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ANALYSIS OF HDG METHODS FOR STOKES FLOW

BERNARDO COCKBURN, JAYADEEP GOPALAKRISHNAN, NGOC CUONG NGUYEN,
JAUME PERAIRE, AND FRANCISCO-JAVIER SAYAS

Abstract. In this paper, we analyze a hybridizable discontinuous Galerkin
method for numerically solving the Stokes equations. The method uses poly-
nomials of degree k for all the components of the approximate solution of the
gradient-velocity-pressure formulation. The novelty of the analysis is the use
of a new projection tailored to the very structure of the numerical traces of the
method. It renders the analysis of the projection of the errors very concise and
allows us to see that the projection of the error in the velocity superconverges.
As a consequence, we prove that the approximations of the velocity gradient,
the velocity and the pressure converge with the optimal order of convergence of

k+1 in L2 for any k ≥ 0. Moreover, taking advantage of the superconvergence
properties of the velocity, we introduce a new element-by-element postprocess-
ing to obtain a new velocity approximation which is exactly divergence-free,
H(div)-conforming, and converges with order k+2 for k ≥ 1 and with order 1
for k = 0. Numerical experiments are presented which validate the theoretical
results.

1. Introduction

In this paper, we carry out an a priori error analysis of hybridizable discontinuous
Galerkin (HDG) methods proposed in [28] to numerically solve the Stokes equations
of incompressible fluid flow, namely,

L−∇u = 0 on Ω,(1.1a)

−∇·(νL) +∇ p = f on Ω,(1.1b)

∇·u = 0 on Ω,(1.1c)

u = g on ∂Ω,(1.1d) ∫
Ω

p = 0,(1.1e)
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where
∫
∂Ω

g · n = 0. Here Ω ⊂ R
n is a polygonal domain if n = 2 or a Lipschitz

polyhedral domain if n = 3.
To better describe our results, let us put them in historical perspective. The

HDG methods were introduced in [13] in the framework of diffusion problems as a
further development of the hybridization of Raviart-Thomas (RT) [29] and Brezzi-
Douglas-Marini (BDM) [3] carried out in [8]. They were also introduced as a re-
sponse to the criticism that the discontinuous Galerkin (DG) methods for elliptic
problems (see the unified analysis of these methods in [1] and a comparison of their
performance in [6]) has too many globally coupled degrees of freedom; see [30].
Soon thereafter, it was discovered [7, 15] that the approximate flux of the HDG
methods converges with order k + 1 for k ≥ 0 and that the HDG methods share
with the RT and BDM mixed methods superconvergence properties which allow
an element-by-element computation of a new approximation of the scalar variable
which converged with order k+2 for k ≥ 1; see also the new analysis carried out in
[14]. This has to be contrasted with the fact that all the other DG methods display
the suboptimal order of convergence of k. Furthermore, most of them do not even
converge for k = 0.

Hybridization for DG methods for Stokes was initially introduced [5] as a tech-
nique that allowed the use of globally divergence-free velocity spaces without hav-
ing to actually carry out their almost-impossible construction. The technique was
then further developed, with a similar intention, in the framework of mixed meth-
ods in [9, 10]. Indeed, a novel, global formulation for the method was obtained
solely in terms of the tangential velocity and the pressure on the borders of the
elements. As a further development of this approach, the first HDG methods for
the Stokes equations were recently introduced in [11]. Remarkably enough, these
methods were shown to be hybridizable in four completely different ways including
a tangential-velocity/pressure formulation and a velocity/average-pressure formu-
lation involving degrees of freedom on the borders of the elements only. All of the
above methods used vorticity-velocity or vorticity-velocity-pressure formulations.
In [28], this approach was used to devise an HDG method based on a velocity
gradient-velocity-pressure formulation. This is the method we analyze in this pa-
per.

Let us contrast this method with three of the finite element methods also based
on velocity gradient-velocity-pressure formulations. First, consider the methods
devised in [31] by using the RT and BDM elements developed for diffusion problems.
Therein, optimal orders of convergence where obtained for each of the variables.
Thus, for the method associated to BDM, the H(div)-conforming velocity gradient
and the continuous pressure were shown to converge with the optimal order of
k+1 whereas the completely discontinuous velocity was shown to converge with the
optimal order of k for k ≥ 1. Moreover, a local postprocessing was introduced which
provides a new, discontinuous approximate velocity converging with order k+2 for
k ≥ 2. In contrast, the HDG method presented here can be easily hybridized,
and hence efficiently implemented [28], since its pressure is not continuous. It is
also defined for the k = 0 case in which all its variables converge optimally. Also,
its postprocessed velocity is H(div)-conforming and divergence-free, and converges
with order k + 2 for k ≥ 1, and with order 1 for k = 0.
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The second method we would like to compare our HDG method with is the local
discontinuous Galerkin (LDG) introduced in [18] as a stepping stone towards DG
methods for the Navier-Stokes equations; see [16, 17]. The method uses the same
spaces and the same weak formulation as our HDG method. In fact, in spite of
having been devised in completely different ways, the only difference between these
HDG and LDG methods lies on the definition of their numerical traces; see the dis-
cussion in [28]; yet, this apparently minor modification produces an improvement
in the way the method is implemented, renders the order of convergence of the
velocity gradient and the pressure optimal, and allows for a postprocessed velocity
converging with an additional order. Again, this is not quite a surprise since some-
thing similar can be said about the HDG and LDG methods for diffusion problems;
see [15].

Third, the mixed finite element method developed in [21] is based on spaces
where gradient and pressure satisfy a joint compatibility condition on the inter-
faces. The spaces are those of Raviart-Thomas finite elements for the columns of
the gradient and polynomials for pressure and velocity. Because of the constraints
in the interfaces the method in [21] can be implemented only after addition of
Lagrange multipliers on the faces of the elements. The resulting method is hy-
bridizable and is very similar to ours, with the difference that we obtain stability
by adding the stabilization term in the interfaces instead of by adding the Raviart-
Thomas degrees of freedom to the approximate gradient. We can thus use smaller
local spaces. The method in [21] and the one in this paper provide the same or-
ders of convergence for the variables and the multipliers. However, we derive a
superconvergent postprocessing of the velocity by taking full advantage of those
convergence properties.

Finally, let us briefly point out that the main tool in our analysis is a new
projection fitting the structure of the numerical traces of the HDG method. This
projection is an extension to our setting of the projection introduced for the analysis
of HDG methods for diffusion problems in [14]. The use of this new tool has two
important advantages. The first is that it reduces the study of the effect of the
stabilization parameters to an approximation error in a single element. The second
is that it renders the analysis of the projection of the errors extremely concise and
sharp and allows us to easily obtain superconvergence estimates for the projection
of the error in the velocity.

The paper is organized as follows. In Section 2, we describe the HDG method
and state and discuss the error estimates for the approximation and for the postpro-
cessing. Then, in Section 3, we provide detailed proofs of these results. In Section
4, we provide numerical experiments to validate the theoretical results. We end in
Section 5 with some concluding remarks.

2. Main results

In this section, we state and discuss our main results. We begin by describing
the HDG method, discussing three main examples and by introducing a new post-
processing of the velocity. We then introduce our main tool of analysis, namely,
the above-mentioned projection, and state and discuss its main properties. The a
priori error estimates on the projection of the errors of the approximations and on
the postprocessed velocity are then stated and discussed.
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2.1. The HDG method.

The weak formulation. As it is customary for finite element methods, we begin by
discretizing Ω by a shape-regular triangulation Th which, for the sake of simplicity,
we take to be made of simplexes K and to be free of hanging nodes. The changes
needed to deal with more general meshes are not difficult at the algorithmic level,
but the presence of hanging nodes might complicate the analysis in unexpected
ways. To this triangulation, we associate a finite dimensional space Gh × V h ×
Ph×Mh in which we seek the approximation (Lh,uh, ph, ûh) of the exact solution
(L,u, p,u|Eh

) where Eh denotes the set of all faces F of all simplexes K of the
triangulation Th. The space is given by

Gh = {G ∈ L2(Th) : G|K ∈ Pk(K) ∀ K ∈ Th},(2.1a)

V h = {v ∈ L2(Th) : v|K ∈ Pk(K) ∀ K ∈ Th},(2.1b)

Ph = {q ∈ L2(Th) : q|K ∈ Pk(K) ∀ K ∈ Th},(2.1c)

Mh = {μ ∈ L2(Eh) : μ|F ∈ Pk(F ) ∀ F ∈ Eh}.(2.1d)

Here P�(D) is the space of polynomials of total degree at most � defined on the
domain D, P�(D) = [P�(D)]n and P�(D) = [P�(D)]n×n.

