

∫

∂ ̂T

(w2n2 + w3n3)pk.

Now, taking pk = (1− x2 − x3)pk−1 with pk−1 ∈ Pk−1(̂T ) the boundary integral in
the last equation vanishes, and therefore we obtain

∫

̂T

(1− x2 − x3)div (0, (x1 − x2)α, x3β)pk−1 =

∫

̂T

(1− x2 − x3)div (0, u2, u3)pk−1.

Then, (4.9) can be obtained with an argument such as that used for (3.5). Clearly,
the proof of inequality (4.4) is analogous to that of (4.2).

Now, to prove (4.3), take v = (u1 − u1(0, x2, x3), u2, u3 − u3(x1, x2, 0)), α, β ∈
Pk−1( ̂T ) such that

∫

̂T

(v1 − x1α)pk−1 = 0 and

∫

̂T

(v3 − x3β)pk−1 = 0 ∀pk−1 ∈ Pk−1( ̂T ),

and define

w = (v1 − x1α, v2, v3 − x3β).

Using again Lemma 4.2 and that (x1α, 0, x3β) ∈ RT k we obtain

̂Πk,2u = ̂Πk,2w.
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In this case, it follows from the definition of w that Πkw is defined by
∫

̂T

̂Πk,1w pk−1 = 0 ∀pk−1 ∈ Pk−1( ̂T ),

∫

̂T

̂Πk,2w pk−1 =

∫

̂T

w2 pk−1 ∀pk−1 ∈ Pk−1(̂T ),

∫

̂T

̂Πk,3w pk−1 = 0 ∀pk−1 ∈ Pk−1( ̂T ),(4.10)

∫

F1

̂Πk,1w pk = 0 ∀pk ∈ Pk( ̂F1),

∫

̂F2

(̂Πk,1w − ̂Πk,2w) pk =

∫

F2

(w1 − w2) pk ∀pk ∈ Pk( ̂F2),

∫

̂F3

Πk,3w pk = 0 ∀pk ∈ Pk( ̂F3),

∫

̂F4

(̂Πk,2w + ̂Πk,3w) pk =

∫

̂F4

(w2 + w3) pk ∀pk ∈ Pk( ̂F4).

But, it is easy to check by integration by parts that, for all pk ∈ Pk( ̂T ),

(4.11)

∫

̂T

div (0, w2, w3)pk = −
∫

̂T

w2
∂pk
∂x2

− 1√
2

∫

̂F2

w2 pk +
1√
2

∫

̂F4

(w2 + w3)pk

and

(4.12)

∫

̂T

div (w1, w2, 0)pk = −
∫

̂T

w2
∂pk
∂x2

+
1√
2

∫

̂F4

w2 pk +
1√
2

∫

̂F2

(w1 − w2)pk.

Now, it follows from (4.10), (4.11) and (4.12) that

‖̂Π2,kw‖Lp( ̂T ) ≤ C
(

‖w2‖W 1,p( ̂T ) + ‖div (0, w2, w3)‖Lp( ̂T ) + ‖div (w1, w2, 0)‖Lp( ̂T )

)

and therefore, using the definition of w, we obtain

‖̂Π2,kw‖Lp( ̂T ) ≤ C

(

‖u2‖W 1,p( ̂T ) +

∥

∥

∥

∥

∂u1

∂x1

∥

∥

∥

∥

Lp( ̂T )

+

∥

∥

∥

∥

∂u3

∂x3

∥

∥

∥

∥

Lp( ̂T )

+

∥

∥

∥

∥

∂(x1α)

∂x1

∥

∥

∥

∥

Lp( ̂T )

+

∥

∥

∥

∥

∂(x3β)

∂x3

∥

∥

∥

∥

Lp( ̂T )

)

.

