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SUBSEQUENCE CONVERGENCE IN SUBDIVISION

DETER DE WET

Abstract. We study the phenomenon that regularly spaced subsequences of
the control points in subdivision may converge to scalar multiples of the same
limit function, even though subdivision itself is divergent. We present differ-
ent sets of easily checkable sufficient conditions for this phenomenon (which
we term subsequence convergence) to occur, study the basic properties of sub-
sequence convergence, show how certain results from subdivision carry over
to this case, show an application for decorative effects, and use our results
to build nested sets of refinement masks, which provide some insight into the
structure of the set of refinable functions. All our results are formulated for a
general integer dilation factor.

1. Introduction

In this paper we consider univariate subdivision schemes with a general integer
dilation factor, i.e. for an integer p ∈ Z, p ≥ 2, called the dilation factor, and a
bi-infinite complex-valued sequence a = (aj : j ∈ Z), called the (subdivision) mask,
we define the subdivision operator Sa,p by

(1.1) (Sa,pc)j =
∑

i

aj−pici, j ∈ Z, c ∈ M (Z) ,

where, as throughout this paper, M (Z) denotes the set of complex-valued bi-infinite
sequences and

∑
j denotes

∑
j∈Z

. Subdivision plays an important role in the

construction of curves and surfaces in CAGD (see e.g. [9]). We shall only con-
sider masks in M0 (Z), which denotes the set of sequences a ∈ M (Z) for which
supp(a) = {j ∈ Z : aj �= 0}, called the support of a, is finite.

For a given initial sequence c ∈ M(Z), we recursively define

c(0) = c; c(r) = Sa,pc
(r−1), r ∈ N.

We call this process the subdivision scheme (Sa,p, c).
We say that the subdivision scheme (Sa,p, c) converges if there exists a nonzero

function Φ ∈ C(R), called the limit function of the subdivision scheme, such that

(1.2) sup
j∈Z

∣∣∣∣Φ
(

j

pr

)
− c

(r)
j

∣∣∣∣ → 0, r → ∞.

The following necessary condition for subdivision convergence is known (see [3,
Proposition 2.1] for the case p = 2 and [7, Proposition 1] for the extension to p ∈ Z

and the multivariate case).
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Theorem 1.1. For p ∈ Z, p ≥ 2, and a ∈ M0 (Z), suppose there exists a sequence
c ∈ l∞(Z) such that the subdivision scheme (Sa,p, c) converges to Φ. Then the sum
rules

(1.3)
∑

j

apj+l = 1, l ∈ {0, . . . , p− 1} ,

hold for the mask a.

During numerical experiments with masks not satisfying the requirements of
Theorem 1.1, it was detected that sometimes the subdivision algorithm “converges”
to two or more limits. To make the meaning of this clear, consider the following
example, which is a modification of [10, Example 2.2].

Example 1.2. Let p = 2 and let the mask a be given by

a0 = a4 =
3

4
, a1 = a5 = −1

4
, a2 =

3

2
, a3 = −1

2
.

Observe that
∑

j a2j �= 1 and
∑

j a2j+1 �= 1. We take the initial sequence c = δ,
with δ denoting here and elsewhere the Kronecker delta sequence, i.e.

(1.4) δ0 = 1 and δj = 0, j �= 0.

As can be seen from Figure 1.1(a), which shows the fourth iteration of subdivi-
sion, the subdivision algorithm is divergent and appears to oscillate between two
functions on consecutive control points. In Figure 1.1(b) , we show separate plots
connecting the odd-indexed points and even-indexed points, respectively, of the
eighth iteration of subdivision. We see that the two functions thus obtained seem
to be scalar multiples of one another, with the one built from the even indices being
minus three times the other one.

(a) (b)

Figure 1.1. Plots of (a) S4
aδ and (b)

(
S8
aδ
)
2·+e

, e = 0, 1, in Example 1.2.

In this paper, we study this phenomenon that regularly spaced subsequences of
the control points in subdivision may converge to scalar multiples of the same limit
function. This we term subsequence convergence, of which we will give a formal
definition after establishing further necessary notation and preliminary results.
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Further notation. Throughout this work, χ shall denote the characteristic func-
tion of [0, 1).

We write supj for supj∈Z
. We let Z+ = N ∪ {0} denote the set of nonnegative

integers. For x ∈ R, �x	 denotes the largest integer ≤ x and �x� denotes the
smallest integer ≥ x.

For m ∈ N, Zm denotes the set {0, . . . ,m− 1}. We shall use the facts that

Zmn = {jm+ l : j ∈ Zn, l ∈ Zm} and Z = {jm+ l : j ∈ Z, l ∈ Zm} ,
which allows us to partition sums into appropriate double summations and vice
versa.

For j,m ∈ Z, j mod m denotes the remainder in Zm when j is divided by m,
that is

j mod m = j −m

⌊
j

m

⌋
, j,m ∈ Z.

We let the set of functions from R to C be denoted by M (R). The support of

a function f is the set {x ∈ R : f (x) �= 0} and is denoted by supp (f). The set
of functions in M (R) with compact support is denoted by M0 (R), while M+ (R)
denotes the set of functions inM (R) that vanish left of the origin. We setM+

0 (R) =
M0 (R)

⋂
M+ (R).

For nonzero a ∈ M0 (Z) , we define ↓a↓ = min {j ∈ Z : aj �= 0} and ↑a↑ =
max {j ∈ Z : aj �= 0}. We let M+

0 (Z) denote the set {a ∈ M0 (Z) \ {0} : ↓a↓ = 0}.
Let Δ denote the backward difference operator defined by (Δc)j = cj−cj−1, j ∈ Z,

c ∈ M (Z), and by Δ∞(Z) we mean the subspace {c ∈ M(Z) : Δc ∈ l∞(Z)} of
M (Z).

For a ∈ M (Z) and k ∈ C, ka denotes the sequence defined by (ka)j = kaj , j ∈ Z.
We shall sometimes exploit the one-to-one correspondence between Laurent poly-

nomials and compactly supported sequences in our proofs. To this end, we define
the following operators.

Definition 1.3. For a sequence p ∈ M0 (Z), define the Laurent polynomial p by

(1.5) p (z) =
∑

j

pjz
j , z ∈ C\ {0} .

Definition 1.4. For a Laurent polynomial P , let [P ] ∈ M0 (Z) denote the coeffi-
cient sequence of P , i.e. for j ∈ Z, [P ]j equals the coefficient of zj in P .

Observe that p is actually a polynomial if p ∈ M+
0 (Z), while, for nonzero Laurent

polynomials P and Q,

(1.6)
�⏐[PQ]

�⏐ =
�⏐[P ]

�⏐+
�⏐[Q]

�⏐ and
⏐�[PQ]

⏐� =
⏐�[P ]

⏐�+
⏐�[Q]

⏐� .

We will also make frequent use of the following operator and its properties.

Definition 1.5. For a Laurent polynomial P and m ∈ N, define P 〈m〉 to be the
Laurent polynomial given by

P 〈m〉 (z) = P (zm) , z ∈ C\ {0} .
Note that P 〈1〉 = P . Also, provided P �= 0, we have

(1.7)
�⏐⏐
[
P 〈m〉

]�⏐⏐ = m
�⏐[P ]

�⏐ and
⏐⏐�
[
P 〈m〉

]⏐⏐� = m
⏐�[P ]

⏐� .