Next, we describe the weak formulation determining the HDG approximation.
To do this, we need to introduce some notation. We write

(η, ζ)Th
:=

∑
K∈Th

(η, ζ)K ,

where (η, ζ)D denotes the integral of η ζ over the domain D ⊂ R
n. We also write

(η, ζ)Th
:=

n∑
i=1

(ηi, ζi)Th
and (N,Z)Th

:=
n∑

i,j=1

(Nij ,Zij)Th
.

Finally, we write

〈η, ζ〉Th
:=

∑
K∈Th

〈η, ζ〉∂K and 〈η, ζ〉∂Th
:=

n∑
i=1

〈ηi, ζi〉∂Th
,

where ∂Th := {∂K : K ∈ Th} and 〈η, ζ〉D denotes the integral of η ζ over the
domain D ⊂ R

n−1.
We are now ready to display the equations satisfied by the HDG approximation.

They are the following:

(Lh,G)Th
+ (uh,∇·G)Th

− 〈ûh,Gn〉∂Th
= 0,(2.2a)

(νLh,∇v)Th
− (ph,∇·v)Th

− 〈νL̂hn− p̂hn,v〉∂Th
= (f ,v)Th

,(2.2b)

−(uh,∇ q)Th
+ 〈ûh · n, q〉∂Th

= 0,(2.2c)

〈ûh,μ〉∂Ω = 〈g,μ〉∂Ω,(2.2d)

〈νL̂hn− p̂hn,μ〉∂Th\∂Ω = 0,(2.2e)

(ph, 1)Ω = 0,(2.2f)

for all (G,v, q,μ) ∈ Gh × V h × Ph ×Mh, where

νL̂hn− p̂hn = νLhn− phn− S (uh − ûh) on ∂Th.(2.2g)
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General conditions on S. To complete the definition of the HDG method, it only
remains to describe how to choose the stabilization tensor S. In [28], it was shown
that if S is any definite positive tensor-valued function on ∂Th, the HDG method
is well defined. Here, we take the stabilization tensor as follows. For each simplex
K of the triangulation Th, we take the stabilization tensor satisfying the following
four conditions:

S|∂K is constant on each face F of K,(2.3a)

S|∂K is symmetric,(2.3b)

S|∂K is positive semidefinite.(2.3c)

To state the last condition, we need to introduce the orthonormal basis of eigen-
vectors of S|F for each face F of K, namely,

S|FωF,i = λF,iωF,i, ωF,i · ωF,j = δij , i, j = 1, . . . , n.

The last condition can be stated as follows: there exists an index set IK ⊂ {(F, i) :
F is a face of K, i = 1, . . . , n} such that

BK := {ωF,i : (F, i) ∈ IK} is a basis of Rn,(2.4a)

λmin
K := min

(F,i)∈IK
λF,i > 0,(2.4b)

CK := max
(F,i)∈IK

|ω∗
F,i| ≤ C,(2.4c)

where | · | is the Euclidean norm in R
n and ω∗

F,i is the dual basis of BK , that is,

the basis of Rn (indexed in IK) such that ω∗
F,i ·ωF ′,j = δF,F ′δi,j for (F, i), (F ′, j) ∈

IK . The constant C in (2.4c) is assumed to be independent of the mesh and of
the eigenvalues λF,i. As we will see in the prototypical examples below, CK is
due to depend on the particular choice of the stabilization tensor S and on the
shape regularity of the mesh. The only dependence of the error estimates on the
stabilization tensor S will then appear through only two quantities, namely, λmin

K

and

(2.5) Λmax
K := max

F
max

i
λF,i.

Let us briefly comment on these conditions. Conditions (2.3a) and (2.3b) can be
easily relaxed, but we prefer to keep them to avoid unessential technicalities in the
error analysis of the method. On the other hand, the third and fourth conditions
are essential to guarantee that the HDG method is well defined.

Note that the first condition allows us to rewrite the HDG method in a more
traditional way, that is, as a method given by the first five equations in (2.2) where
all the numerical traces are expressed in terms of the approximation (Lh,uh, ph).
Indeed, it is not difficult to conclude by using the equations (2.2e) and (2.2g) (see
the details in [28]), that on the face F = ∂K+ ∩ ∂K−, where K± ∈ Th, we have

ûh = AS+u+
h +AS−u−

h −A [[(νLh − phI)n]],

νL̂h − p̂hI = S−A(νL+
h − p+h I) + S+A(νL−

h − p−h I)− S−AS+ [[uh ⊗ n]],

where A := (S−+S+)−1, [[Gn]] := G+n++G−n− and [[v⊗n]] := v+⊗n++v−⊗n−.
As usual, (L±

h ,u
±
h , p

±
h ) is the trace on F from the inside of the simplex K±, S± the

value on ∂K±, and n± the unit outward normal to K±.
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For example, for the choice taken in the numerical experiments in [28], namely,
for the case S := ντ I, where τ is a constant on ∂Th, the numerical traces become

ûh =
1

2
u+
h +

1

2
u−
h − 1

2ντ
[[(νLh − phI)n]],

νL̂h − p̂hI =
1

2
(νL+

h − p+h I) +
1

2
(νL−

h − p−h I)−
ντ

2
[[uh ⊗ n]].

We thus see that the only difference between this method and the LDG method
proposed in [18] is the definition of the numerical traces. In particular, the numerical
traces of the velocity are independent of the velocity gradient.

Two special choices of S. In this paper, we are going to pay special attention
to two special choices of the stabilization tensor. The first defines what we call
single face hybridizable (SFH) method, in analogy to the method of the same name
introduced and analyzed in [7] in the framework of diffusion problems. For each
K ∈ Th, the stabilization tensor is given by

(2.6) SSF :=

{
ντ I on F �

K ,

0 on ∂K \ F �
K ,

where F �
K is an arbitrary face of K. Note that if τ is a strictly positive constant

on F �
K , the three conditions (2.3) are satisfied. For (2.4) we choose as an index set

the set IK := {(F �
K , i) : i = 1, . . . , n}, that is, we select all eigenvectors associated

to the face F �
K . Therefore, we can tag the index set IK in any way to obtain as a

local basis BK , the canonical basis of Rn, which is its own dual basis. With this
choice λmin

K = Λmax
K = ντ and the bound for the dual basis (2.4c) is CK = 1.

The second choice is an extension of the stabilization tensor used in [28] which
allows us to control in different ways the normal and tangential components of the
interelement jumps of the approximate velocity. For each K ∈ Th, it is given by

(2.7) Snt := ντn n⊗ n+ ντt(I− n⊗ n) on ∂K.

Note that the conditions (2.3) are satisfied if on ∂K both τn and τt are are non-
negative constants. Eigenvectors for S|F are the normal vectors to F (the eigenvalue
is ντn) and every tangential vector to F (the eigenvalue being ντt). Therefore
Λmax
K = νmax{τn, τt}. If this maximum is attained with τn, we choose the index

set IK in a way that we are selecting n of the normal vectors to the faces of K.
By numbering the faces of K as {Fi : i = 1, . . . , n + 1} we can choose BK =
{nFi

: i = 1, . . . , n}. The dual basis is obtained by taking the rows of the inverse
of the matrix whose columns are the elements of the basis BK . If the maximum
is attained with τt, we choose one vertex and as a basis we pick the unit vectors
along the edges stemming from this vertex. Its dual basis is obtained as before. In
both cases CK in (2.4c) is bounded depending only on shape regularity constants
(this can be proved with basic estimates on inverses of matrices depending on the
size and angles of its columns). Moreover, (2.4) is satisfied with λmin

K = Λmax
K .

The divergence-free condition. Next, let us point out that, for any of the HDG
methods, we have

(2.8) tr Lh = 0,

where tr A denotes the trace of the matrix A. This property is a reflection of the
divergence-free condition on the exact velocity u since tr L = ∇·u = 0. Indeed, if
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in the first equation defining the method (2.2a), we take G := q I where q ∈ Pk(K),
we obtain that

(tr Lh, q)Th
+ (uh,∇ q)Th

− 〈ûh,nq〉∂Th
= 0.

