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OPERATOR SPLITTING FOR THE KdV EQUATION

HELGE HOLDEN, KENNETH H. KARLSEN, NILS HENRIK RISEBRO,
AND TERENCE TAO

Abstract. We provide a new analytical approach to operator splitting for
equations of the type ut = Au + B(u), where A is a linear operator and B
is quadratic. A particular example is the Korteweg–de Vries (KdV) equation
ut−uux+uxxx = 0. We show that the Godunov and Strang splitting methods
converge with the expected rates if the initial data are sufficiently regular.

1. Introduction

The ubiquitous Korteweg–de Vries (KdV) equation

ut − uux + uxxx = 0

offers the perfect blend of the simplest nonlinear convective term uux and the
simplest dispersive term uxxx in that the well-known smooth soliton solutions of
the KdV equation interact in an almost linear fashion apart from a phase shift.
Furthermore, the KdV equation is completely integrable with an infinite family of
conserved quantities. This is a result of a subtle interaction between the Burgers
term uux and the Airy term uxxx, as it is a well-known fact that the nonlinear
Burgers equation ut − uux = 0 generically develops shocks in finite time while the
linear Airy equation ut + uxxx = 0 preserves all Sobolev norms.

The initial value problem for the KdV equation with u|t=0 = u0 ∈ Hs, either
on the whole real line or in the periodic case, has been extensively studied. An
incomplete list of references is [2, 5]. For further discussions we refer to [8, 6].

The method of operator splitting, also called the fractional steps method, remains
a very popular method both for analysis and numerical computations of partial
differential equations. Instead of including a long list of references to relevant works,
we entrust the reader instead with [4] and the overview of the field given therein.
However, we refer to [7] for rigorous analysis of the splitting method applied to the
Schrödinger–Poisson and the cubic nonlinear Schrödinger equations.

Formally operator splitting can be explained as follows. Let u(t) = ΦC(t)u0 =
ΦC(t;u0) ∈ X, where X is some normed space, denote the solution of a given
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differential equation:

ut = C(u), t ∈ [0, T ], u|t=0 = u0.

Here C will typically be a differential operator in the spatial variable. Assuming
that we can write C = A+B in a natural way, the idea of operator splitting is that

(1) u(tn) ≈
(
ΦB(Δt)ΦA(Δt)

)n
u0, tn = nΔt,

where Δt � 1. In the case of linear ordinary differential equations, this goes back
to Sophus Lie. One of the reasons for its popularity is that operator splitting allows
for a separate treatment of the equations ut = A(u) and ut = B(u); in particular
this applies to the use of dedicated special numerical techniques for each of the
equations; again we refer to [4] for a long list of examples and relevant references.

In the context of the KdV equation, the first use of operator splitting was re-
ported in the brief paper by Tappert [9], where it was applied as a numerical method.
Apparently the first rigorous results appeared in [3] where a Lax–Wendroff result
was proved: If operator splitting converges to some limit function, then the limit
function is a weak solution of the KdV equation. In addition a systematic study
of operator splitting as a numerical method was undertaken for the KdV equa-
tion. More extensive rigorous results, specifically the convergence of the splitting
approximations in a suitable functional space, were hampered by the apparent in-
compatibility between the Burgers equation and the Airy equation.

In the present paper we offer a new analytical approach to operator splitting for
the KdV equation that will lead to rigorous convergence results (error estimates).
Compared to earlier attempts, two new ingredients enter the present approach.
First of all we actively use that the solution of the KdV equation remains bounded
in a Sobolev space; that is, if u0 ∈ Hs(R), then ‖u(t)‖Hs(R) remains bounded for

t ∈ [0, T ]. This together with a bootstrap argument is used to secure the existence
of a uniform choice of time step Δt that prevents the solution from any “Burgers”
step from blowing up. Indeed the main problem in this approach is that the Airy
equation produces small oscillatory waves that, when used as initial data for the
Burgers equation, produce shocks. Secondly, since the splitting approximations are
merely defined at the discrete times t = tn, to facilitate the convergence analysis we
introduce an extension which is defined for all t ∈ [0, T ]. Concretely, we introduce an
extension v which depends on an additional time variable τ ∈ [0, T ], i.e., v = v(t, τ ),
and let the evolution corresponding to each time variable be governed by one of the
split operators in such a way that at each time level t = tn the extension v(tn, tn)
coincides with the regular splitting approximation. This extension approach is
different from the conventional one, where one lets “time run twice as fast” in
each of the subintervals [tn, tn +Δt/2] and [tn +Δt/2, tn+1] (cf. the discussion and
references in [4]).

Formally the operator splitting (1), called sequential or Godunov splitting, yields
a first-order approximation in Δt, that is,

∥∥u(tn)−
(
ΦA(Δt)ΦB(Δt)

)n
u0

∥∥ = O(Δt), tn → t, Δt → 0,

in an appropriate norm. We show that this holds rigorously for the KdV equation.
More precisely, we prove in Theorem 2.4 that for u0 ∈ Hs(R) with s ≥ 5 we have
that for Δt sufficiently small,

‖v(t, t)− u(t)‖Hs−3(R) ≤ KΔt, t ∈ [0, T ],
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where K depends on s, T and u0 only. Here v(t, t) denotes the splitting approxi-
mation in our approach evaluated on the “diagonal” (t, τ ) = (t, t).

To obtain second-order convergence, it is common to apply the Strang splitting
formula, thus formally

∥
∥
∥u(tn)−

((
ΦB(Δt/2)ΦA(Δt/2)

)(
ΦA(Δt/2)ΦB(Δt/2)

))n

u0

∥
∥
∥ = O(Δt2),

where tn → t as Δt → 0. Here we show rigorously this result for the KdV equation.
Indeed, in Theorem 3.5, we prove that if u0 ∈ Hs for some s ≥ 17, then for Δt
sufficiently small,

‖v(t, t)− u(t)‖Hs−9 ≤ KΔt2, t ∈ [0, T ],

where the constant K depends on u0, s and T only. Again v(t, t) denotes the
operator splitting approximation in our approach. Observe that we have to increase
the regularity of the initial data, and hence of the solution, in order to get increased
accuracy of operator splitting. Note also that with this type of operator splitting,
our error estimates are in a much weaker norm than the assumptions.

It is clear that the present approach applies to several other equations, and this
is currently being investigated. Furthermore, for applications to numerical analysis,
one would need to replace the exact solution operators ΦA and ΦB by numerical
approximations, say Φδ

A and Φδ
B, and study their behavior in the limit as δ → 0,

and also to replace the time derivatives by discrete differences. Again this will be
studied separately.

The paper is organized as follows. We start by presenting the Godunov operator
splitting method for abstract operators. Next we apply this approach to nonlinear
ordinary differential equations where the procedure is fairly transparent, before
we discuss Godunov splitting for the KdV equation. Subsequently we present the
Strang splitting for abstract operators. Finally we apply this procedure to the KdV
equation.

2. Operator splitting

We first present a formal calculation motivating the rigorous analysis that will
follow. Consider an abstract differential equation

(2) ut = C(u), t ∈ [0, T ], u|t=0 = u0

for some fixed positive time T , where C typically will be a differential operator in
the spatial variable. We assume that u0 and u are in some Hilbert space X, and
we write the solution as

u(t) = ΦC(t;u0).

Formally, expanding the solution in a Taylor series we find

u(t) = u0 + tut(0) +O(t2) = u0 + tC(u0) +O(t2),

where we have used the equation (2). Assume that one can write

C = A+B

in some natural way. Operator splitting (of the Godunov type) then works as
follows. Instead of solving the problem with C directly, one alternately solves for
small time steps the equations ut = A(u) and ut = B(u). Making the time steps
finer and finer, the approximation will presumably converge to the solution of the
original equation (2).
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More precisely, fix a positive time step Δt, let tn = nΔt, n ∈ N0, and define a
family {uΔt(tn)}n of functions

uΔt(tn+1) = ΦA(Δt; ΦB(Δt;uΔt(tn))) = ΦA(Δt) ◦ ΦB(Δt)uΔt(tn), n ∈ N0,

uΔt(0) = u0.

