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AN OPTIMAL ADAPTIVE MIXED FINITE ELEMENT METHOD

CARSTEN CARSTENSEN AND HELLA RABUS

Abstract. Various applications in fluid dynamics and computational contin-
uum mechanics motivate the development of reliable and efficient adaptive
algorithms for mixed finite element methods. In order to save degrees of free-
dom, not all but just a selection of finite element domains are refined. Hence
the fundamental question of convergence as well as the question of optimal-
ity require new mathematical arguments. The presented adaptive algorithm
for Raviart-Thomas mixed finite element methods solves the Poisson model
problem, with optimal convergence rate.

1. Introduction

This paper suggests an optimal adaptive mixed finite element algorithm Amfem

for the Poisson model problem with unknown flux p and primal variable u with

p+∇u = 0 and div p = f in Ω, while u = 0 on ∂Ω.

Given f ∈ L2(Ω), themixed variational formulation reads: Seek (p, u)∈ H(div,Ω)×
L2(Ω) such that, for all (q, v) ∈ H(div,Ω)×L2(Ω), it holds

(p, q)L2(Ω) = (div q, u)L2(Ω) and (div p, v)L2(Ω) = (f, v)L2(Ω) .(1.1)

Given finite-dimensional piecewise polynomial subspaces RT0(T�) ⊆ H(div,Ω) and
P0(T�) ⊆ L2(Ω), named after Raviart and Thomas and described in Section 2,
the discrete problem reads: Seek (p�, u�) ∈ RT0(T�) × P0(T�) such that, for all
(q�, v�) ∈ RT0(T�)× P0(T�),

(p�, q�)L2(Ω) − (div q�, u�)L2(Ω) + (div p�, v�)L2(Ω) = (f, v�)L2(Ω) .(1.2)

The existence and uniqueness of a discrete solution follows from the inf-sup
condition [12].

The a posteriori error control of mixed finite element methods dates back to the
independent work of Alonso [2] and Carstensen [14]; the error reduction and con-
vergence for adaptive mixed finite element methods was established by Carstensen
and Hoppe [19, 18]. Chen, Holst, and Xu proved convergence and optimality [22] of
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adaptive mixed finite element methods following arguments of Rob Stevenson for
the conforming finite element method. Their algorithm reduces oscillations sepa-
rately, before approximating the solution by some adaptive algorithm in the spirit
of W. Dörfler [23].

In an independent parallel work to this one here, Becker and Mao designed an
alternative optimal algorithm [6], which switches between reduction of the edge-
based error estimator and reduction of the oscillations via separate bulk chasing.
Since this may lead to successive loops of oscillation reduction, a potentially more
effective strategy is presented and analysed here. In the first case, when oscillations
are small compared to the estimated error, edge-oriented Dörfler marking is applied,
while in the second case we make use of an optimal algorithm, the Thresholding
Second Algorithm (TSA) by Binev, Dahmen and DeVore [7] to reduce oscillations.

The main contribution of this paper is to show optimal convergence for a sequence
of triangulations arising from two completely different strategies, i.e., Dörfler mark-
ing plus TSA. After each level of reducing oscillations, two triangulations refined
independently from a common coarse triangulation have to be combined. This
combination poses a new challenge for proving optimality as presented and beaten
in the following sections.

The oscillations on level � are defined for a regular triangulation T� of Ω into
triangles by

osc� := osc(f, T�) :=
( ∑

T∈T�

osc2(f, T )

)1/2

(1.3)

with local oscillations on the domain ω ⊆ Ω of area |ω| defined as

osc(f, ω) := |ω|1/2 ‖f − fω‖L2(ω) with

fω :=

 
ω

f dx := |ω|−1
ˆ
ω

f(x)dx.

For the set of all interior edges E� in the triangulation T�, the edge-error estimator
reads

η� := η�
(
E�
)
with η2� (M) :=

∑
E∈M

η2� (E) for M ⊆ E�(1.4)

and local contributions

η�(E) := |E|1/2 ‖[p�]E‖L2(E) for all E ∈ E�.

Here and in the sequel, [q]E := q|T+
− q|T−

denotes the jump of q across an edge

E = T+∩T− shared by the two elements T± ∈ T�, and νE = νT+
is the unit normal

vector exterior to T+ along E. Note that the normal component [p�] · νE vanishes
because of p� ∈ H(div,Ω), and so η�(E) solely measures the jump parallel to E.

The marking consists of the two alternatives (A) and (B) depending on the
computable osc� and η� and some global parameter κ > 0.

In Case (A) osc2� ≤ κη2� , compute M� ⊆ E� with minimal cardinality |M�| such
that

θAη
2
� ≤ η2� (M�)
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and compute a shape-regular triangulation T�+1, where the edges inM� are bisected
plus a minimal number of other edges in some closure algorithm to avoid hanging
nodes.

InCase (B) osc2� > κη2� , run the Thresholding Second Algorithm plus completion
from [7, 8] resulting in a regular triangulation T of nearly minimal cardinality |T |
such that

osc2(f, T ) ≤ Tol2 := ρB osc2� , with 0 < ρB < 1

and compute the overlay T�+1 := T� ⊕ T .
The Thresholding Second Algorithm of Section 4.4 of [7] is one possible exam-

ple; the point here is to enforce an oscillation reduction with optimal complexity
independent of the refinements of Figure 2.1 to keep the number of levels small.

The algorithm is feasible in the sense that the decision in Mark is solely based
on computed quantities and realises the simultaneous reduction of η� and osc�. This
avoids the computation of an initial triangulation T0, which approximates the data
up to a given fixed tolerance as in [22].