Then, to conclude the proof of (4.3) we have to estimate the last two terms in the

above inequality. From the definition of w3 we have, for all pk ∈ Pk( ̂T ),

0 =

∫

̂T

w3
∂pk
∂x3

= −
∫

̂T

∂w3

∂x3
pk +

∫

∂ ̂T

w3n3pk,

but, if we take pk = (1− x2 − x3)pk−1 with pk−1 ∈ Pk−1( ̂T ) the boundary integral
in the last equation vanishes, and therefore
∫

̂T

(1− x2 − x3)
∂(x3β)

∂x3
pk−1 =

∫

̂T

(1− x2 − x3)
∂u3

∂x3
pk−1 ∀pk−1 ∈ Pk−1( ̂T ),

from which we obtain
∥

∥

∥

∥

∂(x3β)

∂x3

∥

∥

∥

∥

Lp( ̂T )

≤ C

∥

∥

∥

∥

∂u3

∂x3

∥

∥

∥

∥

Lp( ̂T )

.
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In a similar way we can prove
∥

∥

∥

∥

∂(x1α)

∂x1

∥

∥

∥

∥

Lp( ̂T )

≤ C

∥

∥

∥

∥

∂u1

∂x1

∥

∥

∥

∥

Lp( ̂T )

and so (4.3) is proved. �

Proceeding as in the previous section we now obtain estimates for elements in F2.

Proposition 4.4. Let ˜T ∈ F2 be the element with vertices at 0, h1e1 +h2e2, h2e2
and h3e3, where hi > 0. There exists a constant C depending only on k such that,

for ũ = (ũ1, ũ2, ũ3) ∈ W 1,p( ˜T )3 and i = 1, 2, 3,

(4.13) ‖˜Πk,iũ‖Lp( ˜T )≤C

⎛

⎜

⎝‖ũi‖Lp( ˜T ) +
3

∑

j=1

hj

∥

∥

∥

∥

∂ũi

∂x̃j

∥

∥

∥

∥

Lp( ˜T )

+ hi

3
∑

j=1

j �=i

∥

∥

∥

∥

∂ũj

∂x̃j

∥

∥

∥

∥

Lp( ˜T )

⎞

⎟

⎠ .

Proof. We proceed as in the proof of Proposition 3.4. Recall that now our reference

element ̂T is the tetrahedron with vertices at 0, e1 + e2, e2 and e3. Therefore, the

same linear map given by B in Proposition 3.4 maps ̂T in ˜T . Then, if û ∈ W 1,p(̂T )3

is defined via the Piola transform we have

(4.14) ˜Πkũ(x̃) =
1

detB
B ̂Πkû(x̂)

and

(4.15) ˜div ũ(x̃) =
1

detB
̂div û(x̂).

Using (4.5) and changing variables we have
∥

∥

∥

˜Πk,iũ
∥

∥

∥

p

Lp( ˜T )
=

h1h2h3

hp
2h

p
3

∥

∥

∥

̂Πk,iû
∥

∥

∥

p

Lp( ̂T )

≤ C
h1h2h3

hp
2h

p
3

⎛

⎜

⎝‖ûi‖pLp( ̂T )
+

3
∑

j=1

∥

∥

∥

∥

∂ûi

∂x̂j

∥

∥

∥

∥

p

Lp( ̂T )

+

3
∑

j=1

j �=i

∥

∥

∥

∥

∂ûj

∂x̂j

∥

∥

∥

∥

p

Lp( ̂T )

⎞

⎟

⎠

= C

⎛

⎜

⎝‖ũi‖pLp(T̃ )
+

3
∑

j=1

hp
j

∥

∥

∥

∥

∂ũi

∂x̃j

∥

∥

∥

∥

p

Lp( ˜T )

+ hp
i

3
∑

j=1

j �=i

∥

∥

∥

∥

∂ũj

∂x̃j

∥

∥

∥

∥

p

Lp( ˜T )

⎞

⎟

⎠

and therefore (4.13) is proved. �

Remark 4.1. For i = 1 and i = 3 a better result can be obtained. Indeed, by the
same arguments used in the previous proposition, but now using (4.2) and (4.4),
we can prove the following estimates:

∥

∥

∥

˜Πk,iũ
∥

∥

∥

Lp( ˜T )
≤ C

⎛

⎝‖ũi‖Lp( ˜T ) +

3
∑

j=1

hj

∥

∥

∥

∥

∂ũi

∂x̃j

∥

∥

∥

∥

Lp( ˜T )

+ h2‖˜div ũ‖Lp( ˜T )

⎞

⎠ .