The traditional method of extending the solution to any t ∈ [0, T ] has been to let
“time run twice as fast” in each of the subintervals [tn, tn+1/2] and [tn+1/2, tn+1],
where tn+1/2 = tn +Δt/2. Thus obtaining

(3) uΔt(t) =

{
ΦB (2(t− tn);uΔt (tn)) for t ∈

[
tn, tn+1/2

]
,

ΦA

(
2(t− tn+1/2);uΔt(tn+1/2)

)
for t ∈

[
tn+1/2, tn+1

]
.

(In the present approach we will use a different extension to all times t.)
Formally one can show that

‖uΔt(tn)− u(tn)‖ ≤ O(Δt) as Δt → 0 and tn → t

in some norm.
The convergence can be improved to second order by using the Strang splitting

formula. To this end we let the approximation (this time denoted vΔt to distinguish
from the previous approximation) read

vΔt(tn+1) = ΦB(Δt/2; ΦA(Δt; ΦB(Δt/2; vΔt(tn))))

= ΦB(Δt/2) ◦ ΦA(Δt) ◦ ΦB(Δt/2)vΔt(tn)

=
(
ΦB(Δt/2) ◦ ΦA(Δt/2)

)

◦
(
ΦA(Δt/2) ◦ ΦB(Δt/2)

)
vΔt(tn), n ∈ N0,

vΔt(0) = u0.

Formally one now has

‖vΔt(tn)− u(tn)‖ ≤ O(Δt2) as Δt → 0 and tn → t.

To show that the operator splitting solutions are well defined, we shall later make
use of the following bootstrap lemma, taken from [8, Prop. 1.21].

Lemma 2.1. Let t ∈ [0, T ]. Consider a continuous function φ : [0, T ] → [0,∞). If
there exists a positive constant α such that

(a) φ(0) ≤ α,
(b) for any t such that φ(t) ≤ α, we can show that φ(t) ≤ α/2,

then φ(t) ≤ α/2 for all t ∈ [0, T ].

2.1. Doubling the time variable. We shall formulate the operator splitting so-
lution by introducing two time variables, and define a function v = v(t, τ ) for (t, τ )
in the set

ΩΔt =

�T/Δt�⋃

n=0

[tn, tn+1]× [tn, tn+1]

by requiring that

(4)

v(0, 0) = u0,

vt(t, tn) = B(v(t, tn)), t ∈ (tn, tn+1],

vτ (t, τ ) = A(v(t, τ )), (t, τ ) ∈ [tn, tn+1]× (tn, tn+1],
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Figure 1. Schematic view of the Godunov splitting and the defi-
nition of v(t, τ ); cf. equation (4).

where n = 0, . . . , �T/Δt�. Observe that

uΔt(tn) = v(tn, tn), n = 0, . . . , �T/Δt�,
where uΔt is given by (3). The specific extension v of {uΔt(tn)}n to [0, T ] will serve
as an important technical tool to be utilized in the analysis.

The exact solution of (2) is still denoted by u. Introduce the error function

w(t) = v(t, t)− u(t).

The aim is to show that

‖w(t)‖ ≤ O(Δt), Δt → 0, t ∈ [0, T ]

in an appropriate norm.
We introduce second-order Taylor expansions of the operators A and B (see [1,

p. 29]),

A(f + g) = A(f) + dA(f)[g] +

∫ 1

0

(1− α)d(2)A(f + αg)[g]2dα,

B(f + g) = B(f) + dB(f)[g] +

∫ 1

0

(1− α)d(2)B(f + αg)[g]2dα.

Thus we find

(5)

wt − dA(u)[w]− dB(u)[w] = vt + vτ − ut − dA(u)[w]− dB(u)[w]

= vt +A(v)− (A+B)(u)− dA(u)[w]− dB(u)[w]

= vt −B(v) +
(
A(v)−A(u)− dA(u)[w]

)

+
(
B(v)−B(u)− dB(u)[w]

)

= F (t) +

∫ 1

0

(1− α)d(2)A(u+ αw)[w]2dα

+

∫ 1

0

(1− α)d(2)B(u+ αw)[w]2dα,



826 H. HOLDEN, K. H. KARLSEN, N. H. RISEBRO, AND T. TAO

where we have introduced a forcing term F (t) = F (t, t) defined as

(6) F (t, τ ) = vt(t, τ )−B(v(t, τ )).

We can rewrite (5) as follows:

(7) wt − dC(u)[w] = F (t) +

∫ 1

0

(1− α)d(2)C(u+ αw)[w]2dα.

The forcing term satisfies the following time development:

(8)

Fτ − dA(v)[F ] = vtτ −B(v)τ − dA(v)[vt −B(v)]

= A(v)t − dB(v)[vτ ]− dA(v)[vt] + dA(v)[B(v)]

= dA(v)[vt]− dB(v)[A(v)]− dA(v)[vt] + dA(v)[B(v)]

= [A,B](v, v),

where we have defined the commutator

[A,B](f, g) = dA(f)[B(g)]− dB(f)[A(g)].

For simplicity we will subsequently be writing [A,B](v) rather than [A,B](v, v).

2.2. Ordinary differential equations. As a warm-up we consider the ordinary
differential equation

(9) ut = C(u), t > 0, u(0) = u0 ∈ R
n.

To simplify the presentation we assume that C is a quadratic function, i.e., that
C ′′′ = d3C = 0 or d2C[f, g] is constant. This means that the integral in (7) reduces
to a constant. Furthermore, we assume that (9) is such that there is a unique
solution u(t) such that |u(t)| ≤ Ku0,T for t ∈ [0, T ]. Furthermore, we will assume
that the operators A and B are two times continuously differentiable and

(10) A′, A′′ ∈ L∞, A(0) = 0, |B(u)| ≤ K |u|2 , |B′(u)| ≤ K |u| .
Throughout this paper we use the convention that for a quantity α, Kα denotes

a constant depending on α (and perhaps other things). We use this notation to
highlight the dependence on α. The actual value of Kα may be different at each
occurrence.

Now let α be a positive constant (its precise value will be fixed later). To start
the bootstrap argument we assume

(11) |v(t, τ )| ≤ α, (t, τ ) ∈ ΩΔt.

In this example, since C is quadratic, d2C = κ for some constant symmetric matrix
κ, and w satisfies

(12) wt + C ′(u)w = F + wT κ

2
w, t > 0, w(0) = 0.

Furthermore, F satisfies

Fτ −A′(v)F = [A,B](v), (t, τ ) ∈ [tn, tn+1]× (tn, tn+1],

and F (t, tn) = 0, for each n. This means that

∂

∂τ
|F | ≤ K |F |+Kα2.

Hence, Gronwall’s inequality implies that

|F | (t, τ ) ≤ KαΔt,
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where Kα is a constant depending on the assumed bound on v in (11). In view of
this bound and (12),

d

dt
|w| ≤ Kα |w|+KαΔt, w(0) = 0.

Gronwall’s inequality gives that

|w(t)| ≤ eKαttKαΔt ≤ KαΔt.

Trivially we have

|v(t, t)− v(t, τ )| ≤
∫ max{t,τ}

min{t,τ}
|A(v(t, s))| ds ≤ KαΔt,

for (t, τ ) ∈ [tn, tn+1]× (tn, tn+1] for any n. Then we can conclude that

|v(t, τ )| ≤ |u(t)|+ |w(t)|+ |v(t, t)− v(t, τ )| ≤ K +KαΔt.

Now we are in a position to choose α so that K ≤ α/4; this determines Kα. Next
choose Δt so small that KαΔt ≤ α/4. Then

|v(t, τ )| ≤ α/2, (t, τ ) ∈ ΩΔt.

Hence, by the bootstrap lemma, |v(t, t)| ≤ α/2 for all t. Consequently,

(13) |v(t, t)− u(t)| ≤ Kα/2Δt;

i.e., the operator splitting is, as expected, first-order accurate.

Remark 2.2. An interesting example is the logistic equation u′ = u(u−1), where we
can write A(u) = −u and B(u) = u2. Exact solutions are available for all operators
involved, specifically

ΦC(t)u0 =
u0

u0 + et(1− u0)
, ΦA(t)u0 = u0e

−t, ΦB(t)u0 =
u0

1− u0t
.

Let u0 ∈ (0, 1). Then there is no blowup in the full equation, but blowup for the
equation ut = b(u) at t∗ = 1/u0. The function v reads in our case

v(t, τ ) =
v(tn, tn)e

−(τ−tn)

1− v(tn, tn)(t− tn)
, t, τ ∈ [tn, tn+1],

where

v(tn, tn) =
u0(1− e−Δt)

(1− e−Δt)etn + u0Δt(1− etn)
.