The next lemma states some further properties of this operator, which can easily
be verified.
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Lemma 1.6. Suppose P and Q are Laurent polynomials and m,n ∈ N. Then the
following identities hold:

(
P 〈m〉

)〈n〉
=
(
P 〈n〉

)〈m〉
= P 〈mn〉;(1.8a)

(PQ)〈m〉 = P 〈m〉Q〈m〉;(1.8b)
[
PQ〈m〉

]

j
=
∑

k

[P ]j−km [Q]k , j ∈ Z.(1.8c)

Elementary polynomials. The following class of polynomials will prove useful
in various proofs. Define, for a given m ∈ Z+, the polynomial Em by

(1.9) Em (z) =
1

m+ 1

m∑

j=0

zj =
1

m+ 1

m∏

j=1

(
z − e2jπi/(m+1)

)
, z ∈ C,

where the second equality follows from the fact that the first equality yields

(1.10) Em (z) =
1− zm+1

(m+ 1) (1− z)
, z ∈ C\ {1} , m ∈ Z+.

Note that Em (1) = 1, m ∈ N, and that E0 is the constant polynomial 1. It is also
easy to verify that the following identities hold for p ∈ N:

E
〈p〉
m−1Ep−1 = Epm−1, m ∈ N;(1.11a)

r−1∏

j=0

E
〈pj〉
p−1 = Epr−1, r ∈ N;(1.11b)

Epk−1E
〈pk〉
pr−k−1

= Epr−1, k ∈ {0, 1, . . . , r} , r ∈ N.(1.11c)

Refinement pairs. In the study of subdivision, an important role is played by
so-called refinable functions. For our purposes, the following definition will suffice.

Definition 1.7. We say that (a, φ) is a p-refinement pair if, for some integer p ≥ 2,
sequence a ∈ M0 (Z), and function φ ∈ L1 (R) \ {0}, the refinement equation

(1.12) φ =
∑

j∈Z

ajφ (p · −j)

is satisfied.
In this case, φ is said to be a p-refinable function. We call p the dilation factor

and a the (refinement) mask. We also sometimes call a the mask corresponding to
φ or call φ the refinable function corresponding to a. The polynomial A = 1

p a is

called the (refinement) mask symbol.

Remark 1.8. Henceforth, we use the conventions A = 1
p a, Ã = 1

p ã , Ak = 1
p ak ,

B = 1
p b, etc., but only for the Roman capitals A and B.

From [5, Theorem 2.1, Corollary 2.2, and Theorem 3.1] we have the following
necessary conditions for the existence of a p-refinement pair.

Theorem 1.9. Suppose (a, φ) is a p-refinement pair. Then the following assertions
hold:

(a) If (a, ψ) is a p-refinement pair, then ψ = Kφ for some real constant K.
(b) A(1) = pm for some m ∈ Z+.
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(c) If, in (b), we have m ≥ 1, then there exists a function ψ ∈ L1 (R) such that
(p−mb, ψ) is a p-refinement pair, where, with a proper choice of scale, we

have dm

dxmψ = φ p.p.
(d) φ is finitely supported, with

(1.13) φ(x) = 0, x �∈
[
↓a↓
p− 1

,
↑a↑
p− 1

]
.

By virtue of points (b) and (c) of Theorem 1.9, we shall henceforth assume,
without essential loss of generality, that A (1) = 1, i.e.

∑
j aj = p. In this case

we have, again from [5], that
∫∞
−∞ φ(x)dx �= 0. We call a refinable function φ

a normalised refinable function if
∫∞
−∞ φ(x)dx = 1. In this case we call (a, φ) a

normalised p-refinement pair.

It can easily be checked that if (1.12) holds, then it follows with ψ = φ
(
·+ ↓a↓

p−1

)

and bj = aj+↓a↓, j ∈ Z, that ψ =
∑↑a↑−↓a↓

j=0 bjψ(p · −j). Thus we shall henceforth
assume that ↓a↓ = 0, ↑a↑ = N with N ∈ N, so that the mask symbol A is a
polynomial of degree N with A (0) �= 0.

The following can also be shown (see [6, Lemma 1.9]).

Lemma 1.10. If both (a, φ) and (b, φ) are p-refinement pairs, then a = b.

A well-known example of a refinable function is provided by N2, the cardinal
B-spline of order 2, which is given by

(1.14) N2(x) = max {0, 1− |1− x|} , x ∈ R.

It is known (see e.g. [8]) that, for p ∈ Z, p ≥ 2, the function N2 is p-refinable with

mask a2,p = p
[
(Ep−1)

2
]
.

Basic results for subdivision. For p ∈ Z, p ≥ 2, suppose that a, c ∈ M0 (Z).

Note from (1.8c) that the definition (1.1) is equivalent to Sa,pc = pA c
〈p〉

, so that,
by repeated use of (1.8a) and (1.8b),
(1.15)

c(r) = pA c(r−1)
〈p〉

= p2AA〈p〉 c(r−2)
〈p−1〉

= · · · = pr

⎛

⎝
r−1∏

j=0

A〈pj〉
⎞

⎠ c
〈pr〉

, r ∈ N.

In the special case c = δ, (1.15) becomes

(1.16) Sr
a,pδ = pr

r−1∏

j=0

A〈pj〉, r ∈ N.

The link between the subdivision algorithm and refinable functions is borne out
by the following result, which is given in [3, Theorem 2.1] for the case p = 2. It is
extended to the general integer multi-dimensional case in [4, Section 3], but we once
again use the formulation of [7, Proposition 2] restricted to the univariate case.

Theorem 1.11. Suppose, for p ∈ Z, p ≥ 2, a ∈ M0 (Z), and c ∈ l∞ (Z), that
(Sa,p, c) converges to a function Φc. Then there exists a unique compactly supported
continuous function φ such that (a, φ) is a p-refinement pair and such that φ satisfies
the partition of unity property

∑
j φ (x− j) = 1, x ∈ R. Furthermore,

(1.17) Φc =
∑

j

cjφ (· − j) .
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The next result shows that to check subdivision convergence for all initial se-
quences in l∞ (Z), it is sufficient to consider the initial sequence δ. The result was
first proved for p = 2 in [3, Proposition 2.2] and the extended multi-dimensional
proof is given in [7, Lemma 4], which we once again only state in one-dimensional
form.

Theorem 1.12. For p ∈ Z, p ≥ 2, and a ∈ M0 (Z), the subdivision scheme (Sa,p, c)
converges for all c ∈ l∞ (Z) \ {0} if and only if (Sa,p, δ) converges.

We generalise Theorems 1.11 and 1.12 to the case of subsequence convergence in
Lemma 3.2 and Theorem 3.3.

A mask a is said to be a positive mask if it satisfies

aj > 0, j ∈ {0, . . . , N} .
In this special case we have the following subdivision convergence result (see [6,
Theorem 2.26]):

Theorem 1.13. Suppose, for dilation factor p ∈ Z, p ≥ 2, that the mask a is
positive, the sum rules (1.3) hold for a, and ↑a↑ ≥ p. Then, for any c ∈ Δ∞(Z), the
subdivision scheme (Sa,p, c) converges to the function Φc ∈ C(R) defined by (1.17),
where φ is the normalised p-refinable function corresponding to the refinement mask
a.