Anyway, this clearly depends on the particular orientation of the element and so,
it does not seem to be useful for general tetrahedra.

We can now prove the main result of this section.
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Proof of Theorem 4.1. From Theorem 2.2 we know that there exists ˜T ∈ F1 ∪ F2

that can be mapped onto T through an affine transformation x̃ 
→ M x̃ + c, with
‖M‖, ‖M−1‖ ≤ C for a constant C depending only on ψ̄. To simplify notation
assume that c = 0.

If ˜T ∈ F1, then T satisfies the regular vertex property with a constant which
depends only on ψ̄ and so (4.1) follows immediately from Theorem 3.1. Therefore,

we may assume that ˜T ∈ F2 and has vertices at 0, h1e1 + h2e2, h2e2 and h3e3,
where hi > 0.

Given u ∈ W 1,p(T )3 we again use the Piola transform and define ũ ∈ W 1,p(˜T )3

given by

u(x) =
1

detM
M ũ(x̃), x = M x̃ .

Then, using that

Πku(x) =
1

detM
M ˜Πkũ(x̃),

changing variables and using (4.1) in ˜T we obtain

‖Πku‖pLp(T ) ≤ C‖M‖p‖M−1‖p
(

‖u‖pLp(T ) + hp
T ‖M‖p‖Du‖pLp(T )

)

concluding the proof. �

5. Sharpness of the results

In view of the results of the previous sections, it is natural to ask whether the
estimate obtained under the maximum angle condition could be improved. The
goal of this section is to show that this is not possible.

Consider the element ˜T ∈ F2 with vertices at 0, h1e1+h2e2, h2e2 and h3e3 and
with diameter hT . We are going to show that the inequality

(5.1) ‖˜Πk,2ũ‖Lp( ˜T ) ≤ C

⎛

⎝‖ũ‖Lp( ˜T ) +

3
∑

i,j=1

hj

∥

∥

∥

∥

∂ũi

∂x̃j

∥

∥

∥

∥

Lp( ˜T )

+ hT ‖˜div ũ‖Lp( ˜T )

⎞

⎠ ,

with a constant C independent of h1, h2 and h3, does not hold for some ũ =

(ũ1, ũ2, ũ3) ∈ W 1,p(˜T )3.
Suppose that (5.1), with C independent of h1, h2 and h3, holds true for all

ũ ∈ W 1,p( ˜T )3 . Let ̂T be the reference element used in Section 4; i.e., ̂T has vertices

at 0, e1 + e2, e2 and e3. Then, with û ∈ W 1,p(̂T )3 we associate ũ ∈ W 1,p(˜T )3

defined via the Piola transform with the linear transformation used in the proof of
Theorem 4.1.

To simplify notation we drop the hat from now on and write u instead of û and

write xi for the variables in ̂T .
A simple computation shows that from inequality (5.1) we obtain

‖Πk,2u‖Lp( ̂T ) ≤ C
1

h2

(

3
∑

i=1

hi‖ui‖W 1,p( ̂T ) + hT ‖divu‖Lp( ̂T )

)

.

Then, taking h1 = h3 = h2
2 (with h2 < 1), we would have

‖Πk,2u‖Lp( ̂T )

≤ C
(

h2‖u1‖W 1,p( ̂T ) + ‖u2‖W 1,p( ̂T ) + h2‖u3‖W 1,p( ̂T ) + ‖divu‖Lp( ̂T )

)

,
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and letting h2 → 0 we would arrive at

(5.2) ‖Πk,2u‖Lp( ̂T ) ≤ C
(

‖u2‖W 1,p( ̂T ) + ‖divu‖Lp( ̂T )

)

.

However, we are going to show that there exists u ∈ W 1,p( ̂T )3 for which inequality
(5.2) is not valid. In fact, in the next proposition we will give, for each k ≥ 0, a

function u ∈ W 1,p( ̂T )3 such that the right hand side of (5.2) vanishes while the left

hand side does not. We will use the notation of Section 4 for the faces of ̂T .

