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OPERATOR SPLITTING FOR THE KdV EQUATION

HELGE HOLDEN, KENNETH H. KARLSEN, NILS HENRIK RISEBRO,
AND TERENCE TAO

ABSTRACT. We provide a new analytical approach to operator splitting for
equations of the type u¢ = Au + B(u), where A is a linear operator and B
is quadratic. A particular example is the Korteweg—de Vries (KdV) equation
Ut —UUg +Ugze = 0. We show that the Godunov and Strang splitting methods
converge with the expected rates if the initial data are sufficiently regular.

1. INTRODUCTION
The ubiquitous Korteweg—de Vries (KdV) equation
Up — Uy + Uy = 0

offers the perfect blend of the simplest nonlinear convective term wuu, and the
simplest dispersive term g, in that the well-known smooth soliton solutions of
the KdV equation interact in an almost linear fashion apart from a phase shift.
Furthermore, the KdV equation is completely integrable with an infinite family of
conserved quantities. This is a result of a subtle interaction between the Burgers
term uu, and the Airy term wg., as it is a well-known fact that the nonlinear
Burgers equation u; — uu, = 0 generically develops shocks in finite time while the
linear Airy equation u; + g, = 0 preserves all Sobolev norms.

The initial value problem for the KdV equation with ul;—g = ug € H?*, either
on the whole real line or in the periodic case, has been extensively studied. An
incomplete list of references is [2, [5]. For further discussions we refer to [8), [6].

The method of operator splitting, also called the fractional steps method, remains
a very popular method both for analysis and numerical computations of partial
differential equations. Instead of including a long list of references to relevant works,
we entrust the reader instead with [4] and the overview of the field given therein.
However, we refer to [7] for rigorous analysis of the splitting method applied to the
Schrédinger—Poisson and the cubic nonlinear Schrodinger equations.

Formally operator splitting can be explained as follows. Let u(t) = @ (t)ug =
Do(t;up) € X, where X is some normed space, denote the solution of a given
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differential equation:
Uy = C’(u), te [O,T], ult:O = Up-

Here C will typically be a differential operator in the spatial variable. Assuming
that we can write C' = A+ B in a natural way, the idea of operator splitting is that

(1) utn) = (P5(A)DA(AL) "ug, t, = nAt,

where At < 1. In the case of linear ordinary differential equations, this goes back
to Sophus Lie. One of the reasons for its popularity is that operator splitting allows
for a separate treatment of the equations u; = A(u) and u; = B(u); in particular
this applies to the use of dedicated special numerical techniques for each of the
equations; again we refer to [4] for a long list of examples and relevant references.

In the context of the KAV equation, the first use of operator splitting was re-
ported in the brief paper by Tappert [9], where it was applied as a numerical method.
Apparently the first rigorous results appeared in [3] where a Lax—Wendroff result
was proved: If operator splitting converges to some limit function, then the limit
function is a weak solution of the KdV equation. In addition a systematic study
of operator splitting as a numerical method was undertaken for the KdV equa-
tion. More extensive rigorous results, specifically the convergence of the splitting
approximations in a suitable functional space, were hampered by the apparent in-
compatibility between the Burgers equation and the Airy equation.

In the present paper we offer a new analytical approach to operator splitting for
the KdV equation that will lead to rigorous convergence results (error estimates).
Compared to earlier attempts, two new ingredients enter the present approach.
First of all we actively use that the solution of the KdV equation remains bounded
in a Sobolev space; that is, if up € H*(R), then [|u(t)| ;. (g, remains bounded for
t € [0, T]. This together with a bootstrap argument is used to secure the existence
of a uniform choice of time step At that prevents the solution from any “Burgers”
step from blowing up. Indeed the main problem in this approach is that the Airy
equation produces small oscillatory waves that, when used as initial data for the
Burgers equation, produce shocks. Secondly, since the splitting approximations are
merely defined at the discrete times t = t,,, to facilitate the convergence analysis we
introduce an extension which is defined for all t € [0, T]. Concretely, we introduce an
extension v which depends on an additional time variable 7 € [0,T7, i.e., v = v(¢, 7),
and let the evolution corresponding to each time variable be governed by one of the
split operators in such a way that at each time level ¢ = t,, the extension v(t,,t,)
coincides with the regular splitting approximation. This extension approach is
different from the conventional one, where one lets “time run twice as fast” in
each of the subintervals [t,,t, + At/2] and [t, + At/2,t,,11] (cf. the discussion and
references in []).

Formally the operator splitting (), called sequential or Godunov splitting, yields
a first-order approximation in At, that is,

Hu(tn) — (@A(At)QDB(At))nuo

| =0(At), tn—t, At—0,

in an appropriate norm. We show that this holds rigorously for the KdV equation.
More precisely, we prove in Theorem 4] that for up € H*(R) with s > 5 we have
that for At sufficiently small,

[o(t,8) = u) gre-s ) < KAL, T €[0,T],
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where K depends on s, T and ug only. Here v(¢,t) denotes the splitting approxi-
mation in our approach evaluated on the “diagonal” (¢,7) = (¢,t).

To obtain second-order convergence, it is common to apply the Strang splitting
formula, thus formally

Hu(tn) — (((I)B(At/2)<1>A(At/2))((I)A(At/2)<I>B(At/2)))nu0H — O(AR),

where t,, — t as At — 0. Here we show rigorously this result for the KdV equation.
Indeed, in Theorem [3.5] we prove that if ug € H® for some s > 17, then for At
sufficiently small,

o(t,t) — u(t)|| ge—o < KA, t€[0,T],

where the constant K depends on ug, s and T only. Again v(t,t) denotes the
operator splitting approximation in our approach. Observe that we have to increase
the regularity of the initial data, and hence of the solution, in order to get increased
accuracy of operator splitting. Note also that with this type of operator splitting,
our error estimates are in a much weaker norm than the assumptions.

It is clear that the present approach applies to several other equations, and this
is currently being investigated. Furthermore, for applications to numerical analysis,
one would need to replace the exact solution operators ® 4 and &5 by numerical
approximations, say <I>‘f4 and <I>‘153, and study their behavior in the limit as § — 0,
and also to replace the time derivatives by discrete differences. Again this will be
studied separately.

