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SUPERCLOSENESS AND SUPERCONVERGENCE

OF STABILIZED LOW-ORDER FINITE ELEMENT

DISCRETIZATIONS OF THE STOKES PROBLEM

HAGEN EICHEL, LUTZ TOBISKA, AND HEHU XIE

Abstract. The supercloseness and superconvergence properties of stabilized
finite element methods applied to the Stokes problem are studied. We con-
sider consistent residual based stabilization methods as well as inconsistent
local projection type stabilizations. Moreover, we are able to show the su-
percloseness of the linear part of the MINI-element solution which has been
previously observed in practical computations. The results on supercloseness
hold on three-directional triangular, axiparallel rectangular, and brick-type
meshes, respectively, but extensions to more general meshes are also discussed.
Applying an appropriate postprocess to the computed solution, we establish
superconvergence results. Numerical examples illustrate the theoretical pre-
dictions.

1. Introduction

In recent years, the superconvergence of finite element methods has been an
active research field in numerical analysis. The main objective of the supercon-
vergence research is to improve the existing approximation accuracy by applying
certain postprocessing techniques which are cheap and easy to implement.

In this paper, we consider the supercloseness and the superconvergence properties
of numerical solutions of the stationary Stokes problem

(1.1)

⎧
⎨

⎩

−νΔu+∇p = f in Ω,
div u = 0 in Ω,

u = 0 on ∂Ω.

Here, ν > 0 is the kinematic viscosity (we set ν = 1 for simplicity) and the func-
tion f is sufficiently smooth. We study finite element approximations on uniform
triangular (three-directional grids), axiparallel rectangular, and brick-type meshes,
and increase the order of convergence of the original computed solution by postpro-
cessing. The technique for the standard Galerkin finite element approach is well-
understood; see e.g. [6, 12]. If the finite element spaces approximating velocity and
pressure satisfy an inf-sup condition, stability and convergence of the discretization
can be proven. So far, some superconvergence results have been obtained for the
standard Galerkin method; see, for example, [17, 18, 20, 25, 36].

Here, we consider the superconvergence property of stabilized methods which
has been developed in order to circumvent the inf-sup condition and to allow equal-
order interpolations for velocity and pressure; see [7, 11, 14, 15]. The usual way of
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analyzing superconvergence properties of postprocessed computed solutions consists
of two steps:

(1) Supercloseness property: an interpolation approximating the finite element
solution of higher order. Often such interpolation does exist if the under-
lying mesh has a special structure.

(2) A postprocessing operator: an interpolation operator (in a higher-order
finite element space) with certain stability, invariance and higher-order ap-
proximation properties. Applying this interpolation operator to the original
finite element solution, we obtain the postprocessed solution, which has a
superconvergence property.

There are many research contributions to these two steps. Currently two ap-
proaches are used to prove superconvergence. One is based on the analysis of the
method: there are the integral identity, the integral expansion (which is based on
the Bramble-Hilbert lemma) and others; see [8, 35]. The second concerns the mesh
condition [2, 23, 36, 37, 38, 40, 44]. The supercloseness result has been extended
from structured meshes to more general, practical and automatically generated
meshes. In the case of the postprocessing operator, the first approach is mani-
fested as higher-order finite element interpolation, while gradient recovery methods
[39, 40, 43, 44] are used in the second approach.

The supercloseness phenomena have been already established for some kinds
of mixed finite elements. For example, in [18, 19, 20, 23, 25], the supercloseness
analysis for the Stokes problem and Navier-Stokes problems has been given.

For the error analysis, we introduce the standard notation for the Sobolev spaces
W k,p(D), Hk(D) = W k,2(D), Hk

0 (D), Lp(D) = W 0,p(D) with nonnegative integers
k and 1 ≤ p ≤ ∞. The corresponding vector-valued versions of these spaces will be
indicated by boldface letters. The norm and seminorm corresponding to both the
scalar and the vector-valued version of the space W k,p(D) are denoted by ‖ · ‖k,p,D
and |·|k,p,D. For the inner product in L2(D), its vector-valued versions, and L2(∂D),
we write (·, ·)D and 〈·, ·〉∂D, respectively. We will drop the index D when D = Ω.
Throughout this paper C denotes a generic positive constant that is independent
of the mesh size.

2. Discretizations of the Stokes problem

2.1. Standard Galerkin. Let Ω ⊂ R
d be a polygonal (d = 2) or polyhedral

(d = 3) domain with Lipschitz continuous boundary Γ = ∂Ω. Introducing the
solution spaces V := (H1

0 (Ω))
d and Q := L2

0(Ω), a weak formulation of (1.1) is:
Find (u, p) ∈ V ×Q such that for all (v, q) ∈ V ×Q,

(∇u,∇v)− (p, div v) + (q, div u) = (f ,v).(2.1)

It is well known that the Babuška-Brezzi condition,

inf
q∈Q

sup
v∈V

(
q, div v

)

|v|1 ‖q‖0
> 0,(2.2)

guarantees the existence and uniqueness of a solution of (2.1); cf. [6, 12].
We introduce a shape regular partition Th of the computational domain Ω into

cells K (triangles, quadrilaterals, tetrahedrons, hexahedrons) such that

Ω̄ =
⋃

K∈Th

K̄.



SUPERCLOSENESS AND SUPERCONVERGENCE 699

Here h := max
K∈Th

{hK} and hK = diam K denote the global and local mesh size,

respectively. Let Vh ⊂ V and Qh ⊂ Q be finite element spaces approximating
velocity and pressure. Then, the standard Galerkin discretization is:

Find (uh, ph) ∈ Vh ×Qh such that for all (vh, qh) ∈ Vh ×Qh,

(∇uh,∇vh)− (ph, div vh) + (qh, div uh) = (f ,vh).(2.3)

The standard Galerkin approach for solving the Stokes problem (1.1) by finite
element discretizations is well understood (see, e.g., [6, 12]). If the finite element
spaces approximating velocity and pressure satisfy a discrete version of the Babuška-
Brezzi condition (2.2) uniformly in h, stability and convergence of the discretization
can be established. A large number of finite element pairs is known to satisfy
this stability condition; however, there are several reasons for circumventing it.
First, equal-order interpolations, in general, do not belong to this class of “stable
methods”, but they are simple to implement since the same finite element space
is used for approximating the pressure and the velocity components. Second, and
this is even more important, it is often not clear whether the stability property also
holds on sequences of meshes with hanging nodes, which are popular in adaptive
finite elements. In the case of the Qr −P disc

r−1 finite element pair, the validity of the
Babuška-Brezzi condition on mesh families with hanging nodes has been shown in
[29]. Alternative methods for solving the Stokes problem are based on consistent
and inconsistent modifications of the discrete problem. These approaches do not
require fulfilment of the Babuška-Brezzi condition and work also on families with
hanging nodes.

2.2. Local projection stabilization. In this section, we consider equal-order in-
terpolations stabilized by the local projection method in its one-level variant as
developed in [11, 26]. For the two-level approach we refer to [3, 5, 27]. Let Yh

denote a scalar finite element space of continuous, piecewise polynomials over Th.
The spaces for approximating velocity and pressure are given by Vh := Y d

h ∩V and
Qh := Yh ∩Q. The discrete problem of our stabilized method is:

Find (uh, ph) ∈ Vh ×Qh such that for all (vh, qh) ∈ Vh ×Qh,

(∇uh,∇vh)− (ph, div vh) + (qh, div uh) + Sh(ph, qh) = (f ,vh),(2.4)

where the stabilization term with user-chosen parameters αK is given by

Sh(p, q) =
∑

K∈Th

αK(κh∇p, κh∇q)K .(2.5)

Here, the fluctuation operator κh : L2(Ω) → L2(Ω) acting componentwise is defined
as follows. Let Ps(K) denote the set of all polynomials of degree less than or
equal to s and let Dh(K) be a finite-dimensional space on the cell K ∈ Th with
Ps(K) ⊂ Dh(K). We extend the definition by allowing P−1(K) = Dh(K) = {0}.
We introduce the associated global space of discontinuous finite elements

Dh :=
⊕

K∈Th

Dh(K)

and the local L2(K)-projection πK : L2(K) → Dh(K) generating the global pro-
jection πh : L2(Ω) → Dh by

(πhw)
∣
∣
K

:= πK(w|K) ∀K ∈ Th, ∀w ∈ L2(Ω).
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The fluctuation operator κh : L2(Ω) → L2(Ω) used in (2.5) is given by κh := id−πh,
where id : L2(Ω) → L2(Ω) is the identity on L2(Ω).