Definition of subsequence convergence. We now return to the study of sub-
sequence convergence in subdivision as discussed in the introduction. We have the
following formal definition.

Definition 1.14. For m ∈ N, we say that the subdivision scheme (Sa,p, c) has
m-subsequence convergence to Φ under K if there exists a function Φ ∈ C (R) \ {0}
and a vector K ∈ C

m satisfying
∑m−1

i=0 Ki = 1 such that

(1.18) max
i∈Zm

sup
j

∣∣∣∣KiΦ

(
mj + i

pr

)
− c

(r)
mj+i

∣∣∣∣ → 0, r → ∞.

In this case we write (Sa,p, c)
m,K−−−→ Φ. We call K the subsequence convergence

vector (SCV).

Note that the definition (1.18) has the equivalent formulation

(1.19) sup
j

∣∣∣∣Kj mod mΦ

(
j

pr

)
− c

(r)
j

∣∣∣∣ → 0, r → ∞,

which perhaps expresses the notion more clearly.

Remark 1.15. Subdivision convergence is equivalent to 1-subsequence convergence,
since for m = 1, one obtains Kj mod m = K0 = 1, j ∈ Z, in which case (1.19)
becomes (1.2). This shows that m-subsequence convergence is a generalisation of
the concept of subdivision convergence.

Remark 1.16. Our concept of subsequence convergence must not be confused with
the concept called “subconvergence” which is considered in [11, Section 3]. There
the convergence of only a subsequence of the iterations of the subdivision scheme are
considered, whereas we consider all iterations but take a subsequence of the entries
of every iteration. Symbolically, “subconvergence” considers the convergence of
c(rk), where {rk : k ∈ Z+} ⊂ Z+ is a strictly increasing sequence, while our concept
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of “subsequence convergence” considers the convergence of c
(r)
m·+i for appropriately

chosen integers m and i.

Returning to Example 1.2, we see that it appears that 2-subsequence convergence
occurs with K0 = 3

2 and K1 = − 1
2 , since K0 = −3K1 and K0 +K1 must equal 1.

This will be shown to indeed be the case by Theorem 4.3.

2. Generalised Berg-Plonka factors

In our analysis, an important role will be played by certain polynomial factors,
which are generalisations of the factors considered for the case p = 2 by [1, 2].
Although we shall not make use of this fact in this paper, these factors correspond
to refinable step functions and also play an important role in the analysis of the
regularity of a given refinable function (see [6, Sections 2.2, 3.1, and 3.2]).

Definition 2.1. For p ∈ Z, p ≥ 2, we say that a polynomial P is a p-GBP (gener-
alised Berg-Plonka) factor if there is an integer k ∈ Z+ such that P = Pk can be
iteratively obtained as follows:

(1) P0 = Ep−1.
(2) For l = 1, 2, . . . , k, Pl is obtained by replacing z by zp in Pl−1 or in a proper

polynomial factor of degree at least 1 of Pl−1.

We say that P is a p-GBP factor of level k if k is the smallest integer such that
P = Pk, where Pk can be obtained in the algorithm above. For instance, the factor
1
2

(
1 + z4

)
is a 2-GBP factor of level 2, since its shortest possible derivation is

1

2
(1 + z) → 1

2

(
1 + z2

)
→ 1

2

(
1 + z4

)
.

Example 2.2. In Definition 2.1, an important special case is obtained if we form
Pl by replacing z by zp in Pl−1 for every l = 1, . . . , k, in which case it follows

inductively that P = E
〈pk〉
p−1 . If a p-GBP factor is not of this special form, we shall

call it a nontrivial p-GBP factor.
We show some nontrivial 2-GBP factors in Figure 2.1, which depicts the deriva-

tion of all 2-GBP factors up to level 2 and the 2-GBP factors of level 3 with real
coefficients. Although we do not show the calculations here, it is interesting to note
that there are an additional eighteen 2-GBP factors (each with at least one complex
coefficient) of level 3, yielding a total of twenty-six 2-GBP factors of level at most
3.

Remark 2.3. GBP factors have a useful equivalent formulation, which was noted
in the proof of [1, Theorem 3.4] for the case p = 2. Namely, P is a p-GBP factor if
and only if there are an integer k ∈ Z+ and polynomials ql, rl : l ∈ {0, . . . , k} with
deg (rl) ≥ 1, l ∈ {0, . . . , k}, such that the following identities hold:

q0r0 = Ep−1;(2.1a)

qlrl = ql−1r
〈p〉
l−1, l = 1, 2, . . . , k;(2.1b)

qkrk = P.(2.1c)

To see the equivalence of this definition, note that qlrl = Pl for l = 0, 1, . . . , k,
with rl−1 representing the polynomial factor of Pl−1 in which z is replaced by zp
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1
2 (1 + z)k=0

1
2

(
1 + z2

)
= 1

2 (1 + iz) (1− iz)k=1

1
2

(
1 + iz2

)
(1− iz)

1
2

(
1 + z4

)
= 1

2

(
1 +

√
2z + z2

) (
1−

√
2z + z2

)
1
2 (1 + iz)

(
1− iz2

)

k=2

{

1
2

(
1 +

√
2z2 + z4

) (
1−

√
2z + z2

)

1
2

(
1 + z8

)
1
2

(
1 +

√
2z + z2

) (
1−

√
2z2 + z4

)

k=3

{

Figure 2.1. A graphic illustration showing the derivation of the 2-
GBP factors up to level 2 and those of level 3 with real coefficients.
There are eighteen other 2-GBP factors of level 3.

for l = 1, 2, . . . , k. Also note that, since Ep−1 (1) = 1 and

ql (1) rl (1) = ql−1 (1) r
〈p〉
l−1 (1) = ql−1 (1) rl−1 (1) , l = 1, 2, . . . , k,

it follows inductively that Pl (1) = 1 for l = 0, 1, . . . , k. Thus without loss of
generality we can always choose the ql, rl such that

(2.2) ql (1) = rl (1) = 1, l = 0, 1, . . . , k.

The next lemma establishes some useful properties of GBP factors, which we
shall employ later.

Lemma 2.4. For p ∈ Z, p ≥ 2, suppose that P is a p-GBP factor of level k. Then
P can be expressed in the form

(2.3) P = Ep−1
R〈p〉

R
,

where R is polynomial satisfying R (1) = 1. Furthermore, the function W , given by
W = Epk−1/R, is a polynomial satisfying W (1) = 1.

Proof. By rewriting (2.1b) as ql = ql−1
r
〈p〉
l−1

rl
, we obtain from (2.1a)–(2.1c) that

(2.4) P = qk−1r
〈p〉
k−1 = qk−2r

〈p〉
k−2

r
〈p〉
k−1

rk−1
= · · · = q0r

〈p〉
0

k−1∏

l=1

r
〈p〉
l

rl
= Ep−1

k−1∏

l=0

r
〈p〉
l

rl
.