The quantity v(tn, tn) is well-defined on [0, T ] if one chooses Δt such that

Δt <
1− e−Δt

u0(1− e−tn)
.

Since tn ≤ T , and eT < u0/(u0 − 1), we find that u0(1− e−tn) ≤ u0(1− e−T ) < 1.
Thus we have to choose Δt such that

u0

(
1− e−T

)
<

1

Δt

(
1− e−Δt

)
= 1− Δt

2
+O

(
Δt2

)

or

Δt < 2
(
1− u0(1− e−T )

)
.
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Figure 2. (Left) The exact (top) and the approximate (bottom)
solution. (Right) The error. (Below) The error w(1) as a function
of Δt.

In this case one can verify (13) directly; namely,

|v(tn, tn)− u(tn)|

= |u0|2 (etn − 1)

∣∣(Δt)−1(1− e−Δt)− 1
∣∣

|(u0 + etn((Δt)−1(1− e−Δt)− u0))(u0 + etn(1− u0))|
= O(Δt).

The example is illustrated in Figure 2.

2.3. The KdV equation. Let us now apply this general framework to the KdV
equation, that is,

ut = uux − uxxx, u|t=0 = u0 ∈ Hs(R).

In this case, C(u) = uux − uxxx, and the evolution operator ΦC(t; · ) : Hs → Hs is
bounded. Therefore, the Hilbert space R

n of the previous example is replaced by
the Sobolev space Hs(R) with the inner product and norm

(f, g)Hs(R) =

s∑

j=0

∫

R

∂j
xf(x) ∂

j
xg(x) dx, ‖f‖2Hs(R) = (f, f)Hs(R).

We choose A to equal (minus) the Airy operator:

A(f) = −fxxx,

dA(f)[g] = −gxxx,

d(2)A(f)[g, h] = 0,
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and B to equal the Burgers operator:

B(f) = ffx,

dB(f)[g] = fgx + fxg,

d(2)B(f)[g, h] = hgx + hxg,

d(3)B(f)[g, h, k] = 0.

In this case the commutator reads

[A,B](f, f) = −3

2
∂2
x(fx)

2.

Thus the equations (7), (6), and (8) are

wt − (uw)x + wxxx = F + wwx,(14)

F = vt − vvx,

Fτ + Fxxx = −3

2
∂2
x(vx)

2,(15)

respectively.
From [2] we recall the classical result that for u0 ∈ Hs(R) with s ≥ 2 there exists

a unique solution u ∈ C([0, T ], Hs(R)) of the KdV equation

ut = uux − uxxx, u|t=0 = u0.

In particular, we can assume that there exists a constant K (depending on T , u0,
and s) such that

‖u(t)‖Hs(R) ≤ K, t ∈ [0, T ].

To save space and typing efforts, we shall write Hk for Hk(R), and ∂ for ∂x.
Next, let s be an odd integer greater than or equal to 5. Assume that there

exists a constant α such that

‖v(t, τ )‖Hk̂ ≤ α, (t, τ ) ∈ ΩΔt,

where k̂(s) = (s− 1)/2.
Let us estimate the behavior of the Airy and Burgers operators. The Airy

equation leaves all Sobolev norms invariant, viz.

‖v(t, τ )‖Hk = ‖v(t, tn)‖Hk .

By definition we find for the Burgers operator,

1

2

d

dt
‖v(t, tn)‖2Hs = (v, vt)Hs =

s∑

j=0

∫
∂jv∂j (vvx) dx

=
s∑

j=0

j∑

k=0

(
j

k

)∫
∂jv ∂k+1v ∂j−kv dx.

For j < s, any of the above terms can be estimated by
∣
∣
∣
∫

∂jv ∂k+1v ∂j−kv dx
∣
∣
∣ ≤

∥
∥∂jv

∥
∥
L∞

∥
∥
∥∂max{k+1,j−k}v

∥
∥
∥
L2

∥
∥
∥∂min{k+1,j−k}v

∥
∥
∥
L2

≤ K ‖v‖2Hs ‖v‖Hk̂

≤ Kα ‖v‖2Hs .
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For j = s all terms with k < s and k = k̂ can be estimated similarly,
∣∣
∣
∫

∂sv ∂k+1v ∂s−kv dx
∣∣
∣ ≤ ‖∂sv‖L2

∥∥
∥∂min{k+1,s−k}v

∥∥
∥
L∞

∥∥
∥∂max{k+1,s−k}v

∥∥
∥
L2

≤ K ‖v‖2Hs ‖v‖Hk̂

≤ Kα ‖v‖2Hs .

If j = s and k = k̂, we find
∣
∣∣
∣

∫
∂sv∂k̂+1v∂s−k̂v dx

∣
∣∣
∣ =

∣
∣∣
∣

∫
∂sv(∂k̂+1v)2 dx

∣
∣∣
∣ = 2

∣
∣∣
∣

∫
∂s−1v∂k̂+1v∂k̂+2v dx

∣
∣∣
∣

= 2

∣
∣∣
∣

∫
∂k̂v∂(∂s−1v∂k̂+2v)dx

∣
∣∣
∣

≤ 2

∫ ∣
∣∣∂k̂v∂sv∂k̂+2v

∣
∣∣ dx+ 2

∫ ∣
∣∣∂k̂v∂s−1v∂k̂+3v

∣
∣∣ dx

≤ 2
∥
∥∥∂k̂+2v

∥
∥∥
L∞

∥
∥∥∂k̂v

∥
∥∥
L2

∥
∥∂s−1v

∥
∥
L2

+ 2
∥∥
∥∂k̂+3v

∥∥
∥
L∞

∥∥
∥∂k̂v

∥∥
∥
L2

∥∥∂s−1v
∥∥
L2

≤ 4K ‖v‖2Hs ‖v‖Hk̂

≤ Kα‖v‖2Hs .

We are left with the term where k = s = j, viz.
∣∣
∣
∫

∂sv ∂s+1v v dx
∣∣
∣ =

1

2

∣∣
∣
∫

(∂sv)
2
∂v dx

∣∣
∣

≤ ‖∂v‖L∞ ‖∂sv‖2L2

≤ K ‖v‖Hk̂ ‖v‖2Hs

if k̂ ≥ 2, i.e., if s ≥ 5.
Thus

(16)
d

dt
‖v (t, tn)‖Hs ≤ Kα ‖v (t, tn)‖Hs ,

which implies that

‖v (t, tn)‖Hs ≤ eKα(t−tn) ‖v (tn, tn)‖Hs .

In particular, for any n,

‖v (tn, tn)‖Hs ≤ eKαΔt ‖v (tn−1, tn−1)‖Hs ≤ eKαtn ‖u0‖Hs .

Thus we have shown the following result.

Lemma 2.3. We have

‖v(t, τ )‖Hs ≤ Kα, (t, τ ) ∈ ΩΔt.

Observe the general result, obtained by integration by parts,

(f, fxxx)Hk = 0, f ∈ Hk+3.

Next we analyze the forcing term that satisfies (15). By taking the Hs−3 inner
product with F in (15) we get

1

2
∂τ ‖F (t, τ )‖2Hs−3 = −(F, Fxxx)Hs−3 − 3

2
(F, ∂2(vx)

2)Hs−3
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≤ 3

2
‖F‖Hs−3

∥
∥∂j+2

x (vx)
2
∥
∥
Hs−3 .

Since Hs is an algebra,
∥∥∂j+2(vx)

2
∥∥
Hs−3 ≤

∥∥(vx)2
∥∥
Hs−1 ≤ K ‖vx‖2Hs−1 ≤ K2

α.

Also F (t, tn) = 0 for t ∈ [tn, tn+1], and we conclude that

‖F (t, τ )‖Hs−3 ≤ KαΔt, (t, τ ) ∈ ΩΔt.

As for the error function w = v(t, t)− u(t), we have the following estimates. Let
E(t) = ‖w(t)‖Hs−3 . By taking the inner product with w in (14), we get

(17)

1

2

d

dt
E2(t) = (w, (uw)x)Hs−3 − (w,wxxx)Hs−3 + (w,F )Hs−3 + (w,wwx)Hs−3

= (w, (uw)x)Hs−3 + (w,wwx)Hs−3 + (w,F )Hs−3

=

s−3∑

j=0

∫ (
∂jw∂j (uwx + uxw + wwx)

)
dx+ (w,F )Hs−3 .