The paper is organized as follows. We start by presenting the Godunov operator
splitting method for abstract operators. Next we apply this approach to nonlinear
ordinary differential equations where the procedure is fairly transparent, before
we discuss Godunov splitting for the KdV equation. Subsequently we present the
Strang splitting for abstract operators. Finally we apply this procedure to the KdV
equation.

2. OPERATOR SPLITTING

We first present a formal calculation motivating the rigorous analysis that will
follow. Consider an abstract differential equation

(2) u = C(u), tel0,T], ult=0 = ug

for some fixed positive time T', where C typically will be a differential operator in
the spatial variable. We assume that vy and w are in some Hilbert space X, and
we write the solution as

u(t) = ec(t;uo).-
Formally, expanding the solution in a Taylor series we find

u(t) = ug + tug (0) + O(t?) = ug + tC(ug) + O(t?),
where we have used the equation (). Assume that one can write
C=A+B

in some natural way. Operator splitting (of the Godunov type) then works as
follows. Instead of solving the problem with C directly, one alternately solves for
small time steps the equations u; = A(u) and vy = B(u). Making the time steps
finer and finer, the approximation will presumably converge to the solution of the
original equation (2]).
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More precisely, fix a positive time step At, let ¢, = nAt, n € Ny, and define a
family {ua¢(t,)}n of functions

Uat(tnt1) = Pa(AL; Pp(At;uac(tn))) = Pa(At) o Pp(At)uac(tn), n € Ny,
uat(0) = uo.
The traditional method of extending the solution to any ¢ € [0,7] has been to let

“time run twice as fast” in each of the subintervals [t,,t,11/2] and [t,41/2,tn11],
where t,,1/2 = t,, + At/2. Thus obtaining

ua(t) = Dp (20t — tn);uae (tn)) for t € [tn, tni1/2],
(1) =
D (2(t — tpy1y2)iuae(tnrry2)) for t € [toyia, tnia]-

(3)

(In the present approach we will use a different extension to all times ¢.)
Formally one can show that

luat(tn) —u(tn)|] < O(At) as At — 0 and ¢, — ¢

in some norm.

The convergence can be improved to second order by using the Strang splitting
formula. To this end we let the approximation (this time denoted vay to distinguish
from the previous approximation) read

vat(tnt1) = Pp(AL/2; P A(AL @ p(AL/2;0a:(tn))))
= @B(At/Z) o (I)A(At) o (I)B(Af,/Q)UAt(tn)

— (@B(At/2) o <1>A(At/2))

o (@A(At/z) o @B(At/2)>vAt(tn), n € No,
va(0) = wo.
Formally one now has
lvae(tn) — u(ty)|] < O(At?) as At — 0 and t,, — t.
To show that the operator splitting solutions are well defined, we shall later make

use of the following bootstrap lemma, taken from [8, Prop. 1.21].

Lemma 2.1. Let t € [0,T]. Consider a continuous function ¢: [0,T] — [0,00). If
there exists a positive constant o such that
(a) ¢(0) <a,
(b) for any t such that ¢(t) < o, we can show that ¢(t) < a/2,
then ¢(t) < a/2 for all t € [0,T].
2.1. Doubling the time variable. We shall formulate the operator splitting so-

lution by introducing two time variables, and define a function v = v(¢t, 7) for (¢, 7)
in the set

[T/ At]
QAt = U [tnatn+1] X [tnathrl]
n=0
by requiring that
’U(O, O) = Uog,
(4) ve(t,tn) = B(v(t, 1)), tE€ (tn,tnsls

vr(t,7) =AW, 7)), (7)€ [tn,tnr1] X (tn, tnt]s
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FIGURE 1. Schematic view of the Godunov splitting and the defi-
nition of v(t, 7); cf. equation ().

where n =0,..., |T/At]. Observe that
uat(tn) = v(tn,tn), n=0,...,|T/At],

where ua; is given by @)). The specific extension v of {ua¢(t,)}, to [0, T] will serve
as an important technical tool to be utilized in the analysis.
The exact solution of (@) is still denoted by u. Introduce the error function

w(t) = v(t,t) —u(t).
The aim is to show that
[w(t)|| < O(At), At—0, tel0,T]

in an appropriate norm.
We introduce second-order Taylor expansions of the operators A and B (see [I,
p- 29]),

A(f +g) = A(f) + dA(f)lg) + / (1 - a)dPA(f + ag)lgda,

B(f +4) = BU)+ B+ [ (1= 0)a®B(f +ag)igfdo.
Thus we find
— dA(u)[w] — dB(u)[w] = v + v — up — dA(u)[w] — dB(u)[w]
— v, + A(v) — (A + B)(u) —
— B(v) + (A(v) — A(u) — dA(u)
(5) + (B(v) = B(u) — dB(u)[w))

=F(t )+/0 (1 — a)d® A(u + aw)[w]*da

1
+ [ (1-0a)d?PBu+ ow)w)?da,
0
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where we have introduced a forcing term F(t) = F(¢,t) defined as
(6) F(ta T) = vt(t7 T) - B(U(ta T))

We can rewrite (B]) as follows:
1
(7) w, — dC(u)[w] = F(t) + / (1 —a)d®C(u+ aw)[w)*de.
0

The forcing term satisfies the following time development:

F, — dA(v)[F] = vty — B(v)r — dA(v)[vy — B(v)]
= A(v)e — dB(v)[v-] — dA(v)[ve] + dA(v)[B(v)]
= dA(v)[ve] — dB(v)[A(v)] — dA(v)[ve] + dA(v)[B(v)]
= [4, B](v,v),

where we have defined the commutator

[A, B(f, 9) = dA(f)[B(9)] — dB(f)[A(g)]-
For simplicity we will subsequently be writing [A, B](v) rather than [A, B](v,v).

(8)

2.2. Ordinary differential equations. As a warm-up we consider the ordinary
differential equation

©)) up=C(u), t>0, u(0)=uyeR™

To simplify the presentation we assume that C' is a quadratic function, i.e., that
C" = d3C = 0 or d*C[f, g] is constant. This means that the integral in (7)) reduces
to a constant. Furthermore, we assume that (d)) is such that there is a unique
solution u(¢) such that |u(t)| < Ky, r for ¢t € [0,T]. Furthermore, we will assume
that the operators A and B are two times continuously differentiable and
(10) A A"eL> A0)=0, [B(u)|<Kuf*, |B'u)|<KIlul.

