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ON THE AVERAGE DISTRIBUTION OF PSEUDORANDOM

NUMBERS GENERATED BY NONLINEAR PERMUTATIONS

IGOR E. SHPARLINSKI

Abstract. We modify the approach of H. Niederreiter and I. E. Shparlinski
and improve one of their results on the distribution of inversive congruential
pseudorandom numbers over a finite field for almost all initial values. How-
ever the main application of the new method is a similar result for pseudoran-
dom numbers generated by iterations of a nonlinear permutation polynomial
over a finite field, to which the original approach of H. Niederreiter and I. E.
Shparlinski does not apply.

1. Introduction

Let p be a prime and let Fp be the field of p elements, which we assume to be
represented by the set {0, . . . , p− 1}.

Given a map ψ : Fp → Fp we define u0(ϑ), u1(ϑ), . . . as the sequence of elements
of Fp obtained by the recurrence relation

(1) un+1(ϑ) = ψ (un(ϑ)) , n = 0, 1, . . . ,

where u0(ϑ) = ϑ is the initial value. Such sequences are very common sources of
pseudorandom numbers and are also of interest for the theory of dynamical systems;
see [8, 9, 11, 13] for recent surveys of such constructions and their properties.

In particular, the distribution of sequences of points

(2)

(
un(ϑ)

p
, . . . ,

un+s−1(ϑ)

p

)
, n = 0, . . . , N − 1,

in the s-dimensional unit cube [0, 1]s has been of primal interest.
Here we concentrate on the special case when the map ψ is a permutation of Fp.
A very important class of permutations is given by inversions,

(3) ψ(γ) =

{
aγ−1 + b if γ �= 0,
b if γ = 0,

where a ∈ F
∗
p, b ∈ Fp. In this case the corresponding sequence (1) is called the

inversive congruential generator and has been extensively studied in the literature;
see [8, 9, 13].

It is shown in [7] that for almost all initial values ϑ, the points (2), generated by
ψ as in (3), are rather uniformly distributed in [0, 1]s. Another important class of
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permutations ψ is given by permutation polynomials of low degree. Unfortunately,
the method of [7] does not seem to work in this case and so analogues of the results
of [7] are not known. However, here we propose a different argument, which allows
us to consider the case of nonlinear permutations, and in fact we also obtain an
improvement of the result of [7] as well. These estimates for almost all initial values
are much stronger and hold in a much wider range than those obtained for every
initial value; see [6] and [10] for the case of inversive and polynomial generators,
respectively.

We note that besides being of theoretical interest, such results that apply to
almost all initial values are probably most relevant for practical applications of
pseudorandom generators, in both cryptography and numerical analysis.

Throughout the paper, the implied constants in the symbols ‘O’ and ‘�’ may
occasionally, where obvious, depend on some integer parameters d, r and s, and are
absolute otherwise (we recall that A � B is equivalent to A = O(B)).

2. Preparations

2.1. Iterations of ψ. Let ψi denote the ith iterate of the permutation ψ, where
ψ0 denotes the identity map. In particular, we see from (1) that

ui(ϑ) = ψi(ϑ), i = 0, 1, . . . .

If ψ is given by a polynomial of degree d, then ψi is a polynomial of degree di,
and thus all such iterations are pairwise distinct.

In the case that the permutation ψ is given by an inversion map (3), the situation
is slightly more complicated.

As in [7], we consider the following sequence of rational functions over Fp:

R0(X) = X, Ri(X) = Ri−1(aX
−1 + b), i = 1, 2, . . .

associated with the map (3). It is obvious that this sequence is purely periodic.
Denote by T the least period.

2.2. Average values of some exponential sums. We write

ep(z) = exp(2πiz/p).

For a permutation ψ of Fp, a vector h = (h0, . . . , hs−1) ∈ F
s
p and integers

r,M ≥ 1, we define

Vr,h,ψ(M) =
∑
ϑ∈Fp

∣∣∣∣∣∣
M−1∑
m=0

ep

⎛
⎝s−1∑

j=0

hjψ
m+j(ϑ)

⎞
⎠
∣∣∣∣∣∣
2r

.

In the case of r = 1 and the inversion map (3), such (and in fact more general)
sums are estimated in [7]. In particular, a special case of [7, Lemma 1] implies the
following estimate:

Lemma 1. Assume that the permutation ψ is given by (3) with a ∈ F
∗
p and b ∈ Fp.

Then for any integer M with 1 ≤ M ≤ T and nonzero vector h = (h0, . . . , hs−1) ∈
F
s
p we have

V1,h,ψ(M) �
{

Mp if M ≤ p1/2,

M2p1/2 if M > p1/2.