In order to study the supercloseness and superconvergence properties of this
method on structured meshes, we introduce the bilinear form

Ah((u, p); (v, q)) = (∇u,∇v)− (p, div v) + (q, div u) + Sh(p, q)(2.6)

and the mesh-dependent norm

|||(v, q)|||A :=
(
|v|21 + ‖q‖20 +

∑

K∈Th

αK‖κh∇q‖20,K
)1/2

.(2.7)

From (2.1) and (2.4) follows the error equation

Ah((u− uh, p− ph), (vh, qh)) = Sh(p, qh) ∀(vh, qh) ∈ Vh ×Qh,(2.8)

which shows that in contrast to residual based stabilization methods [14, 15] the
method is inconsistent.

The existence and uniqueness of discrete solutions of (2.4) have been studied in
[11] for different pairs (Yh, Dh) of approximation and projection spaces, respectively.
Here, the supercloseness and superconvergence properties will be studied only for
the lowest-order cases; i.e., we will consider

• on three-directional triangular meshes (d = 2) the cases
Yh := {v ∈ H1(Ω) : v|K ∈ P1(K), ∀K ∈ Th}, Dh := {0}, αK ∼ h2

K ,
Yh := {v ∈ H1(Ω) : v|K ∈ P+

1 (K), ∀K ∈ Th},
Dh := {q ∈ L2(Ω) : q|K ∈ P0(K), ∀K ∈ Th}, αK ∼ hK or αK ∼ h2

K ,
• on rectangular or brick meshes (d = 2 or d = 3) the case

Yh := {v ∈ H1(Ω) : v|K ∈ Q1(K), ∀K ∈ Th}, Dh := {0}, αK ∼ h2
K ,

where Q1(K) denotes the space of mapped bilinear and trilinear functions, re-
spectively, and P+

1 (K) is the space of linear functions enriched by cubic bubbles
vanishing on the boundary of K. In the following, we will refer to these different
cases shortly as the P1, the P+

1 , and the Q1 case, respectively.
All three cases fit to the theory developed in [11]; consequently we have the

following stability and convergence result.

Lemma 2.1 ([11]). Assume h2
K/αK ≤ C. Then, there is a positive constant βA

independent of h such that

inf
(vh,qh)∈Vh×Qh

sup
(wh,rh)∈Vh×Qh

Ah

(
(vh, qh); (wh, rh)

)

|||(vh, qh)|||A |||(wh, rh)|||A
≥ βA > 0(2.9)

holds.

Lemma 2.2 ([11]). Let the solution (u, p) of (2.1) belong to (V ∩H2(Ω)d)× (Q∩
H1(Ω)). Then, there exists a positive constant C independent of h such that the
solution (uh, ph) of (2.4) satisfies

|||(u− uh, p− ph)|||A ≤ Ch (‖u‖2 + ‖p‖1).(2.10)

Remark 2.3. In the two cases in which Dh = {0}, the fluctuation operator becomes
the identity and (2.4) corresponds to the method studied in [7].
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2.3. Relationship to residual based stabilizations. In the case of Yh = {v ∈
H1(Ω) : v|K ∈ P+

1 (K), ∀K ∈ Th}, the standard space of continuous, piecewise
linear functions has been enriched by one cubic bubble function per cell. These
additional degrees of freedom can be eliminated locally by static condensation [11,
Section 4.3]. Based on the splitting of the approximation space Yh = YL ⊕ YB into
the piecewise linear part YL and the bubble part YB the solution (uh, ph) of (2.4)
can be split into uh = uL + uB and ph = p̃L + pB with uL ∈ VL = Y 2

L ∩V and
p̃L ∈ YL. Let us define

pL = p̃L − 1

|Ω|

∫

Ω

p̃L dx ∈ QL := YL ∩Q.

Then, as shown in [11], the linear part (uL, pL) ∈ VL ×QL of (uh, ph) ∈ Vh ×Qh

is a solution of the problem:
Find (uL, pL) ∈ VL ×QL such that for all (vL, qL) ∈ VL ×QL,

Bh

(
(uL, pL); (vL, qL)

)
= Lh(vL, qL).(2.11)

The bilinear form Bh(·; ·) and the linear form Lh(·) are defined by

Bh

(
(u, p); (v, q)

)
:= (∇u,∇v)− (p, div v) + (q, div u)

+
∑

K∈Th

γK(div u, div v)K +
∑

K∈Th

(−Δu+∇p, τK∇q)K ,

Lh(v, q) := (f ,v) +
∑

K∈Th

(f , τK∇q)K ,

with

γK =
‖bK‖20,1,K

αK |K| ‖κh∇bK‖20,K
, τK =

‖bK‖0,1,K
|bK |21,K

bK , bK = λ1λ2λ3.

Here, λi, i = 1, 2, 3, denote the barycentric coordinates of K. Note that

τK ∼ h2
KbK ,

and that, depending on the choice of the stabilization parameter αK (which is
related to the approximation space Dh) in the LPS, we have

αK ∼ h2
K ⇔ γK ∼ 1, αK ∼ hK ⇔ γK ∼ hK .

We mention that the problem (2.11) corresponds to the Pressure Stabilized
Petrov Galerkin (PSPG) method [14, 15, 31] in combination with the grad-div
stabilization [10, 13, 32, 33]. The PSPG stabilization is consistent in the sense that
for a smooth solution (u, p) ∈ (H1

0 (Ω) ∩H2(Ω))d × (L2
0(Ω) ∩H1(Ω)),

Bh

(
(u, p); (vL, qL)

)
= Lh(vL, qL) ∀(vL, qL) ∈ VL ×QL

holds. We have two options for analyzing the method (2.11): using the error
estimate (2.10) and deriving estimates for the linear part of the solution, or studying
directly the PSPG method (2.11). We follow the second option by proving the
stability of the bilinear form Bh : (VL×QL)× (VL×QL) → R with respect to the
mesh-dependent norm

|||(v, q)|||B :=
(
|v|21 + ‖q‖20 +

∑

K∈Th

γK‖div v‖20,K +
∑

K∈Th

‖τ1/2K ∇q‖20,K
)1/2

.

(2.12)



702 HAGEN EICHEL, LUTZ TOBISKA, AND HEHU XIE

Lemma 2.4. Assume γK = O(1) and τK ∼ h2
KbK . Then, there is a positive

constant βB independent of h such that

inf
(vL,qL)∈VL×QL

sup
(wL,rL)∈VL×QL

Bh

(
(vL, qL); (wL, rL)

)

|||(vL, qL)|||B |||(wL, rL)|||B
≥ βB > 0(2.13)

holds.

Proof. Let (vL, qL) be an arbitrary element of VL ×QL. We obtain

Bh

(
(vL, qL); (vL, qL)

)
= |vL|21 +

∑

K∈Th

γK‖div vL‖20,K +
∑

K∈Th

‖τ1/2K ∇qL‖20,K .(2.14)

Compared with (2.12), just the L2 control over the pressure is missing. Due to the
continuous inf-sup condition (2.2) there is for any qL ∈ QL an element vqL ∈ V
satisfying

−(qL, div vqL) = ‖qL‖20, ‖vqL‖1 ≤ C‖qL‖0.
As a consequence, we have for the Scott-Zhang [30] interpolant ih : H1

0 (Ω)
2 → VL,

Bh

(
(vL, qL); (ihvqL , 0)

)
= −(qL, div ihvqL) + (∇vL,∇ihvqL)

+
∑

K∈Th

γK(div vL, div ihvqL)K

= ‖qL‖20 + (qL, div (vqL − ihvqL)) + (∇vL,∇ihvqL)

+
∑

K∈Th

γK(div vL, div ihvqL)K .(2.15)

Using integration by parts, the approximation property of the Scott-Zhang [30]
interpolation

‖v − ihv‖0,K ≤ ChK ‖v‖1,ω(K) ∀v ∈ H1(K), K ∈ Th,

the inequality

‖τ1/2K ∇qL‖0,K ≥ ChK‖∇qL‖0,K ∀qL ∈ P1(K),

and the bound of ‖vqL‖1, we estimate the second term in (2.15) as follows:

|(qL, div (vqL − ihvqL))| = |(∇qL,vqL − ihvqL)| ≤ C
∑

K∈Th

‖∇qL‖0,KhK‖vqL‖1,ω(K)

≤ C

(
∑

K∈Th

‖τ1/2K ∇qL‖20,K

)1/2(
∑

K∈Th

‖vqL‖21,ω(K)

)1/2

≤ 1

6
‖qL‖20 + C1

∑

K∈Th

‖τ1/2K ∇qL‖20,K .