The main theorem states optimal complexity (Theorem 5.8) for Amfem as de-
fined in detail in Section 2 for particular positive parameters α, β, κ, and 0 < θA,
ρB < 1. For (p, f) in some approximation class As and the sequence of triangula-
tions (T�)� from Amfem with discrete fluxes (p�)�, Theorem 5.8 implies that

|T�| − |T0| � (ε2� + osc2�)
−1/(2s) ≈ ξ

−1/s
� ,

which is optimal with respect to As up to a multiplicative generic constant. The
proof is based on overlay control (Theorem 3.3) and contraction (Lemma 5.2). In
particular, for η�, and osc� as defined above and the exact error ε� := ‖p− p�‖L2(Ω)

of the flux there exists 0 < ρ < 1 such that contraction holds for the weighted term

η2�+1 + αε2�+1 + β osc2�+1 =: ξ2�+1 ≤ ρξ2� .

Here and in the sequel, |T�| := card(T�) denotes the number of elements in the
finite set T�, and A � B represents A ≤ CB for some mesh-independent, positive
generic constant C, whereas A ≈ B represents A � B � A. Moreover, the standard
notation of Lebesgue and Sobolev spaces is employed; e.g., the differential operators
are defined for vector-valued functions v(x) ∈ 2 for all x ∈ 2 as

div v :=
∂v1
∂x1

+
∂v2
∂x2

, curl v :=
∂v2
∂x1

− ∂v1
∂x2

,

and for scalar-valued functions v for all x ∈ 2

Curl v :=

(
∂v

∂x2
,− ∂v

∂x1

)
.

The remaining part of the paper is organised as follows. Section 2 introduces
notation and describes further details of the proposed Amfem. The focus is on
the optimal oscillation reduction in Mark with the concept of the overlay T� ⊕ T ,
defined as the coarsest common regular refinement of both T� and T . Section 3 is
based on the notion of trees and forests to represent refined meshes and overlays
and to combine the control of the number of elements in both Cases (A) and (B).

For the finite sequence M(0)
� , . . . ,M(K(�))

� of sets of edges from Algorithm 3.2 with

T� ⊕ T = Refine

(
T�,

(
M(k)

�

)
k=0,...,K(�)

)
,
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the key estimate in Theorem 3.3 guarantees that

K(�)∑
k=0

∣∣M(k)
�

∣∣ ≤ |T | − |T0| .

Section 4 introduces the discrete stability and quasiorthogonality for the proof of
contraction and optimality in Section 5. A numerical comparison of Amfem with
the adaptive algorithm in [6] concludes the paper.

2. Adaptive mixed finite element method algorithm (Amfem)

This section is devoted to the design of an adaptive algorithm for the lowest-
order mixed finite element method (MFEM) for solving the Poisson model problem
(1.2).

2.1. Outline of the adaptive algorithm. Let T0 be a regular, initial coarse
triangulation of Ω into closed triangles, where two distinct elements are either
disjoint or share exactly one node or one common edge. Moreover, each element of
T ∈ T0 has at least one node in the interior of Ω. For any T ∈ T0, one edge from
the set of its interior edges E(T ) is selected and called its reference edge E(T ).

In successive loops of the basic steps Solve, Estimate, Mark and Refine,
discrete solutions (p�, u�) ∈ RT0(T�) × P0(T�) are computed on each level � ≥ 0
based on the current shape-regular triangulation T� of Ω with the sets of its nodes
N�, free nodes K� := Ω∩N� and interior edges E�. The adaptive algorithm is based
on a combination of an edge-based error estimator and oscillation control in the
step Mark described in the sequel.

2.2. Solve. The Poisson model problem (1.2) is solved on the current triangula-
tion T� with the space of Raviart-Thomas finite elements of lowest order for the
triangulation T� of level � [9, 12], namely

RT0(T�) := {q ∈ H(div,Ω) | ∀T ∈ T� ∃a ∈ 2 ∃b ∈ ∀x ∈ T q(x) = a+ bx}.

Matlab implementations and documentations of Solve are provided in [5]. No-
tice that, in particular,

div p� + f� = 0 a.e. in Ω

for the piecewise integral mean f� ∈ P0(T�) defined by f�|T = fT =
ffl
T
f(x)dx for

all T ∈ T�.

2.3. Estimate. The error estimator η� of (1.4) and the oscillations osc� of (1.3)
allow reliable and efficient error control on the given triangulation T�.

Theorem 2.1 ([2, 17, 14]). The error estimator η� of (1.4) plus the oscillations
osc� of (1.3) are reliable and efficient in the sense that there exist positive constants
Ceff, Crel, which depend on the shape but not on the size of the element domains,
with

�(2.1) Ceffη
2
� ≤ ε2� := ‖p− p�‖2L2(Ω) ≤ Crel(η

2
� + osc2� ).



AN OPTIMAL AMFEM 653

������

������

(a) Triangle T

������

����

������

����

(b) green (T )

������

����

���
������

(c) blueleft (T )

������

���
����

������

(d) blueright (T )

���
���

������

������

(e) bisec3 (T )

Figure 2.1. Possible refinements of a triangle T . The reference
edge of each (sub)triangle is identified through an additional par-
allel line inside it.

2.4. Adaptive mesh-refinement: Mark and Refine. Given parameters 0 <
θA, ρB < 1, and positive κ, the algorithm distinguishes Cases (A) for osc2� ≤ κη2�
and (B) for κη2� < osc2� .

The nonempty setM� ⊆ E� is specified by Mark and used inRefine to compute
T�+1 by the Newest Vertex Bisection (NVB) and completion from [8, 7, 10, 32] with
respect to M�.

2.5. Case (A) for osc2� ≤ κη2� . Case (A) performs an error estimator reduction:
Sort the set of all edges E� in (E1, . . . , EN ) with ηE1

≤ · · · ≤ ηEN
. Compute a set

M� := {EN , . . . , EN−k} of minimal cardinality |M�| = k + 1 with

θAη
2
� ≤ η2� (M�).(2.2)

A possible choice of refinement rules green, blue, and bisec3 is depicted in
Figure 2.1. The refined triangulation T�+1:=Refine(T�, C�(M�)) from T� is uniquely
defined in the way, such that exactly the edges in C�(M�) are bisected. C�(M�) is
the minimal subset of E� which includes M� and is closed in the sense that

{E(T ) ∈ E� | T ∈ T� and E(T ) ∩ C�(M�) 
= ∅} ⊆ C�(M�).(2.3)

2.6. Case (B) for osc2� > κη2� . Case (B) reduces the oscillations: Given f , T0,
0 < ρB < 1, set Tol := ρ

1/2
B osc� and run Thresholding Second Algorithm plus

completion [7, 8] to compute an optimal T with

osc2(f, T ) ≤ Tol2 and |T | − |T0| � Tol−1/s .