We now use the same approach as in [7] to obtain a similar (albeit much weaker)
result in the case of permutation polynomials.
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Lemma 2. Assume that the permutation ψ is given by a permutation polynomial
f(X) ∈ Fp[X] of degree d ≥ 2. Then there is a constant c > 0, depending only on
r, d and s, such for any integer M ≥ 1 and nonzero vector h = (h0, . . . , hs−1) ∈ F

s
p

we have

Vr,h,ψ(M) �
{

Mrp, if M < c log p,
M2rp(log p)−r, if M ≥ c log p.

Proof. Expanding the inner sum and changing the order of summation, we obtain

Vr,h,ψ(M)

≤
M−1∑

m1,...,mr=0

M−1∑
n1,...,nr=0

∣∣∣∣∣∣
∑
ϑ∈Fp

ep

⎛
⎝s−1∑

j=0

hj

(
r∑

ν=1

(
ψmν+j(ϑ)− ψnν+j(ϑ)

))
⎞
⎠
∣∣∣∣∣∣ .

If the r-tuple (m1, . . . ,mr) is a permutation of (n1, . . . , nr), then the sum over ϑ is
equal to p. Otherwise we see that

s−1∑
j=0

hj

(
r∑

ν=1

(
ψmν+j(ϑ)− ψnν+j(ϑ)

))

=
s−1∑
j=0

hj

(
r∑

ν=1

(fmν+j(ϑ)− fnν+j(ϑ))

)
,

where fi(X) ∈ Fp[X] is a polynomial of degree di. Therefore, in this case the
polynomial

s−1∑
j=0

hj

(
r∑

ν=1

(fmν+j(X)− fnν+j(X))

)
∈ Fp[X]

is an inconstant polynomial of degree at most dM+s−2. Applying the Weil bound,
see [4, Theorem 5.38], we derive

Vr,h,ψ(M) ≤ r!Mrp+M2rdM+s−2p1/2.

As in [7], we also observe that because ψ is a permutation, for any integer L and
any real τ ≥ 0, we have

∑
ϑ∈Fp

∣∣∣∣∣∣
L+M−1∑
m=L

ep

⎛
⎝s−1∑

j=0

hjψ
m+j(ϑ)

⎞
⎠
∣∣∣∣∣∣
τ

=
∑
ϑ∈Fp

∣∣∣∣∣∣
M−1∑
m=0

ep

⎛
⎝s−1∑

j=0

hjψ
m+j(ψL(ϑ))

⎞
⎠
∣∣∣∣∣∣
τ

=
∑
ϑ∈Fp

∣∣∣∣∣∣
M−1∑
m=0

ep

⎛
⎝s−1∑

j=0

hjψ
m+j(ϑ)

⎞
⎠
∣∣∣∣∣∣
τ

.

(4)

In particular,

∑
ϑ∈Fp

∣∣∣∣∣∣
L+M−1∑
n=L

ep

⎛
⎝s−1∑

j=0

hjψ
n+j(ϑ)

⎞
⎠
∣∣∣∣∣∣
2r

= Vr,h,ψ(N).
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Therefore, separating the inner sum into at most M/K+1 subsums of length at
most K, for any integer 1 ≤ K ≤ M we have

Vr,h,ψ(M) �
(
Krp+K2rdK+s−2p1/2

)
M2rK−2r

= M2r
(
pK−r + dK+s−2p1/2

)
.

Thus, selecting K = min{M, �c log p	} for an appropriate constant c, in particular
such that

pK−r ≥ dK+s−2p1/2,

we obtain the desired result. �

2.3. Discrepancy. For a sequence of N points

(5) Γ = (γ0,n, . . . , γs−1,n)
N
n=1

of the half-open interval [0, 1)s, denote by DΓ its discrepancy , that is,

DΓ = sup
B⊆[0,1)s

∣∣∣∣TΓ(B)

N
− |B|

∣∣∣∣ ,
where TΓ(B) is the number of points of the sequence Γ which hit the box

B = [α1, β1)× . . .× [αs, βs) ⊆ [0, 1)s

and the supremum is taken over all such boxes.
For a vector h = (h0, . . . , hs−1) ∈ Z

s we put

(6) |h| = max
j=0,...,s−1

|hj |, ρ(h) =

s−1∏
j=0

max{|hj |, 1}.

We need the Koksma–Szüsz inequality [3, 12] (see also [2, Theorem 1.21]) for
the discrepancy of a sequence of points of the s-dimensional unit cube, which we
present in the following form.