The estimations of the third and fourth terms in (2.15) are standard:

|(∇vL,∇ihvqL)| ≤ C|∇vL|1 |∇vqL |1 ≤ 1

6
‖qL‖20 + C2|∇vL|21,

∣
∣
∣
∣
∣

∑

K∈Th

γK(div vL, div ihvqL)K

∣
∣
∣
∣
∣
≤ 1

6
‖qL‖20 + C3

∑

K∈Th

γK‖div vL‖20,K .
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Summing up the last three inequalities, we obtain from (2.15),

Bh

(
(vL, qL); (ihvqL , 0)

)

≥ 1

2
‖qL‖20 − C4

(

|∇vL|21 +
∑

K∈Th

[
‖τ1/2K ∇qL‖20,K + γK‖div vL‖20,K

]
)

(2.16)

with C4 = max(C1, C2, C3). Multiplying this inequality by 2/(1+2C4) and adding
it to (2.14), we see that for any (vL, qL) ∈ VL ×QL, there exists

(wL, rL) := (vL, qL) + (2/(1 + 2C4))(ihvqL , 0)

such that

Bh

(
(vL, qL); (wL, rL)

)
≥ 1

1 + 2C4
|||(vL, qL)|||2B.

Furthermore, the H1-stability of the interpolation ih, the upper bound of ‖vqL‖1,
and γK ≤ γ0 lead to

|||(wL, rL)|||B ≤ |||(vL, qL)|||B +
2

1 + 2C4
|||(ihvL, 0)|||B ≤ (1 + C5)|||(vL, qL)|||B .

Thus, the statement of the lemma holds true with β = 1/((1 + 2C4)(1 + C5)). �

Taking into consideration the approximation properties of the space VL × QL

we get

Lemma 2.5. Assume γK = O(1) and τK ∼ h2
KbK . Let the solution (u, p) of (2.1)

belong to (V ∩ H2(Ω)d) × (Q ∩ H1(Ω)). Then, there exists a positive constant C
independent of h such that the solution (uL, pL) of (2.11) satisfies

|||(u− uL, p− pL)|||B ≤ Ch (‖u‖2 + ‖p‖1).(2.17)

Finally in this section, we mention the relationship of the standard Galerkin
discretization using the MINI-element to the residual based stabilization method
(2.11). In this case, the velocity and pressure are approximated by elements from
the spaces

Vh = V+
L = {v ∈ H1

0 (Ω)
d : v|K ∈ P+

1 (K)d, ∀K ∈ Th},
Qh = QL = {q ∈ L2

0(Ω) ∩H1(Ω) : q|K ∈ P1(K) ∀K ∈ Th}.

Note that the MINI-element satisfies the discrete version of (2.2); see [1]. Thus
no stabilization term is needed. Again eliminating the bubble part in the velocity
space we end up with the method (2.11) in VL ×QL for γK = 0. This relationship
between the MINI-element discretization and the residual based stabilization will
allow us to prove supercloseness results for the linear part of the MINI-element
discretization.

3. Supercloseness

In this section, we consider structured meshes, in particular three-directional
triangular meshes in the two-dimensional case and uniform brick meshes in the
three-dimensional case. All theorems for the brick meshes hold analogously also for
rectangular meshes; however, we do not formulate them explicitly.
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3.1. Piecewise linear interpolations on three-directional meshes. We start
with some interpolation error estimates which are necessary for our supercloseness
analysis. Let ih : H2(Ω)2 → R

2 and jh : H2(Ω) → R denote the standard piecewise
linear nodal interpolation. In order to derive the supercloseness property of (uh, ph)
to (ihu, jhp), we recall some estimates which can be found, e.g., in [22] and in the
books [19, 24].

Lemma 3.1 ([19, 22, 24]). Let u ∈ H3(Ω)2 and the mesh Th be three-directional.
Then, we have the estimate

|(∇(u− ihu),∇wh)| ≤ Ch2‖u‖3|wh|1, ∀wh ∈ Vh.(3.1)

Remark 3.2. The estimate (3.1) has been obtained by many researchers and may
be the oldest supercloseness result ([28]). Nowadays, the proof of this estimate
has been simplified and extended to more general meshes [2], which we consider in
Section 5.

Let us define the notation illustrated in Figure 1. For an arbitrary triangle

Z
i
 

Z
i+1

 

Z
i+2

 

s
i
 

s
i+1

 

s
i+2

 

t
i+2

 

t
i
 

t
i+1

 

n
i
 n

i+1
 

n
i+2

 

K 

Figure 1. Some notation of a triangle K ∈ Th.

K ∈ Th, let Zi = (xi1, xi2) (1 ≤ i ≤ 3) be the counterclockwise oriented vertices, si
(1 ≤ i ≤ 3) denote the edge of length hi (1 ≤ i ≤ 3) opposite to Zi; ni (1 ≤ i ≤ 3)
is the unit outward normal vector on si, and ti (1 ≤ i ≤ 3) are the unit tangent
vectors in the counterclockwise orientation. We use the periodic relation for the
subscripts: i + 3 = i and write for the derivative in the direction of ti shortly

∂ti = ∂/∂ti. As usual, let the reference triangle K̂ have the vertices (0, 0), (1, 0),
and (0, 1).

Lemma 3.3. Let Î be the standard piecewise linear nodal interpolation on K̂. Then,

there are positive constants C such that for all ϕ̂ ∈ H3(K̂) and for all ψ̂ ∈ P0(K̂),
∣
∣
∣
∣

∫

K̂

(ϕ̂− Îϕ̂) ψ̂ dx̂+
1

12

∫

K̂

(ϕ̂x̂1x̂1
− ϕ̂x̂1x̂2

+ ϕ̂x̂2x̂2
) ψ̂ dx̂

∣
∣
∣
∣ ≤ C|ϕ̂|

3,K̂
‖ψ̂‖

0,K̂
.(3.2)

Proof. We use a Bramble-Hilbert type argument [9, Theorem 4.1.3] in order to

prove the expansion formulas on the reference element K̂. For fixed ψ̂ ∈ P0(K̂), we

consider the following continuous linear form Φ : H3(K̂) → R given by

ϕ̂ �→ Φ(ϕ̂) =

∫

K̂

(ϕ̂− Îϕ̂) ψ̂ dx̂+
1

12

∫

K̂

(ϕ̂x̂1x̂1
− ϕ̂x̂1x̂2

+ ϕ̂x̂2x̂2
) ψ̂ dx̂
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for which

|Φ(ϕ̂)| ≤ C‖ϕ̂‖
3,K̂

‖ψ̂‖
0,K̂

holds true. When ϕ̂ equals x̂2
1, x̂1x̂2, and x̂2

2, respectively, the corresponding inter-

polations Î û become x̂1, 0, and x̂2. A direct computation shows that

Φ(ϕ̂) = 0, ∀ϕ̂ ∈ P2(K̂).

Consequently, there is a positive constant C such that (3.2) holds true. �

Lemma 3.4. Let u ∈ H3(Ω)2 ∩V and the mesh Th be three-directional. Then, we
have the estimates

|(rh, div(u− ihu))| ≤ Ch3/2‖u‖3‖rh‖0, ∀rh ∈ Qh,(3.3)

|(div(u− ihu), div vh)| ≤ Ch2‖u‖3 ‖vh‖1, ∀vh ∈ Vh.(3.4)

Proof. We use techniques similar to [41, 42]. We start with (3.3), integrate by parts

(rh, div (u− ihu)) = −(u− ihu,∇rh) = −
∑

K∈Th

(u− ihu,∇rh)K ,(3.5)

and define an affine mapping FK : K̂ → K by

x = FK x̂ = (h1t1,−h3t3) · x̂+ Z2 = BK x̂+ Z2.