Hence, the regular overlay triangulation T�+1 := T ⊕T�, computed by means of the
corresponding forests in Section 3, satisfies

osc2�+1 ≤ Tol2 .

By definition of Tol in each level of Case (B), an oscillation reduction with
0 < ρB < 1 holds:

(2.4) osc2�+1 ≤ ρB osc2� .

The refinement in (B) is not level-oriented in the sense that one element domain
K of T� might contain a seemingly uncontrolled number of refined element domains



654 C. CARSTENSEN AND H. RABUS

in {T ∈ T�+1 | T ⊆ K} ⊆ T�+1. The control requires the investigations of the
subsequent section.

3. Combining the two cases in one optimal algorithm

This section is devoted to the overall control of the number of finite element
domains treated in the two separate ways (A) and (B).

3.1. Forests representing triangulations. This subsection briefly recalls the
concepts of trees and forests from [7] to clarify the notion of overlays and to embed
oscillation reduction into the successive loops of the estimator reduction in both
Cases (B) and (A).

A rooted tree is a graph, where one vertex is designated to be the root and any
two vertices are connected by exactly one path. If two vertices are connected by an
edge, the vertex closer to the root is called the parent, the other its child. A vertex
with at least one child is called an interior vertex and otherwise a leaf. A pairwise
disjoint set of trees is called a forest.

This paper focuses on regular triangulations generated from some coarse regular
triangulation T0 by NVB with refinements of Figure 2.1. Any possible triangulation
T� refined from T0 is represented by one forest F�, and the refinement of each triangle
T of the initial triangulation T0 corresponds to one tree with root T in F�. The
leaves of all trees of F� represent the elements of T�. Each vertex in F� has either
two children or none and all but the root in T0 have an ancestor.

In steps Mark and Refine of Case (A) in Amfem, a refined triangulation is
computed by marking a set of edges, followed by Closure (cf. paragraph 3.4)
and NVB. In Case (B), however, the current triangulation T� is overlaid with a
triangulation T represented by a forest F with osc(f, T )2 ≤ Tol2. The subsequent
subsection explains the definition and the key estimate for the overlay of triangu-
lations. Then, on each level �, a triangulation T� and its forest F� are available.

3.2. Overlay of two refinements of T0. The coarsest common refinement T�⊕T
of two regular triangulations T� and T refined from T0, called overlay, is defined by
the union of their forests F� ∪ F . Its number of elements is bounded as stated in
the following lemma.

Lemma 3.1 ([21]). The overlay T� ⊕ T of two regular triangulations T� and T
refined from T0 by NVB is regular and satisfies

�(3.1) |T� ⊕ T | − |T�| ≤ |T | − |T0| .

The following algorithm is for theoretical purposes only and allows a common
refinement control for both Cases (A) and (B).

Algorithm 3.2 (Embed Oscillation Control). This algorithm provides a fi-

nite sequence of sets of successively marked reference edges
(
M(k)

�

)
k
in order to

embed Case (B) of Amfem in the standard level-oriented overall adaptive mesh-
refinement. The output of the algorithm realises a finite number of successive
refinements, written

T�+1 := T� ⊕ T = Refine

(
T�,

(
M(k)

�

)
k=0,...,K(�)

)
,(3.2)

where in each step k each triangulation is refined as shown in Figure 2.1, with

respect to the set of marked edges M(k)
� as follows.
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Input: Given T� and T� ⊕ T , set T (0)
� := T�, E(0)

� := E�, k := 0.
Loop: For k = 0, 1, . . . until termination for k = K(�), set

M(k)
� :=

{
E(T ) ∈ E(k)

� | T ∈ T (k)
� \ T�+1

}

and run NVB to refine M(k)
� in T (k)

� with output

T (k+1)
� := Refine

(
T (k)
� ,M(k)

�

)
.(3.3)

If T (k+1)
� � T� ⊕ T , update k, else stop with k = K(�).

Output: A sequence of reference edges
(
M(k)

�

)
k=0,...,K(�)

.

The benefit of the artificial marked edges M(0)
� , . . . ,M(K(�))

� in Case (B) is that

the refinement (3.3) is level-oriented such that each triangle in T (k)
� is refined as

shown in Figure 2.1 to obtain T (k+1)
� .

3.3. Refinement control in Case (B).

Theorem 3.3. Given regular triangulations T�, T refined from T0 by NVB, Algo-
rithm 3.2 stops after a finite number of K(�) ≥ 0 steps with

T (K(�)+1)
� = T� ⊕ T

and outputs a finite sequence of sets
(
M(k)

�

)
k=0,...,K(�)

with (3.2)–(3.3) and

K(�)∑
k=0

∣∣M(k)
�

∣∣ ≤ |T | − |T0| .

Proof. Let F , F�, F (k)
� , and F�+1 = F� ∪ F denote the forests associated to the

triangulations T , T�, T (k)
� , and T�+1 := T� ⊕ T , respectively. By mathematical

induction, one oberserves that NVB leads to a nested sequence

F� = F (0)
� � F (1)

� � · · · � F (K(�))
� � F (K(�)+1)

� = F�+1.

In fact, T (k)
� \T�+1 denotes the triangles and M(k)

� the marked edges to be refined
in step k. Since F�+1 \ F� is finite, Algorithm 3.2 terminates after K(�) steps with

F (K(�)+1)
� = F�+1.