Throughout this paper we use the convention that for a quantity «, K, denotes
a constant depending on « (and perhaps other things). We use this notation to
highlight the dependence on a. The actual value of K, may be different at each
occurrence.

Now let o be a positive constant (its precise value will be fixed later). To start
the bootstrap argument we assume

(11) v, 1) <a, (7)€ Qay.

In this example, since C is quadratic, d?C' = & for some constant symmetric matrix
K, and w satisfies

(12) wy + C'(u)yw = F + ngw, t>0, w(0)=0.
Furthermore, F' satisfies
FT - A/(U)F = [A>B](U)7 (t,T) S [tnuthrl] X (t’nutn+1]7

and F(t,t,) =0, for each n. This means that
9 |F| < K|F|+ Ko
or

Hence, Gronwall’s inequality implies that

[F|(t,7) < KaAt,
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where K, is a constant depending on the assumed bound on v in (IIl). In view of
this bound and ([I2I),
d
7 |lw| < Ko |w| + K At,  w(0) = 0.
Gronwall’s inequality gives that
lw(t)| < efetK At < K,At.

Trivially we have
max{t,7}
[o(t,t) —v(t,7)| < / |A(v(t, s))| ds < K At,
min{t,7}
for (t,7) € [tn,tnt1] X (tn,tns1] for any n. Then we can conclude that
[o(t, 7)) < Ju(®)| + |w(®t)] + |v(t,t) —v(t,7)| < K + K At.

Now we are in a position to choose « so that K < a/4; this determines K. Next
choose At so small that K,At < «/4. Then

lo(t, )| < a/2, (t, 7)€ Qays.
Hence, by the bootstrap lemma, |v(¢,t)| < /2 for all t. Consequently,
(13) [o(t, 1) —u(t)] < Ko At
i.e., the operator splitting is, as expected, first-order accurate.

Remark 2.2. An interesting example is the logistic equation v’ = u(u—1), where we

can write A(u) = —u and B(u) = u?. Exact solutions are available for all operators
involved, specifically
(%) ¢ (%)
c(t)uo P —— A()uo = uoe™",  Pp(t)uo T——

Let ug € (0,1). Then there is no blowup in the full equation, but blowup for the
equation u; = b(u) at t* = 1/ug. The function v reads in our case

Ot tn)e” (Tt
L= v(tn, tn)(t —tn)

’U(ta T) = t, T € [tn, thrl]a

where
ug(1 — e=5%)
(1 —e Bt)etn +ugAt(l —etn)’

U(tna tn) =

The quantity v(t,,t,) is well-defined on [0, T if one chooses At such that
1—e Bt
ug(l —e~tn)’

Since t,, < T, and el < ug/(ug — 1), we find that ug(1 — e~ ) < wug(l —e 1) < 1.
Thus we have to choose At such that

At <

1 At
uo(l — efT) < E(l - efAt) =1- o5 + O(Atz)

or
At <2(1—up(l—e™T)).
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u'=u(u-1) Error (u0=.9, N=30, At=.1)
u w
0.12
0.10
0.08
0.06
0.04
0.02
. , , , , , L
0.5 1.0 15 20 25 30
2
1.75
st w(l)
1.25
1
0.75
0.5
0.25
At

0.08 0.16 024 032 04 048 056 064 072 08 088 0.96

FIGURE 2. (Left) The exact (top) and the approximate (bottom)
solution. (Right) The error. (Below) The error w(1) as a function
of At.

In this case one can verify (I3 directly; namely,
[(tn, tn) — u(tn)]
[(A)~H(1 — e 2t — 1]
[(uo + et (A1) ~H(1 — e72%) —up))(uo + €' (1 — up))|

= Juo|* (e — 1)

= O(A¢).
The example is illustrated in Figure

2.3. The KdV equation. Let us now apply this general framework to the KdV
equation, that is,

Up = Uy — Ugge, Um0 = ug € H*(R).

In this case, C'(u) = vty — Ugqe, and the evolution operator o (t; - ): H® — H® is
bounded. Therefore, the Hilbert space R™ of the previous example is replaced by
the Sobolev space H*(R) with the inner product and norm

(Fo)mee = Y [ 015 dlat@yda, ey = (D)o
3=0

We choose A to equal (minus) the Airy operator:
A(f) = —foaa
dA(f)lg] = —graa;

dPA(f)lg,n] =0,
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and B to equal the Burgers operator:
B(f) = [ [z,
dB(f)lg] = fg: + fo9,
A B(f)g,h] = hgs + hzg,
d? B(f)lg, h. k]

In this case the commutator reads

(A, BI(f, /) = —S02(F.)"
Thus the equations (), (@), and (&) are
(14) wy — (UW) g + Wege = F + wwy,

F =v —ovy,

(15) Fo ot Frge =~ 503(0,)",

respectively.
From [2] we recall the classical result that for up € H*(R) with s > 2 there exists
a unique solution u € C([0,T], H*(R)) of the KdV equation

Up = Uy — Upga, Uli—0 = Uo.

In particular, we can assume that there exists a constant K (depending on T, ug,
and s) such that

Hu(t)HHs(R) <K, tel0,T].

To save space and typing efforts, we shall write H* for H*(R), and 9 for 9.
Next, let s be an odd integer greater than or equal to 5. Assume that there
exists a constant a such that

[o(t, D)l g <o, (6,7) € Qas,
where k(s) = (s —1)/2.

Let us estimate the behavior of the Airy and Burgers operators. The Airy
equation leaves all Sobolev norms invariant, viz.

o, D)l e = (& )l g -
By definition we find for the Burgers operator,

1d 5 o
>t ot ta)l7e = (v,01) 5 = Z/@%@j (vv,) dx
=0

s J .
= ZZ (‘;) /sz)@k"’lvaj_kvdx.

=0 k=0

For j < s, any of the above terms can be estimated by

]/ Dot o Fuda| < |07 [

amin{kJrl,jfk:},U’

L2 L2
2
< K |{[vl[zs [[ol] g

2
< Kq ||U||Hs .
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For j = s all terms with k < s and k # k can be estimated similarly,

6max{k+1,sfk}v‘

L2

’/asvakJransfkvdx‘ < HasU”LQ Hamin{kJrl,sfk},UHL ’

2
< K |[ollze [[ol] e

2
< Ko [lollge -

Ifj:sandk:l%vveﬁnd
‘/851)8’%“1)85’;0 dx

_ ‘/asv(a’mv)? dx

=2 /8kv8(8571v8k+2v)dﬂc

=2 }/651v6’%+1v3k+20 dzr

< 2/‘8’%vasv8’%+20‘d:ﬂ+2/‘(’9%85—1@8’%”1)‘(1‘%

<2t ool . 1o ol

k+3 E s—1
+zfobrsol ko], ool
2
< AK [[ofl 3 o]l g
< Ko vl

We are left with the term where k = s = j, viz.