We then see that (tr Lh, q)Th
= 0, by the weak divergence-free condition, equation

(2.2c). This implies that tr Lh = 0, as claimed.

The postprocessed approximate velocity. To end this section, we show how
to postprocess the approximate solution in an element-by-element way to obtain
a new approximation which is exactly divergence-free, H(div)-conforming, and
converges with an additional order for k ≥ 1. To do this, we use a modification of
a new characterization (see the Appendix) of the Brezzi–Douglas–Marini (BDM)
projection [4] (see also [3, 27]). We will first explain the more complicated three-
dimensional case and then point out the modifications for the two-dimensional case.

In the three-dimensional case we define the postprocessed approximate velocity
u�
h on the tetrahedron K ∈ Th as the element of Pk+1(K) such that

〈(u�
h − ûh) · n, μ〉F = 0 ∀ μ ∈ Pk(F ),(2.9a)

〈(n×∇)(u�
h · n)− n× ( {{Lt

h}}n), (n×∇)μ〉F = 0 ∀ μ ∈ Pk+1(F )⊥,(2.9b)

for all faces F of K, and such that

(u�
h − uh,∇w)K = 0 ∀ w ∈ Pk(K),(2.9c)

(∇×u�
h −wh, (∇×v) BK)K = 0 ∀ v ∈ Sk(K).(2.9d)

In (2.9b),

Pk+1(F )⊥ := {μ ∈ Pk+1(F ) : 〈μ, μ̃〉F = 0, ∀μ̃ ∈ Pk(F )},
n×∇ is the tangential gradient rotated π/2 in the positive sense (from the point
of view of the normal vector) and the function {{Lt

h}} is the single-valued function
on Eh equal to ((Lt

h)
+ + (Lt

h)
−)/2 on the set Eh \ ∂Ω and equal to Lt

h on ∂Ω. In
(2.9d),

wh := (Lh
32 − Lh

23,L
h
13 − Lh

31,L
h
21 − Lh

12)

is the approximation to the vorticity and BK is the so-called symmetric bubble
matrix introduced in [12], namely,

BK :=

3∑
�=0

λ�−3λ�−2λ�−1∇λ� ⊗∇λ�,

where λi are the barycentric coordinates associated with the tetrahedron K, the
subindices being counted modulo 4. Finally, to define Sk(K), recall the Nedelec
space of the first kind [26], defined by Nk = Pk−1(K)⊕Sk, where S� is the space
of vector-valued homogeneous polynomials v of degree � such that v ·x = 0. Then,
define Sk(K) := {p ∈ Nk : (p,∇φ)K = 0 for all φ ∈ Pk(K)}.

Note that (2.9a) and (2.9b) determine the value of u�
h · n ∈ Pk+1(F ) on F .

To see this, notice that for a fixed face F , (2.9a)–(2.9b) define a square system of
equations for which it is very simple to prove uniqueness of the solution with zero
on the right-hand side. Note that in the proper BDM projection, the value of the
normal component in each face is defined with an L2(F ) projection onto Pk+1(F )
instead of this more sophisticated projection. The fact that equations (2.9) define
u�
h follows from this argument and Proposition A.1 in the Appendix.
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In the two-dimensional case, the postprocessing is defined by the above equations
if n×∇ is replaced by the tangential derivative n2 ∂1 +n1 ∂2, n×a is replaced by
n1a2 − n2a1, if ∇×u is replaced by ∇×u := ∂1u2 − ∂2u1, and if equation (2.9d)
is replaced by

(∇×u�
h − wh, w bK)K = 0 ∀ w ∈ Pk−1(K),

where bK := λ0λ1λ2 and wh := Lh
21 − Lh

12.

2.2. The projection.

Definition. As we said in the Introduction, the analysis of the HDG method we
are going to carry out fully exploits the special structure of its numerical traces
(see the equations (2.2e) and (2.2g)) as it uses a new projection tailored to those
numerical traces. Next, we introduce such a projection.

As usual, we denote by ‖ζ‖H�(D), the sum of the squares of the L2-norms of
all the derivatives of order � of the the scalar-valued function on the domain D.
We set H�(D) := [H�(D)]n and ‖ζ‖H�(D) :=

∑n
i=1 ‖ζi‖H�(D); when � = 0, we

simply write ‖ζ‖D instead of ‖ζ‖H0(D). Similarly, we set H�(D) := [H�(D)]n×n

and ‖Z‖H�(D) :=
∑n

i,j=1 ‖Zij‖H�(D).

Given a function (L,u, p) in H1(Th)×H1(Th)×H1(Th), we take its projection
Πh(L,u, p) := (ΠL,Πu, Πp) as the element of Gh × V h × Ph defined as follows.
On an arbitrary element K of the triangulation Th, the values of the projected
function on the simplex K are determined by requiring that

(ΠL,G)K = (L,G)K ∀ G ∈ Pk−1(K),(2.10a)

(Πu,v)K = (u,v)K ∀ v ∈ Pk−1(K),(2.10b)

(Πp, q)K = (p, q)K ∀ q ∈ Pk−1(K),(2.10c)

(tr ΠL, q)K = (tr L, q)K ∀ q ∈ Pk(K),(2.10d)

〈νΠLn−Πpn− SΠu,μ〉F = 〈νLn− pn− Su,μ〉F ∀ μ ∈ Pk(F ),(2.10e)

for all faces F of the simplex K.
Note that the projection depends on the viscosity coefficient ν and on the sta-

bilization tensor S. Note also that the form of the equation (2.10e) is motivated
by the expression of the numerical trace given in (2.2g). To see this, it is enough
to put together the numerical trace given by (2.2g) and a suitable rewriting of the
equation (2.10e):

νL̂hn− p̂hn = νLhn− phn− S (uh − ûh),

PM (νLn− pn) = νΠLn−Πpn− S(Πu− PMu),

where PM is the L2-projection into Mh. This property will allow us to obtain
remarkably simple equations for the projection of the errors. As we are going to
see, the estimation of these projections then becomes extremely concise and sharp.

Next, we show that the projection Πh is well defined and has reasonable approx-
imation properties in the L2 norm.

A general stabilization tensor S. We begin by considering any stabilization
tensor S satisfying conditions (2.3) and (2.4).
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Theorem 2.1. Suppose that the conditions (2.3) and (2.4) on the stabilization
tensor S are satisfied. Then the projection Πh is well defined. Moreover, on each
element K ∈ Th, we have that

‖Πu− u‖K ≤ C
Λmax
K

λmin
K

h�u+1
K |u|H�u+1(K) + C

h�σ+1
K

λmin
K

|∇·(νL− pI)|H�σ (K),

and, if tr L = 0, then

‖νΠL− νL‖K + ‖Πp− p‖K ≤ C h�σ+1
K |νL− pI|H�σ+1(K)

+C Λmax
K h�u+1

K |u|H�u+1(K) + C Λmax
K ‖Πu− u‖K ,

where �u, �σ ∈ [0, k].

We immediately see that if the stabilization tensor S is independent of the mesh
size, the order of convergence of the approximation errors in each of the variables
u, p and L is optimal, that is, k + 1, if they are smooth enough.

Finer results can be obtained by exploiting the structure of the stabilization
tensor S. Next, we present them for the two special choices of S given in the
previous subsection.

The stabilization tensor SSF . In this case, we have the following result.

Theorem 2.2. Let S be the stabilization tensor SSF given by (2.6) and suppose
that τ > 0. Then the projection Πh is well defined. Moreover, on each element
K ∈ Th, we have that

‖Πu− u‖K ≤ C h�u+1
K |u|H�u+1(K) + C

h�σ+1
K

ν τ
|∇·(νL− pI)|H�σ (K),

‖νΠL− νL‖K ≤ C h�σ+1
K |νL− pI|H�σ+1(K),

‖Πp− p‖K ≤ C h�σ+1
K |νL− pI|H�σ+1(K),

where �u, �σ ∈ [0, k]. We have assumed that tr L = 0 for the last two inequalities.

Note that the error in the approximation of the pressure and the velocity gra-
dient is independent of the value of the stabilization parameter τ , and is in full
agreement with similar results for the SFH method for symmetric second-order el-
liptic problems; see [7] and [14]. The orders of convergence of the approximation
errors for some key choices of the parameter τ are displayed in Table 2.1.