For each E ∈ M(k)
� with 0 ≤ k ≤ K(�), at least one element in T (k)

� is refined

into at least two new elements in T (k+1)
� . Furthermore, if E is an interior edge,

at least two elements in T (k)
� are bisected to at least four new elements in T (k+1)

� .
Therefore it follows that ∣∣M(k)

�

∣∣ ≤ ∣∣T (k+1)
�

∣∣− ∣∣T (k)
�

∣∣.(3.4)

Recall that T (0)
� = T�, T (K(�)+1)

� = T�+1 = T� ⊕ T and apply (3.1), (3.4) to deduce

K(�)∑
k=0

∣∣M(k)
�

∣∣ ≤ |T� ⊕ T | − |T�| ≤ |T | − |T0| . �
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3.4. Closure. There are several strategies to realise the implementation of refining
a mesh by NVB with respect to a set of marked edges M�. One way is first to run
some Closure algorithm to compute the smallest superset C�(M�) of M� with
(2.3). Thereafter, second, refine each triangle according to Figure 2.1 and apply
the indicated definition of reference edges.

The overhead of Closure is bounded in the following sense. A sequence of
triangulations (T�)� and corresponding sets of marked edges (M�)� satisfy

|T�| − |T0| ≤ C0

�−1∑
j=0

|Mj |

for some C0 > 0 depending solely on T0 [7, 32]. This estimate is usually employed
in Case (A), but holds in Case (B) in the sense that

|T�| − |T0| ≤ C0

�−1∑
j=0

K(j)∑
k=0

∣∣∣M(k)
j

∣∣∣ ,(3.5)

where M(0)
j , . . . ,MK(j)

j is the output of Algorithm 3.2 in Case (B), and where

M(0)
j := Mj and K(j) := 0 in Case (A).

4. Further preliminaries

This section summarises some key arguments for the contraction property and
optimal convergence. In contrast to [22], the proof of Lemma 4.2 presents a direct
verification of the discrete stability based on the following nonstandard Poincaré
inequality.

The subsequent analysis of MFEM employs the nonconforming finite element
spaces

PNC
1 (T�) := {v ∈ P1(T�) | ∀E ∈ E�, v is continuous at mid(E)},

PNC
1,0 (T�) := {v ∈ PNC

1 (T�) | ∀E ∈ ED
� , v(mid(E)) = 0}

for the midpoint mid(E) of any edge E, and the set of edges ED
� along the boundary

∂Ω.
The following lemmas apply to triangulations T�+k refined from T� in possibly

more than one level of refinements from Figure 2.1 and to their respective MFEM
solutions (p�, u�) ∈ RT0(T�) × P0(T�), and (p�+k, u�+k) ∈ RT0(T�+k)× P0(T�+k) of
(1.2). Besides, let (p, u) ∈ H(div,Ω)×L2(Ω) denote the exact solution of (1.1).

Furthermore, let ∇�+k denote the piecewise action of the gradient ∇ on T�+k,
hT = diam(T ) and let aT denote the integral mean of some a�+k ∈ PNC

1 (T�+k) on
a coarser triangle T ∈ T� used in the following lemmas.

Lemma 4.1 (Poincaré inequality). A nonstandard discrete Poincaré inequality for
a�+k ∈ PNC

1 (T�+k) and T ∈ T� reads

‖a�+k − aT ‖L2(T ) � hT ‖∇�+ka�+k‖L2(T ) .(4.1)

Proof. The estimate (4.1) is a consequence of the work of Brenner. For a proof,
one transforms T ∈ T� and its refined mesh T�+k|T onto the reference triangle
Tref with a refined mesh of right isosceles triangles. Furthermore, a�+k and aT are
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transformed onto Tref to ã�+k and ãT , respectively. Hence, the estimate from [11,
Theorem 10.6.16] for arbitrary shape-regular meshes, cf. [11, p. 301f], simplifies to

‖ã�+k − ãT ‖L2(Tref )
� ‖∇�+kã�+k‖L2(Tref )

.

A careful transformation from Tref to T yields the factor hT in (4.1). �

Lemma 4.2 (Discrete Stability). Let p�+k and p̂�+k be the flux-part of the discrete
MFEM solutions of (1.2) in RT0(T�+k) with piecewise constant right-hand sides
f�+k ∈ P0(T�+k) and f� ∈ P0(T�); e.g.,

div p�+k + f�+k = 0 and div p̂�+k + f� = 0.

Then, there exists some constant C1 > 0 (depending solely on the shape-regularity
of T0) such that

C−1
1 ‖p�+k − p̂�+k‖L2(Ω) ≤

( ∑
T∈T�

h2
T ‖f�+k − f�‖2L2(T )

)1/2

≤ osc� .

Proof. Let x�+k ∈ P0(T�+k;R2) denote the triangle midpoints, x�+k|T := mid(T )
for T ∈ T�+k. It is well established [26, 5] that

p�+k(x) = ∇�+ku
NC
�+k + (x− x�+k)f�+k/2 for x ∈ T ∈ T�+k,

p̂�+k(x) = ∇�+kû
NC
�+k + (x− x�+k)f�/2 for x ∈ T ∈ T�+k,

while uNC
�+k ∈ PNC

1 (T�+k) solvesˆ
Ω

∇�+ku
NC
�+k · ∇�+kv

NC
�+kdx =

ˆ
Ω

f�+kv
NC
�+kdx for all vNC

�+k ∈ PNC
1,0 (T�+k).

When, (• − x�+k) represents the factor (x − x�+k) of x ∈ Ω, the definition
a�+k := uNC

�+k − ûNC
�+k yields

∇�+ka�+k = ∇�+ku
NC
�+k −∇�+kû

NC
�+k = p�+k − p̂�+k − (• − x�+k)(f�+k − f�)/2.