’/3svﬁs+lvvdaz‘ = %‘/(6%)2 Ovdx
100]] Lo [10°V]172

2
< K |vll g Mol g

IN

if k> 2, ie., if s> 5.

Thus
(16) % [0 (& tn) s < Kallo (& tn)ll e s
which implies that

lo (¢ ta)ll e < ) o (b )l e -
In particular, for any n,
1o (s ta)ll e < €52 o (tuts tuo1) e < €5 ol 7. -

Thus we have shown the following result.

Lemma 2.3. We have
o, ) gs < Ko, (E,7) € Qay.
Observe the general result, obtained by integration by parts,

(fvfxac:c)Hk 207 fEHkJrB.

Next we analyze the forcing term that satisfies (I5). By taking the H*™3 inner
product with F' in (I3]) we get

1 3
58‘1’ ||F(tv7')||?{s—3 =—(F, Fa::m)HS*S - §(F7 82(Uw)2)H5*3
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w

< S IF N gema (|02 (va)? || os -

[\

Since H? is an algebra,

Haj—"_Q(U HHS 3 = H UI HH& 1 S KHUI”HS 1 < K2

Also F(t,t,) =0 for t € [t,, tnt1], and we conclude that
[E ()| ge-s < Ko, (t,7) € Qa.
As for the error function w = v(t,t) — u(t), we have the following estimates. Let
E(t) = |lw(t)|| gs—». By taking the inner product with w in ([I4), we get
——F2(t) = (w, (uw) ) o5 — (W, Wegs ) gs—s + (0, F) s + (0, wwy) go—s

= (w, (uvw)y) ge—3 + (W, Wwg ) gs-3 + (W, F) gs-
-3

—
—
-3
~—~"
|
»w o~ o~

/ (P wd (uw, + ugw + wwy)) de + (w, F) ge-s.
j=0
The first integrand on the right is expanded by Leibniz’ rule. We get

s—3 J .
> (i) / 0w wd " u 4 P wdFwd T e+ P wdFwd T R da
j=0

=0 k=0

For 0 <k < j < s— 3, we can estimate

\/ I w ORI Ry GI—k(FD)y, dx‘ < Jwl|3es

5j—k<+1>uH
2
< K |wl[ge-s [[ull g ,
| [orworwor i tudn] < |9l il

2
< K ([lullgs + ol o) lwllgge—s -

For j = s — 3, we can use the same strategy for those terms with fewer than s — 2
derivatives on w. The term with s — 2 derivatives on w can be estimated as

‘/35*3w35*2wudx‘ = %’/(85*%)2 Oudr| < K |Jull .

2
w||HS—3 ’

’/BS_Swwas_dex = ’/ 65 3w de:t‘

< K ([lull grs + [0l 572)

|wHH> 3.

The last term in ([I7) is overestimated by ||F|| ;.—s ||w|| -3, and we get
d
EE?(t) < Ko E%(t) + KE(t) |F|| yos < Ko E*(t) + KAt,

which implies that
d

T E(t) < KaB(t) + KA.
Since E(0) = 0, Gronwall’s inequality yields

lw(®)]l s = E(t) < Ka A,
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Recall that |[v(t, 7)|| ge—s = ||v(t,t)||y:—s because
Or l[o(t, )75 = =2 (0, Vaa) groms = 0.
Now u is bounded in H*, and we infer that
[o(t, )l gges < K + KoAt.
Since s > 5,

s—3>k=

2 )
and we get
H’U(t,T)”H,; < K + K, At.
First choose a > 4K, then choose At so small that K,At < «/4, so that K +

K At < a/4+ a/4 = a/2. Hence, by the bootstrap argument we have proved the
following theorem.

Theorem 2.4. Fiz T > 0. Let ug € H*(R) with s > 5. Then for At sufficiently
small we have

lo(t,t) — u(t)HHS,S(R) < KAt, te][0,T],
where K depends on s, T and ug only.
Remark 2.5. Instead of defining v by (@) for the KdV equation, we could also
interchange the order of the Airy operator A and the Burgers operator B in the
definition of v. The same procedure as described above would apply, and Theorem

24 would remain valid. This remark is important for the Strang splitting to be
discussed next.

3. STRANG SPLITTING

To achieve higher-order convergence it is common to consider the so-called Strang
splitting. Now we approximate the solution by using two Godunov splittings, each
with a time step of A¢/2, and in alternating order. Explicitly, we define

v(0,0) = uyg,
vty tn) = B(u(t,tn)), t € (tn,tny1y2l,
(18) vr(t,7) = A(v(t, 7)), (6,7) € [tn tngry2] X (tns tngryal,
)= A(v(t
) = B(

Ur(tngry2, ) = A((tnsr2,7)), T € (Engiy2, tatil,
vt(tv T B U(tv 7—))7 (t, T) € (tn+1/Za tn+1} X [tn+1/23 tn+1},
forn=0,...,|T/At|. We consider this function for (¢,7) in the domain

\T/At)
~ 9 9
QAt - U (I:t'ruthrl/Q] U I:tn+1/27t’n,+1:| ) .

n=0
The aim is now to show that
o (t6) — u ()] = O (AP

in an appropriate norm. Here the abstract analysis of Section 2.I] applies, and we
find:
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I
T
At B—>

—— [ —

FIGURE 3. A schematic view of Strang splitting.

(i): On the domains [t,,t,4+1/2] X [tn;tni1/2] We have

wy — dC(u)[w] = F(t) + /1(1 —a)d?C(u+ aw)w)?da,
0
(19) F(t,7) = v(t, ) — B(v(t,)).
The forcing term satisfies the following time development:
Fr = dA()[F] + [4, B](v),
Fy = vy — dB(v)[F] — dB(v)[B(v)].