Table 2.1. Orders of convergence of the approximation errors
eu = ‖Πu − u ‖K , ep = ‖Πp − p ‖K and eL = ‖ΠL − L ‖K
for k ≥ 0 for the SFH method.

τ eu ep, eL

h k k + 1
1 k + 1 k + 1

1/h k + 1 k + 1



732 B. COCKBURN, ET AL.

The stabilization tensor Snt. Finally, we consider the case in which S is the
stabilization tensor Snt given by (2.7). For the sake of simplicity, we assume that
the functions τn and τt are constant on ∂K.

Theorem 2.3. Let S be the stabilization tensor Snt given by (2.7). Suppose that
τn and τt are nonnegative constants on ∂K satisfying max{τn, τt} > 0. Then the
projection Πh is well defined. Moreover, on each element K ∈ Th, we have that

‖Πu− u‖K ≤ C h�u+1
K |u|H�u+1(K) + C

h�σ+1
K

ν max{τn, τt}
|∇·(νL− pI)|H�σ (K),

‖νΠL− νL‖K ≤ C h�L+1
K |νL|H�L+1(K) + C ν τt

(
‖Πu− u‖K + h�u+1|u|H�u+1(K)

)
,

‖Πp− p‖K ≤ C h
�p+1
K |p|H�p+1(K) + ‖νΠL− νL‖K + C h�L+1

K |νL|H�L+1(K),

where �u, �σ, �L, �p ∈ [0, k]. We have assumed that tr L = 0 for the last two inequal-
ities and that ∇ · u = 0 in the last one.

It is interesting to see that the effect of τn and τt on the approximation properties
of the projection is very different. In particular, if τn ≥ τt (as well as tr L = ∇·u =
0), the convergence properties of the projection become independent of how large
τn is. The orders of convergence for several choices of the parameters τn and τt are
given in Table 2.2.

Table 2.2. Orders of convergence of the approximation errors
eu = ‖Πu − u ‖K , ep = ‖Πp − p ‖K and eL = ‖ΠL − L ‖K
for k ≥ 0 when τn and τt are constant on ∂Th. Note that the
projection is not defined when τn = τt = 0.

τt = 0, h τt = 1 τt = 1/h

τn eu ep, eL eu ep, eL eu ep, eL

0, h k k + 1 k + 1 k + 1 k + 1 k
1 k + 1 k + 1 k + 1 k + 1 k + 1 k

1/h k + 1 k + 1 k + 1 k + 1 k + 1 k

2.3. The a priori error estimates. Next, we provide estimates of the projection
of the approximation errors, namely, of EL := ΠL − Lh, ε

u := Πu − uh, ε
p :=

Πp− ph and ε û := PMu− ûh; we also provide an estimate of u�
h − u.

To state the results, we need to introduce the following dual problem. For any
given θ in L2(Ω) let (Φ,φ, φ) be the solution of

Φ +∇φ = 0 on Ω,(2.11a)

∇·(ν Φ)−∇φ = θ on Ω,(2.11b)

−∇·φ = 0 on Ω,(2.11c)

φ = 0 on ∂Ω.(2.11d)

We assume that, for some real number s, we have that

ν‖Φ‖Hs+1(Ω) + ν‖φ‖Hs+2(Ω) + ‖φ‖Hs+1(Ω) ≤ Creg‖θ‖Hs(Ω).(2.12)
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In the two-dimensional case, the above estimate with s ≤ 0 follows from the results
in [24] when the domain is convex. In the three-dimensional case, the above estimate
follows from the results in [20] in the following cases. For any polyhedron, with
s < −1/2, for any convex polyhedron, with s ≤ 0, and with s < 3/2 if, moreover,
all the edges have wedge angles at most 2π/3 (a cube, for example). Henceforth,
we will use the following notation for the total average of a function over Ω:

p :=
1

|Ω|

∫
Ω

p.

Note that Πp− p = (Πp − p, 1)/|Ω| = 0 except in the case k = 0 (this term will
appear in the bound for the error in p in Theorem 2.4 and in the right–hand side of
the last error equation in Lemma 3.1). Also, note that |Πp− p| ≤ |Ω|1/2‖Πp− p‖.

We are now ready to state our main results.

Theorem 2.4. Suppose that the assumptions on the stabilization tensor S of The-
orem (2.1) hold. Then

‖EL ‖Ω ≤ ‖ΠL− L ‖Ω,
‖εp‖Ω ≤ |(Πp− p)| |Ω|1/2 + C Cp(S) ν ‖Π L− L‖Ω,

where

Cp(S) := max
{
1, max

K∈Th

{Λmax
K hK/ν}1/2

}
.

We can take Cp(SSF ) = 1. Moreover, if the elliptic regularity estimate (2.12)
holds with s = 0, we have

‖ εu ‖Ω + ‖ ε û ‖h ≤ C Cu(S)h
min{k,1} ‖ΠL− L ‖Ω,

where

Cu(S) = max
K∈Th

{
Λmax
K

λmin
K

(
1 +

Λmax
K hK

ν

)}
.

We can take Cu(SSF ) = 1.

Theorem 2.5. Under the assumptions of Theorem 2.4, we have that u�
h∈H(div,Ω)

and that ∇·u�
h = 0 on Ω. Moreover,

‖u�
h − u‖Ω ≤ C h�u+2|u |H�u+2(Ω) + C Cu(S)h

min{k,1} ‖ΠL− L‖Ω.
where �u ∈ [0, k].

Let us briefly discuss the main consequences of these results:

• For k = 0, if the constants Cp(S), Cu(S) and Cu�(S) are uniformly bounded,
the quantities ‖EL‖Ω, ‖εu‖Ω, ‖ε û‖h and ‖u�

h−u‖Ω converge with the same
order as ‖ΠL−L‖Ω. The quantity ‖εp‖Ω converges with the same order of
convergence as ‖Πp− p‖Ω + ‖ΠL− L‖Ω.

• For k ≥ 1, if the constants Cp(S), Cu(S) and Cu�(S) are uniformly bounded,
the quantities ‖EL‖Ω, ‖εp‖Ω converge with the same order of convergence as
‖ΠL−L‖Ω. However, the quantities ‖εu‖Ω, ‖ε û‖h and ‖u�

h−u‖Ω converge
with an additional order.

• The constants Cp(S), Cu(S) and Cu�(S) are uniformly bounded when the
stabilization tensor S is of order one, when the stabilization tensor is SSF ,
or when the stabilization tensor is Snt and max{τn|∂K , τt|∂K} is of order
2h−1

K . The corresponding orders of convergence are displayed in Tables 2.3
and 2.4.
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Table 2.3. Orders of convergence of the projection of the er-
rors eu = ‖ εu ‖Ω, eu� = ‖u�

h − u ‖Ω, eû = ‖ ε û ‖h, ep = ‖ εp ‖Ω
and eL = ‖EL ‖Ω for k ≥ 0 for a general stabilization tensor S of
order one, and for the stabilization tensor SSF with τ ∈
{0, h, 1, 1/h}.

eu, eu� , eû ep, eL

k = 0 1 1
k ≥ 1 k + 2 k + 1

Table 2.4. Orders of convergence of the projection of the er-
rors eu = ‖ εu ‖Ω, eu� = ‖u�

h − u ‖Ω, eû = ‖ ε û ‖h, ep = ‖ εp ‖Ω
and eL = ‖EL ‖Ω for k ≥ 0 when τn and τt are constant on ∂Th,
and τn ∈ {0, h, 1, 1/h}. Note that the projection is not defined
when τn = τt = 0.

τt = 0, h τt = 1 τt = 1/h

eu, eu� , eû ep, eL eu, eu� , eû ep, eL eu, eu� , eû ep, eL

k = 0 1 1 1 1 0 0
k ≥ 1 k + 2 k + 1 k + 2 k + 1 k + 1 k

Let us emphasize that Tables 2.3 and 2.4 do not show convergence orders of
the HDG methods but of convergence of the numerical solutions to the HDG pro-
jection of the exact solution. The only exception is the comparison between the
postprocessed approximation of u to its exact value. The orders of convergence for
the total error can be tabulated putting together the information about the errors
shown in these tables to the approximation errors in Tables 2.1 and 2.2. Since the
case of the stabilization tensor Snt offers a wide variety of situations, because we
can choose parameters with different magnitudes, we show the resulting table in
Section 5, for ease of comparison with the numerical results obtained therein.