Since (• − x�+k)⊥L2(Ω)P0(T�)2 it follows that

‖p�+k − p̂�+k‖2L2(Ω) = ‖(• − x�+k)(f�+k − f�)/2‖2L2(Ω)

+ ‖∇�+ka�+k‖2L2(Ω) .
(4.2)

Moreover, an elementwise integration by parts shows that

‖∇�+ka�+k‖2L2(Ω) = (p�+k − p̂�+k,∇�+ka�+k)L2(Ω)

= −
(
div

(
p�+k − p̂�+k

)
, a�+k

)
L2(Ω)

+
∑

E∈E�+k

ˆ
E

(
p�+k − p̂�+k

)
· νE [a�+k]Eds

=
∑
T∈T�

ˆ
T

(f�+k − f�)(a�+k − aT )dx.

The last identity follows for T ∈ T� and E ∈ E�+k fromˆ
T

(f�+k − f�)dx = 0 =

ˆ
E

[a�+k]Eds.
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The combination of (4.1) of Lemma 4.2 with the aforementioned arguments and
orthogonality in (4.2) leads to

‖∇�+ka�+k‖2L2(Ω) �
(∑

T∈T�

h2
T ‖f�+k − f�‖2L2(T )

)1/2

‖∇�+ka�+k‖L2(Ω) . �

Lemma 4.3 (Quasiorthogonality). Given C1 > 0 from Lemma 4.2, quasiorthogo-
nality holds in the sense of

(p− p�+k, p�+k − p�)L2(Ω) ≤ C1ε�+k osc�;(4.3)

‖p�+k − p�‖2L2(Ω) ≤ ε2� − ε2�+k + 2C1ε�+k osc�;(4.4)

ε2� − ε2�+k ≤ ‖p�+k − p�‖2L2(Ω) + 2C1ε�+k osc� .(4.5)

Proof. Let p̂�+k ∈ RT0(T�+k) be the intermediate solution of Lemma 4.2 with
div p̂�+k + f� = 0. An integration by parts and div

(
p̂�+k − p�

)
= 0 show that

(p− p�+k, p̂�+k − p�)L2(Ω) = 0.

Hence an application of Lemma 4.2 yields∣∣∣(p− p�+k, p�+k − p�)L2(Ω)

∣∣∣ ≤ ε�+k ‖p�+k − p̂�+k‖L2(Ω)

≤ C1ε�+k osc� .

This proves (4.3) and leads to (4.4) via

‖p�+k − p�‖2L2(Ω) = ε2� − ε2�+k − 2 (p− p�+k, p�+k − p�)L2(Ω)

≤ ε2� − ε2�+k + 2C1ε�+k osc� .

The same arguments yield (4.5); namely,

ε2� − ε2�+k = ‖p�+k − p�‖2L2(Ω) + 2 (p− p�+k, p�+k − p�)L2(Ω)

≤ ‖p�+k − p�‖2L2(Ω) + 2C1ε�+k osc� . �

The following lemma is essentially contained in [22] and given here with a proof
for convenient reading.

Lemma 4.4. Given C1 > 0 from Lemma 4.2, there exists a constant C2 > 0, which
solely depends on T0, such that∣∣E� \ E�+k

∣∣ ≤ 3
(
|T�+k| − |T�|

)
,(4.6)

‖p�+k − p�‖2L2(Ω) ≤ C2η
2
�

(
E� \ E�+k

)
+ C2

1 osc
2
� .(4.7)

Proof of (4.6) of Lemma 4.4. For each E ∈ E� \ E�+k there is a refinement of the
neighbourhood ω̄E := T+ ∪ T− of E and each neighbouring K ∈ {T+, T−} ⊂ T�
with E ⊆ ∂K is, at least, bisected in the refinements from T� to T�+k. Let

χj(K) := |{T ∈ Tj | T ⊆ ω̄E}| for K ∈ T� and j = �, �+ 1, . . . ;

mE :=

⎧⎪⎨
⎪⎩
1/2 if E interior, E ∈ E� \ E�+k,

1 if E ⊆ ∂Ω, E ∈ E� \ E�+k,

0 otherwise.

Then, for all E ∈ E� \ E�+k,

1 ≤ mE

(
χ�+k(ωE)− χ�(ωE)

)
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holds, and hence

|E� \ E�+k| ≤
∑

E∈E�\E�+k

mE (χ�+k(ωE)− χ�(ωE))

=
∑
T∈T�

∑
E∈E�(T )

mE (χ�+k(ωE)− χ�(ωE))

≤ 3
∑
T∈T�

(|{K ∈ T�+k | K ⊆ T}| − 1) = 3 (|T�+k| − |T�|) .

This verifies (4.6) with the factor 3 on the right-hand side. In fact, this factor could
be 2 with a more detailed inspection and an assignment of one proper neighbour
TE of E with similar arguments. �

Proof of (4.7) of Lemma 4.4. Let p̂�+k ∈ RT0(T�+k) be the intermediate solution
of Lemma 4.2 with div p̂�+k + f� = 0.

Then, div
(
p̂�+k − p�

)
= 0 shows that (p̂�+k − p�+k, p̂�+k − p�)L2(Ω) = 0. This

and Lemma 4.2 yield

‖p�+k − p�‖2L2(Ω) = ‖p̂�+k − p�‖2L2(Ω) + ‖p�+k − p̂�+k‖2L2(Ω)

≤ ‖p̂�+k − p�‖2L2(Ω) + C1 osc
2
� .

(4.8)

It remains to bound ‖p̂�+k − p�‖2L2(Ω). The discrete orthogonal Helmholtz decom-

position [3] yields b�+k ∈ P̂1(T�+k) :=
{
v ∈ P1(T�+k) ∩ C

(
Ω̄
)
|
ffl
Ω
v dx = 0

}
and

a�+k ∈ PNC
1,0 (T�+k) with

p̂�+k − p� = ∇�+ka�+k +Curl b�+k.

Let b� := I�b�+k be some (e.g., Scott-Zhang) quasi-interpolation with

‖b�+k − I�b�+k‖L2(E) ≤ Ch
1/2
E |b�+k|H1(ωE)

for E ∈ E� and its neighbourhood ωE . Notice that

‖b�+k − I�b�+k‖L2(E) = 0 if E ∈ E�+k ∩ E�.