Lemma 3. For any integer H ≥ 1, the discrepancy DΓ of a sequence of points (5)
satisfies

DΓ � 1

H
+

1

N

∑
0<|h|≤H

1

ρ(h)

∣∣∣∣∣∣
N∑

n=1

exp

⎛
⎝2πi

s−1∑
j=0

hjγj,n

⎞
⎠
∣∣∣∣∣∣ ,

where |h| and ρ(h) are defined by (6) and the sum is taken over all integer vectors

h = (h0, . . . , hs−1)

with 0 < |h| ≤ H.

3. Main results

3.1. Notation. For a permutation ψ, we denote by Ds,ψ(ϑ;N) the s-dimensional
discrepancy of the points (2).

Our results show that for almost all ϑ ∈ Fp, the discrepancy Ds,ψ(ϑ;N) is
small for every admissible N . We note that it is much stronger than a result
(which usually admits a simpler proof) that asserts that for every admissible N ,
the discrepancy is small for almost all ϑ ∈ Fp.
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3.2. Discrepancy bound for inversions. The number T is defined as in the
beginning of Section 2.1.

Theorem 4. Assume that the permutation ψ is given by (3) with a ∈ F
∗
p and

b ∈ Fp. Then for any integer s ≥ 1 and real Δ > 0, for all initial values ϑ ∈ Fp,
except at most O(Δp) of them, we have

Ds,ψ(ϑ;N) �
(
Δ−2/3N−1/3 +Δ−1p−1/4

)
(logN)s log T

for all N with 1 ≤ N ≤ T .

Proof. Let

Nν = 2ν , and Mν =
⌈
Δ−2/3N2/3

ν

⌉
, ν = 0, . . . , J,

where

J =

⌈
log T

log 2

⌉
.

We define k ≥ 1 by the condition Nk−1 < N ≤ Nk.
From Lemma 3 with H = �N/2	 we derive

(7) Ds,ψ(ϑ;N) � 1

N
+

1

N

∑
0<|h|≤N/2

1

ρ(h)

∣∣∣∣∣∣
N−1∑
n=0

ep

⎛
⎝s−1∑

j=0

hjun+j−1(ϑ)

⎞
⎠
∣∣∣∣∣∣ .

Clearly

N−1∑
n=0

ep

⎛
⎝s−1∑

j=0

hjun+m+j−1(ϑ)

⎞
⎠ =

N−1∑
n=0

ep

⎛
⎝s−1∑

j=0

hjun+j−1(ϑ)

⎞
⎠+O(m)

for any integer m ≥ 0. Thus,∣∣∣∣∣∣
N−1∑
n=0

ep

⎛
⎝s−1∑

j=0

hjun+j−1(ϑ)

⎞
⎠
∣∣∣∣∣∣

=
1

Mk

∣∣∣∣∣∣
Mk−1∑
m=0

N−1∑
n=0

ep

⎛
⎝s−1∑

j=0

hjun+m+j−1(ϑ)

⎞
⎠
∣∣∣∣∣∣+O(Mk)

� 1

Mk

N−1∑
n=0

∣∣∣∣∣∣
Mk−1∑
m=0

ep

⎛
⎝s−1∑

j=0

hjun+m+j−1(ϑ)

⎞
⎠
∣∣∣∣∣∣+Mk

=
1

Mk

Nk−1∑
n=0

∣∣∣∣∣∣
Mk−1∑
m=0

ep

⎛
⎝s−1∑

j=0

hjψ
n+m+j−1(ϑ)

⎞
⎠
∣∣∣∣∣∣+Mk.

Combining the above estimate with (7), and using that N ≤ Nk < 2N , we obtain

(8) Ds,ψ(ϑ;N) � Mk

Nk
+

1

Nk
Rk,s,ψ(ϑ),

where

(9) Rk,s,ψ(ϑ) =
1

Mk

∑
0<|h|≤Nk/2

1

ρ(h)

Nk−1∑
n=0

∣∣∣∣∣∣
Mk−1∑
m=0

ep

⎛
⎝s−1∑

j=0

hjψ
n+m+j−1(ϑ)

⎞
⎠
∣∣∣∣∣∣ .
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We now show that for all but O(Δp) elements ϑ ∈ Fp, the values of Rk,s,ψ(ϑ) satisfy

(10) Rk,s,ψ(ϑ) < Δ−1(M
−1/2
k Nk +Nkp

−1/4)(logNk)
s log T,

for every k = 1, . . . , J .
In order to prove this, we estimate the average value

Qk,s,ψ =
∑
ϑ∈Fp

Rk,s,ψ(ϑ).