The first integrand on the right is expanded by Leibniz’ rule. We get

s−3∑

j=0

j∑

k=0

(
j

k

)∫
∂jw∂k+1w∂j−ku+ ∂jw∂kw∂j+1−ku+ ∂jw∂kw∂j+1−kw dx.

For 0 ≤ k ≤ j < s− 3, we can estimate
∣
∣
∣
∫

∂jw ∂k+1(k)w ∂j−k(+1)u dx
∣
∣
∣ ≤ ‖w‖2Hs−3

∥
∥
∥∂j−k(+1)u

∥
∥
∥
L∞

≤ K ‖w‖2Hs−3 ‖u‖Hs ,

∣∣
∣
∫

∂jw ∂kw ∂j+1−kw dx
∣∣
∣ ≤

∥∥∂jw
∥∥
L∞ ‖w‖2Hs−3

≤ K (‖u‖Hs + ‖v‖Hs) ‖w‖2Hs−3 .

For j = s− 3, we can use the same strategy for those terms with fewer than s− 2
derivatives on w. The term with s− 2 derivatives on w can be estimated as

∣∣
∣
∫

∂s−3w ∂s−2w udx
∣∣
∣ =

1

2

∣∣
∣
∫ (

∂s−3w
)2

∂u dx
∣∣
∣ ≤ K ‖u‖Hs ‖w‖2Hs−3 ,

∣
∣
∣
∫

∂s−3ww∂s−2w dx
∣
∣
∣ =

1

2

∣
∣
∣
∫ (

∂s−3w
)2

∂w dx
∣
∣
∣

≤ K (‖u‖Hs + ‖v‖Hs) ‖w‖2Hs−3 .

The last term in (17) is overestimated by ‖F‖Hs−3 ‖w‖Hs−3 , and we get

d

dt
E2(t) ≤ KαE

2(t) +KE(t) ‖F‖Hs−3 ≤ KαE
2(t) +KΔt,

which implies that
d

dt
E(t) ≤ KαE(t) +KΔt.

Since E(0) = 0, Gronwall’s inequality yields

‖w(t)‖Hs−3 = E(t) ≤ KαΔt.
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Recall that ‖v(t, τ )‖Hs−3 = ‖v(t, t)‖Hs−3 because

∂τ ‖v(t, τ )‖2Hs−3 = −2 (v, vxxx)Hs−3 = 0.

Now u is bounded in Hs, and we infer that

‖v(t, τ )‖Hs−3 ≤ K +KαΔt.

Since s ≥ 5,

s− 3 ≥ k̂ =
s− 1

2
,

and we get

‖v(t, τ )‖Hk̂ ≤ K +KαΔt.

First choose α ≥ 4K, then choose Δt so small that KαΔt ≤ α/4, so that K +
KαΔt ≤ α/4 + α/4 = α/2. Hence, by the bootstrap argument we have proved the
following theorem.

Theorem 2.4. Fix T > 0. Let u0 ∈ Hs(R) with s ≥ 5. Then for Δt sufficiently
small we have

‖v(t, t)− u(t)‖Hs−3(R) ≤ KΔt, t ∈ [0, T ],

where K depends on s, T and u0 only.

Remark 2.5. Instead of defining v by (4) for the KdV equation, we could also
interchange the order of the Airy operator A and the Burgers operator B in the
definition of v. The same procedure as described above would apply, and Theorem
2.4 would remain valid. This remark is important for the Strang splitting to be
discussed next.

3. Strang splitting

To achieve higher-order convergence it is common to consider the so-called Strang
splitting. Now we approximate the solution by using two Godunov splittings, each
with a time step of Δt/2, and in alternating order. Explicitly, we define

v(0, 0) = u0,

vt(t, tn) = B(v(t, tn)), t ∈ (tn, tn+1/2],

vτ (t, τ ) = A(v(t, τ )), (t, τ ) ∈ [tn, tn+1/2]× (tn, tn+1/2],(18)

vτ (tn+1/2, τ ) = A(v(tn+1/2, τ )), τ ∈ (tn+1/2, tn+1],

vt(t, τ ) = B(v(t, τ )), (t, τ ) ∈ (tn+1/2, tn+1]× [tn+1/2, tn+1],

for n = 0, . . . , �T/Δt�. We consider this function for (t, τ ) in the domain

Ω̃Δt =

�T/Δt�⋃

n=0

([
tn, tn+1/2

]2 ∪
[
tn+1/2, tn+1

]2)
.

The aim is now to show that

‖v (t, t)− u (t)‖ = O
(
Δt2

)

in an appropriate norm. Here the abstract analysis of Section 2.1 applies, and we
find:
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Figure 3. A schematic view of Strang splitting.

(i): On the domains [tn, tn+1/2]× [tn, tn+1/2] we have

wt − dC(u)[w] = F (t) +

∫ 1

0

(1− α)d(2)C(u+ αw)[w]2dα,

F (t, τ ) = vt(t, τ )−B(v(t, τ )).(19)

The forcing term satisfies the following time development:

Fτ = dA(v)[F ] + [A,B](v),

Ft = vtt − dB(v)[F ]− dB(v)[B(v)].

(ii): On the domains [tn+1/2, tn+1]× [tn+1/2, tn+1] we have (here we write wt

rather than wτ since w is a function of one variable only)

wt − dC(u)[w] = G(t) +

∫ 1

0

(1− α)d(2)C(u+ αw)[w]2dα,

G(t, τ ) = vτ (t, τ )−A(v(t, τ )).(20)

The forcing term satisfies the following time development:

Gt = dB(v)[G] + [B,A](v),

Gτ = vττ − dA(v)[G]− dA(v)[A(v)].

We extend F and G to all of Ω̃Δt using the same definitions, (19) and (20), respec-
tively. Observe that this implies that F = 0 on [tn+1/2, tn+1]× [tn+1/2, tn+1], while
G = 0 on [tn, tn+1/2]× [tn, tn+1/2]. The total forcing term is defined by

H(t, τ ) = F (t, τ ) +G(t, τ ).

3.1. Ordinary differential equations. One can consider the case of ordinary
differential equations, as we did in Subsection 2.2 for Godunov splitting, but for
reasons of brevity we will only revisit the example in Remark 2.2.
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Figure 4. (Left) The exact and the approximate solution. (Right)
The error v(t, t)− u(t).

Remark 3.1. We find, using the definitions (18), that

(21) v(t, τ ) =

⎧
⎨

⎩

v(tn,tn)e
−(τ−tn)

1−v(tn,tn)(t−tn)
, for t, τ ∈ [tn, tn+1/2],

v(tn+1/2,tn+1/2)

e
τ−tn+1/2−v(tn+1/2,tn+1/2)(t−tn+1/2)

, for t, τ ∈ [tn+1/2, tn+1],

for n = 0, . . . , �T/Δt�. By induction we determine

(22) v(tn, tn) =
u0(1− e−Δt)

(1− e−Δt)etn + u0Δt(etn − 1)(eΔt + 1)/2
.

In this case we compute, when we for convenience write α = u0(1− etn),

(23)

|w(tn)| = |v(tn, tn)− u(tn)|

=

∣∣
∣
∣

u0(1− e−Δt)

(1− e−Δt)etn + u0Δt(etn − 1)(eΔt + 1)/2
− u0

etn + u0(1− etn)

∣∣
∣
∣

= |u0|
∣∣
∣
∣

1

etn + αΔt(1 + eΔt)/(2(1− e−Δt))
− 1

etn + α

∣∣
∣
∣

≤ |u0|2 etn(etn − 1)

|(etn + αΔt(1 + eΔt)/(2(1− e−Δt)))(etn + α)|

∣∣
∣∣1−

Δt(1 + eΔt)

2(1− e−Δt)

∣∣
∣∣

≤ O(Δt2).

The example is illustrated in Figure 4. Observe the strong oscillations in the error.
It is these oscillations which prevent the error from growing too large.

3.2. The KdV equation. For the KdV equation, we use B(v) = vvx and A(v) =
−vxxx, and the above analysis yields:

(i): On domains [tn, tn+1/2]× [tn, tn+1/2] we have

(24)
wt − (uw)x + wxxx = F (t) + wwx,

F (t, τ ) = vt − vvx.