Proposition 5.1. For k ≥ 0, the function u(x1, x2, x3) = (xk+1
1 , 0,−(k + 1)xk

1x3)
satisfies divu = 0, u2 = 0 and Πk,2u �= 0.

Proof. We consider the case k ≥ 1 (the case k = 0 follows analogously). Since

divu = 0 we have Πk,1u,Πk,3u ∈ Pk(̂T ).

Now, using that u1 = 0 on ̂F1 and u3 = 0 on ̂F3 it follows from the definition of
Πku that

∫

̂F1

Πk,1u pk = 0 ∀pk ∈ Pk( ̂F1)

and
∫

̂F3

Πk,3u pk = 0 ∀pk ∈ Pk( ̂F3).

Then Πk,1u = x1α and Πk,3u = x3β with α, β ∈ Pk−1(̂T ). Also from the definition
of Πku we have

∫

̂F2

(Πk,1u−Πk,2u) pk =

∫

̂F2

(u1 − u2) pk ∀pk ∈ Pk( ̂F2),

and then, if Πk,2u = 0, we would obtain
∫

̂F2

x1(α− xk
1) pk = 0 ∀pk ∈ Pk( ̂F2).

But taking pk = α(x1, x1, x3)−xk
1 in the last equation, we arrive at α(x1, x1, x3) =

xk
1 , but this contradicts the fact that α ∈ Pk−1( ̂T ). Then we have Πk,2u �= 0. �

6. Error estimates for RT interpolation

We end the paper giving optimal error estimates for Raviart-Thomas interpola-
tion of any order. These estimates are derived from the stability results obtained
in the previous sections combined with polynomial approximation results.

Let us recall some well-known properties of the averaged Taylor polynomial. For
a convex domain D and any non-negative integer m, given f ∈ W p,m+1(D) the
averaged Taylor polynomial is given by

Qmf(x) =
1

|D|

∫

D

Tmf(y,x) dy ,

where

Tmf(y,x) =
∑

|α|≤m

Dαf(y)
(x− y)α

α!
.
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Then, there exists a constant C, depending only on m and D (see for example
[6, 13]), such that

(6.1) ‖Dβ(f −Qmf)‖Lp(D) ≤ C
∑

i1+i2+i3=m+1

∥

∥

∥

∥

∂m+1f

∂xi1
1 ∂xi2

2 ∂xi3
3

∥

∥

∥

∥

Lp(D)

whenever 0 ≤ |β| ≤ m+ 1.
As a consequence of these results we have the following approximation result for

elements satisfying the regular vertex property. Given a function f , Dmf denotes
the sum of the absolute values of all the derivatives of order m of f .

Lemma 6.1. Let T be a tetrahedron satisfying RVP(c̄) such that p0 is the regular
vertex, �i, i = 1, 2, 3 are unitary vectors with the directions of the edges sharing p0,
hi, i = 1, 2, 3, the lengths of these edges, and hT the diameter of T . Then, given
u ∈ Wm+1,p(T )3, m ≥ 0, there exists q ∈ Pm(T )3 such that,

(6.2)

∥

∥

∥

∥

∂(u− q)

∂�1

∥

∥

∥

∥

Lp(T )

≤ C
∑

i1+i2+i3=m

hi1
1 hi2

2 hi3
3

∥

∥

∥

∥

∂m+1u

∂�i1+1
1 ∂�i22 ∂�i33

∥

∥

∥

∥

Lp(T )

and analogously for ∂(u−q)
∂�j

with j = 2, 3. Also,

(6.3) ‖div (u− q)‖Lp(T ) ≤ Chm
T ‖Dmdivu‖Lp(T ),

where the constant C depends only on m and c̄.

Proof. To simplify notation we assume again that p0 = 0. From Theorem 2.3 we
know that there exists a matrix M such that its associated linear transformation
maps ˜T onto T , where ˜T is the element with vertices at 0, h1e1, h2e2 and h3e3.
Moreover, the norms of M and of its inverse matrix are bounded by a constant
which depends only on c̄.