Then, for a function ŵ : K̂ → R and w = ŵ ◦ F−1
K we have

ŵx̂1
= h1(∂t1w) ◦ FK , ŵx̂2

= −h3(∂t3w) ◦ FK ,

ŵx̂1x̂1
=h2

1(∂
2
t1t1w)◦FK , ŵx̂1x̂2

=−h1h3(∂
2
t1t3w)◦FK , ŵx̂2x̂2

=h2
3(∂

2
t3t3w)◦FK .

Now, transforming onto the reference triangle K̂, using Lemma 3.3 componentwise,
transforming back to the original element K, and integrating by parts, we get
∫

K

(u− ihu)∇rhdx = det BK

∫

K̂

(û− Îû)B−T
K ∇̂r̂hdx̂

= −det BK

12

∫

K̂

(ûx̂1x̂1
− ûx̂1x̂2

+ ûx̂2x̂2
)B−T

K ∇̂r̂hdx̂+R

= − 1

12

∫

K

(
h2
1∂

2
t1t1u+ h1h3∂

2
t1t3u+ h2

3∂
2
t3t3u

)
∇rhdx+R

=
1

12

∫

K

rh div
(
h2
1∂

2
t1t1u+ h1h3∂

2
t1t3u+ h2

3∂
2
t3t3u

)
dx+R

− 1

12

∫

∂K

rh
(
h2
1∂

2
t1t1u+ h1h3∂

2
t1t3u+ h2

3∂
2
t3t3u

)
· nK ds.

The first term can be estimated by the Cauchy-Schwarz inequality, leading to
∣
∣
∣
∣
1

12

∫

K

rh div
(
h2
1∂

2
t1t1u+ h1h3∂

2
t1t3u+ h2

3∂
2
t3t3u

)
dx

∣
∣
∣
∣ ≤ Ch2

K |u|3,K‖rh‖0,K ,

and for the second we obtain from Lemma 3.3,

|R| ≤ Cdet BK |û|
3,K̂

‖B−T
K ∇̂r̂h‖0,K̂ ≤ C‖BK‖3|u|3,K |rh|1,K ≤ Ch2

K |u|3,K‖rh‖0,K ,

where, in the last step, we used an inverse estimate and the standard estimates for
affine-equivalent finite elements [9, Theorem 3.1.2]. Summing up over all K ∈ Th
we find that the integrals over all inner edges cancel out. Indeed, let K and K ′
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be two neighbouring cells with a common edge E = ∂K ∩ ∂K ′. Then, for the
tangential and outer normal directions we have on E,

nK = −nK′ , tKi = −tK
′

i , i = 1, 2, 3.

Thus, apart from the sign of nK , we have the same traces of the second derivatives
of u and of rh on the common edge E. Thus, we have shown that

|(rh, div(u− ihu))| ≤ Ch2|u|3‖rh‖0

+
1

12

∑

E⊂∂Ω

∫

E

∣
∣rh
(
h2
1∂

2
t1t1u+ h1h3∂

2
t1t3u+ h2

3∂
2
t3t3u

)
· nE

∣
∣ ds,

from which the statement of the lemma follows by using the discrete trace inequality

‖rh‖0,E ≤ Ch
−1/2
K ‖rh‖0,K , E ⊂ ∂K, ∀K ∈ Th(3.6)

and the continuity of the trace operator ϕ �→ ϕ|∂Ω from H1(Ω) in L2(∂Ω).
Consider now (3.4). Similar to [2, 4] we represent the contribution of one cell

by an integral over the cell and line integrals over the edges including only the
tangential derivatives of the test function vh. Integration by parts yields

∫

K

div (u− ihu) div vh dx =
3∑

i=1

∫

si

(u− ihu) · ni div vh ds.

Transformation to the reference cell, applying the Bramble-Hilbert lemma, and
transforming back gives

∫

si

(u− ihu) ds = −h2
i

12

∫

si

∂2
titiu ds+O(h3

K |u|3,K).

There are coefficients ωK
mn, with m,n ∈ {1, 2}, such that

div vh

∣
∣
K

= ωK
11∂tiv1,h + ωK

12∂ti+1
v1,h + ωK

21∂tiv2,h + ωK
22∂ti+1

v2,h.

The essential idea is to replace the resulting line integrals of ∂ti+1
over si by line

integrals over si+1 taking into consideration that (Green’s theorem)

hi+1

∫

si

w ds− hi

∫

si+1

w ds =
h1h2h3

2|K|

∫

K

∂ti+2
w dx.

As a result, we obtain
∫

si

(u− ihu) · ni div vh ds = −h2
i

12

∫

si

∂2
titiu · ni (ω

K
11∂tiv1,h + ωK

21∂tiv2,h) ds

− h3
i

12hi+1

∫

si+1

∂2
titiu · ni (ω

K
12∂ti+1

v1,h + ωK
22∂ti+1

v2,h) ds

− h2
ih1h2h3

24hi+1|K|

∫

K

∂3
ti+2titiu · ni (ω

K
12∂ti+1

v1,h + ωK
22∂ti+1

v2,h) dx

+O(h3
K |u|3,K

∣
∣div vh|K

∣
∣).

Now, summing over the edges si of the cell K and over all cells K ∈ Th, the line
integrals cancel out, since for neighbouring cells K and K ′,

nK
i = −nK′

i , tKi = −tK
′

i , ωK
mn = −ωK′

mn
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and on the boundary the tangential derivative of vh vanishes. The sum over the
integrals over K gives an O(h2‖u‖3 ‖vh‖1) term and

∑

K∈Th

h3
K |u|3,K

∣
∣div vh|K

∣
∣ =

∑

K∈Th

h3
K

|K|1/2 |u|3,K‖div vh‖0,K = O(h2‖u‖3 ‖vh‖1).

Thus, (3.4) is proven. �
Moreover, we have the following estimate from interpolation theory.

Lemma 3.5. Assume αK ∼ h2
K and p ∈ H2(Ω). Then, it follows that

|(p− jhp, div wh)| ≤ Ch2‖p‖2|wh|1, ∀wh ∈ Vh,(3.7)
∣
∣
∣
∑

K∈Th

αK(∇(p− jhp),∇rh)K

∣
∣
∣ ≤ Ch2‖p‖2‖rh‖0, ∀rh ∈ Qh.(3.8)

Finally, we need an estimate for the consistency error of the stabilized method.

Lemma 3.6. Assume αK ∼ h2
K and p ∈ H2(Ω). Then, it follows that

∣
∣
∣
∑

K∈Th

αK(∇p,∇rh)K

∣
∣
∣ ≤ Ch3/2‖p‖2‖rh‖0, ∀rh ∈ Qh.(3.9)

Proof. Integration by parts, the continuity of the trace operator, and the discrete
trace inequality (3.6) yield

∣
∣
∣
∣
∣

∑

K∈Th

αK(∇p,∇rh)K

∣
∣
∣
∣
∣
=

∣
∣
∣
∣

∫

Ω

αKΔprhdx

∣
∣
∣
∣+

∣
∣
∣
∣

∫

∂Ω

αK
∂p

∂n
rhds

∣
∣
∣
∣

≤ C(h2 + h3/2)‖p‖2‖rh‖0,
from which the statement of the lemma follows. �

Now, we show the supercloseness of the finite element solution (uh, ph) of the
stabilized scheme (2.4) to the piecewise linear interpolant (ihu, jhp) ∈ Vh ×Qh.

Theorem 3.7. Let αK ∼ h2
K , the mesh Th be three-directional, and the solution

(u, p) of (2.1) belong to H3(Ω)2×H2(Ω). Then, we have the supercloseness estimate
for the finite element approximation (uh, ph),

|||(uh − ihu, ph − jhp)|||A ≤ Ch3/2(‖u‖3 + ‖p‖2).(3.10)

Proof. From (2.1) and (2.4), we get

Ah((uh−ihu, ph − jhp); (wh, rh)) = Ah((u− ihu, p− jhp); (wh, rh)) + Sh(p, rh)

= (∇u− ihu,∇wh)− (p− jhp, divwh) + (rh, div(u− ihu))

+ Sh(p− jhp, rh) + Sh(p, rh).