Defining R by

(2.5) R =

k−1∏

l=0

rl,

we see that R is a polynomial, while (2.4) shows that (2.3) holds. From the as-
sumption (2.2) it follows that R (1) = 1.
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We also have, by consecutively using (1.11b), (2.1a), (1.8b), (1.8a), (2.1b), and
(2.5), that

Epk−1 =
k−1∏

l=0

E
〈pl〉
p−1 =

k−1∏

l=0

q
〈pl〉
0 r

〈pl〉
0 = r0q

〈pk−1〉
0

k−2∏

l=0

q
〈pl〉
0 r

〈pl+1〉
0

= r0q
〈pk−1〉
0

k−2∏

l=0

(
q0r

〈p〉
0

)〈pl〉
= r0q

〈pk−1〉
0

k−2∏

l=0

(q1r1)
〈pl〉

= r0q
〈pk−1〉
0 r1q

〈pk−2〉
1

k−3∏

l=0

q
〈pl〉
1 r

〈pl+1〉
1

= r0q
〈pk−1〉
0 r1q

〈pk−2〉
1

k−3∏

l=0

(q2r2)
〈pl〉

= · · · =
k−1∏

l=0

rlq
〈pk−1−l〉
l = R

k−1∏

l=0

q
〈pk−1−l〉
l ,

so that W = Epk−1/R =
∏k−1

l=0 q
〈pk−1−l〉
l is a polynomial. To complete the proof of

the lemma, we observe that W (1) = Epk−1 (1) /R (1) = 1. �

Remark 2.5. In Lemma 2.4, for the special case P = E
〈pk〉
p−1 which was mentioned

in Example 2.2, we have ql = E0 for l = 0, . . . , k in (2.1a)–(2.1c), so that

rl = E
〈pl〉
p−1 , l = 0, . . . , k,

which by (2.5) and (1.11b) yields R = Epk−1, which yields W = Epk−1/R = E0.

3. Basic properties of subsequence convergence

We proceed to obtain some basic properties related to subsequence convergence.

Lemma 3.1. Suppose, for a, c ∈ M0 (Z) and p ∈ Z, p ≥ 2, that (Sa,p, c)
m,K−−−→ Φ.

Then the following statements are true:

(a) Φ is compactly supported, with

(3.1) Φ (x) = 0, x �∈
(
↓c↓ , ↑a↑

p− 1
+ ↑c↑

)
.

(b) If (Sa,p, c)
m,K̃−−−→ Φ̃, then Φ = Φ̃ and K = K̃.

(c) For any n ∈ N, (Sa,p, c)
mn,K(n)

−−−−−−→ nΦ , where the vector K(n) ∈ C
mn is

given by
(
K(n)

)
i
= 1

nKi mod m, i ∈ Zmn.

(d) If m = nl, with l, n ∈ N, n ≥ 2, then one has (Sa,p, c)
l,K̃−−→ 1

nΦ if and only

if Ki = Ki mod l, i ∈ Zm. In this case, K̃i = nKi, i ∈ Zl.

Proof. (a) From (1.15), (1.6), and (1.7), after recalling also ↓a↓ = 0, we obtain, for
r ∈ N,

�⏐⏐c(r)
�⏐⏐ =

r−1∑

j=0

pj ↑a↑+ pr ↑c↑ =
pr − 1

p− 1
↑a↑+ pr ↑c↑(3.2a)
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and

⏐⏐�c(r)
⏐⏐� =

r−1∑

j=0

pj ↓a↓+ pr ↓c↓ = pr ↓c↓ .(3.2b)

Suppose now that x �∈
[
↓c↓ , ↑a↑

p−1 + ↑c↑
]
and let the sequence {jr : r ∈ Z+} ⊂ R

be such that jr
pr → x as r → ∞. Then there is an integer R such that jr

pr �∈[
↓c↓ , ↑a↑

p−1 + ↑c↑
]
if r ≥ R, so that also jr �∈

[
pr ↓c↓ , pr−1

p−1 ↑a↑+ pr ↑c↑
]
whenever

r ≥ R, which, by (3.2a) and (3.2b), yields c
(r)
jr

= 0, r ≥ R. But then (1.18),

together with the fact that Φ ∈ C (R), yields the desired compact support property
(3.1) of Φ.

(b) Suppose that (Sa,p, c)
m,K̃−−−→ Φ̃. It follows from (1.19) by the triangle in-

equality that

sup
j

∣∣∣∣Kj mod mΦ

(
j

pr

)
− K̃j mod mΦ̃

(
j

pr

)∣∣∣∣ → 0, r → ∞,

from which we conclude by the continuity of Φ and Φ̃, together with the fact that

the set
{

j
pr : j ∈ Z, r ∈ Z+

}
is dense in R, that KiΦ = K̃iΦ̃, i ∈ Zm. Together

with the identities
∑m−1

i=0 Ki = 1 =
∑m−1

i=0 K̃i, this yields

Φ =
∑

i∈Zm

KiΦ =
∑

i∈Zm

K̃iΦ̃ = Φ̃.

Since Φ �= 0 by definition, there exists an x0 ∈ R such that Φ (x0) �= 0. Furthermore,
since

KiΦ (x0) = K̃iΦ̃ (x0) = K̃iΦ (x0) , i ∈ Zm,

we obtain Ki = K̃i, i ∈ Zm.
(c) Suppose n ∈ N. Then we obtain, for r ∈ Z+,

max
i∈Zmn

sup
j

∣∣∣∣
1

n
Ki mod mnΦ

(
mnj + i

pr

)
− c

(r)
mnj+i

∣∣∣∣

= max
i∈Zm

max
k∈Zn

sup
j

∣∣∣∣K(km+i) mod mΦ

(
m (nj + k) + i

pr

)
− c

(r)
m(nj+k)+i

∣∣∣∣

= max
i∈Zm

sup
j

∣∣∣∣KiΦ

(
mj + i

pr

)
− c

(r)
mj+i

∣∣∣∣ ,

which yields the desired result by (1.18) after noting also that

mn−1∑

i=0

1

n
Ki mod m =

m−1∑

i=0

n−1∑

k=0

1

n
K(i+mk) mod m =

m−1∑

i=0

Ki = 1.

(d) Assume m = nl, with l, n ∈ N, n ≥ 2. Now first suppose that (Sa,p, c)
l,K̃−−→

1
nΦ. Then by the result (c), we have (Sa,p, c)

m,K′

−−−→ Φ, where K ′
i =

1
nK̃i mod l, i ∈

Zm. Now from (b) we have K = K ′, so that Ki =
1
nK̃i mod l, i ∈ Zm, from which

we obtain

Ki mod l =
1

n
K̃(i mod l) mod l =

1

n
K̃i mod l = Ki, i ∈ Zm.
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Conversely, suppose that Ki = Ki mod l, i ∈ Zm, which has the equivalent formula-
tion Ki = Ki+lk, i ∈ Zl, k ∈ Zn. From this identity, together with m = ln and the
assumed m-subsequence convergence of (Sa,p, c) to Φ, we obtain

max
i∈Zl

sup
j

∣∣∣∣nKi
1

n
Φ

(
lj + i

pr

)
− c

(r)
jl+i

∣∣∣∣

= max
i∈Zl

sup
j

max
k∈Zn

∣∣∣∣KiΦ

(
l (nj + k) + i

pr

)
− c

(r)
l(nj+k)+i

∣∣∣∣

= max
i∈Zl

max
k∈Zn

sup
j

∣∣∣∣Ki+lkΦ

(
mj + lk + i

pr

)
− c

(r)
mj+lk+i

∣∣∣∣

= max
i∈Zm

sup
j

∣∣∣∣KiΦ

(
mj + i

pr

)
− c

(r)
mj+i

∣∣∣∣ → 0, r → ∞.