We have

Qk,s,ψ =
1

Mk

∑
0<|h|≤Nk/2

1

ρ(h)

Nk−1∑
n=0

∑
ϑ∈Fp

∣∣∣∣∣∣
Mk−1∑
m=0

ep

⎛
⎝s−1∑

j=0

hjψ
n+m+j−1(ϑ)

⎞
⎠
∣∣∣∣∣∣ .

As in the proof of Lemma 2, see (4), we see that

∑
ϑ∈Fp

∣∣∣∣∣∣
Mk−1∑
m=0

ep

⎛
⎝s−1∑

j=0

hjψ
n+m+j−1(ϑ)

⎞
⎠
∣∣∣∣∣∣ =

∑
ϑ∈Fp

∣∣∣∣∣∣
Mk−1∑
m=0

ep

⎛
⎝s−1∑

j=0

hjψ
m+j−1(ϑ)

⎞
⎠
∣∣∣∣∣∣ .

Thus

Qk,s,ψ =
Nk

Mk

∑
0<|h|≤Nk/2

1

ρ(h)

∑
ϑ∈Fp

∣∣∣∣∣∣
Mk−1∑
m=0

ep

⎛
⎝s−1∑

j=0

hjψ
m+j−1(ϑ)

⎞
⎠
∣∣∣∣∣∣ .

Furthermore, by the Cauchy-Schwarz inequality, we have⎛
⎝p−1∑

ϑ=0

∣∣∣∣∣∣
Mk−1∑
m=0

ep

⎛
⎝s−1∑

j=0

hjψ
m+j−1(ϑ)

⎞
⎠
∣∣∣∣∣∣
⎞
⎠

2

≤ p

p−1∑
ϑ=0

∣∣∣∣∣∣
Mk−1∑
m=0

ep

⎛
⎝s−1∑

j=0

hjψ
m+j−1(ϑ)

⎞
⎠
∣∣∣∣∣∣
2

= pV1,h,ψ(Mk).

Hence

Qk,s,ψ ≤ Nkp
1/2V1,h,ψ(Mk)

1/2

Mk

∑
0<|h|≤Nk/2

1

ρ(h)

� Nkp
1/2V1,h,ψ(Mk)

1/2

Mk
(logNk)

s.

Clearly, Lemma 1 is equivalent to the estimate

V1,h,ψ(M) � Mp+M2p1/2.

Therefore,

(11) Qk,s,ψ � (M
−1/2
k Nkp+Nkp

3/4)(logNk)
s.

Let Ωk be the set of ϑ ∈ Fp with

Rk,s,ψ(ϑ) ≥ Δ−1(M
−1/2
k Nk +Nkp

−1/4)(logNk)
s log T.

Then
#ΩkΔ

−1(M
−1/2
k Nk +Nkp

−1/4)(logNk)
s log T ≤ Qk,s,ψ

and using (11) we obtain
#Ωk � Δp(log T )−1.
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Thus for

Ω =

J⋃
k=1

Ωk

we obtain
#Ω � Δp.

On the other hand, for ϑ ∈ Fp \ Ω, the bound (10) holds, and we derive from (8)
that

Ds,ψ(ϑ;N) � Mk

Nk
+Δ−1(M

−1/2
k + p−1/4)(logNk)

s log T

for every k = 1, . . . , J . Recalling the choice of Mk, we conclude the proof. �
We note that [7, Theorem 3] gives the estimate

Ds,ψ(ϑ;N) � Δ−1
(
N−1/2 + p−1/4

)
(logN)s+1 log T

under the same conditions and with the same estimate on the size of the exceptional
set as in Theorem 4. Clearly, Theorem 4 improves this result by a factor of logN ,
provided that T ≥ N ≥ Δp3/4.

3.3. Discrepancy bound for permutation polynomials. In the case of poly-
nomials we slightly modify the scheme of the proof of Theorem 4, although we reuse
some of its arguments.

Theorem 5. Assume that the permutation ψ is given by a permutation polynomial
f(X) ∈ Fp[X] of degree d ≥ 2. Then for any integer s ≥ 1 and real δ > 0 and
A > 0, for all initial values ϑ ∈ Fp, except at most O(p(log p)−A) of them, we have

Ds,ψ(ϑ;N) � (log p)−1/2+δ

for all N with (log p)3/2+δ ≤ N ≤ p.

Proof. We put
r =

⌈
2δ−1(A+ s+ 1)

⌉
.

Let
Nν = 2ν , ν = 0, . . . , J,

where

J =

⌈
log p

log 2

⌉

and
M0 = �c log p	 ,

where c > 0 is the constant of Lemma 2 for the above choice of r (as well as of d
and s).