(ii): On the domains [t,,11/2,tn+1] X [tnt1/2, tni1] we have (here we write wy
rather than w, since w is a function of one variable only)

wy — dC(u)[w] = G(t) + /0 (1 - a)d®C(u + aw)[w]2da,
(20) Gt 7) = v, (t,7) — A(o(t, 7).

The forcing term satisfies the following time development:
Gi = dB(v)[G] + [B, A](v),
Gr =v:r —dA©W)[G] — dA(V)[A(v)].
We extend F and G to all of Qa; using the same definitions, ([J) and (20), respec-

tively. Observe that this implies that F' = 0 on [t, 11 /2, tns1] X [tns1/2, tng1], while
G =0on [ty,tpy1/2] X [tn, tny1/2]. The total forcing term is defined by

H(t,7)=F(,7)+ G(t, 7).
3.1. Ordinary differential equations. One can consider the case of ordinary

differential equations, as we did in Subsection for Godunov splitting, but for
reasons of brevity we will only revisit the example in Remark
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u'=u(u—1),u0=.9
u Error (u0=.9,N=30, At=.1)

0.0020

0.0015

0.0010

0.0005

L L L L L t s s s s s P
0.0 0.5 1.0 15 20 25 30 05 1.0 1.5 20 25 30

FIGURE 4. (Left) The exact and the approximate solution. (Right)
The error v(t,t) — u(t).

Remark 3.1. We find, using the definitions (18], that

tr,tn —(T—tn)
fiv(t,,“)te")(t—tn)’ for t,7 € [tn, tny1/2];

V(tnt1/2:tnt1/2)
e"'—tn+1/2,v(t for i, 7€ [tn+1/2a tn—&—ﬂv

21 wlt7) =

nt1/25tng1/2) (E—tny1/2)’
forn=0,...,|T/At|. By induction we determine
ug(1 — e=8%)

(1 — e At)etn +ugAt(etn —1)(eB +1)/2°

In this case we compute, when we for convenience write o = ugp(1 — e'),

‘w(tn” = |U(tnvtn) - u(tn)|

(22) V(tn,tn) =

B ‘ ug(1 — e™4%) U
(1 — e At)etn +ygAt(etn — 1)(eAt +1)/2  eln + ug(1l — etn)
1 1
(23) = [uol etn + aAt(1 + €AY /(2(1 — e=BY)) el + o
_ lug|? et (efn — 1) ‘1 A1 +€2)
(et + aAt(1+ eAt)/(2(1 — e~ A1) (et + a)] 2(1 — e
< O(A).

The example is illustrated in Figure @l Observe the strong oscillations in the error.
It is these oscillations which prevent the error from growing too large.

3.2. The KdV equation. For the KdV equation, we use B(v) = vv, and A(v) =
—Uzzz, and the above analysis yields:
(i): On domains [t,,t,41/2] X [tn, tni1/2] We have

wi — (UW) g + Waze = F(t) + ww,,

24
(24) F(t,7) = vy — vug.
The forcing term satisfies the following time development:
3
(25) Fr=—Fppo — 5(95(’(195)2,

F,=vy — (vF), — (2UU3¢ + 020, ),
since dB(v)[B(v)] = v(vvz)z + vz (v0;) = 2002 + 020,
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(ii): On domains [t,41/2,tny1] X [tni1/2, tnr1] we have

w — (VW) 5 + Weze = G(t) + wwy,

26
( ) G(tv T) = UT(ta T) + Vgga-
The forcing term satisfies the following time development:
Gr = (vG)a + 202 (v,)2

GT =V + Ga:;ﬂw - U(6)7

since dA(W)[A(W)] = (Vpre)zaz-

To start the bootstrapping procedure we fix an odd integer s and a positive
constant «, whose values will be determined in the course of the argument. Now
assume that

[t )l i < @, (8,7) € Qa,
where k = (s —1)/2. As a consequence, we have
lolt, Dllgre < Ko, (t,7) € Qas;

cf. the proof of Lemma [2.3] which can be easily adapted to Strang splitting.
We need to introduce the function

(28) z(t) = w(t) + w(t + %) =w(t) +w(t).

In the following we will write ¢(t) = ¢(t + %) for any function ¢. Straightforward
calculations yield that z satisfies

1 ~ . -
(29) zt—(izz—l-uz—zm)w:H—FH—l—(w(u—u)—ww)w.
By our techniques, we must work in H*~% (so at least s > 9); therefore set
E(t) = 12Ol oo w) -

By taking the H*~9 inner product with z in ([29) we get

%%EQ(t) = (z, (%z2 +UZ — Zag)a) oo + (2, H + H) oo
+ (2, (W(2 — u) — WW)g) fs—9
= (2,220 + Upz + UZg) pro—o + (2, H + H) ga—o
— (2, W(0@ — u) — W) ps—9
< (2,224 + Upz + uzy ) gs—o + E(t) HH + IA{THHk9
+ E(t) |w(t — u) — wd]| oo

< Ko B (t) + KE(t)( HH +H

o B = w) = w0 ).
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Thus by Gronwall’s inequality,

B0 < 80)+ [ 500 (|00 + Hloo|,

+ [@(o)(a(o) = u(o)) — w(o)w(o)| oo ) do
< E(0)+ eK‘*t/O ( HH(U, o)+ ﬁ(c, U)HHs—9

+lw(0) (i) — u(0) — w(o)i (o) o ) do-
Next we turn to the detailed estimate of each of the terms in ([B0). We start with
the most involved one, the forcing term, which can be estimated as follows. We
consider the term F first. Since F(t,t,) = 0, we easily see that F;(¢,,t,) = 0; thus
(cf. @0)) (Fy + Fy)(tn,tn) = —30%(vz)?(tn, tn). Thus
F(t,t) = (vy — vug) (L, t)

t—tn)? !
+ % / (Fi 4 2Fy + Frr)(o(t — tp) + tp,o(t — t,) + tn)do
0
3
= =500 (ve) (tns ) (£ = 1)
(t—t,)? [*
+ o [ (B 4 2 4 Frr)(0(t = t) + 1o, 0(t = tn) + tp)do.
0

As for the second derivatives, we find
3
Frr=—Frpps — 53537—(113;)2
3
=F + iag(vwﬂ — 302 (v,09)),