Using the stability of the bilinear form Ah with respect to the triple norm ||| · |||A
(see Lemma 2.1), we obtain

|||(uh − ihu,ph − jhp)|||A ≤ 1

βA
sup

(wh,rh)∈Vh×Qh

Ah((uh − ihu, ph − jhp); (wh, rh))

|||(wh, rh)|||A

=
1

βA
sup

(wh,rh)∈Vh×Qh

Ah((u− ihu, p− jhp); (wh, rh)) + Sh(p, rh)

|||(wh, rh)|||A
≤ Ch3/2(‖u‖3 + ‖p‖2),

where the estimates in Lemmas 3.1, 3.4, 3.5, and 3.6 have been applied. �
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In a similar way, we can show the supercloseness of the piecewise linear part
(uL, pL) of the solution (uh, ph) of the LPS method for the pair of spaces

Yh = {v ∈ H1(Ω) : v|K ∈ P+
1 (K), ∀K ∈ Th},

Dh = {q ∈ L2(Ω) : q|K ∈ P0(K), ∀K ∈ Th}

and the choice αK ∼ hK and αK ∼ h2
K , respectively. We remind the reader that

the linear part is a solution of the PSPG stabilized method (2.11).

Theorem 3.8. Let γK = O(1), τK ∼ h2
KbK , the mesh Th be three-directional, and

the solution (u, p) of (2.1) belong to H3(Ω)2 × H2(Ω). Then, we have the super-
closeness estimate for the finite element solution (uL, pL) of (2.11) (or equivalently
for the linear part of the LPS solution computed with αK ∼ hK or αK ∼ h2

K)

|||(uL − ihu, pL − jhp)|||B ≤ Ch3/2(‖u‖3 + ‖p‖2).

Proof. We start with the stability of the bilinear form Bh with respect to the triple
norm ||| · |||B given in Lemma 2.4, i.e.

|||(uL − ihu, pL − jhp)|||B ≤ 1

βB
sup

(vL,qL)∈VL×QL

Bh

(
(uL − ihu, pL − jhp); (vL, qL)

)

|||(vL, qL)|||B

=
1

βB
sup

(vL,qL)∈VL×YL

Bh

(
(u− ihu, p− jhp); (vL, qL)

)

|||(vL, qL)|||B
.

Next we use the following identity and estimate each term separately:

Bh

(
(u− ihu, p− jhp);(vL, qL)

)
= (∇(u− ihu),∇vL)− (p− jhp, div vL)

+
∑

K∈Th

γK(div (u− ihu), div vL)K + (qL, div (u− ihu))

+
∑

K∈Th

(−Δ(u− ihu) +∇(p− jhp), τK∇qL)K .(3.11)

The first, second, and fourth terms on the right hand side can be considered as
above. For the third term it follows from γK = O(1) and Lemma 3.4 that

∣
∣
∣
∣
∣

∑

K∈Th

γK(div (u− ihu), div vL)K

∣
∣
∣
∣
∣
≤ Ch2‖u‖3 |||(vL, qL)|||B .

We split the last term into

∑

K∈Th

(−Δ(u− ihu) +∇(p− jhp), τK∇qL)K

=
∑

K∈Th

(−Δ(u− ihu), τK∇qL)K +
∑

K∈Th

(∇(p− jhp), τK∇qL)K .
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Let ΠK : L2(K) → P0(K) denote the local L2-projection onto P0(K). Since
Δihu = 0 on each cell K ∈ Th we have

∣
∣
∣
∣
∣

∑

K∈Th

(−Δ(u− ihu), τK∇qL)K

∣
∣
∣
∣
∣
≤
∑

K∈Th

|(Δu−ΠKΔu, τK∇qL)K |

+

∣
∣
∣
∣
∣

∑

K∈Th

(ΠKΔu, τK∇qL)K

∣
∣
∣
∣
∣
.

The estimation of the first term on the right hand side is standard:
∑

K∈Th

|(Δu−ΠKΔu, τK∇qL)K | ≤ C
∑

K∈Th

h2
K‖u‖3,K‖τ1/2K ∇qL‖0,K

≤ Ch2‖u‖3|||(vL, qL)|||B.
For the second the relation

(ΠKΔu, τK∇qL)K =
1

|K|

∫

K

τK dx (Δu,∇qL)K =
1

|K|
‖bK‖20,1,K
|bK |21,K

(Δu,∇qL)K

is taken into consideration where, on a three-directional mesh,

1

|K|
‖bK‖20,1,K
|bK |21,K

= C0h
2
K

with a fixed constant C0. Integrating by parts, we get
∣
∣
∣
∣
∣

∑

K∈Th

(ΠKΔu, τK∇qL)K

∣
∣
∣
∣
∣
≤ C0h

2

∣
∣
∣
∣
∣

∑

K∈Th

(Δu,∇qL)K

∣
∣
∣
∣
∣

≤ C0h
2 {〈Δu · n, qL〉∂Ω − (div Δu, qL)Ω}

≤ Ch3/2‖u‖3 ‖qL‖0,
where in the last step the discrete trace inequality (3.6) has been applied.

Finally, we get
∣
∣
∣
∣
∣

∑

K∈Th

(∇(p− jhp), τK∇qL)K

∣
∣
∣
∣
∣
≤
∑

K∈Th

‖τ1/2K ∇(p− jhp)‖0,K ‖τ1/2K ∇qL‖0,K

≤ C
∑

K∈Th

h2
K‖p‖2,K ‖τ1/2K ∇qL‖0,K

≤ Ch2‖p‖2 |||(vL, qL)|||B ,
which completes the arguments. �

From the relationship of the Standard Galerkin discretization using the MINI-
element to the residual based stabilization method (2.11) with γK = 0 we get the
following result:

Theorem 3.9. Let γK = 0, τK ∼ h2
KbK , the mesh Th be three-directional, and the

solution (u, p) of (2.1) belong to H3(Ω)2×H2(Ω). Then, we have the supercloseness
estimate for the finite element solution (uL, pL) of (2.11) or equivalently for the
linear part of the MINI-element Galerkin finite element solution

|||(uL − ihu, pL − jhp)|||B ≤ Ch3/2(‖u‖3 + ‖p‖2).
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Remark 3.10. This type of supercloseness has been observed experimentally in a
number of papers starting in [34, page 312]. For example the numerical results in
[16, Table 4] demonstrate clearly the 3/2 rate of |uL − ihu|1.
3.2. Piecewise trilinear interpolations on brick meshes. Let us consider now
the stabilized Q1-Q1 finite element on brick meshes in R

3. All results are true
analogously on rectangular meshes in R

2. The edges of each cell K are parallel to
the coordinate axes; their lengths are denoted by 2lK , 2kK , and 2mK . We suppose
that the family of meshes is shape regular; i.e., there is a constant C, such that

C
√

l2K + k2K +m2
K ≤ min{lK , kK ,mK}, ∀K ∈ Th.

Thus, h is defined by h := maxK∈Th
{2
√
l2K + k2K +m2

K}. The reference cell is

given by K̂ = (−1, 1)3. For simplicity of notation, we will write (x, y, z) ∈ K

instead of (x1, x2, x3) ∈ K and (ξ, η, ζ) ∈ K̂ instead of (x̂1, x̂2, x̂3) ∈ K̂ in this

section. We introduce the nodal interpolation operator Î : H2(K̂) → Q1(K̂) with

Î v̂(ai) = v̂(ai), where ai, i = 1, . . . , 8 denote the vertices of K̂. The interpolation

ih(u) on an arbitrary cell K is given by ih(u)|K := (Î(u|K ◦ FK)) ◦ F−1
K , with FK

being a bijective affine mapping from K̂ to K. As usual, we apply the interpolation
on vector-valued functions in a componentwise manner. The interpolation operator
for the pressure p is denoted by jh and uses the same degrees of freedom as ih.

Lemma 3.11. Let u ∈ H3(Ω)3 and ihu be the piecewise trilinear interpolant.
Then, on a family of brick meshes we have

|(∇(u− ihu),∇wh)| ≤ Ch2|u|3|wh|1 ∀wh ∈ Vh.

Proof. The proof is similar to that of the supercloseness result in [25]. �
Lemma 3.12. Let αK ∼ h2

K , p ∈ H2(Ω), and jh be the interpolant defined above.
Then, the following estimation holds:

|((p− jhp), div wh)| ≤ Ch2‖p‖2|wh|1 ∀wh ∈ Vh,
∣
∣
∣
∑

K∈Th

αK(∇(p− jhp),∇rh)K

∣
∣
∣ ≤ Ch2‖p‖2|||(wh, rh)|||A ∀rh ∈ Qh.