This, together with the identity

l−1∑

i=0

nKi =

l−1∑

i=0

n−1∑

k=0

Ki =

l−1∑

i=0

n−1∑

k=0

Ki+lk =

m−1∑

i=0

Ki = 1,

yields (Sa,p, c)
l,K̃−−→ 1

nΦ, with K̃i = nKi, i ∈ Zl, thereby completing the proof of
the lemma. �

The next lemma shows that, as in the case of normal subdivision convergence,
it is sufficient to consider the initial sequence δ.

Lemma 3.2. If (Sa,p, δ)
m,K−−−→ φ, then, for any initial sequence c ∈ l∞ (Z) \ {0},

one has (Sa,p, c)
m,K−−−→ Φc, where Φc and φ are related by (1.17).

Proof. As before, let N = ↑a↑. From the assumption (Sa,p, δ)
m,K−−−→ φ, it can be

shown inductively that

(Sr
ac)j =

∑

l

(Sr
aδ)j−prl cl, j ∈ Z, r ∈ Z+, c ∈ M (Z) ,(3.3)

with the inductive step following from the definition (1.1).
Given any initial sequence c ∈ l∞ (Z) in the subdivision algorithm, we obtain by

use of (1.17) and (3.3) that the identity
(3.4)

KiΦc

(
mj + i

pr

)
− (Sr

ac)mj+i =
∑

l

cl

(
Kiφ

(
mj + i

pr
− l

)
− (Sr

aδ)mj+i−prl

)

holds for j ∈ Z, r ∈ Z+, and i ∈ {0, . . . ,m− 1}.
If we define, for r ∈ Z+, j ∈ Z, the constants μr,j , νr,j ∈ Z by

(3.5) μr,j =

⌈
mj

pr

⌉
−N and νr,j =

⌊
mj +m− 1

pr

⌋
,

it follows from (1.16), (1.6), (1.7), and Lemma 3.1(a) applied to the initial sequence
δ, after recalling also ↑δ↑ = 0 = ↓δ↓ and ↑a↑ = N , that the equalities

(3.6) φ

(
mj + i

pr
− l

)
= 0 = (Sr

aδ)mj+i−prl , l ∈ Z\ {μr,j , . . . , νr,j} ,
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hold for i ∈ {0, . . . ,m− 1}. Note from (3.5) that we have 0 ≤ νr,j − μr,j ≤ N for
j ∈ Z if r > logp (m− 1), from which, together with (3.4), (3.6), and (1.18) applied
to the initial sequence δ, we find that, for any ε > 0, the inequalities

∣∣∣∣KiΦc

(
mj + i

pr

)
− (Sr

ac)mj+i

∣∣∣∣ ≤
νr,j∑

l=μr,j

|cl|
∣∣∣∣Kiφ

(
mj + i

pr
− l

)
− (Sr

aδ)mj+i−prl

∣∣∣∣

≤
νr,j∑

l=μr,j

|cl| ε ≤ (N + 1) ‖c‖∞ ε

hold for j ∈ Z and i ∈ {0, . . . ,m− 1} by taking r large enough. This shows that

(Sa,p, c)
m,K−−−→ Φc. �

The next result extends another well-known property of standard subdivision
convergence to the case of subsequence convergence, namely that the limit function
must be refinable if one starts with the delta sequence.

Theorem 3.3. If, for some k ∈ Z+, the subdivision scheme (Sa,p, δ) has pk-
subsequence convergence with limit function φ, then (a, φ) is a p-refinement pair.

Proof. By application of (1.16), we obtain

Sr+1
a δ = pr+1

r∏

j=0

A〈pj〉 = pA〈pr〉 Sr
aδ , r ∈ Z+,

which by (1.8c) is equivalent to

(3.7)
(
Sr+1
a δ

)
j
=
∑

l

al (S
r
aδ)j−prl , j ∈ Z, r ∈ Z+.

By assumption we have (Sa,p, δ)
pk,K−−−→ φ for some K ∈ C

pk

. Since
∑pk−1

i=0 Ki = 1,

there is an index i ∈
{
0, . . . , pk − 1

}
such that Ki �= 0. Let now x ∈ R be fixed and

choose a sequence {jr : r ∈ Z+} such that jr
pr → p1−kx as r → ∞ and let ε > 0 be

given.
We have, by use of (3.7), that, for r ∈ Z+, r ≥ k,

Ki

(
φ

(
pkjr + i

pr+1

)
−
∑

l

alφ

(
pkjr + i

pr
− l

))

=

(
Kiφ

(pkjr +i

pr+1

)
−
(
Sr+1
a δ

)
pkjr+i

)

+
∑

l

al

(
(Sr

aδ)pk(jr−pr−kl)+i −Kiφ

(
pk
(
jr −pr−kl

)
+ i

pr

))
.

Together with the definition (1.18) of subsequence convergence, this yields the ex-
istence of an integer R ≥ k such that
(3.8)

|Ki|
∣∣∣∣∣φ
(
pkjr + i

pr+1

)
−
∑

l

alφ

(
pkjr + i

pr
− l

)∣∣∣∣∣ < ε+
∑

l

|al| ε = Cε, r ≥ R,
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where

(3.9) C = 1 +
∑

l

|al| < ∞.

According to Lemma 3.1(a), φ is compactly supported, so that φ ∈ C (R) implies
that φ is uniformly continuous on R. Hence there is a τ > 0 such that

(3.10) |φ (x)− φ (y)| < ε, x, y ∈ R, |x− y| < τ.

Since limr→∞
pkjr+i
pr+1 = limr→∞

(
pk−1 jr

pr + i
pr+1

)
= x, there is an integer R′ such

that r ≥ R′ implies
∣∣∣p

kjr+i
pr+1 − x

∣∣∣ < τ
p . Thus

∣∣∣∣

(
pkjr + i

pr
− l

)
− (px− l)

∣∣∣∣ = p

∣∣∣∣
pkjr + i

pr+1
− x

∣∣∣∣ < τ, l ∈ Z, r ≥ R′.

Since also τ
p < τ , we now have, by (3.10), for r ≥ R′,

∣∣∣∣φ
(
pkjr + i

pr+1

)
− φ (x)

∣∣∣∣ < ε(3.11)

and
∣∣∣∣φ
(
pkjr + i

pr
− l

)
− φ (px− l)

∣∣∣∣ < ε, l ∈ Z.(3.12)

If we take r ≥ max {R,R′}, we have from (3.8), (3.9), (3.11), and (3.12) that
∣∣∣∣∣φ (x)−

∑

l

alφ (px− l)

∣∣∣∣∣

=

∣∣∣∣∣φ (x)− φ

(
pkjr + i

pr+1

)
+ φ

(
pkjr + i

pr+1

)
−
∑

l

alφ

(
pkjr + i

pr
− l

)

+
∑

l

al

(
φ

(
pkjr + i

pr
− l

)
− φ (px− l)

)∣∣∣∣∣

≤
∣∣∣∣φ (x)− φ

(
pkjr + i

pr+1

)∣∣∣∣+
∣∣∣∣∣φ
(
pkjr + i

pr+1

)
−
∑

l

alφ

(
pkjr + i

pr
− l

)∣∣∣∣∣

+
∑

l

|al|
∣∣∣∣φ
(
pkjr + i

pr
− l

)
− φ (px− l)

∣∣∣∣

< ε+
Cε

|Ki|
+
∑

l

|al| ε = Cε

(
1 +

1

|Ki|

)
.