3. Proofs

This section is devoted to providing detailed proofs of all the results of the
previous section, except for the approximation result of Theorem 2.1 which is proven
in the next section. Here, we assume that the projection is well defined and proceed
as follows. We begin by obtaining the equations satisfied by the projection of the
error. We then use an energy argument to obtain an estimate of the L2-error of
the velocity gradient. Then the estimate of the pressure follows by using a typical
inf-sup argument. Next we obtain error estimates of the velocity by using a duality
argument. The estimate of the velocity trace then follows by using a simple scaling
argument. Finally, the error estimates of the postprocessed velocity are obtained.
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Step 1: The error equations. We begin by obtaining the equations satisfied by
the projection of the errors. They are contained in the following result.

Lemma 3.1.

(EL,G)Th
+ (εu,∇·G)Th

− 〈ε û,Gn〉∂Th
= (Π L− L,G)Th

,(3.1a)

−(∇·(νEL),v)Th
+ (∇ εp,v)Th

+ 〈S(εu − ε û),v〉∂Th
= 0,(3.1b)

−(εu,∇ q)Th
+ 〈ε û, qn〉∂Th

= 0(3.1c)

〈ε û,μ〉∂Ω = 0,(3.1d)

〈νELn− εpn− S(εu − ε û),μ〉∂Th\∂Ω = 0,(3.1e)

(εp, 1)Ω = (Πp− p, 1)Ω.(3.1f)

Proof. Let us begin by noting that, if we insert the expression of the numerical trace
given in (2.2g) into the second and sixth equations defining the HDG method, they
read as follows:

(Lh,G)Th
+ (uh,∇·G)Th

− 〈ûh,Gn〉∂Th
= 0,

(νLh,∇v)Th
− (ph,∇·v)Th

− 〈νLhn− phn− S (uh − ûh),v〉∂Th
= (f ,v)Th

,

−(uh,∇ q)Th
+ 〈ûh · n, q〉∂Th

= 0,

〈ûh,μ〉∂Ω = 〈g,μ〉∂Ω,
〈νLhn− phn− S (uh − ûh),μ〉∂Th\∂Ω = 0,

(ph, 1)Ω = 0,

for all (G,v, q,μ) ∈ Gh × V h × Ph ×Mh.
Next, we note that the exact solution satisfies these same equations. Hence, after

applying the definition of the projection (2.10), we obtain

(L,G)Th
+ (Πu,∇·G)Th

− 〈PMu,Gn〉∂Th
= 0,

(νΠL,∇v)Th
− (Πp,∇·v)Th

− 〈νΠLn−Πpn− S (Πu− PMu),v〉∂Th
= (f ,v)Th

,

−(Πu,∇ q)Th
+ 〈PMu · n, q〉∂Th

= 0,

〈PMu,μ〉∂Ω = 〈g,μ〉∂Ω,
〈νΠLn−Πpn− S (Πu− PMu),μ〉∂Th\∂Ω = 0,

(p, 1)Ω = 0,

for all (G,v, q,μ) ∈ Gh × V h × Ph × Mh. If we now subtract the first set of
equations from this one, we obtain the result. This completes the proof of Lemma
3.1. �
Step 2: Estimate of the velocity gradient. We are now ready to obtain our
first estimate by using a standard energy argument. Note that, from now on, we
measure errors of quantities defined on ∂Th with the following seminorm:

‖μ ‖hmZ :=

{ ∑
K∈Th

hm
K 〈Zμ,μ〉∂K

}1/2

,

where m ∈ {0, 1} and Z is a positive semidefinite matrix-valued function defined
on ∂Th. When Z = I and m = 1 we will simply write

‖μ ‖h :=

{ ∑
K∈Th

hK 〈μ,μ〉∂K
}1/2

,
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Proposition 3.2. We have

‖EL‖2Th
+ ‖εu − ε û‖2S/ν = (ΠL− L,EL)Th

.

Proof. If we take G := νEL, v := εu and q := εp in the first three error equations
(3.1), respectively, and add them up, we obtain

ν(EL,EL)Th
+Θh = ν(ΠL− L,EL)Th

,

where

Θh := (εu,∇·(νEL))Th
− 〈ε û, νELn〉∂Th

− (∇·(νEL), εu)Th
+ (∇ εp, εu)Th

+ 〈S(εu − ε û), εu〉∂Th

− (εu,∇ εp)Th
+ 〈ε û, εp n〉∂Th

.

We thus obtain

Θh =− 〈ε û, νELn〉∂Th
+ 〈S(εu − ε û), εu〉∂Th

+ 〈ε û, εp n〉∂Th

= 〈ε û,−νELn+ εpn+ S(εu − ε û)〉∂Th
+ 〈S(εu − ε û), εu − ε û〉∂Th

= 〈S(εu − ε û), εu − ε û〉∂Th
,

by the last two error equations (3.1) with μ := ε û. Finally, we get that

Θh = ν ‖εu − ε û‖2S/ν ,

by the definition of the seminorm ‖ · ‖S/ν . This completes the proof. �

As a straightforward consequence of Proposition 3.2, we obtain the first error
estimate for the method

‖EL‖Th
+ ‖εu − ε û‖S/ν ≤ ‖ΠL− L‖Th

.

We can obtain a better estimate for ‖εu − ε û‖SSF /ν , as we show next. A similar
result holds for the SFH method for second-order elliptic problems; see [7]. Recall
that in the SF hybridized method, only one face F �

K per element has been stabilized.
Therefore, the seminorm ‖μ‖SSF /ν controls only the part of μ defined on the faces
where stabilization has been imposed.

Lemma 3.3. We have that ‖εu − ε û‖SSF /ν = 0.

Proof. By definition of the seminorm ‖ · ‖Z and that of the definition of the stabi-
lization tensor SSF (2.6), we have that

‖εu − ε û‖2SSF /ν =
∑

K∈Th

ν−1〈S(εu − ε û), εu − ε û〉∂K

=
∑

K∈Th

ν−1〈S(εu − ε û), εu − ε û〉F�
K
.

It remains to show that on F �
K , we have εu − ε û = 0.

To do that, we proceed as follows. Take in the error equation (3.1b) v to be
a function such that, on each simplex K ∈ Th, it is orthogonal to Pk−1(K) and
satisfies v ·nF�

K
= εu−ε û on F �

K . Then we get that εu−ε û = 0 on F �
K , as wanted.

This completes the proof. �
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Step 3: Estimate of the pressure. Next, we show how to use the previous
result to obtain the estimate of the pressure.

Proposition 3.4. Let P : H1(Th) �→ V h be any projection such that (Pw −
w,v)K = 0 for all v ∈ Pk−1(K) for all K ∈ Th. Then we have

‖εp − (Πp− p)‖Ω ≤ C Ψ(S) ν ‖Π L− L‖Ω,
where

Ψ(S) := max

{
1, sup

w∈H1
0(Ω)\{0}

‖Pw − PMw‖S/ν
‖w‖H1(Ω)

}
.

Proof. It is well known [4] that for any function q ∈ L2(Ω) such that (q, 1)Ω = 0
we have

‖q‖Ω ≤ κ sup
w∈H1

0(Ω)\{0}

(q,∇·w)Ω
‖w‖H1(Ω)

,

for some constant κ independent of q. By the last error equation, we see that we
can apply the above result to q := εp − εp Hence we have that

‖εp − εp‖Ω ≤ κ sup
w∈H1

0(Ω)\{0}

(εp,∇·w)Ω
‖w‖H1(Ω)

.

Next, we work on the numerator in the above expression. We have

(εp,∇·w)Ω = −(∇εp,Pw)Th
+ 〈εp,w · n〉∂Th

.

By the second error equation (see Lemma 3.1), with v := Pw, we get that

(εp,∇·w)Ω =− (∇·(νEL),Pw)Th
+ 〈S(εu − ε û),Pw〉∂Th

+ 〈εp,w · n〉∂Th

= (νEL,∇w)Th
+ 〈S(εu − ε û),Pw〉∂Th

+ 〈−νELn+ εpn,PMw〉∂Th

= (νEL,∇w)Th
+ 〈S(εu − ε û),Pw − PMw〉∂Th

by the fifth error equation with μ = PMw and by the fact that w ∈ H1
0(Ω).