The forcing term satisfies the following time development:

(25)
Fτ = −Fxxx − 3

2
∂2
x(vx)

2,

Ft = vtt − (vF )x − (2vv2x + v2vxx),

since dB(v)[B(v)] = v(vvx)x + vx(vvx) = 2vv2x + v2vxx.
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(ii): On domains [tn+1/2, tn+1]× [tn+1/2, tn+1] we have

(26)
wt − (uw)x + wxxx = G(t) + wwx,

G(t, τ ) = vτ (t, τ ) + vxxx.

The forcing term satisfies the following time development:

(27)
Gt = (vG)x +

3

2
∂2
x(vx)

2,

Gτ = vττ +Gxxx − v(6),

since dA(v)[A(v)] = (vxxx)xxx.

To start the bootstrapping procedure we fix an odd integer s and a positive
constant α, whose values will be determined in the course of the argument. Now
assume that

‖v(t, τ )‖Hk̂ ≤ α, (t, τ ) ∈ Ω̃Δt,

where k̂ = (s− 1)/2. As a consequence, we have

‖v(t, τ )‖Hs ≤ Kα, (t, τ ) ∈ Ω̃Δt;

cf. the proof of Lemma 2.3, which can be easily adapted to Strang splitting.
We need to introduce the function

(28) z(t) = w(t) + w(t+
Δt

2
) = w(t) + w̃(t).

In the following we will write φ̃(t) = φ(t+ Δt
2 ) for any function φ. Straightforward

calculations yield that z satisfies

(29) zt − (
1

2
z2 + uz − zxx)x = H + H̃ +

(
w̃(ũ− u)− ww̃

)
x
.

By our techniques, we must work in Hs−9 (so at least s ≥ 9); therefore set

E(t) = ‖z(t)‖Hs−9(R) .

By taking the Hs−9 inner product with z in (29) we get

1

2

d

dt
E2(t) = (z, (

1

2
z2 + uz − zxx)x)Hs−9 + (z,H + H̃)Hs−9

+ (z, (w̃(ũ− u)− ww̃)x)Hs−9

= (z, zzx + uxz + uzx)Hs−9 + (z,H + H̃)Hs−9

− (zx, w̃(ũ− u)− ww̃)Hs−9

≤ (z, zzx + uxz + uzx)Hs−9 + E(t)
∥
∥
∥H + H̃

∥
∥
∥
Hs−9

+ E(t) ‖w̃(ũ− u)− ww̃‖Hs−9

≤ KαE
2(t) +KE(t)

( ∥∥∥H + H̃
∥
∥∥
Hs−9

+ ‖w̃(ũ− u)− ww̃‖Hs−9

)
.
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Thus by Gronwall’s inequality,

(30)

E(t) ≤ E(0) +

∫ t

0

eKα(t−σ)
( ∥∥
∥H(σ, σ) + H̃(σ, σ)

∥
∥
∥
Hs−9

+ ‖w̃(σ)(ũ(σ)− u(σ))− w(σ)w̃(σ)‖Hs−9

)
dσ

≤ E(0) + eKαt

∫ t

0

( ∥∥∥H(σ, σ) + H̃(σ, σ)
∥
∥∥
Hs−9

+ ‖w̃(σ)(ũ(σ)− u(σ))− w(σ)w̃(σ)‖Hs−9

)
dσ.

Next we turn to the detailed estimate of each of the terms in (30). We start with
the most involved one, the forcing term, which can be estimated as follows. We
consider the term F first. Since F (t, tn) = 0, we easily see that Ft(tn, tn) = 0; thus
(cf. (25)) (Ft + Fτ )(tn, tn) = − 3

2∂
2
x(vx)

2(tn, tn). Thus

F (t, t) = (vt − vvx)(t, t)

= F (tn, tn) + (Ft + Fτ )(tn, tn)(t− tn)

+
(t− tn)

2

2

∫ 1

0

(Ftt + 2Ftτ + Fττ )(σ(t− tn) + tn, σ(t− tn) + tn)dσ

= −3

2
∂2
x(vx)

2(tn, tn)(t− tn)

+
(t− tn)

2

2

∫ 1

0

(Ftt + 2Ftτ + Fττ )(σ(t− tn) + tn, σ(t− tn) + tn)dσ.

As for the second derivatives, we find

(31)

Fττ = −Fτxxx − 3

2
∂2
x∂τ (vx)

2

= ∂6
xF +

3

2
∂5
x(vx)

2 − 3∂2
x(vxv

(6)),

Fτt = −vttxxx − (vxxxvx + vvxxxx)t,

Ftt = vttt − vttvx − 2vtvxt − vvxtt.

Similarly we find for the forcing term G the following estimates. Since G(tn+1/2, τ )
= 0, we easily see that Gτ (tn+1/2, tn+1/2) = 0; thus (cf. (27)) we obtain

(Gt +Gτ )(tn+1/2, tn+1/2) =
3
2∂

2
x(vx)

2(tn+1/2, tn+1/2). Thus

G(t+
Δt

2
, t+

Δt

2
) = (vτ + vxxx)(t+

Δt

2
, t+

Δt

2
)

= G(tn+1/2, tn+1/2) + (Gt +Gτ )(tn+1/2, tn+1/2)(t− tn)

+
(t− tn)

2

2

∫ 1

0

(Gtt + 2Gtτ +Gττ )(σ(t− tn) + tn, σ(t− tn) + tn)dσ

=
3

2
∂2
x(vx)

2(tn+1/2, tn+1/2)(t− tn)

+
(t− tn)

2

2

∫ 1

0

(Gtt + 2Gtτ +Gττ )(σ(t− tn) + tn, σ(t− tn) + tn)dσ.

The second derivatives Gtt + 2Gtτ + Gττ will have to be considered similarly to
those for F . These read

Gtt = 2v2xG+ 4vvxGx + v2Gxx +Gvvxx
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+ 6vxx (vxv)xx + vvxvxxx + v (vvx)xxx ,

Gτt = vττvx + 2vτvτx + vvττx + ∂4 (Gv) +
3

2
∂5

(
v2x
)
− ∂6 (vvx) ,

Gττ = vτττ + vττxxx.

Lemma 3.2. We have the estimate

‖Φ(t, τ )‖2Hs−9 + ‖Ψ(t̄, τ̄)‖2Hs−9 ≤ Kα, (t, τ ), (t̄, τ̄) ∈ Ω̃Δt,

where Φ = (Ftt + 2Ftτ + Fττ ) and Ψ = (Gtt + 2Gtτ +Gττ ).

Proof. We have that ‖F‖Hs−9 ≤ KαΔt; we shall get a similar estimate for ‖G‖Hs−9 .
For tn ≤ τ ≤ tn+1/2, we have that

Gt = vxG+ vGx +
3

2
∂2

(
v2x
)
,

and G(t, tn) = 0. Taking the Hs−9 inner product with G we get

1

2

d

dt
‖G‖2Hs−9 =

s−9∑

k=0

∫
∂k (vxG) ∂kG+ ∂k (vGx) ∂

kG+
3

2
∂k+2

(
v2x
)
∂kGdx.

The first term expands by the Leibniz rule; a typical term in this expansion reads
(here 0 ≤ j ≤ k ≤ s− 9)

∫
∂j+1v∂k−jG∂kGdx ≤

∥
∥∂j+1v

∥
∥
L∞ ‖G‖2Hs−9 .

Similarly the second term can be expanded and estimated, except for the term
containing ∂k+1G, which is estimated as

∫
v∂k+1G∂kGdx =

1

2

∫
v∂

(
∂kG

)2
dx = −1

2

∫
∂v

(
∂kG

)2
dx

≤ 1

2
‖∂v‖L∞ ‖G‖2Hs−9 .

We bound the last term as
∣
∣∣
∫

∂k+2
(
v2x
)
∂kGdx

∣
∣∣ ≤ K ‖v‖2Hs ‖G‖Hs−9 .

Summing up, we get

d

dt
‖G‖2Hs−9 ≤ Kα ‖G‖2Hs−9 +Kα ‖G‖Hs−9 .

Using Gronwall’s inequality and that G(tn, τ ) = 0 we get

‖G‖Hs−9 ≤ KαΔt.