Since ε > 0 is arbitrary, we deduce that φ (x) =
∑

l alφ (px− l) for any given x ∈ R,
which, together with the compact support of φ and the fact that φ is not identically
zero, yields the desired result. �

4. Sufficient conditions for subsequence convergence

One trivial set of conditions which yields subsequence convergence occurs in the
case of “stretched” masks, as formulated in the following theorem.
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Theorem 4.1. For p ∈ N, p ≥ 2, and m ∈ N, if the masks a and ã are related by

ajm+l = δlãj , j ∈ Z, l ∈ Zm,

and the subdivision algorithm (Sã,p, δ) converges to a function φ, then (Sa,p, δ)
m,K−−−→

φ
( ·
m

)
, with K ∈ C

m given by Ki = δi, i ∈ Zm.

Proof. Set, as usual, c(r) = Sr
a,pδ and c̃(r) = Sr

ã,pδ. We show by induction that

(4.1) c
(r)
jm+l = δlc̃

(r)
j , j ∈ Z, l ∈ Zm,

for r ∈ Z+. For r = 0 we obtain, for l ∈ Zm, c
(0)
jm+l = δjm+l = δlδj = δlc̃

(0)
j .

Supposing now that (4.1) holds for a given r ∈ Z+, we obtain, for j ∈ Z and
l ∈ Zm,

c
(r+1)
jm+l =

∑

k

ajm+l−pkc
(r)
k =

∑

k

m−1∑

n=0

ajm+l−p(km+n)c
(r)
km+n

=
∑

k

m−1∑

n=0

a(j−pk)m+l−pnδnc̃
(r)
k =

∑

k

a(j−pk)m+lc̃
(r)
k

=
∑

k

δlãj−pkc̃
(r)
k = δlc̃

(r+1)
j ,

which completes the inductive step.
Denoting φ

( ·
m

)
by f , we obtain, from (4.1) and the convergence of (Sã,p, δ) to

φ, that

max
i∈Zm

sup
j

∣∣∣∣δif
(
mj + i

pr

)
− c

(r)
mj+i

∣∣∣∣ = max
i∈Zm

sup
j

∣∣∣∣δi
(
f

(
mj + i

pr

)
− c̃

(r)
j

)∣∣∣∣

= sup
j

∣∣∣∣f
(
mj

pr

)
− c̃

(r)
j

∣∣∣∣

= sup
j

∣∣∣∣φ
(

j

pr

)
− c̃

(r)
j

∣∣∣∣ → 0, r → ∞,

which completes the proof of the theorem. �

Example 4.2. In order to illustrate Theorem 4.1 for p = 2, consider the mask
with symbol

A (z) =
1

4

(
1 + z3

)2
, z ∈ C,

which was also considered in [10, Example 2.1]. In the notation of Theorem 4.1, we

have here m = 3 and Ã = (E1)
2
. Since (Sã,2, δ) converges to N2, Theorem 4.1 tells

us that (Sa,2, δ) has 3-subsequence convergence to N2

( ·
3

)
, i.e. the linear B-spline

with knots {0, 3, 6}, with subsequence convergence constantsK0 = 1, K1 = K2 = 0.
This is illustrated in Figure 4.1.

This elementary case is well known (see e.g. [10]), although the notion of sub-
sequence convergence has not, to our knowledge, been formally defined before. We
are of course interested in less elementary cases, as for instance in Example 1.2,
which is not covered by Theorem 4.1. In order to derive such less trivial suffi-
cient conditions for subsequence convergence to occur, we shall make use of the
GBP-factors of Section 2. This leads us to the following result.
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(a) (b)

Figure 4.1. Plots of (a) S4
aδ and (b)

(
S8
aδ
)
3·+e

, e = 0, 1, 2, in Example 4.2.

Theorem 4.3. For dilation factor p ∈ Z, p ≥ 2, suppose the mask symbol A
satisfies A = PB, where P is a p-GBP factor of level k and B is some polynomial.
Let the polynomials R,W be as in Lemma 2.4 and let the mask symbol Ã be defined
by

(4.2) Ã = Ep−1B.

Then, if the subdivision algorithm (Sã,p, c) converges to Φ̃, we have (Sa,p, c)
pk,K−−−→

Φ, with the function Φ defined by

(4.3) Φ = pk
∑

j

[R]j Φ̃ (· − j)

and K ∈ C
pk

given by

(4.4) Ki =
∑

l

⎡

⎣W
k−1∏

j=0

B〈pj〉
⎤

⎦

i−pkl

, i = 0, 1, . . . , pk − 1.

Proof. By Lemma 3.2, it is sufficient to consider the initial sequence c = δ; hence,
letting φ̃ denote the limit of the subdivision scheme (Sã,p, δ), we have to show that

(Sa,p, δ)
pk,K−−−→ φ, where φ is defined, in accordance with (4.3), by

(4.5) φ = pk
∑

j

[R]j φ̃ (· − j) ,

while K is as in (4.4).
From (1.16) we obtain

(4.6) Sr
ãδ = pr

r−1∏

j=0

Ã〈pj〉, r ∈ N.
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By using (1.16), (2.3), (1.8b), (1.8a), (1.11b), and (4.2), we now obtain, for r ∈
N, r > k,

Sr
aδ = pr

r−1∏

j=0

E
〈pj〉
p−1

R〈pj+1〉
R〈pj〉 B〈pj〉

= pr
R〈pr〉

R

⎛

⎝
k−1∏

j=0

E
〈pj〉
p−1 B

〈pj〉
⎞

⎠

⎛

⎝
r−1∏

j=k

E
〈pj〉
p−1 B

〈pj〉
⎞

⎠

= pr
R〈pr〉

R

⎛

⎝
k−1∏

j=0

E
〈pj〉
p−1 B

〈pj〉
⎞

⎠

⎛

⎝
r−k−1∏

j=0

E
〈pj+k〉
p−1 B〈pj+k〉

⎞

⎠

= pr
R〈pr〉

R

⎛

⎝
k−1∏

j=0

E
〈pj〉
p−1 B

〈pj〉
⎞

⎠

⎛

⎝
r−k−1∏

j=0

E
〈pj〉
p−1 B

〈pj〉
⎞

⎠
〈pk〉

= pr
Epk−1

R

⎛

⎝
k−1∏

j=0

B〈pj〉
⎞

⎠

⎛

⎝R〈pr−k〉
r−k−1∏

j=0

Ã〈pj〉
⎞

⎠
〈pk〉

= UV
〈pk〉
r ,

where, by noting (4.6) and the definition ofW , the polynomials U and V are defined
by

U = pkW

k−1∏

j=0

B〈pj〉(4.7)

and Vr = R〈pr−k〉 Sr−k
ã δ .