Applying the Cauchy-Schwarz inequality and using Proposition 3.2, we get that

|(εp,∇·w)Ω| ≤ Ψ(S) ν ‖Π L− L‖Ω ‖w‖H1(Ω).

As a consequence, we obtain that

‖εp − εp‖Ω ≤ C Ψ(S) ν ‖Π L− L‖Ω,
and the result follows from the fact that εp = Πp− p by the error equation (3.1f).
This completes the proof of Proposition 3.4 �

The needed bound for Ψ(S), which would complete the convergence analysis for
the pressure, is given below in Proposition 3.9.

Step 4: Some properties of the projection. Here, in preparation for the
duality argument we are going to use to obtain estimates of the velocity, we gather
a few useful properties of the projection Πh.

Lemma 3.5. Assume that (Φ,φ, φ) ∈ H1(Th)×H1(Th)×H1(Th). Then we have

(v,∇·Φ)Th
= (v,∇·ΠΦ)Th

+ 〈v, (Φ−ΠΦ)n〉∂Th
,(3.2a)

(G,∇φ)Th
= − (∇·G,Πφ)Th

+ 〈Gn,φ〉∂Th
,(3.2b)

(q,∇·φ)Th
=− (∇ q,Πφ)Th

+ 〈qn, φ〉∂Th
,(3.2c)

(v,∇φ)Th
= (v,∇Πφ)Th

+ 〈v, (φ−Πφ)n〉∂Th
,(3.2d)
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for all (G,v, q,μ) ∈ Gh × V h × Ph ×Mh.

Proof. Let us prove the first identity. We have, by integration by parts, that

(v,∇·Φ)Th
= − (∇v,Φ)Th

+ 〈v,Φn〉∂Th

= − (∇v,ΠΦ)Th
+ 〈v,Φn〉∂Th

,

by the property (2.10a) of the projection Πh. Finally, integrating by parts again,
we get

(v,∇·Φ)Th
= (v,∇·ΠΦ)Th

+ 〈v, (Φ−ΠΦ)n〉∂Th
.

This proves the first identity. The remaining identities are proven in a similar
fashion. This completes the proof of Lemma 3.5. �

Step 5: Estimate of the velocity. We are now ready to obtain a key identity
for the projection of the error in the velocity by using a duality argument.

Lemma 3.6. We have

(εu, θ)Th
= ν(Lh − L,ΠΦ− Φ)Th

+ ν(ΠL− L,Φ− Pk−1Φ)Th
.

Proof. We have

(εu, θ)Th
= ν(EL,Φ+∇φ)Th

+ (εu,∇·(ν Φ)−∇φ)Th
− (εp,∇·φ)Th

,

by the first three equations of the dual problem (2.11). Rearranging terms, we get

(εu, θ)Th
= ν(EL,Φ)Th

+ ν(εu,∇·Φ)Th

+ (νEL,∇φ)Th
− (εp,∇·φ)Th

− (εu,∇φ)Th
,

and using the first four properties of the projection Πh in Lemma 3.5 on the last
four terms of the right-hand side above, respectively, we obtain

(εu, θ)Th
= ν(EL,Φ)Th

+ ν(εu,∇·ΠΦ)Th + ν〈εu, (Φ−ΠΦ)n〉∂Th

− (∇·(νEL),Πφ)Th
+ 〈νELn,φ〉∂Th

+ (∇ εp,Πφ)Th
− 〈εp n,φ〉∂Th

− (εu,∇Πφ)Th
− 〈εu, (φ−Πφ)n〉∂Th

.

Now we use the first three error equations (3.1) with G := νΠΦ, v := Πφ and
q := Πφ, respectively, to get

(εu, θ)Th
= ν(Lh − L,ΠΦ)Th

+ν〈ε û,ΠΦn〉∂Th
+ν〈εu, (Φ−ΠΦ)n〉∂Th

− 〈S(εu − ε û),Πφ〉∂Th
+ 〈νELn,φ〉∂Th

− 〈εp n,φ〉∂Th

− 〈ε û, Πφn〉∂Th
− 〈εu, (φ−Πφ)n〉∂Th

.

Next, we carry out some simple algebraic manipulations to rewrite the quantity
(εu, θ)Th

as
∑5

i=1 Ti, where

T1 := ν(Lh − L,ΠΦ− Φ)Th
,

T2 := ν(ΠL− L,Φ)Th
,

T3 := 〈εu − ε û, ν(Φ−ΠΦ)n− (φ−Πφ)n+ S(φ−Πφ)〉∂Th
,

T4 := 〈νELn− εpn− S(εu − ε û),φ〉∂Th
,

T5 := 〈ε û,Φn− φn〉∂Th
.
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But, T2 = ν(ΠL−L,Φ−Pk−1Φ)Th
, by the property of the projection (2.10a), and

T3 = 0, by the property of the projection (2.10e) with μ := εu − ε û. Moreover,

T4 = 〈νELn− εpn− S(εu − ε û),PMφ〉∂Th

= 〈νELn− εpn− S(εu − ε û),PMφ〉∂ΩD
by (3.1e)

= 0 by (2.11d).

Finally, T5 = 〈ε û,Φn−φn〉∂Ω = 0, by the error equation (3.1d). As a consequence,
we obtain

(εu, θ)Th
= ν(Lh − L,ΠΦ− Φ)Th

+ ν(ΠL− L,Φ− Pk−1Φ)Th
.

This completes the proof. �

Step 6: Estimate of the velocity trace. Here we obtain the following simple
estimate.

Lemma 3.7. We have

‖ε û‖h ≤ C
(
h ‖Π L− L ‖Ω + ‖ εu ‖Ω

)
.

Proof. From the first error equation (3.1a), we have that,

〈ε û,Gn〉∂K = −(Π L− L,G)K + (EL,G)K + (εu,∇·G)K ,

for all G ∈ Pk(K). Hence, by a now standard scaling argument (see [3]) we readily
obtain that

h
1/2
K ‖ ε û ‖∂K ≤ C

(
hK ‖Π L− L ‖K + hK ‖EL ‖K + ‖ εu ‖K

)
,

and the estimate follows by using Proposition 3.2. This completes the proof of
Lemma 3.7. �

Step 7: Proof of Theorem 2.4. Here, we complete the proof the Theorem 2.4.
To do that, we begin by gathering straightforward consequences of the lemmas
obtained in the previous steps in the following result.

Corollary 3.8. Suppose that the assumptions on the stabilization tensor S of The-
orem 2.1 hold. Then

‖EL ‖Ω ≤ ‖ΠL− L ‖Ω,
‖εp − (Πp− p)‖Ω ≤ C Ψ(S) ν ‖Π L− L‖Ω,

where Ψ(S) is defined in Proposition 3.4. Moreover, if the elliptic regularity estimate
(2.12) holds for s = 0, we have

‖ εu ‖Ω + ‖ ε û ‖h ≤ C H(S) ‖ΠL− L ‖Ω,

where

H(S) := max

{
h, ν sup

θ∈L2(Ω)\{0}

‖ΠΦ− Φ ‖Ω + ‖Φ− Pk−1Φ ‖Ω
‖ θ ‖Ω

}
,

It remains to estimate Ψ and H. This can be done by using the approximation
properties of the projection Πh and the regularity estimate (2.12). We are going
to use some auxiliary projections that are introduced next.
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Given a function z ∈ H1(K), and any given face F of K, we define PF z as the
polynomial in Pk(K) given by

(PF z, q)K = (z, q)K ∀ q ∈ Pk−1(K),(3.3a)

〈PF z, μ〉F = 〈z, μ〉F ∀ μ ∈ Pk(F ).(3.3b)

For a vector-valued function z ∈ H1(K), we denote by P Fz as the vector-valued
function whose i-th component is PF applied to the i-th component of z. Finally,
for a matrix-valued function Z ∈ H1(K), we define PFZ in a similar way. To
emphasize the dependence of the projection, for example, PF on the simplex K, we
write PF,K .

Proposition 3.9. Under the assumptions of Theorem 2.4, we have that

Ψ(S) ≤ max
{
1, max

K∈Th

{Λmax
K hK/ν}1/2

}
,

H(S) ≤ C hmin{k,1} max
K∈Th

{
Λmax
K

λmin
K

(
1 +

Λmax
K hK

ν

)}
,

We also have Ψ(SSF ) ≤ C and H(SSF ) ≤ C ν hmin{k,1}.