Proof. The estimation follows from Cauchy-Schwarz inequality and the approxima-
tion properties of the Q1 interpolation operator. �

For the estimation of the term |(rh, div (u− ihu))| we need the following lemma:

Lemma 3.13. Let û ∈ H3(K̂). Then for all r̂h ∈ Q1(K̂) we have
∫

K̂

r̂h∂ξ(û− Î û)dξdηdζ =
1

3

∫

K̂

∂ξ(∂ξξûr̂h)dξdηdζ +O(|û|
3,K̂

‖r̂h‖0,K̂).

Proof. Again, the Bramble-Hilbert lemma is used. For a fixed r̂h ∈ Q1(K̂) we

consider the mapping Ψ : H3(K̂) → R,

û �→ Ψ(û) :=

∫

K̂

r̂h∂ξ(û− Î û)dξdηdζ − 1

3

∫

K̂

∂ξ(∂ξξûr̂h)dξdηdζ,

which is obviously a linear and continuous mapping with

|Ψ(û)| ≤ C(‖r̂h‖0,K̂ |û− Î û|
1,K̂

+ |û|
2,K̂

|r̂h|1,K̂ + |û|
3,K̂

‖r̂h‖0,K̂)

≤ C‖r̂h‖0,K̂‖û‖
3,K̂

.
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We need to show that Ψ(û) = 0 for û ∈ P2(K̂). Since Î is the Q1 interpolation oper-

ator, and ∂ξξû = 0, for û ∈ Q1(K̂), it is sufficient to investigate û ∈ span{ξ2, η2, ζ2}.
Since the ξ-derivative appears in both integrals, only û = ξ2 remains to analyze.

With Îξ2 = 1 we get by direct computation,

Ψ(ξ2) =

∫

K̂

r̂h(2ξ)dξdηdζ −
1

3

∫

K̂

∂ξ(2r̂h)dξdηdζ = 0.

Applying the Bramble-Hilbert lemma, we finally have

|Ψ(û)| ≤ C‖r̂h‖0,K̂ |û|
3,K̂

,

which is the statement of the lemma. �

Remark 3.14. Analogous estimates can be shown by replacing the ξ-derivatives by
η-derivatives and ζ-derivatives, respectively.

Lemma 3.15. Let u ∈ H3(Ω)3 and Th be a decomposition into bricks of uniform
size (lK = l, kK = k, and mK = m). Then, we have

|(rh, div (u− ihu)| ≤ Ch3/2‖u‖3‖rh‖0 ∀rh ∈ Qh.

Proof. Again, it is sufficient to consider (∂x(u − ihu), rh)K . By mapping to the

reference cell K̂ and using Lemma 3.13 we have
∫

K

∂x(u−ihu)rhdxdydz =
lKkKmK

lK

∫

K̂

∂ξ(û− Î û)r̂hdξdηdζ

= kKmK

{
1

3

∫

K̂

∂ξ(∂ξξûr̂h)dξdηdζ +O(|û|
3,K̂

‖r̂h‖0,K̂)

}

= kKmK

{
1

3

l3K
lKkKmK

∫

K

∂x(∂xxurh)dxdydz +O(|u|3,K‖rh‖0,K)

}

=
1

3
l2K

∫

K

∂x(∂xxurh)dxdydz +O(h2|u|3,K‖rh‖0,K).

Now the integrals over the cell K can be represented as the difference of integrals
over opposite faces of K, e.g. if S1 and S2 are the opposite faces of K belonging to
the planes x = xK ± lK , we have for any smooth function Λ,
∫

K

∂xΛ(x, y, z) dxdydz =

∫

S1

Λ(xK + lK , y, z)dydz −
∫

S2

Λ(xK − lK , y, z)dydz;

thus

1

3
l2K

∫

K

∂x(∂xxurh)dxdydz =
1

3
l2K

(∫

S1

−
∫

S2

)

∂xxurhdydz.

Summing over all cells K, the integrals cancel out inside Ω, since rh is continuous
over the inner element faces and lK = lK′ for neighbouring cells K and K ′. Finally,
we obtain

∣
∣
∑

K∈Th

∫

K

∂x(u− ihu)rhdxdydz
∣
∣ ≤ Ch2|u|3‖rh‖0 + Ch2

∫

∂Ω

|∂xxurh|dγ

≤ Ch2|u|3‖rh‖0 + Ch2‖u‖3‖rh‖0,∂Ω
by using both a global trace inequality and the discrete trace inequality (3.6). �
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Lemma 3.16. Assume αK ∼ h2
K and p ∈ H2(Ω). Then, the estimate

|Sh(p, rh)| ≤ Ch3/2‖p‖2‖rh‖0 ∀rh ∈ Qh

holds true for the stabilization term.

Proof. Analogous to the proof of Lemma 3.6. �

Theorem 3.17. Let (u, p) ∈ H3(Ω)3 ×H2(Ω) and let ih and jh be the piecewise
trilinear interpolations. Then, on a familiy of uniform brick meshes we have for
the LPS finite element solution,

|||(uh − ihu, ph − jhp)|||A ≤ Ch3/2(‖u‖3 + ‖p‖2).

Proof. Using Lemmas 3.11, 3.12, 3.15 and 3.16 the proof follows the line of the
proof of Theorem 3.7. �

4. Postprocessing and superconvergence

4.1. Piecewise quadratic postprocessing. In this section, we define an interpo-
lation postprocessing operator I2h allowing us to improve the original finite element
approximations and to obtain a superconvergence result. In contrast to the stan-
dard approach of superconvergence for the Stokes problem [17, 18, 20, 23, 25, 38], we
do not need any postprocessing for the pressure because the pressure approximation
itself is superconvergent:

‖ph − p‖0 ≤ ‖ph − jhp‖0 + ‖jhp− p‖0 ≤ C(h3/2 + h2)(‖u‖3 + ‖p‖2).(4.1)

Here, we assume that the mesh Th is generated from a coarse mesh T2h by a
regular refinement (connecting the edge midpoints). Then, it is easy to see that

each patch K̃ ∈ T2h consists of 4 congruent child triangles Ki ∈ Th, i = 1, 2, 3, 4,
indicated in Figure 2. The P2 postprocessing interpolation operator I2h will be

 
 

 

 

 

 K1

K2
K3

K4

Figure 2. The patch K̃ ∈ T2h and its 4 child triangles.

locally defined by

I2hv|K̃ = I2h(v|K̃),

where on each patch, I2h coincides with the standard quadratic Lagrange nodal
interpolation in the six degrees of freedom, the function values in the three vertices
and the three midpoints of edges. The postprocessing interpolation operator I2h
satisfies the following properties.
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Lemma 4.1. For the patchwise quadratic interpolation I2h and the piecewise linear
interpolations ih and jh the properties

I2hihw = I2hw ∀w ∈ C(Ω)2,(4.2)

|||(I2hvh, qh)||| ≤ C |||(vh, qh)||| ∀(vh, qh) ∈ Vh ×Qh,(4.3)

|||(u− I2hu, p− jhp)||| ≤ Ch2(‖u‖3 + ‖p‖2) ∀(u, p) ∈ H3(Ω)2 ×H2(Ω)(4.4)

hold true, where ||| · ||| denotes ||| · |||A (with αK = O(h2
K)) and ||| · |||B (with

γK = O(1) and τK = O(h2
K)), respectively.

Proof. Property (4.2) is simple to see and well known. The estimate (4.4) depends
on the choices of the stabilization parameters; however, for the ||| · |||A-norm we
have αK = O(h2

K) and for the ||| · |||B-norm τK = O(h2
K), and γK = O(1), which

is sufficient to get the second-order convergence.
For the stability (4.3) it is enough to show that

|I2hvh|21,K̃ ≤ C
∑

K⊂K̃

|vh|21,K ∀v ∈ Vh.

This follows by transformation onto a reference patch and norm equivalence on
finite-dimensional spaces. �

After constructing the postprocessing operator I2h, we can state the following
superconvergence result.