FTt = —Vttzzxr — (vzzmvz + Uvzzmr)ta
Fyt = Vi — U0z — 204Vt — Vg4t

Similarly we find for the forcing term G the following estimates. Since G(t,,41/2,7)
= 0, we easily see that G (tn11/2,tnt1/2) = 0; thus (cf. (7)) we obtain
(Gi+ Gr)(tns1/2, tng1/2) = 502(03)* (tnt1 /2, tns1/2). Thus

At At At At
G(t+ 7,t+ 7) = (’UT +’Umwm)(t+ 7,t+ 7)
= G(tng1/2:tnt1/2) + (Ge + G )(tng1)2, tag1y2) (t = tn)
(t—tn)? (!
+ T (Gtt +2Gt7' +G7—7—)(O'(t—tn) +tn70'(t—tn) +tn)d0'
0

3
= 582(111)2(%“/27 tny1/2)(t = tn)

(t B tn)2
2

The second derivatives Gy + 2G4, + G- will have to be considered similarly to
those for F. These read

Gy = 2’0926(; + 400, Gy + V2 Gz + GUsy

1
+ / (Gt + 2G1n + Gon) (0t — 1)+t 0t — £0) + 1) dor
0
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+ 6Upg (V30) 40 + VU Va0 + 0 (V0) 00 s
3

Grt = VryUy + 20,070 + VUrrp + OF (Gv) + 585 (vfﬁ) -8 (vvg),

GTT = Vrrr + Urrzza-
Lemma 3.2. We have the estimate

@t 7)3gem0 + 1UE T < Koy (1), (£,7) € Qar,
where & = (Ftt + 2Ft7- + F.,-T) and ¥ = (Gtt + 2Gt7- + GT.,-).
Proof. We have that || F|| .- < KoAt; we shall get a similar estimate for ||G|| ;.—s-
For t,, <7 <t,11/2, we have that
3
Gt = ’UxG —+ UGw —+ 582 ('Ui) y

and n) = 0. Taking the H*~? inner product with G we get

G(t,t
diHGHHS 0 _Z/ak v,G)I*G + 0" (vG,) I*G + a’f+2( 2) 9"G dx.

N~

The first term expands by the Leibniz rule; a typical term in this expansion reads
(here 0 < j <k <s-—09)

[0 6 G < |9 T

Similarly the second term can be expanded and estimated, except for the term
containing ¥+ G, which is estimated as

/v@k“Gakde = %/v@ (0*@)* do = 1 /5‘1} (0*@)* da
1
< 5 lov]lpe (el
We bound the last term as

‘/a’”? 3kde’ < K |oll%,.

Gl
Summing up, we get
d 2 2
g NGl zems < Ko IGjem0 + Ka |Gl -
Using Gronwall’s inequality and that G(t,,7) = 0 we get

|Gl ro-0 < KoAt.

We also need estimates for vy, vy and vy, where t,7 € [ty,, tn+1/2]' In this set,
Uy = —Ugas, and this evolution preserves the H* norm. For 7 = t,,

vy = VU,
Vgt = VgUz + VViq,

Vigp = VgtUp + 2040Vs0 + Vst
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Therefore
2
[vellge < oll g 10l greses < K {0l s

veel e < K [ollese

4
||’UtttHHk <K HU||Hk+3 :

Next we turn to estimates of v;, v, and v, in the set t,7 € [t,41/2,n11]. Here
v = VU, and setting w = v, § = v, and ¥ = V-, We get

Wy = Vpw + Vwy, Wtpy1/2,7) = —d3v,
0; = 2ww, + v,0 + vl O(tnt1/2,T) = %0,
Yt = 30w, + 30w + VY + Ve, 'Y(tn+1/27 T) = _89U~

Starting with w, for k < s — 9 we get

k
1d, o _ i j i i
AT _jz_:o/a (V2w) P w + & (vwy) P w da.

Using Leibniz’ rule, all terms except the ultimate one will be of the type

2
wl| g -

\/a%aj—fwaj dx’ < 1o/l -
The ultimate term (with one too many derivatives on w) is as usual estimated as

‘/v@k“w@kw da:’ = %’/8v(8kw)2d$’ < vl g

2
Wz -

Gronwall’s inequality then yields

ol g (8) < €= Jlwll g (brj2) < Ko [0l gpers (nsryz,7) -

Reasoning similarly for 8, we find that

10l (1) < Fe ( s, [l (5)+ 0] (tnﬂm)

5€[tnt1/2:tn+1
< K (olees + Wl guse ) (tnsajos)
Finally, the estimate for v reads
Ve < Ko (N0l gren 1ol gran + 17l zzi) (Ervayzs 7)
< Ko (I0less + [ollfsn + 0l50sr + [oll o) (boaje:7)
Summing up, we get

[or | gn < Ko lloll gass s ol < Kallollgass s [1orrrll g, < Ko lloll gass -

Now
1@l grs—o < N[Frrllgps—o + 21| Fer |l gra—o + [[Frell gra—s -
Working in the square [ty t,1/2]%, from (B,

3
1Frr oo < [0°F] oo+ 5 [0° @007, +8010% (000°0) .

2 2
(32) < El s + Ko [0l go—s + Ka [0l 701
< Ko
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and
1Berllgre-o < loallgre-o + Ko (ol srecs oel s + Notllgramo 0] -0
1ol gr-o ol szecs + el o ollgrms
(33) < Ko (Iollgree + lollgrems 0] 5o
1ol gz 0l + [0l o [l o-s
Holgems olr.—s)
< Ka,
and also

HFtt||Hs—9 < ||'Uttt||Hs—9 + ||'Uttvw||Hs—9 +2 ||'Ut'Uwac||Hs—9 + H'U'UtszHs—g
< Ka(Woll oo+ 1ol o Wollzems + ol oo ol e
(34) < K,.