We also need estimates for vt, vtt and vttt, where t, τ ∈ [tn, tn+1/2]. In this set,

vτ = −vxxx, and this evolution preserves the Hk norm. For τ = tn,

vt = vvx,

vtt = vtvx + vvtx,

vttt = vttvx + 2vtvtx + vvttx.
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Therefore
‖vt‖Hk ≤ ‖v‖Hk ‖v‖Hk+1 ≤ K ‖v‖2Hk+1 ,

‖vtt‖Hk ≤ K ‖v‖3Hk+2 ,

‖vttt‖Hk ≤ K ‖v‖4Hk+3 .

Next we turn to estimates of vτ , vττ and vτττ in the set t, τ ∈ [tn+1/2, tn+1]. Here
vt = vvx, and setting ω = vτ , θ = vττ and γ = vτττ , we get

ωt = vxω + vωx, ω(tn+1/2, τ ) = −∂3v,

θt = 2ωωx + vxθ + vθx, θ(tn+1/2, τ ) = ∂6v,

γt = 3θωx + 3θxω + vxγ + vγx, γ(tn+1/2, τ ) = −∂9v.

Starting with ω, for k < s− 9 we get

1

2

d

dt
‖ω‖2Hk =

k∑

j=0

∫
∂j (vxω) ∂

jω + ∂j (vωx) ∂
jω dx.

Using Leibniz’ rule, all terms except the ultimate one will be of the type
∣∣
∣
∫

∂�v∂j−�ω∂j dx
∣∣
∣ ≤ ‖v‖Hs ‖ω‖2Hk .

The ultimate term (with one too many derivatives on ω) is as usual estimated as
∣
∣∣
∫

v∂k+1ω∂kω dx
∣
∣∣ =

1

2

∣
∣∣
∫

∂v
(
∂kω

)2
dx

∣
∣∣ ≤ ‖v‖Hs ‖ω‖2Hk .

Gronwall’s inequality then yields

‖ω‖Hk (t) ≤ eKαΔt ‖ω‖Hk (tn+1/2) ≤ Kα ‖v‖Hk+3

(
tn+1/2, τ

)
.

Reasoning similarly for θ, we find that

‖θ‖Hk (t) ≤ eKαΔt

(
max

s∈[tn+1/2,tn+1]
‖ω‖2Hk+1 (s) + ‖θ‖Hk (tn+1/2)

)

≤ Kα

(
‖v‖2Hk+4 + ‖v‖Hk+6

) (
tn+1/2, τ

)
.

Finally, the estimate for γ reads

‖γ‖Hk ≤ Kα (‖θ‖Hk+1 ‖ω‖Hk+1 + ‖γ‖Hk)
(
tn+1/2, τ

)

≤ Kα

(
‖v‖2Hk+4 + ‖v‖4Hk+5 + ‖v‖2Hk+7 + ‖v‖Hk+9

) (
tn+1/2, τ

)
.

Summing up, we get

‖vτ‖Hk ≤ Kα ‖v‖Hk+3 , ‖vττ‖Hk
≤ Kα ‖v‖Hk+6 , ‖vτττ‖Hk

≤ Kα ‖v‖Hk+9 .

Now

‖Φ‖Hs−9 ≤ ‖Fττ‖Hs−9 + 2 ‖Ftτ‖Hs−9 + ‖Ftt‖Hs−9 .

Working in the square [tn, tn+1/2]
2, from (31),

‖Fττ‖Hs−9 ≤
∥∥∂6F

∥∥
Hs−9 +

3

2

∥
∥∥∂5 (∂v)

2
∥
∥∥
Hs−9

+ 3
∥∥∂2

(
∂v∂6v

)∥∥
Hs−9

≤ ‖F‖Hs−3 +Kα ‖v‖2Hs−3 +Kα ‖v‖2Hs−1(32)

≤ Kα
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and

‖Ftτ‖Hs−9 ≤ ‖vtt‖Hs−6 +Kα

(
‖v‖Hs−8 ‖vt‖Hs−6 + ‖vt‖Hs−9 ‖v‖Hs−6

+ ‖v‖Hs−9 ‖vt‖Hs−5 + ‖vt‖Hs−9 ‖v‖Hs−5

)

≤ Kα

(
‖v‖Hs−4 + ‖v‖Hs−8 ‖v‖Hs−5(33)

+ ‖v‖Hs−7 ‖v‖Hs−7 + ‖v‖Hs−9 ‖v‖Hs−4

+ ‖v‖Hs−8 ‖v‖Hs−5

)

≤ Kα,

and also

‖Ftt‖Hs−9 ≤ ‖vttt‖Hs−9 + ‖vttvx‖Hs−9 + 2 ‖vtvxx‖Hs−9 + ‖vvtxx‖Hs−9

≤ Kα

(
‖v‖Hs−6 + ‖v‖Hs−7 ‖v‖Hs−8 + ‖v‖Hs−9 ‖v‖Hs−6

)

≤ Kα.(34)

Hence ‖Φ‖Hs−9 ≤ Kα.
In the second square [tn+1/2, tn]

2, we write

‖Ψ‖Hs−9 ≤ ‖Gtt‖Hs−9 + 2 ‖Gtτ‖Hs−9 + ‖Gττ‖Hs−9 .

Each term above is estimated individually as

‖Gtt‖Hs−9 ≤ 2
∥
∥v2xG

∥
∥
Hs−9 + 4 ‖vvxGx‖Hs−9 +

∥
∥v2Gxx

∥
∥
Hs−9

+ 3
∥
∥vxx

(
v2
)
xx

∥
∥
Hs−9

+ ‖vvxxvxxx‖Hs−9 + ‖v (vvx)xxx‖Hs−9

≤ Kα

(
‖v‖Hs−8 ‖G‖Hs−9 + ‖v‖Hs−8 ‖G‖Hs−8 + ‖v‖Hs−9 ‖G‖Hs−7

+ ‖v‖2Hs−7 + ‖v‖3Hs−6 + ‖v‖3Hs−5

)

≤ Kα,(35)

‖Gtτ‖Hs−9 ≤ ‖vττvx‖Hs−9 + 2 ‖vτvxx‖Hs−9 + ‖vvττx‖Hs−9 +
∥
∥∂4(Gv)

∥
∥
Hs−9

+
3

2

∥∥∂5(v2x)
∥∥
Hs−9 +

∥∥∂6(vvx)
∥∥
Hs−9

≤ Kα

(
‖v‖Hs−3 ‖v‖Hs−8 + ‖v‖Hs−6 ‖v‖Hs−8 + ‖v‖Hs−9 ‖v‖Hs−1

+ ‖G‖Hs−5 ‖v‖Hs−5 + ‖v‖2Hs−3 + ‖v‖Hs−3 ‖v‖Hs−2

)

≤ Kα,(36)

‖Gττ‖Hs−9 ≤ ‖vτττ‖Hs−9 + ‖vττxxx‖Hs−9

≤ Kα

(
‖v‖Hs + ‖v‖Hs

)

≤ Kα.(37)

Collecting (34), (33), (32), (35), (36) and (37) finishes the proof of the lemma. �
Lemma 3.3. The map

[0, T ] � t �→ ∂2
(
v2x
)
(t, t) ∈ Hs−9

is Lipschitz continuous with Lipschitz constant at most Kα.
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Proof. Set w(t, τ ) = ∂2(v2x)(t, τ ). Then we have

wt = 4vxxvtxx + 2vtxxxvx + 2vxxxvtx,

wτ = 4vxxvτxx + 2vτxxxvx + 2vxxxvτx.

In the square [tn, tn+1/2]
2 we have vτ = −vxxx; thus

wτ = −4vxx∂
5v − 2∂6vvx − 2vxxx∂

4v.

Hence in this square,

‖wt + wτ‖Hs−9 ≤ K
(
‖v‖Hs−7 ‖vt‖Hs−7 + ‖vt‖Hs−6 ‖v‖Hs−8

+ ‖v‖Hs−6 ‖vt‖Hs−8 + ‖v‖Hs−7 ‖v‖Hs−4

+ ‖v‖Hs−3 ‖v‖Hs−1 + ‖v‖Hs−6 ‖v‖Hs−5

)

≤ Kα.

In the second square [tn+1/2, tn+1]
2 we have wt = vvx, and

wt = 4vxx (vvx)xx + 2 (vvx)xxx vx + 2vxxx (vvx)x .