The L2 orthogonality (p̂�+k − p�)⊥L2(Ω)∇�+ka�+k verifies

‖p̂�+k − p�‖2L2(Ω) = (p̂�+k − p�,Curl b�+k)L2(Ω) ,

while the discrete conditions (1.2) with test function Curl b� ∈ RT0(T�)⊆ RT0(T�+k)
lead to

(p̂�+k,Curl b�+k)L2(Ω) = 0 = (p�,Curl b�)L2(Ω) .

Hence,

‖p̂�+k − p�‖2L2(Ω) =(p�,Curl(b� − b�+k))L2(Ω)

=
∑
E∈E�

ˆ
E

[p�]E · τE(b� − b�+k)ds−
∑
T∈T�

ˆ
T

curl(p�)(b� − b�+k)ds

=
∑

E∈E�+k\E�

ˆ
E

[p�]E · τE(b� − b�+k)ds.
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In 2D it holds |b�+k|H1(Ω) ≤ ‖p̂�+k − p�‖L2(Ω) . Thus,

‖p̂�+k − p�‖2L2(Ω) ≤
∑

E∈E�+k\E�

‖[p�]E‖L2(E) ‖b� − b�+k‖L2(E)

≤ C
1/2
2 η� (E� \ E�+k) ‖p̂�+k − p�‖L2(Ω) .

A division by ‖p̂�+k − p�‖L2(Ω) plus (4.8) leads to the assertion (4.7). �

5. Convergence and optimality of Amfem

This section is devoted to the convergence analysis of the adaptive mixed finite
element method (Amfem). Again, let T�+k be a triangulation refined from T� in
k ≥ 1 levels of refinement and p�+k, p� the flux part of their respective MFEM
solutions.

5.1. Contraction property.

Lemma 5.1. There exists C3 > 0, depending on T0 only, such that for any δ > 0,
Cδ := C3(1 + 1/δ) and on any level � with Case (A) and 0 < θA < 1 or with Case
(B) and k ≥ 1, it follows that

η2�+1 ≤ (1 + δ)(1− θA/2)η
2
� + Cδ ‖p�+1 − p�‖2L2(Ω) in Case (A),(5.1)

η2�+k ≤ (1 + δ)η2� + Cδ ‖p�+k − p�‖2L2(Ω) in Case (B).(5.2)

Proof. The estimates are proven by applying Young’s inequality and by exploiting
that p�+k − p� ∈ P0(T�+k), k ≥ 1 (cf., e.g., [16, 21]). �

Lemma 5.2 (Contraction). Given 0 < θA, ρB < 1, there exist positive parameters
α, β, κ0 and 0 < ρ < 1, such that for all 0 < κ < κ0 and on any level with Case
(A) or (B) of algorithm Amfem the weighted term ξ� satisfies the contraction

ξ2�+1 ≤ρξ2� , ξ2� := η2� + αε2� + β osc2� .(5.3)

Proof. Let 0 < θA, ρB < 1 and positive constants C1, Cδ, Crel be given from
Lemmas 4.2, 5.1, and Theorem 2.1, respectively. Contraction is proven for the
following choice of positive parameters A, B, D, α, β, δ, γ, κ0, and 0 < ρA < 1 and
all 0 < κ < κ0:

δ :=θA/ (4− 2θA) , ρA :=(1 + δ)(1− θA/2),

γ :=
1

2
min

{
1,

1− ρA
CδCrel

}
, B :=

3

4
min

{
1,

1− ρA
CδCrel

}
,

A :=2(C1Cδ/γ + CδCrelB), α :=Cδ (1− γ) ,

κ0 :=
1− ρA − CδCrelB

A
, D :=

1/2 + δ + CδCrelB

κ
,

β := 2max

{
C1Cδ/γ + CδCrelB +D

1− ρB
, A− C1Cδ/γ − CδCrelB

}
.

The application of Young’s inequality and reliability (2.1) to the quasiorthogonality
(4.4) leads to

‖p�+1 − p�‖2L2(Ω) ≤ (1−B)ε2� − (1− γ)ε2�+1

+ (C1/γ + CrelB) osc2� +CrelBη2� .
(5.4)
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On each level with Case (A), substituting (5.4) in (5.1) reveals

η2�+1 ≤ (ρA + CδCrelB) η2� + Cδ(1−B)ε2�

− Cδ(1− γ)ε2�+k + Cδ (C1/γ + CrelB) osc2� .

Together with reliability, osc2�+1 ≤ osc2� and osc2� ≤ κη2� , this verifies

ξ2�+1 ≤ (ρA +Aκ+ CδCrelB) η2� + Cδ (1−B) ε2�

+ (β + C1Cδ/γ −A+ CδCrelB) osc2� .

Thus, with the proposed choice of parameters, on any level with Case (A), contrac-
tion is realised, i.e., ξ2�+1 ≤ ρ1ξ

2
� holds with ρ1 defined by

0 < ρ1 := max {(ρA +Aκ+ CδCrelB) , Cδ (1−B) /α,

(β + C1Cδ/γ −A+ CδCrelB) /β} < 1.

In Case (B), similarly to Case (A), substituting (5.4) in (5.2) and applying
osc2�+1 ≤ ρB osc2� , as well as κη

2
� < osc2� , proves

ξ2�+1 ≤ (1 + δ + CδCrelB −Dκ)η2� + Cδ(1−B)ε2�

+ (C1Cδ/γ + CδCrelB + βρB +D) osc2� .

Thus, for the special choice of parameters, contraction of ξ2� on any level with Case
(B), i.e., ξ2�+1 ≤ ρ2ξ

2
� , holds with ρ2 defined as

0 < ρ2 := max {1 + δ + CδCrelB −Dκ,Cδ(1−B)/α,

+(C1Cδ/γ + CδCrelB + βρB +D)/β} < 1.