Hence [|®|| y.—0 < Kq.
In the second square [t,,1/2,t,]?, we write

H\IJHHS—9 < ||Gtt||HS—9 +2 ||GtT||Hs—9 + ||GTT||HS—9 .
Each term above is estimated individually as
1Getl -0 < 2[[02C | oo + 411002 Gall oo + [V G| g
+3 va (U2)MHH579 + V020 Vaaall ge—o + [V (’U’Uw)mzz”Hsf‘?
< Ka(llvHHs—s 1Gl oo + 0l s Gl ra—s + 0l oo |Gl o
2 3 3
o Nolger + oo + oles )
(35) < K,

||GtTHHSf9 < ||v‘r'rvw||H579 +2 ||UTUM||HS*9 + ||U7)TTI||HS*9 + H(94(Gv)||H579
+ 510762 o+ 1080 s
< Ka<IIUHHsfs [0l gro—s + 10l gro—s ([0l groms + 10l oo [[0]] o
1G e ol ges + N0l3ros + ol s 0l gro—s )

(36) < Ka,

1Grrllgpamo < Nlvrerllgramo + lvrraaall oo
< Ko (ol e + o1l 2. )
(37) < K.
Collecting (B4), B3)), 32), (1), Ba) and [B7) finishes the proof of the lemma. O
Lemma 3.3. The map
[0,T] 3t — 0*(v2)(t,t) € H?

is Lipschitz continuous with Lipschitz constant at most K,,.
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Proof. Set w(t,7) = 8?(v2)(t, 7). Then we have

Wy = 4vzzvtrz + 204500 Vs + 2Ummzvtma

Wy = Ve Vrgz + 2Vrp20Ve + 2Vpz0Vre-
In the square [t,, tn+1/2]2 we have v; = —Uge,; thus
Wy = —40,,0°0 — 20%00, — 204,00,

Hence in this square,

e+ wrlges < B (10l oe oelgocs + el gras ol s

ol go-s ot gros + 10l o7 [10]] gro—s

F ol ges ol ge—s + N[0l oo IIvlle—s)

<K,
In the second square [t,, 112, tni1)? we have w; = vv,, and

Wy = 4z (V0z) 0 + 2 (V02) 10w Vo + 2V00a (V02),, -

-
Therefore in this square,
e+ wrll oo < K (N0l grems 002 L pre-r + 1ovall oo o] o

10 e l0va L gros + 0] s o7l oo
1ol gre—s el gz + 10l o ol s )
< K (0l 3o 10l o5 + 10l e 0l oo 0] 50—

10 = 0l s ol grams + 10l groms 0]l s

10l e ol oo + 0l gzos 0] 5705 )

< K. 0

From this lemma it follows that

At At
2 2

[(t) = —0%(vy)2(t, 1) + 0% (vy)? (t + =t + =

satisfies
IT(0)]| oo < KaAt, te[0,T).

The following lemma will be convenient.

Lemma 3.4. Fort € [ty,ty,41/2] we have

w
=)

(38) ‘_ / (&7 (F(t) + G (t+ At/2)))” do < K, AL,
/ (@ (F(t) + G (t — Atj2))? dw < Ko At

w <

© o

(39)

(=)

~
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Proof. We show that [B8), [39) is proved similarly. By a Taylor expansion, for
t € [tm, timt1/2);

Z/ (7 (F(t) + G (t+ At/2)))” d

)2t
:Z/ ol —582 (v2)? (tm) (t—tm)—i—%/o O (o(t —tm) + tm) do
j=0

+ 232 (02)? (bt AL/2) (1 — )+ L _;m)Q /01 U (ot~ t) +1n) do)| o

S Jj 3 0 2 3 .9 9
—;/[3 (—53 (va)” (bm) + 507 (v2)" (b + AL/2) (t = tm)

(t B tm)Q 2

A /01(@(U(t—tm)+tm)+\1’(0(t_tm)+tm))dg)} da

<2 Z/ —0 (02)° (tm) + 0% (v2)° (tm+At/2)) (t—tm))2 dz

2

+2Z/< / ot —tm)+ tm)—HI/(a(t—tm)+tm))do(t—tm)2> dx

5 HF(t)IIH o (E— 1)’

+2Z/<8J/ o(t —tm)+ tm)-l-\I/(o(t—tm)-i-tm))da) do (t — ty)*
< Ko At (t —ty,)?

1

4 [ (190t = b)) s 1 (= )10 s dr (¢ = 1)
< KQA (t— 1) 4 Ko (t —t)*
< K At 0
Combining the above results, we find that for ¢ € [t,—1,t,),

/0 t Hio)+ H(o)|,  do< / v

n—1

8 [ (5 rrvaon

2 1/2
+07 (F(o+ A7)—|—G( %))) dx) do

do

Ho)+ H(©)|

_ZZ:)/:‘“C:/@'(F( )+ Glo+50)
+89 (F(o + %) + G( )))2 dx)1/2 do
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ng/m(Z/( 9 (Flo) + Glo+ 3))

(8J(F( +%)+G( )))2dx)1/2da

L ( ‘_0/ (aj(F(g+ %)-‘FG(U)))QCZI)l/z] do

_ ﬁz[mm ( /(aj (F(o) + G(o + At/2)))” dx)1/2 do

m m j=

0
* /ttm+3/2 (Z_:g/ (& (F(0) + G(o — At/2)))? dx>l/2 do

m+1 j=0
tmt1/2 m+3/2

< K,At? / do + / do

< K, At

where we have used Lemma [3.4] This finishes the estimate for the forcing term.
Next we estimate the term fot lw(o)(a(o) — u(o)) w(o)w(o)||gs—o do in (B0).
Here we can use the estimates from the Godunov splitting to infer that

[w(o) | ggo-o + l0(@)|| gomo < Kalt, o €[0,T].

From the KdV equation we infer immediately

At)2
[a(o) = u(o)|| e < / [(wtie = Uzzz)(0 + T)|| oo dT < KAL, o €[0,T].
0

[w(o)(a(o) = u(o)) — w(o)w (o)l .o do

0
< K/O (Ilw(a)HHs,g (@ — w) (o) | oo + [w(o) || grozo [@() || -0 ) do

(40) < K At

The last term to estimate in @B0) is F(0) = w(0) + w(0) = w(At/2). For
t < At/2, we find that

1
w(t) =v(t,t) —u(t) = t/o (B(v(st,0)) + A(v(t, st)) — C(u(st)))ds
1 1
= / (B(u(st)) + / dB(u(st) + o(v(st,0) — u(st)))[v(st,0) — u(st)]do
0 0

+ A(u(st)) + /0 dA(u(st) + o(v(t, st) — u(st)))[v(t, st) — u(st)]do
A+ B)(u(st)))ds
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1l
= t/ / (dB(u(st) + o(v(st,0) — u(st)))[v(st,0) — u(st)]