Proof. We begin by noting that(
(PMw)|∂K

)
|F = (P Fw)|F , ∀F ∈ E(K), ∀K ∈ Th.

Using this identity plus elementary arguments (finite dimensionality of the discrete
spaces, scaling arguments and optimality of the projections), the following chain of
inequalities can be easily verified in each element K ∈ Th:

〈S(Pw − PMw),Pw − PMw〉∂K ≤ CΛmax
K ‖Pw − PMw‖2∂K

= CΛmax
K

∑
F∈E(K)

‖Pw − P Fw‖2F

≤ CΛmax
K

∑
F∈E(K)

h−1
K ‖Pw − P Fw‖2K

≤ CΛmax
K hK‖w‖2H1(K).

The bound for Ψ(S) is an easy consequence of this.
We now proceed to bound H(S). To abbreviate some later expressions we write

k := min{k, 1}. Using the regularity assumption (2.12) with s = 0 we can prove
that

ν‖Φ− Pk−1Φ‖Ω ≤ Chkν‖Φ‖Hk(Ω) ≤ Chk‖θ‖Ω.
Applying the two bounds of Theorem 2.1 to the projection of the solution of the
dual problem (2.11) with �σ = 0 and �u = k, we can prove that for all K ∈ Th,

ν‖Φ−ΠΦ‖K ≤C
(
hK |νΦ− φ I|H1(K) + hk+1Λmax

K |φ|Hk+1(K) + Λmax
K ‖Πφ− φ‖K

)

≤ChK

(
ν|Φ|H1(K) + |φ|H1(K)

)

+ Chk+1
K

Λmax
K

ν

(
1 +

Λmax
K

λmin
K

)
ν|φ|Hk+1(K) + ChK

Λmax
K

λmin
K

‖θ‖K .

To finish the proof for the general stabilization tensor S we only have to sum over

the elements of the triangulation, to overestimate hK ≤ hk
K , to reorder terms using

the fact that λmin
K ≤ Λmax

K and to apply (2.12) with s = 0.
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The proof for the case S = SSF uses the same techniques, but specializes the
bound for Ψ to sum over a single face per element and employs Theorem 2.2 instead
of the more general Theorem 2.1 to bound H. �

Theorem 2.4 easily follows from the two above results.

Step 8: Analysis of the postprocessed velocity. We prove the estimate of The-
orem 2.5 for the three-dimensional case; we omit the proof for the two-dimensional
case since it is similar and much simpler. We proceed as follows.

We have already discussed the fact that u�
h is well defined as a consequence of

the new characterization of the BDM projection given in the appendix. The fact
that u�

h belongs to H(div,Ω) is a direct consequence of the fact that, by definition,
(see equations (2.9a) and (2.9b)), its normal component depends only on the single-
valued function ûh and on {{Lt

hn}}, which is also single valued.
The fact that u�

h is divergence-free can be seen as follows. For any q ∈ Ph, we
have

(∇·u�
h, q)Ω = (∇·u�

h, q)Th

=− (u�
h,∇ q)Th

+ 〈u�
h · n, q〉∂Th

=− (uh,∇ q)Th
+ 〈ûh · n, q〉∂Th

by equations (2.9a) and (2.9c),

= 0, by equation (2.2c).

Thus, u�
h is divergence-free.

It remains to prove the error estimate. To do that, we proceed as follows. Let
ΠBDMu be the BDM projection of u into Pk+1(K) and set δ := u�

h − ΠBDMu.
Then, by the equations defining u�

h (2.9) and those defining the BDM projection
as given in Proposition A.1, we readily have that

〈δ · n, μ〉F =〈(ûh − u) · n, μ〉F ∀ μ ∈ Pk(F ),

〈δ · n, μ〉F = 〈u�
h · n− u · n, μ〉F ∀ μ ∈ Pk+1(F )⊥,

for all faces F of K, and that

(δ,∇w)K = (uh − u,∇w)K ∀ w ∈ Pk(K),

(∇× δ, (∇×v)BK)K = (wh −∇×u, (∇×v)BK)K ∀ v ∈ Sk(K).

We will use two new projections: P∂ denotes the projection that is defined face
by face as the L2(F )-projection onto Pk(F ); P⊥

∂ is defined similarly, but with local
image in Pk+1(F )⊥. Obviously, P∂ + P⊥

∂ projects face by face onto the space
Pk+1(F ). Inserting the definition of the projection of the errors, we get

〈δ · n, μ〉F =〈−ε û · n, μ〉F ∀ μ ∈ Pk(F ),

〈δ · n, μ〉F = 〈P⊥
∂ (u

� · n− u · n), μ〉F ∀ μ ∈ Pk+1(F )⊥,

for all faces F of K, and

(δ,∇w)K = (εu,∇w)K ∀ w ∈ Pk(K),

(∇× δ, (∇×v) BK)K = (wh −∇×u, (∇×v) BK)K ∀ v ∈ Sk(K).

These equations determine δ since they provide the degrees of freedom of the BDM
projection, as given in Proposition A.1. So, a scaling argument can now be used to
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prove that

‖δ‖K ≤ C (h
1/2
K ‖ε û‖∂K + h

1/2
K ‖P⊥

∂ (u
�
h · n− u · n)‖∂K

+ ‖εu‖K + hK‖wh −∇×u‖K).

Next, we estimate ζ := P⊥
∂ (u

�
h · n− u · n).

To do that, we begin by noting that

n× ( {{Lt}}n) = n× ((∇u)tn) = (n×∇)(u · n)

and by the second equation defining the postprocessed velocity, (2.9b), we have
that

〈(n×∇)(u�
h · n− u · n), (n×∇)μ〉F = 〈n× ( {{Lt

h − Lt}}n), (n×∇)μ〉F ,

for all μ ∈ Pk+1(F )⊥ and all faces F of K. Then, we note that

u�
h · n− u · n = (P∂ + P⊥

∂ )(u
�
h · n− u · n) + (I− P∂ − P⊥

∂ )(u
�
h · n− u · n)

= (P∂ + P⊥
∂ )(u

�
h · n− u · n)− (I− P∂ − P⊥

∂ )(u · n)
= P∂(u

�
h · n− u · n) + ζ − (I− P∂ − P⊥

∂ )(u · n)
= ε û + ζ − (I− P∂ − P⊥

∂ )(u · n),

by the first equation defining the postprocessed velocity, (2.9a), and the definition
of the projection of the error ε û. So, setting eu := −(I − P∂ − P⊥

∂ )(u · n), we see
that ζ is the element of Pk+1(K)⊥ satisfying

〈(n×∇)ζ, (n×∇)μ〉F =− 〈(n×∇)(ε û + eu), (n×∇)μ〉F
+ 〈n× ( {{Lt

h − Lt}}n), (n×∇)μ〉F

for all μ ∈ Pk+1(F )⊥ and all faces F of K.
So, if we pick the face F = ∂K+∩∂K− and set {{PFL}} := (PF,K+L+PF,K−L)/2,

where PF,K± are the matrix-valued versions of the projections defined in (3.3) (the
± sign depends on which triangle we work on), we see that we have

〈(n×∇)ζ, (n×∇)μ〉F =− 〈(n×∇)(ε û + eu), (n×∇)μ〉F
+ 〈n× ( {{Lt

h − PFL
t}}n), (n×∇)μ〉F .

Taking μ := ζ and applying the Cauchy-Schwarz inequality and inverse estimates
on the faces, we get that

‖(n×∇) ζ‖F ≤ C h−1
K+(‖ε û‖F + ‖eu‖F ) + C ‖ {{Lh − PFL}}‖F

≤ C h−1
K+(‖ε û‖F + ‖eu‖F ) + C h

−1/2
K+ ‖Lh − PF,K+L‖K+

+ C h
−1/2
K− ‖Lh − PF,K−L‖K− .