Theorem 4.2. Assume that the postprocessing operator I2h satisfies (4.2)-(4.4).
Under the assumption of Theorem 3.7, we have the following superconvergence result
for the case Yh = {v ∈ H1(Ω) : v|K ∈ P1(K), ∀K ∈ Th} and Dh = {0}:

|||(I2huh − u, ph − p)|||A ≤ Ch3/2(‖u‖3 + ‖p‖2)(4.5)

and the following superconvergence result for the piecewise linear part in the approx-
imation space Yh = {v ∈ H1(Ω) : v|K ∈ P+

1 (K), ∀K ∈ Th} and the discontinuous
projection space Dh = {q : q|K ∈ P0(K), ∀K ∈ Th}:

|||(I2huL − u, pL − p)|||B ≤ Ch3/2(‖u‖3 + ‖p‖2).(4.6)

Proof. From (3.10) and (4.2)-(4.4), we have

|||(I2huh−u, ph − p)|||A
≤ |||(I2h(uh − ihu), ph − jhp)|||A + |||(I2hihu− u, jhp− p)|||A
≤ C|||(uh − ihu, ph − jhp)|||A + |||(I2hu− u, jhp− p)|||A
≤ Ch3/2(‖u‖3 + ‖p‖2).

Thus, (4.5) is shown. The estimate (4.6) follows by the same arguments. �

4.2. Piecewise d-quadratic postprocessing. In this subsection, we construct
a postprocessing interpolation operator for the rectangular or brick meshes. In
the axiparallel rectangular, and brick case, no postprocessing for the pressure is
needed. For the velocity, we assume similar to the triangular case that the mesh
Th was obtained from a coarse mesh T2h by a regular refinement. Then, each patch

K̃ ∈ T2h consists of 2d congruent child bricks Ki ∈ Th, i = 1, 2, . . . , 2d; see Figure 3.
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Figure 3. The patch K̃ ∈ T2h and its child rectangles (d = 2) or
bricks (d = 3).

Now, we define the d-quadratic interpolation operator I2h locally by

I2hv|K̃ = I2h(v|K̃),

and use on each patch K̃ the Q2 Lagrange interpolation defined by

I2hv(Zi) = v(Zi),(4.7)

where Zi, i = 1, 2, . . . , 3d are the vertices of the child bricks belonging to the patch.
The postprocessing interpolation I2h satisfies the properties (4.2)-(4.4). Thus,

we have a similar superconvergence result as Theorem 4.2 for the approximation
(I2huh, ph).

Theorem 4.3. Assume that Th is a family of axiparallel uniform rectangular or
uniform brick-type meshes. Let I2h be the patchwise d-quadratic interpolation. Un-
der the assumptions of Theorem 3.17, we have the superconvergence result:

|||(I2huh − u, ph − p)|||A ≤ Ch3/2(‖u‖3 + ‖p‖2).(4.8)

Proof. The arguments are analogous to those of the proof of Theorem 4.2. �

5. Extension to more general meshes

In realistic computations, we cannot always work with a three-directional mesh.
Following the ideas of [2] for the Poisson equation, we extend the superconvergence
result valid for three-directional meshes to more general meshes.

We state first the mesh conditions. Two adjacent triangles (sharing a common
edge) are said to form an O(h1+ρ) (ρ > 0) approximate parallelogram if the lengths
of any two opposite edges differ only by O(h1+ρ).

Definition 5.1. The triangulation Th = T1,h∪T2,h is said to satisfy condition (ρ, σ)
if there exist positive constants ρ and σ such that every two adjacent triangles inside
T1,h form an O(h1+ρ) parallelogram and

Ω1,h ∪ Ω2,h = Ω, |Ω2,h| = O(hσ), Ωi,h =
⋃

K∈Ti,h

K, i = 1, 2.

The condition (ρ, σ) is a reasonable condition in practice and can be satisfied
by most automatically generated meshes. In fact, Ω2h contains only exceptional
elements, and these are relatively few in number. We set β := min

(
ρ, 1

2 ,
σ
2

)
. Then,

we have the following estimates for meshes satisfying the condition (ρ, σ).
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Lemma 5.2 ([23, 37]). Assume that u ∈ (H3(Ω)∩W 2,∞(Ω))2. Then, we have the
following estimate for meshes satisfying the condition (ρ, σ):

|(∇(u− ihu),∇wh)| ≤ Ch1+β(‖u‖3 + ‖u‖2,∞)|wh|1 ∀wh ∈ Vh.(5.1)

Lemma 5.3. Assume that u ∈ (H3(Ω)∩W 2,∞(Ω))2. Then, we have the following
estimate for meshes satisfying the condition (ρ, σ):

|(rh, div (u− ihu))| ≤ Ch1+β(‖u‖3 + ‖u‖2,∞)‖rh‖0 ∀rh ∈ Qh,(5.2)

|(div(u− ihu), divvh)| ≤ Ch1+β(‖u‖3 + ‖u‖2,∞)|wh|1 ∀vh ∈ Vh.(5.3)

Proof. As in the proof of Lemma 3.4, we obtain by integration by parts,

(rh,div (u− ihuh))

=
1

12

∑

K∈Th

∫

K

rhdiv
(
h2
1∂

2
t1t1u+ h1h3∂

2
t1t3u+ h2

3∂
2
t3t3u

)
dx+R

− 1

12

∑

K∈Th

∫

∂K

rh
(
h2
1∂

2
t1t1u+ h1h3∂

2
t1t3u+ h2

3∂
2
t3t3u

)
· nK ds,

where again, the first and the second term can be bounded by Ch2‖u‖3‖rh‖0. In
the third term, we replace the derivatives in the tangential directions t1 and t3 by
derivatives in the tangential direction t2 and the normal direction n2, respectively.
With Θi the angle opposite to si, i = 1, 2, 3, we have

h2
1∂

2
t1t1u+ h1h3∂

2
t1t3u+ h2

3∂
2
t3t3u = F∂2

t2t2u+G∂2
t2n2

u+H∂2
n2n2

u,

where

F = h2
1 cos

2 Θ3 + h1h3 cosΘ1 cosΘ3 + h2
3 cos

2 Θ1,

G = h1 sinΘ3(h3 cosΘ1 − h1 cosΘ3),

H = h2
1 sin

2 Θ3.

Let us split the set of all edges into three different classes. E1 is the set of inner edges
E such that the two adjacent triangles sharing E form an O(h1+ρ) approximate
parallelogram, E2 is the set of remaining inner edges, and E3 is the set of all boundary
edges. Consider now an edge E = ∂K∩∂K ′ ∈ E1. Then, we have |h1−h′

1| ≤ Ch1+ρ
2 ,

hE = h2 = h′
2, and |h3 − h′

3| ≤ Ch1+ρ
2 , from which the estimates

|F − F ′| ≤ Ch2+ρ
2 , |G−G′| ≤ Ch2+ρ

2 , |H −H ′| ≤ Ch2+ρ
2

follow by geometric considerations. Since nK = −nK′ , the sum of integrals over
the common edge E can be estimated as

∣
∣
∣
∣

∫

E

rh
(
(F − F ′)∂2

t2t2u+ (G−G′)∂2
t2n2

u+ (H −H ′)∂2
n2n2

u
)
· nK ds

∣
∣
∣
∣

≤ Ch2+ρ
E ‖rh‖0,1,E ‖u‖2,∞,K∪K′ , E ∈ E1.(5.4)
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Furthermore, we have the following estimates:
∣
∣
∣
∣

∫

E

rh
(
(F − F ′)∂2

t2t2u+ (G−G′)∂2
t2n2

u+ (H −H ′)∂2
n2n2

u
)
· nK ds

∣
∣
∣
∣

≤ Ch2
E‖rh‖0,1,E ‖u‖2,∞,K∪K′ , E ∈ E2,(5.5)

∣
∣
∣
∣

∫

E

rh
(
F∂2

t2t2u+G∂2
t2n2

u+H∂2
n2n2

u
)
· nK ds

∣
∣
∣
∣

≤ Ch2
E‖rh‖0,1,E ‖u‖2,∞,K , E ∈ E3.(5.6)

The estimate of the sums over the three types of edges is based on the discrete
trace inequality

hE‖rh‖0,1,E ≤ C|K|1/2 ‖rh‖0,K ∀rh ∈ Qh, E ⊂ ∂K,(5.7)

from which we get by summation

∑

E∈Ei

hE‖rh‖0,1,E ≤ C

⎛

⎜
⎜
⎝

∑

K∈Th
∃E∈Ei:∂K∩E 	=∅

|K|

⎞

⎟
⎟
⎠

1/2

‖rh‖0.