Therefore in this square,

‖wt + wτ‖Hs−9 ≤ K
(
‖v‖Hs−7 ‖vvx‖Hs−7 + ‖vvx‖Hs−6 ‖v‖Hs−9

+ ‖v‖Hs−6 ‖vvx‖Hs−8 + ‖v‖Hs−8 ‖vτ‖Hs−8

+ ‖v‖Hs−8 ‖vτ‖Hs−6 + ‖v‖Hs−6 ‖vτ‖Hs−8

)

≤ K
(
‖v‖2Hs−7 ‖v‖Hs−6 + ‖v‖Hs−7 ‖v‖Hs−6 ‖v‖Hs−9

+ ‖v‖Hs−6 ‖v‖Hs−8 ‖v‖Hs−7 + ‖v‖Hs−8 ‖v‖Hs−5

+ ‖v‖Hs−8 ‖v‖Hs−3 + ‖v‖Hs−6 ‖v‖Hs−5

)

≤ Kα. �

From this lemma it follows that

Γ(t) = −∂2(vx)
2(t, t) + ∂2(vx)

2

(
t+

Δt

2
, t+

Δt

2

)

satisfies

‖Γ(t)‖Hs−9 ≤ KαΔt, t ∈ [0, T ].

The following lemma will be convenient.

Lemma 3.4. For t ∈ [tm, tm+1/2] we have

s−9∑

j=0

∫ (
∂j (F (t) +G (t+Δt/2))

)2
dx ≤ KαΔt4,(38)

s−9∑

j=0

∫ (
∂j (F (t) +G (t−Δt/2))

)2
dx ≤ KαΔt4.(39)
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Proof. We show that (38), (39) is proved similarly. By a Taylor expansion, for
t ∈ [tm, tm+1/2],

s−9∑

j=0

∫ (
∂j (F (t) +G (t+Δt/2))

)2
dx

=
s−9∑

j=0

∫ [
∂j

(
−3

2
∂2 (vx)

2 (tm) (t− tm) +
(t− tm)2

2

∫ 1

0

Φ (σ(t− tm) + tm) dσ

+
3

2
∂2 (vx)

2
(tm+Δt/2) (t− tm)+

(t− tm)2

2

∫ 1

0

Ψ(σ(t− tm)+tm) dσ
)]2

dx

=
s−9∑

j=0

∫ [
∂j

(
−3

2
∂2 (vx)

2 (tm) +
3

2
∂2 (vx)

2 (tm +Δt/2) (t− tm)

+
(t− tm)2

2

∫ 1

0

(Φ (σ(t− tm) + tm) + Ψ (σ(t− tm) + tm)) dσ
)]2

dx

≤ 2
9

4

s−9∑

j=0

∫ (
∂j

(
−∂2 (vx)

2 (tm) + ∂2 (vx)
2 (tm +Δt/2)

)
(t− tm)

)2

dx

+ 2
s−9∑

j=0

∫ (
∂j

∫ 1

0

(Φ (σ(t− tm)+tm)+Ψ (σ(t− tm)+tm)) dσ (t− tm)2
)2

dx

=
9

2
‖Γ(t)‖2Hs−9 (t− tm)

2

+ 2
s−9∑

j=0

∫ (
∂j

∫ 1

0

(Φ (σ(t− tm)+tm)+Ψ (σ(t− tm)+tm))dσ

)2

dx (t− tm)4

≤ KαΔt2 (t− tm)2

+ 4

∫ 1

0

(
‖Φ (σ(t− tm)+tm)‖2Hs−9+‖Ψ(σ(t− tm)+tm)‖2Hs−9

)
dσ (t− tm)

4

≤ KαΔt2 (t− tm)
2
+Kα (t− tm)

4

≤ KαΔt4. �

Combining the above results, we find that for t ∈ [tn−1, tn),
∫ t

0

∥
∥∥H(σ) + H̃(σ)

∥
∥∥
Hs−9

dσ ≤
∫ tn

0

∥
∥∥H(σ) + H̃(σ)

∥
∥∥
Hs−9

dσ

=

n−1∑

m=0

∫ tm+1

tm

( s−9∑

j=0

∫ (
∂j (F (σ) +G(σ))

+∂j
(
F (σ +

Δt

2
) +G(σ +

Δt

2
)
)
)2

dx

)1/2

dσ

=
n−1∑

m=0

∫ tm+1

tm

( s−9∑

j=0

∫ (
∂j

(
F (σ) +G(σ +

Δt

2
)
)

+∂j
(
F (σ +

Δt

2
) +G(σ)

))2

dx

)1/2

dσ
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≤
√
2

n−1∑

m=0

∫ tm+1

tm

( s−9∑

j=0

∫ ((
∂j

(
F (σ) +G(σ +

Δt

2
)
))2

+
(
∂j

(
F (σ +

Δt

2
) +G(σ)

))2

dx

)1/2

dσ

≤
√
2

n−1∑

m=0

∫ tm+1

tm

[( s−9∑

j=0

∫ (
∂j

(
F (σ) +G(σ +

Δt

2
)
))2

dx

)1/2

+

( s−9∑

j=0

∫ (
∂j

(
F (σ +

Δt

2
) +G(σ)

))2

dx

)1/2]
dσ

=
√
2
∑

m

∫ tm+1/2

tm

( s−9∑

j=0

∫ (
∂j (F (σ) +G(σ +Δt/2))

)2
dx

)1/2

dσ

+

∫ tm+3/2

tm+1

( s−9∑

j=0

∫ (
∂j (F (σ) +G(σ −Δt/2))

)2
dx

)1/2

dσ

≤ KαΔt2

(
∑

m

∫ tm+1/2

tm

dσ +
∑

m

∫ tm+3/2

tm+1

dσ

)

≤ KαΔt2,

where we have used Lemma 3.4. This finishes the estimate for the forcing term.

Next we estimate the term
∫ t

0
‖w̃(σ)(ũ(σ) − u(σ)) w(σ)w̃(σ)‖Hs−9 dσ in (30).

Here we can use the estimates from the Godunov splitting to infer that

‖w(σ)‖Hs−9 + ‖w̃(σ)‖Hs−9 ≤ KαΔt, σ ∈ [0, T ].

From the KdV equation we infer immediately

‖ũ(σ)− u(σ)‖Hs−9 ≤
∫ Δt/2

0

‖(uux − uxxx)(σ + τ )‖Hs−9 dτ ≤ KΔt, σ ∈ [0, T ].

Thus
∫ t

0

‖w̃(σ)(ũ(σ)− u(σ))− w(σ)w̃(σ)‖Hs−9 dσ

≤ K

∫ t

0

(
‖w̃(σ)‖Hs−9 ‖(ũ− u)(σ)‖Hs−9 + ‖w(σ)‖Hs−9 ‖w̃(σ)‖Hs−9

)
dσ

≤ KαΔt2.(40)

The last term to estimate in (30) is E(0) = w(0) + w̃(0) = w(Δt/2). For
t ≤ Δt/2, we find that

w(t) = v(t, t)− u(t) = t

∫ 1

0

(
B(v(st, 0)) +A(v(t, st))− C(u(st))

)
ds

= t

∫ 1

0

(
B(u(st)) +

∫ 1

0

dB(u(st) + σ(v(st, 0)− u(st)))[v(st, 0)− u(st)]dσ

+A(u(st)) +

∫ 1

0

dA(u(st) + σ(v(t, st)− u(st)))[v(t, st)− u(st)]dσ

− (A+B)(u(st))
)
ds
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= t

∫ 1

0

∫ 1

0

(
dB(u(st) + σ(v(st, 0)− u(st)))[v(st, 0)− u(st)]

+ dA(u(st) + σ(v(t, st)− u(st)))[v(t, st)− u(st)]
)
ds dσ

= t

∫ 1

0

∫ 1

0

(
dB(u(st) + σ(v(st, 0)− u(st)))

[∫ st

0

d

dτ
(v(τ, 0)− u(τ )) dτ

]

+ dA(u(st) + σ(v(t, st)− u(st)))
[∫ st

0

d

dτ
(v(t, τ )− u(τ ))dτ

+

∫ t

0

d

dτ
v(τ, 0) dτ

])
ds dσ

= t

∫ 1

0

∫ 1

0

[∫ st

0

(
dB(u(st) + σ(v(st, 0)− u(st)))[B(v(τ, 0))− (A+B)(u(τ ))]

+ dA(u(st) + σ(v(t, st)− u(st)))[B(v(t, τ ))− (A+B)(u(τ ))]
)
dτ

+

∫ t

0

dA(u(st) + σ(v(t, st)− u(st)))[B(v(τ, 0))]dτ

]
ds dσ

= t

∫ 1

0

∫ 1

0

[∫ st

0

((
u(st) + σ(v(st, 0)− u(st))

)(
v(τ, 0)v(τ, 0)x

− u(τ )u(τ )x + u(τ )xxx
))

x

+
(
v(t, τ )v(t, τ )x − u(τ )u(τ )x + u(τ )xxx

)

xxx

)
dτ

+

∫ t

0

(
v(τ, 0)v(τ, 0)x

)

xxx
dτ

]
ds dσ.