Hence, there exist parameters α, β, κ0 > 0 such that for all 0 < κ < κ0 on any
level, irrespective of the relation between η� and osc�, the contraction (5.3) of the
weighted term ξ� with ρ := max {ρ1, ρ2} is ensured. �

Remark 5.3. Given Ceff, Crel, C1, α, β, κ from Theorem 2.1, and Lemmas 4.2, 5.2,
respectively, set

CA := 1 + αCrel + (αCrel + β)κ, CB := CA/κ.

Then, the weighted term ξ� for triangulation T� of the MFEM error ε�, the estimated
error η� and oscillations osc� satisfies

ξ2� ≤
{
CAη

2
� if Case (A) applies,

CB osc2� if Case (B) applies,
(5.5)

ξ2� ≈ ε2� + osc2� .(5.6)

Proof. (5.5) is proven by applying reliability and the specific relation of the esti-
mated error and oscillations in both Cases (A) and (B).

(5.6) follows directly from the efficiency and reliability (2.1) of η�. �

Lemma 5.4. Given Ceff from Theorem 2.1, C1 from Lemma 4.2, and α, β as
chosen in Lemma 5.2, let T be a triangulation refined from T� by NVB and set

CC := max
{
4C−1

eff + 2 , 4C1C
−1
eff + 2C1 + 1

}
.
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The weighted terms ξ� and ξT for T of the MFEM error εT , the estimated error
ηT , and oscillations oscT satisfy

ε2T ≤ 2ε2� + 4C2
1 osc

2
� ,(5.7)

αε2T ≤ ξ2T ≤ CCξ
2
� .(5.8)

Proof. (5.7) follows from quasiorthogonality and Young’s inequality via

ε2T ≤ ε2� + 2C1εT osc� −‖pT − p�‖2L2(Ω)

≤ ε2� + 2C2
1 osc

2
� +ε2T /2− ‖pT − p�‖2L2(Ω) .

To prove (5.8), the estimates 1 ≤ 2α and 1 ≤ β/C1 are verified by means of the
definitions of α and β in the proof of Lemma 5.2:

1

2
≤ Cδ

2
≤ α ≤ α

γ (1− γ) (1− ρB)
=

Cδ

γ (1− ρB)
≤ β

2C1
.

In addition to the previous estimates, efficiency is applied and yields

ξ2T ≤ 2
(
C−1

eff + α
)
ε2� +

(
4C2

1

(
C−1

eff + α
)
+ β

)
osc2�

≤
(

2

αCeff
+ 2

)
αε2� +

(
4C2

1

βCeff
+

4C2
1α

β
+ 1

)
β osc2�

≤ CCξ
2
� , with CC := max

{
4C−1

eff + 2 , 4C1C
−1
eff + 2C1 + 1

}
.

Note that CC > 0 is independent of the special choice of parameters in the algorithm
Amfem, and in particular is independent of θA. �

5.2. Optimal convergence. This subsection is devoted to the optimal conver-
gence rate [7, 31] of the adaptive algorithm Amfem.

Definition 5.5 (Approximation Class). Given an initial regular triangulation T0
of Ω and s > 0, let

As := {(p, f) ∈ H(div,Ω)×L2(Ω) | ‖(p, f)‖As
< ∞} with

‖(p, f)‖As
:= sup

N∈

(
Ns inf

|T |−|T0|≤N

(
ε2(T ) + osc2(f, T )

)1/2)
,

ε(T ) := ‖p− pT ‖L2(Ω) .

The infimum is with respect to all regular and NVB-generated refinements T of T0,
called admissible triangulations, with the number of element domains |T | ≤ N+|T0|
and with the exact error ε(T ) of the flux-part pT ∈ RT0(T ) of the MFEM solution.

Remark 5.6. The approximation class As can be characterised [31, p. 255, Remark
5.1, p. 263, l. 17] by (p, f) ∈ As if and only if for all ε > 0 there exists an admissible
triangulation Tε such that the associated MFEM solution (pε, uε) in RT0(Tε)×P0(Tε)
satisfies

ε2(Tε) + osc2(f, Tε) ≤ ε2 and |Tε| − |T0| � ε−1/s ‖(p, f)‖1/sAs
.

Remark 5.7. Our main result states optimal convergence of the Amfem in the fol-
lowing sense: Given (p, f) ∈ As and � ∈ , the algorithm generates a triangulation
T� with discrete solutions (p�, u�) in RT0(T�)× P0(T�) such that

|T�| − |T0| � ξ
−1/s
� ≈

(
ε2� + osc2�

)−1/(2s) ≈
(
ε� + osc�

)−1/s
.



AN OPTIMAL AMFEM 663

Theorem 5.8 (Optimal Convergence Rates). Let T0 be some initial triangulation,
s > 0, 0 < θA < min{Ceff/C2, 1}, and positive constants Ceff, C1, C2 given by
Theorem 2.1, and Lemmas 4.2, 4.4. Then, for all 0 < ρB < 1 there exist positive
parameters α, β, κ0, and 0 < ρ < 1 from Lemma 5.2, such that for all 0 <
κ < min

{
κ0, Ceff − C2θA/(2C

2
1)
}
and (p, f) ∈ As the algorithm Amfem generates

triangulations which satisfy

|T�| − |T0| � ξ
−1/s
� , for all � ≥ 0.

Proof. The key of the proof is to verify for any level � in either Case (A) or (B)

that there exist K(�) ∈ N sets of marked edges M(0)
� , . . . ,MK(�)

� such that

T�+1 = Refine

(
T�,

(
M(k)

�

)
0≤k≤K(�)

)
, and

K(�)∑
k=0

∣∣M(k)
�

∣∣ � ξ
−1/s
� .(5.9)

In fact, once (5.9) is verified, (3.5) with C0 > 0 shows that

|T�| − |T0| ≤
�−1∑
j=0

(
|Tj+1| − |Tj |

)
≤ C0

�−1∑
j=0

K(j)∑
k=0

|M(k)
j | �

�−1∑
j=0

ξ
−1/s
j .