The discrete trace inequality (5.7) follows from scaling properties, the trace inequal-
ity on the reference cell, and the equivalence of norms in finite-dimensional spaces.
Applying (5.7) to (5.4)-(5.6) we end up with

∣
∣
∣
∣
∣

∑

E∈E1

∫

E

· · · ds
∣
∣
∣
∣
∣
≤ Ch1+ρ

⎛

⎝
∑

K∈T1,h

|K|

⎞

⎠

1/2

‖u‖2,∞,Ω‖rh‖0 ≤ Ch1+ρ‖u‖2,∞,Ω‖rh‖0,

∣
∣
∣
∣
∣

∑

E∈E2

∫

E

· · · ds
∣
∣
∣
∣
∣
≤ Ch

⎛

⎝
∑

K∈T2,h

|K|

⎞

⎠

1/2

‖u‖2,∞,Ω‖rh‖0 ≤ Ch1+σ/2‖u‖2,∞,Ω‖rh‖0,

∣
∣
∣
∣
∣

∑

E∈E3

∫

E

· · · ds
∣
∣
∣
∣
∣
≤ Ch

⎛

⎝
∑

K∩Γ	=∅

|K|

⎞

⎠

1/2

‖u‖2,∞,Ω‖rh‖0 ≤ Ch3/2‖u‖2,∞,Ω‖rh‖0.

Thus, (5.2) is proven. Along the same lines, (5.3) can be shown. �

These meshes are not generated by a regular refinement. Therefore a reasonable
postprocessing is given by recovery methods for linear finite elements as already
used for second-order elliptic problems; see e.g. [39, 40, 43]. We define a recovery
operator Gh : Vh → (Yh×Yh)

2, where Yh = {v ∈ H1(Ω) : v|K ∈ P1(K), ∀K ∈ Th}.
The piecewise linear function Ghuh is an approximation to the gradient of the exact
solution ∇u constructed by the finite element solution uh. This operator has the
following properties:

‖Ghvh‖0 ≤ C ‖vh‖1, ∀vh ∈ Vh,(5.8)

‖Ghu−∇u‖0 ≤ Ch2‖u‖3, ∀u ∈ H3(Ω)2,(5.9)

Ghu = Gh(ihu), ∀u ∈ H3(Ω)2.(5.10)
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Theorem 5.4. Let the solution (u, p) of (2.1) belong to (H3(Ω) ∩ W 2,∞(Ω))2 ×
H2(Ω). Then, we have the following supercloseness on meshes satisfying the con-
dition (ρ, σ):

|||(uh − ihu, ph − jhp)|||A ≤ Ch1+β(‖u‖3 + ‖u‖2,∞ + ‖p‖2)(5.11)

for the P1 case. Furthermore, for the P+
1 case the linear part (uL, pL) of the discrete

solution satisfies

|||(uL − ihu, pL − jhp)|||B ≤ Ch1+β(‖u‖3 + ‖u‖2,∞ + ‖p‖2).(5.12)

For the recovered gradients the superconvergence results

‖Ghuh −∇u‖0 + ‖ph − p‖0 ≤ Ch1+β(‖u‖3 + ‖u‖2,∞ + ‖p‖2),(5.13)

‖GhuL −∇u‖0 + ‖pL − p‖0 ≤ Ch1+β(‖u‖3 + ‖u‖2,∞ + ‖p‖2)(5.14)

hold true.

Proof. The supercloseness results (5.11) and (5.12) follow from the stability of the
underlying bilinear forms, the Lemmas 5.2, 5.3, 3.5, and 3.6, in the same way as
shown in Section 3.1.

Combining (5.8)-(5.10) and (5.11), we have

‖Ghuh −∇u‖0 + ‖ph − p‖0 ≤ ‖Ghuh −Gh(ihu)‖0 + ‖Gh(ihu)−Ghu‖0
+‖Ghu−∇u‖0 + ‖ph − p‖0

≤ C‖uh − ihu‖1 + Ch2(‖u‖3 + ‖p‖2)
≤ Ch1+β(‖u‖3 + ‖u‖2,∞ + ‖p‖2).

The estimate (5.14) can be proven similarly. �

In fact, the condition (ρ, σ) is very general. For a general domain, we start with
a coarse mesh and use a regular refinement. Then, the resulting family of meshes
satisfies the condition (ρ, σ).

6. Numerical tests

In this section we present numerical results for solving the Stokes problem by
the stabilized method (2.4) for the P1 case and the P+

1 case, respectively.

Example 6.1. Let Ω = (0, 1)2. We consider the Stokes problem

−Δu+∇p = f , div u = 0 in Ω, u = g on ∂Ω,(6.1)

where the right hand side f and the inhomogeneous Dirichlet boundary condition
g are chosen such that

(6.2) u =

(
sin(x) sin(y)
cos(x) cos(y)

)

, p = 2 cos(x) sin(y)− 2 sin(1)(1− cos(1))

is the solution.

We compute the finite element solution on uniform triangular meshes of a regular
pattern obtained by successive regular refinement of an initial coarse mesh. The
mesh on level 1 is shown in Figure 4.

In the following, we evaluate the results of our computation by considering the
H1 seminorm of the velocity error and the L2 norm of the pressure error. We also
compute theH1 seminorm error of the postprocessed velocity I2huh. The numerical



718 HAGEN EICHEL, LUTZ TOBISKA, AND HEHU XIE

results confirm the theoretically predicted convergence rates; see Figure 5 for the
P1 case and Figure 6 for the P+

1 case, respectively.

0 0.2 0.4 0.6 0.8 1
0
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1
the initial mesh

Figure 4. The initial uniform mesh.
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Figure 5. Velocity and pressure error for the P1 case on three-
directional meshes.
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1 case on three-

directional meshes.
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Example 6.2. In this example, we solve the Stokes problem (6.1) on a unit circle
where the right hand side f and the inhomogeneous Dirichlet boundary condition
g are chosen such that

(6.3) u =

(
sin(x) sin(y)
cos(x) cos(y)

)

, p = 2 cos(x) sin(y)

is the exact solution.

In this example, the domain Ω cannot be triangulated by a family of three-
directional meshes. Here, we used the Delaunay triangulation to produce an initial
coarse mesh. Then, a family of meshes is generated by successive regular refinement.
Figure 7 shows the initial mesh and the refined mesh on level 4. In Figures 8 and 9
the errors for the velocity and the pressure are shown for the P1 case and the P+

1

case, respectively. We observe superconvergence also over this type of successively
refined meshes. Note that, the technique of [21] has been used to carry out the
postprocessing.

We also considered an automatic generated family of meshes (Delaunay trian-
gulation separately on each mesh level). Even in this case we observed some (less
pronounced) superconvergence properties.
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Figure 7. The meshes on level 0 and level 4 for a regular refinement.
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Figure 8. Velocity and pressure error for the regular refinement P1 case.
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Figure 9. Velocity and pressure error for the regular refinement P+
1 case.

Acknowledgement

The research has been partially supported by the BMBF-Project SimParTurS
under the grant 03TOPAA1. The second author gratefully acknowledges the sup-
port from the Chinese Academy of Sciences during his stay at the State Key Lab-
oratory of Scientific and Engineering Computing, Chinese Academy of Sciences,
Beijing.

References

1. D. N. Arnold, F. Brezzi, and M. Fortin, A stable finite element for the Stokes equation, Calcolo
21 (1984), 337–344. MR799997 (86m:65136)

2. R.E. Bank and J. Xu, Asymptotically exact a posteriori error estimators. I. Grids with su-
perconvergence, SIAM J. Numer. Anal. 41 (2003), no. 6, 2294–2312 (electronic). MR2034616
(2004k:65194)

3. R. Becker and M. Braack, A finite element pressure gradient stabilization for the Stokes equa-
tions based on local projections, Calcolo 38 (2001), no. 4, 173–199. MR1890352 (2002m:65112)

4. H. Blum, Q. Lin, and R. Rannacher, Asymptotic error expansion and Richardson extrapolation
for linear finite elements, Numer. Math. 49 (1986), 11–37. MR847015 (87m:65172)

5. M. Braack and E. Burman, Local projection stabilization for the Oseen problem and its in-
terpretation as a variational multiscale method, SIAM J. Numer. Anal. 43 (2006), no. 6,
2544–2566. MR2206447 (2007a:65139)

6. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Series in Com-
putational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR1115205 (92d:65187)
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