Taking the Hs−9 norm above, using the triangle inequality, the bounds on v and
u and the Cauchy–Schwarz inequality, we find that each of the above integrands is
bounded by Kα. Thus

(41)
‖w(t)‖Hs−9 ≤ t

∫ 1

0

∫ 1

0

[ ∫ st

0

Kαdτ +

∫ t

0

Kαdτ
]
ds dσ

≤ Kαt
2.

Hence we infer that

(42) E(0) = ‖w (Δt/2)‖Hs−9 ≤ KαΔt2.

Collecting the estimates from (40), (41), and (42), we find that (30) reads

(43) E(t) = ‖z(t)‖Hs−9 ≤ KαΔt2.

By the triangle inequality,

(44) ‖w(t)‖Hs−9 ≤ 2 ‖w(t)‖Hs−9 ≤ ‖z(t)‖Hs−9 + ‖w(t)− w̃(t)‖Hs−9 .

To estimate the last term on the right-hand side we write:

(45)
‖w̃(t)− w(t)‖Hs−9 ≤

∥∥w(tn)− w(tn+1/2)
∥∥
Hs−9 + ‖w(t)− w(tn)‖Hs−9

+
∥
∥w(t+Δt/2)− w(tn+1/2)

∥
∥
Hs−9 ,
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for t ∈ [tn, tn+1/2]. (Similar expressions hold when t ∈ [tn+1/2, tn+1].) We note that

w(tn+1/2) = ΦA(
Δt

2
)ΦB(

Δt

2
)v(tn, tn)− ΦC(

Δt

2
)u(tn),

w(t) = ΦA(t− tn)ΦB(t− tn)v(tn, tn)− ΦC(t− tn)u(tn),(46)

w(t+
Δt

2
) = ΦA(t− tn)ΦB(t− tn)v(tn+1/2, tn+1/2)− ΦC(

Δt

2
)u(tn+1/2),

when t ∈ [tn, tn+1/2]. Each of the expressions on the right-hand side of (45) needs
to be estimated:

(47)

w(tn+1/2)− w(tn) = ΦA

(Δt

2
; ΦB(

Δt

2
; v(tn, tn)

))

− ΦC

(Δt

2
;u(tn)

)
− (v(tn, tn)− u(tn))

= ΦA

(Δt

2
; ΦB(

Δt

2
; v(tn, tn)

))
− ΦC

(Δt

2
; v(tn, tn)

)

+ΦC

(Δt

2
; v(tn, tn)

)
− ΦC

(Δt

2
;u(tn)

)
− (v(tn, tn)− u(tn))

=

(
ΦA(

Δt

2
; ΦB(

Δt

2
; v(tn, tn)))− ΦC(

Δt

2
; v(tn, tn))

)

+
(
ΦC(

Δt

2
; · )− I

)
◦ v(tn, tn)−

(
ΦC(

Δt

2
; · )− I

)
◦ u(tn).

First we find that

∥
∥∥
∥ΦA(

Δt

2
; ΦB(

Δt

2
; v(tn, tn)))− ΦC(

Δt

2
; v(tn, tn))

∥
∥∥
∥
Hs−9

≤ KαΔt2

by using (41) (with v(tn, tn) as initial data).
Introduce the function V = V (x, t) satisfying

Vt = V Vx − Vxxx, V |t=tn = v(tn, tn).

Then the very last line of (47) can be written as

(
ΦC(

Δt

2
; · )− I

)
◦ v(tn, tn)−

(
ΦC(

Δt

2
; · )− I

)
◦ u(tn)

=

∫ tn+1/2

tn

(
Vt(σ)− ut(σ)

)
dσ

=

∫ tn+1/2

tn

(1
2
(V (σ)2)x − 1

2
(u(σ)2)x − Vxxx(σ) + uxxx(σ)

)
dσ

=

∫ tn+1/2

tn

(1
2

(
(V (σ) + u(σ))(V (σ)− u(σ))

)
x
− (V (σ)− u(σ))xxx

)
dσ.
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Taking the Hs−9 norm we find
∥∥
∥
∥
(
ΦC(

Δt

2
; · )− I

)
◦ v(tn, tn)−

(
ΦC(

Δt

2
; · )− I

)
◦ u(tn)

∥∥
∥
∥
Hs−9

≤
∫ tn+1/2

tn

(1
2
‖(V (σ) + u(σ))(V (σ)− u(σ))‖Hs−8 + ‖V (σ)− u(σ)‖Hs−6

)
dσ

≤
∫ tn+1/2

tn

(
K
(
‖V (σ)‖Hs−8 + ‖u(σ)‖Hs−8

)
‖V (σ)− u(σ)‖Hs−8

+ ‖V (σ)− u(σ)‖Hs−6

)
dσ

≤ Kα

∫ tn+1/2

tn

‖V (σ)− u(σ)‖Hs−6 dσ.

By the Hk stability of the KdV equation,

‖V (σ)− u(σ)‖Hs−6 ≤ K ‖v(tn, tn)− u(tn)‖Hs−6 ≤ KαΔt,

since by the arguments of Section 2.3 we have the estimate ‖w(tn)‖Hs−6 ≤
‖w(tn)‖Hs−3 ≤ KαΔt. Therefore

∥
∥∥
∥
(
ΦC(

Δt

2
; · )− I

)
◦ v(tn, tn)−

(
ΦC(

Δt

2
; · )− I

)
◦ u(tn)

∥
∥∥
∥
Hs−9

≤ KαΔt2.

Thus we have shown that

(48)
∥
∥w(tn+1/2)− w(tn)

∥
∥
Hs−9 ≤ KαΔt2.

The other terms on the right-hand side of (45) can be estimated in the same manner,
using the expressions (46). Thus we conclude that (cf. (44))

(49) ‖w(t)‖Hs−9 ≤ KαΔt2.

If t, τ ∈ [tn, tn+1/2], we have ‖v(t, τ )‖Hk̂ = ‖v(t, t)‖Hk̂ , and if t, τ ∈ [tn+1/2, tn+1],
then an estimate analogous to (16) shows that

∣
∣
∣ ‖v(t, τ )‖Hk̂ − ‖v(t, t)‖Hk̂

∣
∣
∣ ≤ Kα |t− τ | .

The rest of the argument follows the procedure for the Godunov splitting. Now

s− 9 ≥ k̂ is the same as s ≥ 17. Assuming this, we get

‖v(t, τ )‖Hk̂ ≤ ‖v(t, t)‖Hk̂ +
∣
∣∣ ‖v(t, τ )‖Hk̂ − ‖v(t, t)‖Hk̂

∣
∣∣

≤ K +KαΔt2 +KαΔt.

Choosing α such that K ≤ α/4, and then Δt such that KαΔt(Δt + 1) ≤ α/4
implies that ‖v(t, τ )‖Hk̂ ≤ α/2. Hence by the bootstrap lemma and (44), the
following holds:

Theorem 3.5. Fix T > 0. Let u0 ∈ Hs for some s ≥ 17. Then for Δt sufficiently
small we have

‖v(t, t)− u(t)‖Hs−9 ≤ KΔt2, t ∈ [0, T ],

where the constant K depends on u0, s and T only.
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Remark 3.6. The result for Strang splitting is suboptimal. Possibilities for improve-
ments include the following:

(i) By replacing the Sobolev spacesHs by Bourgain spacesXs,b one may improve
the regularity hypothesis.

(ii) After the submission of this article, C. Lubich observed (private communica-
tion) that by using a different approach, one could reduce the order of the Sobolev
space from 17 to 9 essentially by using the nonlinear variation of parameters formula
and then using the midpoint rule to approximate the resulting error integrals.
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