We thus find, by also using (1.8c), that, for j ∈ Z and i ∈
{
0, 1, . . . , pk − 1

}
,

(Sr
aδ)pkj+i =

∑

l

[U ]pk(j−l)+i [Vr]l

=
∑

l

[U ]i−pkl [Vr]j+l

=
∑

l

[U ]i−pkl

[
Sr−k
ã δ R〈pr−k〉

]

j+l

=
∑

l

[U ]i−pkl

∑

n

(
Sr−k
ã δ

)
j+l−pr−kn

[R]n .(4.8)

Let λ = −
⌊
p−k deg (U)

⌋
. Using (4.4), (4.7), (4.5), and (4.8), we obtain

∣∣∣∣Kiφ

(
pkj + i

pr

)
− (Sr

aδ)pkj+i

∣∣∣∣

=

∣∣∣∣∣
∑

l

[U ]i−pkl

∑

n

[R]n

(
φ̃

(
pkj + i

pr
− n

)
−
(
Sr−k
ã δ

)
j+l−pr−kn

)∣∣∣∣∣
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≤
∑

n

|[R]n|
0∑

l=λ

∣∣∣[U ]i−pkl

∣∣∣
(∣∣∣∣φ̃

(
pkj + i

pr
− n

)
− φ̃

(
j + l

pr−k
− n

)∣∣∣∣

+

∣∣∣∣φ̃
(
j + l

pr−k
− n

)
−
(
Sr−k
ã δ

)
j+l−pr−kn

∣∣∣∣

)
.

We have, for l ∈ {λ, . . . , 0} and i ∈
{
0, 1, . . . , pk − 1

}
, that

∣∣∣∣
pkj + i

pr
− n−

(
j + l

pr−k
− n

)∣∣∣∣ =
i− pkl

pr
<

pk + pkλ

pr
=

λ+ 1

pr−k
→ 0

independently of i, j, l, and n as r → ∞ and thus, by the uniform continuity of φ̃,

we find that
∣∣∣φ̃
(

pkj+i
pr − n

)
− φ̃

(
j+l
pr−k − n

)∣∣∣ → 0 independently of i, j, l, and n as

r → ∞. By the convergence of subdivision for ã, we have
∣∣∣∣φ̃
(
j + l − pr−kn

pr−k

)
−
(
Sr−k
ã δ

)
j+l−pr−kn

∣∣∣∣ → 0

independently of j, l, and n as r → ∞. Since both
∑

n |[R]n| and
∑0

l=λ

∣∣∣[U ]i−pkl

∣∣∣
are finite constants and not dependent on r, we conclude that indeed (1.18) holds
with m = pk.

We also have, by use of (4.4), Lemma 2.4, as well as the fact that B (1) = 1,
that the SCV satisfies

pk−1∑

i=0

Ki =

pk−1∑

i=0

∑

l

⎡

⎣W
k−1∏

j=0

B〈pj〉
⎤

⎦

i−pkl

=
∑

j

⎡

⎣W
k−1∏

j=0

B〈pj〉
⎤

⎦

j

= W (1)
k−1∏

j=0

B〈pj〉 (1) = 1,

which completes the proof of the theorem. �

We can now verify the results conjectured in Example 1.2. We have, in the

notation of Theorem 4.3, p = 2 and A (z) = 1
8

(
1 + z2

)2
(3− z) , z ∈ C, so that

P (z) = 1
2

(
1 + z2

)
, which implies k = 1, while

B (z) =
1

4

(
1 + z2

)
(3− z) =

1

4

(
3− z + 3z2 − z3

)
, z ∈ C,

and Ã (z) =
1

8
(1 + z)

(
1 + z2

)
(3− z) =

1

8

(
3 + 5z + z2 − z3

)
, z ∈ C.

To show subdivision convergence for the mask ã, we shall again apply Theorem
4.3 and also employ Lemma 3.1. Consider the mask symbol

˜̃A (z) =
1

8
(1 + z)2 (3− z) , z ∈ C.

It is known (see e.g. [10, Example 8.5]) that subdivision for the mask ˜̃a converges.
Hence by Theorem 4.3 subdivision for the mask ã has 2-subsequence convergence.
By noting from Remark 2.5 that W̃ = E0, we find

W̃ (z) B̃ (z) = B̃ (z) =
1

4

(
3 + 2z − z2

)
, z ∈ C.



990 DETER DE WET

Consequently, the SCV is given, according to (4.4), by

K̃0 =
∑

l

[
W̃ B̃

]

−2l
=

1

4
(3− 1) =

1

2

and K̃1 =
∑

l

[
W̃ B̃

]

1−2l
=

1

4
(2) =

1

2
.

Thus K̃0 = K̃1, which, by Lemma 3.1(d) with m = n = 2 and l = 1, implies
that subdivision for the mask ã has 1-subsequence convergence, i.e. subdivision for
ã converges.

Returning to the mask a, we now have from Theorem 4.3 that 2-subsequence
convergence does indeed occur. Similarly to what was done above, one obtains

K0 =
∑

l

[WB]−2l =
1

4
(3 + 3) =

3

2

and K1 =
∑

l

[WB]1−2l =
1

4
(−1− 1) = −1

2
,

as conjectured in Section 1.

Example 4.4. Our next examples illustrates Theorem 4.3 for the case of complex-
valued masks. Let p = 2 and set

AC (z) =
1

6

(
2 + (1− 2i) z + iz2 + (2 + i) z3 + z4

)
=

1

3
P (z) (2 + z) , z ∈ C,

where P (z) = 1
2 (1− iz)

(
1 + iz2

)
, z ∈ C, so that, according to Figure 2.1, P is a

2-GBP factor of level k = 2. The corresponding reduced mask symbol Ã is given
by

Ã (z) =
1

6
(1 + z) (2 + z) =

1

6

(
2 + 3z + z2

)
, z ∈ C.

By Theorem 1.13, the subdivision algorithm (Sã,p, δ) converges to the corresponding

refinable function φ̃. (This function is well known, being considered in e.g. [9,
Chapter 2].) Since P is a 2-GBP factor of level 2, it follows from Theorem 4.3 that
subdivision with the mask aC has 4-subsequence convergence to the corresponding
2-refinable function φC. In the notation of Remark 2.3, we have here r0 = E1 and
r1 (z) =

1−i
2 (1 + iz) , z ∈ C, so that

R (z) =
1− i

4

(
1 + (1 + i) z + iz2

)
, z ∈ C.

Thus we find that φC is given by

φC = (1− i) φ̃+ 2φ̃ (· − 1) + (1 + i) φ̃ (· − 2) .

To calculate the SCV, observe that

B (z) =
1

3
(2 + z) and W (z) =

E3 (z)

R (z)
=

1 + i

2
(1− iz)

for z ∈ C. The formula Ki =
∑

l

[
WBB〈2〉]

i−4l
, i ∈ Z4, obtained from (4.4), now

yields the SCV values

K0 =
5 + 3i

18
, K1 =

3− i

9
, K2 =

2

9
, and K3 =

3− i

18
.
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(a) (b) (c)

Figure 4.2. Plots of (a) the real parts, (b) imaginary parts, and

(c) magnitudes of
(
c
(8)
C

)

4·+i
, i ∈ Z4, in Example 4.4.

Figure 4.3. A further plot to illustrate the structure of the
complex-valued refinable function φC in Example 4.4.

Note in particular that K1 = 2K3. This result is graphically illustrated in

Figure 4.2, where we adopt the notation c
(r)
C

=
(
Sr
aC,2δ

)
, r ∈ Z+, while Figure 4.3

illustrates the structure and refinability of the limit function φC.