This and the contraction property (5.3) from Lemma 5.2 reveal optimal global
convergence owing to the subsequent arguments

|T�| − |T0| ≤ ξ
−1/s
�

�∑
k=1

ρ−k/(2s) =
1− ρ−(�+1)/(2s)

1− ρ−1/(2s)
ξ
−1/s
� � ξ

−1/s
� .

Hence it remains to prove (5.9) in both Cases (A) and (B) for a given triangula-
tion T� and discrete solution (p�, u�) of (1.2). Due to the choice of κ, in Case (A),
τ > 0 can be chosen to satisfy

0 < τ2 ≤
α
(
Ceff − 2C2

1κ− C2θA
)

2CACC
,

with positive constants CA, CC from Remark 5.3, and Lemma 5.4. Setting ε := τξ�,
(5.6) and Remark 5.6 lead to the existence of some admissible triangulation Tε
refined from T0 such that

ξ2(Tε) := η2(Tε) + αε2(Tε) + β osc2(f, Tε) ≤ ε2, |Tε| − |T0| � ε−1/s

with the exact flux-error ε(Tε), the estimated error η(Tε) and oscillations osc(f, Tε)
on Tε. For the overlay T := Tε ⊕ T� and its associated quantities ξ2(T ) = η2(T ) +
αε2(T ) + β osc2(f, T ), with estimated error η(T ), flux-part of the error ε(T ) =
‖p− pT ‖L2(Ω), and oscillations osc(f, T ), Lemma 3.1 verifies

|T | − |T�| = |Tε ⊕ T�| − |T�| ≤ |Tε| − |T0| � ε−1/s ≈ ξ
−1/s
� .

In the next step we prove that E� \ ET fulfills the bulk criterion (2.2); namely,

θAη
2
� ≤ η2� (E� \ ET ).(5.10)

Efficiency, osc2� ≤ κη2� , and the following combination of (5.5)–(5.8),

αε2(T ) ≤ ξ2(T ) ≤ CCξ
2(Tε) ≤ CCτ

2ξ2� ≤ CACCτ
2η2� ,
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lead to

C2θAη
2
� ≤

(
Ceff − 2κC2

1

)
η2� −

(
2τ2CACC/α

)
η2�

≤ ε2� − 2C2
1 osc

2
� −2ε2(T ),

while (4.5) and Lemma 4.4 show that

ε2� − 2ε2(T ) ≤ ‖pT − p�‖2L2(Ω) + C2
1 osc

2
�

≤ 2C2
1 osc

2
� +C2η

2
� (E� \ ET ).

The combination of the previous estimations results in (5.10). Since M� was chosen
with minimal cardinality and θAη

2
� ≤ η2� (M�), Lemma 4.4 yields

|M�| ≤ |E� \ ET | � |T | − |T�| � ξ
−1/s
� .

For each level � with Case (A), set K(�) := 0 and M(0)
� := M�.

In Case (B), κη2� < osc2� , let T be some refinement of T0 with

osc2(f, T ) ≤ Tol2 and |T | − |T0| � Tol−1/s, Tol2 := ρB osc2� .

Algorithm 3.2 computes a finite sequence M(0)
� , . . . ,M(K(�))

� of marked reference
edges such that

T ⊕ T� = Refine

(
T�,

(
M(k)

�

)
k=0,...,K(�)

)
.

Finally, Theorem 3.3 and (5.5) for Case (B) with ρB osc2� = Tol2 verify

K(�)∑
k=0

|M(k)
� | ≤ |T | − |T0| � Tol−1/s � osc

−1/s
� � ξ

−1/s
� ,

which proves (5.9) in Case (B). This concludes the proof. �

5.3. Numerical experiments. This subsection is devoted to a numerical com-
parison of the convergence behaviour of algorithm Amfem of this paper and the
Becker-Mao algorithm of [6] called BM-Amfem in the example of [6]; namely,

Δu+ f = 0 in Ω and u = uD on ∂Ω

with data f and uD and the exact solution

u(x) := exp(−100 |x− (1/2, 1/2)|) for x ∈ Ω := (0, 1)2 .

The initial uniform mesh T0 consists of 8 congruent, right isosceles triangles
aligned to the principal diagonal. Table 5.1 displays the numerical outcome for
the estimator η�, the oscillations osc�, and the flux part of the MFEM-error ε� =
‖p− p�‖L2(Ω) for several consecutive levels � with the number of degrees of freedom

(ndof) of Amfem and BM-Amfem with κ = θA = 0.1.
The reduction of large oscillations in the right-hand side f is optimal in Amfem,

and the steering parameter 0 < ρB < 1 is free.
The bulk-parameter 0 < θB < 1 in Case (B) of BM-Amfem influences the factor

of reducing oscillations, i.e., osc2�+1 ≤ (1− θB/2) osc
2
� , and leads to a reduction by

(1 − θB/2)
m ≥ 2−m in m steps. Unfortunately the value of θB in the numerical

example is not mentioned in [6]. Our choice θB = 0.75 in BM-Amfem seems to
correspond to ρB = 1 − θB/2 = 0.625 in Amfem for an unbiased comparison
displayed in the first two columns of Table 5.1.
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The parameter 0 < θA � 1 has to be sufficiently small and the value θA = 0.8
in [6] is not at all supported by the analysis.

The two algorithms require about 10 levels to reduce the oscillations via Case
(B). Our strategy aims to overcome this pre-asymptotic overhead by small values
of 0 < ρB < 1, and the last column in Table 5.1 displays the numerical outcome
for ρB = 0.01 in Amfem. The number of levels to overcome the pre-asymptotic
regime in our proposed Amfem is reduced dramatically to 2.

Recall that a larger θB < 1 in BM-Amfem may lead to fewer numbers of levels
but more global refinements, so the optimal choice is less clear as well as the concept
of optimality. For comparison, a choice near 1 leads to failure similar to the values
displayed in the lower half of the last column in Table 5.1 for the extreme θB = 1.0.
Each of the two adaptive algorithms is proven to be asymptotically optimal, and
the numerical experiments clearly support this theoretical result (after a large or
small pre-asymptotic regime).
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