Now, as in the proof of Theorem 3.1, we define ũ ∈ Wm+1,p(˜T )3 via the Piola
transform and

˜Qmũ = ( ˜Qmũ1, ˜Qmũ2, ˜Qmũ3) ∈ Pm(˜T )3,

where ˜Qmũj denotes the averaged Taylor polynomial of ũj .

Using the estimate (6.1) on the reference element ̂T which has vertices at 0, e1,
e2 and e3 and a standard scaling argument, we obtain

∥

∥

∥

∥

∥

∂(ũ− ˜Qmũ)

∂x̃1

∥

∥

∥

∥

∥

Lp( ˜T )

≤ C
∑

i1+i2+i3=m

hi1
1 hi2

2 hi3
3

∥

∥

∥

∥

∂m+1ũ

∂x̃i1+1
1 ∂x̃i2

2 ∂x̃i3
3

∥

∥

∥

∥

Lp( ˜T )

.

Then, defining q ∈ Pm(T )3 via the Piola transform, that is,

q(x) =
1

detM
M ˜Qmũ(x̃), x = M x̃ ,

(6.2) follows by changing variables as in the proof of Theorem 3.1.
On the other hand, since

˜div ˜Qmũ = ˜Qm−1
˜div ũ,

again using (6.1) in ̂T and a scaling argument, we obtain

‖˜div (ũ− ˜Qmũ)‖Lp( ˜T ) ≤ Chm
˜T
‖ ˜Dm

˜divu‖Lp( ˜T )

and therefore, (6.3) follows by using the properties of the Piola transform stated in
(3.9). �
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We can now state and prove optimal error estimates for elements satisfying the
regular vertex property. Our theorem generalizes the results proved in [1], where
the same error estimate was proved in the case k = 0, as well as those proved in
[15], where the estimate was proved for any k ≥ 0 but only in the case m = k.

Theorem 6.2. Let k ≥ 0 and T be a tetrahedron satisfying RVP(c̄). If p0 is the
regular vertex, �i, i = 1, 2, 3 are unitary vectors with the directions of the edges
sharing p0, hi, i = 1, 2, 3, the lengths of these edges, and hT the diameter of T ,
then there exists a constant C depending only on k and c̄ such that, for 0 ≤ m ≤ k,
1 ≤ p ≤ ∞, and u ∈ Wm+1,p(T )3,

‖u−Πku‖Lp(T )

≤ C

{

∑

i1+i2+i3=m+1

hi1
1 hi2

2 hi3
3

∥

∥

∥

∥

∂m+1u

∂�i11 ∂�i22 ∂�i33

∥

∥

∥

∥

Lp(T )

+ hm+1
T ‖Dmdivu‖Lp(T )

}

.

Proof. Since m ≤ k, for any q ∈ Pm(T )3 we have

u−Πku = u− q−Πk(u− q)

and therefore, applying Theorem 3.1, we obtain

‖u−Πku‖Lp(T )

≤ C

⎧

⎨

⎩

‖u− q‖Lp(T ) +
∑

i,j

hj

∥

∥

∥

∥

∂(ui − qi)

∂�j

∥

∥

∥

∥

Lp(T )

+ hT ‖div (u− q)‖Lp(T )

⎫

⎬

⎭

.

Then, taking q ∈ Pm(T )3 satisfying (6.2) and (6.3) we conclude the proof. �
Optimal error estimates under the maximum angle condition can also be proved.

We state the results in the following theorem.

Theorem 6.3. Let k ≥ 0 and T be a tetrahedron with diameter hT satisfying
MAC(ψ̄). There exists a constant C depending only on k and ψ̄ such that, for
0 ≤ m ≤ k, 1 ≤ p ≤ ∞, and u ∈ Wm+1,p(T )3,

‖u−Πku‖Lp(T ) ≤ Chm+1
T ‖Dm+1u‖Lp(T ).

The proof is analogous to that of the previous theorem, now using the stability
estimates obtained in Theorem 4.1, and so we omit the details.
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