5. Applications

It is important to realise that normal subdivision algorithms can easily be adap-
ted to make use of subsequence convergence, as one simply uses normal subdivision
and then subsamples the resulting control points to obtain the desired subdivided
curve. It must be noted that in practice one must take extra care at the endpoints
to account for subsequence convergence.

Example 5.1. We now show another novel (albeit less serious) application of
subdivision convergence, namely how it can be used for decorative effects. Fix the
dilation factor at 2 and let, for β ∈ (0, 1), the mask symbol Aβ be defined by

(5.1) Aβ (z) =
1

4

(
1 + z2

)2
(β + (1− β) z) , z ∈ C,
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and take P = E
〈2〉
1 . It can now be verified that the corresponding reduced mask

ãβ of Theorem 4.3 is a positive mask, so that by Theorem 1.13, subdivision with
the mask ãβ is convergent. Since P is a 2-GBP factor of level 1, by Theorem 4.3 it
follows that 2-subsequence convergence will occur for the mask aβ . It can be easily
checked that the SCV is given by K0 = β and K1 = 1− β.

In this example, we actually have

(5.2) c
(r)
2· =

1− β

β
c
(r)
2·+1 =

K1

K0
c
(r)
2·+1, r ∈ N,

as can be verified by induction. The relationship (5.2) means that if we take a
small number of iterations, say 5 or 6, we obtain a curve which jumps back and
forth between the two curves formed by the even and odd indexed entries of the
curve. This can give rise to interesting patterns. We illustrate this in Figure 5.1(a),
where we subdivide a simple “diamond” shape six times using the mask obtained
for β = 3

4 .

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

-0.6 -0.3 0.0 0.3 0.6

-0.6

-0.3

0.0

0.3

0.6

-0.5 0.0 0.5 1.0

-0.5

0.0

0.5

1.0

0.0 0.3 0.6 0.9

-0.3

0.0

0.3

0.6

(a) (b)

Figure 5.1. Plots of the initial curve and the sixth iteration of
subdivision with β = 3

4 in Example 5.1 for (a) a diamond shape
centered on the origin and (b) the diamond shape shifted right and
up.

Note that the appearance of the resulting shape is not translation independent,
as can be seen from Figure 5.1(b), where we again use β = 3

4 and subdivide 6 times

as in Figure 5.1(a), but shift the initial curve a 1
4 unit right and an 1

8 unit up. By
varying the value of β, one can also control the ratio between the “even” and “odd”
curves according to (5.2).

Of course one can use the same techniques to construct more complex decorations
based on m-subsequence convergence where m > 2.

An issue that might be of interest for future research is the consideration of
subsequence convergence in the matrix subdivision case as considered in [7] and
the other references listed in the introduction.

6. Nested sets of refinement masks

The results of this chapter allow us to build a nested sequence of sets of refine-
ment masks. Let RM (p) denote the set of all p-refinement mask symbols corre-
sponding to continuous p-refinable functions. Let RMS (p, k) denote the set of mask
symbols for which the corresponding p-subdivision algorithm has pk-subsequence
convergence. Specifically, RMS (p, 0) denotes the set of mask symbols for which
p-subdivision converges.
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It is well known (see e.g. [10]) that RMS (2, 0) � RM (2). The following results
give further insight into the nature of the set RM (p) \RMS (p, 0).

In view of Theorem 3.3, we know that RMS (p, k) ⊂ RM (p) for any k ∈ Z+.
Furthermore, from Lemma 3.1(c) it follows that RMS (p, k − 1) ⊂ RMS (p, k) for
k ∈ N. Since (Ep−1)

m ∈ RMS (p, 0) for p ∈ N, p ≥ 2, and m ∈ N, we thus obtain,
for p ∈ N, p ≥ 2,

(6.1) ∅ �= RMS (p, 0) ⊂ RMS (p, 1) ⊂ · · · ⊂ RMS (p, k) ⊂ · · · ⊂ RM (p) .

The next result shows that {RMS (p, k) : k ∈ Z+} is a properly nested sequence.

Theorem 6.1. For k ∈ N, the relation RMS (p, k − 1) � RMS (p, k) holds.

Proof. Let the dilation factor p ∈ Z, p ≥ 2, be given and let B (z) = 2
3 +

1
3z, z ∈ C.

Define, for k ∈ Z+, Ak = E
〈pk〉
p−1 B. Then A0 is the symbol of a positive mask for

which the sum rules hold, so that Theorem 1.13 guarantees the convergence of the

corresponding subdivision algorithm. Then for any k ∈ Z+, since E
〈pk〉
p−1 is a p-GBP

factor of level k and the reduced mask Ãk is exactly A0, we know from Theorem
4.3 that the subdivision algorithm for Ak has pk-subsequence convergence to the
associated refinable function φk, so that Ak ∈ RMS (p, k). To show that pk−1-
subsequence convergence does not occur for Ak when k ≥ 1, we first show that the
SCV satisfies K0 �= Kpk−1 . To do so, define

Mk =

k−1∏

j=0

B〈pj〉, k ∈ N.

Then for k ∈ Z, k ≥ 2, it follows that Mk = BM
〈p〉
k−1, from which we deduce by

(1.8c) and the definition of B that

(6.2) [Mk]pj =
∑

l

[Mk−1]l [B]pj−pl =
2

3
[Mk−1]j , k ∈ Z, k ≥ 2.

Since [B]pj = 2 [B]pj+1 and B = M1, we obtain, by repeated application of (6.2),
for k ∈ Z, k ≥ 2,

[Mk]pkj =

(
2

3

)k−1

[M1]pj = 2

(
2

3

)k−1

[M1]pj+1 = 2 [Mk]pkj+pk−1 , j ∈ Z,

allowing us, in view also of Remark 2.5, to deduce that

K0 =
∑

j

[Mk]−pkj = 2
∑

j

[Mk]pk−1−pkj = 2Kpk−1

for any given k ∈ N. Since it can also be verified that K0 �= 0, it follows that K0 �=
Kpk−1 , so that by Lemma 3.1(d) we conclude that the subdivision algorithm for

Ak does not have pk−1-subsequence convergence to p−1φk. Now suppose that Ak ∈
RMS (p, k − 1). Then there is a p-refinable function ψk such that the subdivision
algorithm for Ak has pk−1-subsequence convergence to ψk. Then by Lemma 3.1(c),
subdivision for Ak has pk-subsequence convergence to pψk, which by Lemma 3.1(b)
means that ψk = p−1φk, contradicting the fact that subdivision for Ak does not have
pk−1-subsequence convergence to p−1φk. Thus Ak �∈ RMS (p, k − 1), showing that
Ak ∈ RMS (p, k) \RMS (p, k − 1). With (6.1), this gives the desired result. �
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Using subsequence convergence in subdivision allows us to plot all the p-refinable
functions corresponding to masks in RMS (p,∞) :=

⋃
k∈Z+

RMS (p, k), which, by

Theorem 6.1 and the uniqueness results Theorem 1.9(a) and Lemma 1.10, is a
proper superset of the p-refinable functions that can be plotted by normal subdivi-
sion. An interesting remaining open problem is to determine the nature of the set
RM (p) \RMS (p,∞).
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