+ dA(u(st) + o(v(t, st) — u(st)))[v(t, st) —u st)Ddsda

—t// dB(u(st) + o(v(st,0) — u(st))) /d v(r,0) ())dT}

+aAGutst) + 000ttt ~ule)) [ [ ) - ur)in
+/Ot %’U(T, 0) dTD dsdo

843

— t/ol /01 [/Ost (dB(u(st) + o (v(st,0) — u(st)))[B(v(r,0)) — (A + B)(u(r))]

+ dA(u(st) + o(v(t, st) — u(st)))[B(v(t, 7)) — (A+ B) (u(T))]) dr
j/ dA(u(st) + o(v (ust)——u(sﬂ)ﬂl?@(T;O)ﬂdT]dsdo

—t/l/[/) st) + o (v(st,0) — u(st))) (u(7, 0)o(r, 0)

—u(r)u(T)z + u(r)mx))
+ (v(t, T)o(t, T)e — w(T)u(r), + u(T)mm)mM)dT

i /0 t (v(T, 0)u(r, O)I)m dT] ds do.

x

Taking the H°~° norm above, using the triangle inequality, the bounds on v and
u and the Cauchy—Schwarz inequality, we find that each of the above integrands is

bounded by K. Thus

1 1 st t
W) zre— §t/ / / KadT-i-/ K,dr|dsdo
) lo@lgo <t || [ 0 0 ]

< K 2.
Hence we infer that
(42) E(0) = [[w (At/2)] -0 < KaA2.
Collecting the estimates from {Q), (1), and {2), we find that (B0) reads
(43) E(t) = [l2(t) [l ge-s < Ko™,
By the triangle inequality,

(44) [w @)l gr—s < 2wl oo < 2Ol a0 + 1w (t) = D] gro-s -

To estimate the last term on the right-hand side we write:

[@0(t) = w(t)ll gems < [Jw(tn) = wltnrrye)|| oo + lw(t) = w(tn)l e

(45)
+ [lw(t + At/2) = w(tniiy2)]| s »
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for t € [t,,tn11/2]. (Similar expressions hold when ¢ € [t,11/2,%n41].) We note that

At At At

w(tn+1/2) = (I)A(T)(I)B(?)'U(tm tn) - QC(T)U(tn)v
(46) w(t) = Pa(t — tn)Pp(t — tr)v(tn, tn) — Po(t — tr)u(tn),
At At
w(t+ =) = Qalt = tn)25(t — ta)v(tnsry2, tasr/2) — Po(5)ultnrya),

when t € [t,,,t,11/2]. Each of the expressions on the right-hand side of (43]) needs
to be estimated:

Wltniry2) — w(tn) = 04 (555855 000, 10)))

— @0 (55 ultn)) — (vltnta) — ulta))
At At

= (I)A(TQ (I)B(7;U(tn7tn))) - (I)C(%;v(tmtn))

+20( S0t 1) — e (Griu(t)) = (0(t ) — u(t))

= (2alGhea(G 0ttt — 205 s0(tn. )

2
At

Aty 1) o ultn,ta) = (Bc(55 ) — 1) o u(t)

+ (‘1’0(7; :

First we find that

}

by using () (with v(¢,,t,) as initial data).
Introduce the function V = V(z,t) satisfying

&4 (5L 0 (B vt 1) — Be(ELv(tn, 1)

H < Ko A8
2 2 2 Hs—9

Vi=VV, — szm; V|t:tn = 'U(tnvtn)-
Then the very last line of (@) can be written as

At At

Po(—; ) —=T)ov(tn,tn) — (Pc(—; ) —I)ou(ty)
2 2

= /t e (Vi(0) — ui(o))do

n

e l(V(0)2)x - l(u(a)z)x = Viwa (0) + Ugea(0) )do
t 2 2

n

/t T (G0 + ulo) V(o) ~ u(o)), ~ (V(0) = u(0))ews ) do.

n
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Taking the H*~% norm we find

At

H(%(At' )= 1) o vltntn) — (Pc(5-

S 5 ) — 1) oulty)

Hs—9

< [T (G IV + u() (Vi) = o) lgems + IV0) = u(o)l . ) do

n

< / (KIV @) gems + Nl ros ) 1V () = (@)1

n

+ ||V(0) - U(O’)HH376 )dO’
tht1/2
< Ka/ 1V (o) — u(0)|| g0 do.
tn

By the H” stability of the KAV equation,
[V(e) = w(o)ll ge-s < K [[o(tn, tn) = ultn)|l gas < KaAt,

since by the arguments of Section we have the estimate |w(t,)| e <
lw(tn)|l ge-s < KoAt. Therefore

H(@C(%; ) _1) 0 0(tn, tn) — (%(%; - 1) o u(ty)

Hs—9

Thus we have shown that
(48) Hw(thrl/Q) - w(tn)HHs—g < KaAt2-

The other terms on the right-hand side of ([45)) can be estimated in the same manner,
using the expressions ([46]). Thus we conclude that (cf. ([@4))

(49) ()] e < KalAE2.

Ift,7 € [tn, tny1/2], we have [[v(t, 7)|| i = l|v(t, 0)|| gi, and if £, 7 € [ty 4172, tnsa],
then an estimate analogous to ([I6]) shows that

<K, lt—7].

[o(t, )| gz = o )l

The rest of the argument follows the procedure for the Godunov splitting. Now
s —9 > k is the same as s > 17. Assuming this, we get

o, T i < v Ol e + [HvE ) g — [[0E )] s
< K + K, ,At? + K, At.

implies that |[v(¢,7)|,+ < «/2. Hence by the bootstrap lemma and (@4), the
following holds:

Choosing « such that K < «/4, and then At such that K,At(At + 1) < a/4

Theorem 3.5. Fiz T > 0. Let ug € H® for some s > 17. Then for At sufficiently
small we have

[v(t, t) — u(t)| oo < KAL*, t€[0,T),

where the constant K depends on ug, s and T only.
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Remark 3.6. The result for Strang splitting is suboptimal. Possibilities for improve-
ments include the following:

(i) By replacing the Sobolev spaces H® by Bourgain spaces X ** one may improve
the regularity hypothesis.

(ii) After the submission of this article, C. Lubich observed (private communica~
tion) that by using a different approach, one could reduce the order of the Sobolev
space from 17 to 9 essentially by using the nonlinear variation of parameters formula
and then using the midpoint rule to approximate the resulting error integrals.
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