As before, we define k ≥ 1 by the condition Nk−1 < N ≤ Nk.
Applying Lemma 3 with H = �log p	, we obtain the following analogue of the

relations (8) and (9):

(12) Ds,ψ(ϑ;N) � 1

log p
+

M0

Nk
+

1

Nk
Sk,s,ψ(ϑ),

where

(13) Sk,s,ψ(ϑ) =
1

M0

∑
0<|h|≤log p

1

ρ(h)

Nk−1∑
n=0

∣∣∣∣∣∣
M0−1∑
m=0

ep

⎛
⎝s−1∑

j=0

hjψ
n+m+j−1(ϑ)

⎞
⎠
∣∣∣∣∣∣ .
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For k = 1, . . . , J and a vector h ∈ Z
s, we denote by Ωk(h) the set of ϑ ∈ Fp with

Nk−1∑
n=0

∣∣∣∣∣∣
M0−1∑
m=0

ep

⎛
⎝s−1∑

j=0

hjψ
n+m+j−1(ϑ)

⎞
⎠
∣∣∣∣∣∣ ≥ NkM0(log p)

−1/2+δ/2.

Clearly, for any integer r ≥ 1,

(14) Ωk(h)(NkM0(log p)
−1/2+δ/2)2r ≤ Tr,k,s,ψ(h),

where

Tr,k,s,ψ(h) =
∑
ϑ∈Fp

⎛
⎝Nk−1∑

n=0

∣∣∣∣∣∣
M0−1∑
m=0

ep

⎛
⎝s−1∑

j=0

hjψ
n+m+j−1(ϑ)

⎞
⎠
∣∣∣∣∣∣
⎞
⎠

2r

.

Using the Hölder inequality and recalling (4), we derive

Tr,k,s,ψ(h) ≤ N2r−1
k

∑
ϑ∈Fp

Nk−1∑
n=0

∣∣∣∣∣∣
M0−1∑
m=0

ep

⎛
⎝s−1∑

j=0

hjψ
n+m+j−1(ϑ)

⎞
⎠
∣∣∣∣∣∣
2r

= N2r
k

∑
ϑ∈Fp

∣∣∣∣∣∣
M0−1∑
m=0

ep

⎛
⎝s−1∑

j=0

hjψ
m+j−1(ϑ)

⎞
⎠
∣∣∣∣∣∣
2r

= N2r
k Vr,h,ψ(M0).

Therefore, by Lemma 2, we have

Tr,k,s,ψ(h) � N2r
k M2r

0 p(log p)−r,

which after inserting in (14) yields

Ωk(h) ≤ p(log p)−δr/2.

Thus for

Ω =
J⋃

k=1

⋃
0<|h|≤log p

Ωk(h),

recalling the choice of r, we obtain

#Ω � p(log p)−δr/2+s+1 � p(log p)−A.

On the other hand, for ϑ ∈ Fp \ Ω, we derive from (13) that

Sk,s,ψ(ϑ) � Nk(log p)
−1/2+δ/2(log log p)s � Nk(log p)

−1/2+δ

for every k = 1, . . . , J .
Now, recalling the choice of M0 and the inequality N ≤ Nk, we see from (12)

that

Ds,ψ(ϑ;N) � 1

log p
+

M0

Nk
+ (log p)−1/2+δ

� log p

N
+ (log p)−1/2+δ � (log p)−1/2+δ,

for (log p)3/2+δ ≤ N ≤ p, which concludes the proof. �

Certainly, using the full power of Lemma 2 one can obtain nontrivial estimates
on Ds,ψ(ϑ;N) for smaller values of N as well.
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4. Comments

One can easily obtain an analogue of Lemma 1 for Vr,h,ψ(M) with any r ≥ 1.
More precisely, a quick inspection of the proof of [7, Lemma 1] reveals that it can
be used to derive the estimate

Vr,h,ψ(M) �
{

Mrp if M ≤ p1/2,

M2rp1/2 if M > p1/2,

for ψ given by (3). The above bound, as well as Lemma 2, can easily be obtained
with explicit dependence on r. In particular, as in [10], one can take r as a slightly
growing function of p and obtain a better estimate on the size of the exceptional
set in Theorem 5.

Our technique applies to several other related problems as well. In particular,
one can obtain an improvement of the estimates of [1] for multiplicative character
sums with sequences generated by inversions and permutation polynomials. It is
also likely to work for such constructions as those in [5].

Finally, the same arguments also apply in the case of similar generators consid-
ered in residue rings; however, the Weil bound has to be replaced by an appropriate
estimate of exponential sums which is valid in this particular ring (thus one expects
much weaker results in the settings of residue rings).
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