Finally, by an inverse inequality,

h
1/2
k+ ‖ζ‖F ≤ C h

3/2
K+ ‖(n×∇) ζ‖F

≤ C h
1/2
K+(‖ε û‖F + ‖eu‖F ) + C hK+‖Lh − PF,K+L‖K+

+ C hK−‖Lh − PF,K−L‖K− ,

since hK+/hK− is uniformly bounded.
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This implies that

‖δ‖K ≤ C (h
1/2
K ‖ε û‖∂K + h

1/2
K ‖eu‖∂K + ‖εu‖K +

∑
K′∈P (K)

hK′‖Lh − L‖K′

+
∑

F=∂K∩∂K′

(hK ‖L− PF,KL‖K′) + hK′ ‖L− PF,K′L‖K′),

where P (K) is the set of simplexes K ′ sharing a face with K. Hence, by the
approximation properties of the BDM projection and those of the projections PF,K ,
we get

‖u�
h − u‖Ω ≤ C h�u+2|u |H�u+2(Th) + C(‖ε û‖h + ‖εu‖Ω + h‖Lh − L‖Ω),

and the estimate follows by using the estimates of Theorem 2.4. This completes
the proof of Theorem 2.5.

4. Proof of the approximation properties of Πh

In this section, we give a detailed proof of the approximation properties of the
auxiliary projection Πh contained in Theorem 2.1.

To do that, we follow an approach similar to the one proposed in [14] for
HDG methods for symmetric, second-order elliptic problems. We are thus go-
ing to proceed in several steps. We introduce the sets Pk(K)⊥ := [Pk(K)⊥]n and
Pk(K)⊥ := [Pk(K)⊥]n×n, where

Pk(K)⊥ := {w ∈ Pk(K) : (w, ζ)K = 0 ∀ ζ ∈ Pk−1(K)},
and state the following simple but useful auxiliary result.

Lemma 4.1 ([14]). For all p ∈ Pk(K)⊥, we have that

‖p‖K ≤ C h
1/2
K ‖p‖F for any face F ⊆ ∂K.

Step 1: Existence and uniqueness of the projection. Let us begin by proving
that the projection Πh is well defined.

Let us first count the number of independent equations provided by its definition.
We have that the number of equations is

dim(Pk−1(K)) for (2.10a),

dim(Pk−1(K)) for (2.10b),

dim(Pk−1(K)) for (2.10c),

(n+ 1) dim(Pk(F )) for (2.10e),

and noting that the equations (2.10a) imply the equations (2.10d) for any q ∈
Pk−1(K), we get

dim(Pk(K))− dim(Pk−1(K)) for (2.10d).

On the other hand, the number of unknowns is

dim(Pk(K)) for ΠL,

dim(Pk(K)) for Πu,

dim(Pk(K)) for Πp.
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Thus, if δ is the total number of equations minus the total number of unknowns,
we have

δ = dim(Pk−1(K)) + dim(Pk−1(K)) + (n+ 1) dim(Pk(F ))

− dim(Pk(K))− dim(Pk(K))

= (n+ 1)n
(
dim(Pk−1(K))− dim(Pk(K)) + dim(Pk(F ))

)
= 0.

This implies that the existence of the projection follows from its uniqueness. Thus,
it suffices to show that when the right-hand sides of (2.10) vanish, then ΠL,Πu and
Πp also vanish. Since this immediately follows from the approximation estimates
of Theorem 2.1, the proof of the existence and uniqueness of the projection Πh is
complete.

Step 2: Characterization of Πu. We begin by providing a new characterization
of Πu.

Proposition 4.2. Suppose that the assumptions on the stabilization tensor S of
Theorem 2.1 hold. Then, on each simplex K ∈ Th, Πu is the only element of
Pk(K) such that

(Πu,v)K = (u,v)K ∀ v ∈ Pk−1(K),(4.1a)

〈SΠu,v〉∂K = −(∇·(νL− pI),v)K + 〈Su,v〉∂K ∀ v ∈ Pk(K)⊥.(4.1b)

Proof. Let us begin by noting that, from the equations (2.10b) and (2.10e) defining
the projection Πh, we have that

(Πu,v)K = (u,v)K ∀v ∈ Pk−1(K),

〈SΠu,v〉∂K = 〈−ν(L−ΠL)n+ (p−Πp)n+ Su,v〉∂K ∀v ∈ Pk(K)⊥.

But

Θ := 〈−ν(L−ΠL)n+ (p−Πp)n,v〉∂K
=− ν(∇·(L−ΠL,v)K − ν (L−ΠL,∇v)K

+ (∇(p−Πp),v)K + (p−Πp,∇·v)K
=− ν (∇·(L−ΠL),v)K + (∇(p−Πp),v)K by (2.10a) and (2.10c),

= − (∇·(ν L− pI),v)K

since v ∈ Pk(K)⊥.
To prove that Πu is well defined it is enough to show that if u = 0, L = 0 and

p = 0, the only solution, Πu, is the trivial one. But since we have

(Πu,v)K = 0 ∀ v ∈ Pk−1(K),

〈SΠu,v〉∂K = 0 ∀ v ∈ Pk(K)⊥,

we can apply Lemma 4.4 with p := Πu and b := 0 to conclude that Πu = 0. This
completes the proof. �
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Step 3: Two auxiliary results. To obtain the approximation properties of Π ,
we are going to use two auxiliary results. The first result is the following.

Lemma 4.3. Let BK := {ωF,i : (F, i) ∈ IK} be a basis of Rn and let CK be the
bound for its dual basis in (2.4c). Then, for all p ∈ Pk(K)⊥, we have that

‖p‖K ≤ C h
1/2
K CK

n∑
i=1

‖p · ωF,i‖F .

Proof. We can write p =
∑

(F,i)∈I(p · ωF,i)ω
�
F,i where {ω�

F,i : (F, i) ∈ IK} is the

dual basis of BK . This implies that

‖p‖K ≤ CK

∑
(F,i)∈IK

‖p · ωF,i‖K ,

and the result follows by applying Lemma 4.1 with p := p · ωF,i. This completes
the proof. �

The second auxiliary result involves the stabilization tensor S.

Lemma 4.4. Let the stabilization tensor S satisfy the conditions (2.3)–(2.4) and
let p ∈ Pk(K)⊥ satisfy the equation

〈Sp,v〉∂K = b(v) ∀ v ∈ Pk(K)⊥,

where b(·) is a continuous linear functional on Pk(K)⊥. Then

‖p‖K ≤ C
hK

λmin
K

‖b‖,

where ‖b‖ := supv∈Pk(K)⊥\0 b(v)/‖v‖K .

Proof. Taking v := p, we obtain 〈Sp,p〉∂K = b(p) ≤ ‖ b ‖ ‖p‖K . On the other hand,
by the conditions (2.3) on the stabilization tensor S, we can write that

〈Sp,p〉∂K =
∑
F

n∑
i=1

λF,i ‖p · ωF,i‖2F

≥ λmin
K

∑
(F,i)∈I

‖p · ωF,i‖2F since λF,i ≥ 0 by (2.3c),

≥ C λmin
K 2h−1

K ‖p‖2K ,

by Lemma 4.3. �

Step 4: Estimate of Πu−u. We are now ready to obtain the estimate ofΠu−u
in Theorem 2.1.

Lemma 4.5. Suppose that the assumptions on the stabilization tensor S of Theorem
2.1 hold. Then, we have

‖Πu− u‖K ≤ C
Λmax
K

λmin
K

h�u+1|u|H�u+1(K) + C
h�σ+1
K

λmin
K

|∇·(νL− pI)|H�σ (K),

for �σ, �u ∈ [0, k].
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Proof. To prove the result, we set δu := Πu − uk, where uk is the L2-projection
of u into Pk(K), and note that

‖Πu− u‖K ≤ ‖u− uk‖K + ‖δu‖K .

The first term can be readily estimated by using the approximation properties of
the L2-projection. Let us estimate the second term.

To do that, we note that, by the equation (4.1a), δu belongs to Pk(K)⊥ and, by
the equation (4.1b), that it satisfies

〈S δu,v〉∂K = bσ(v) + bu(v) ∀v ∈ Pk(K)⊥,

where bσ(v) := (−∇·(νL − pI),v)K , and bu(v) := 〈S (u − uk),v〉∂K . Thus, by
Lemma 4.4 with p := δu and b := bσ + bu, we get that

‖δu‖K ≤ C
hK

λmin
K

(
‖bσ‖+ ‖bu‖

)
.

It remains to estimate the norm of the linear forms bσ and bu. But, since
v ∈ Pk(K)⊥, we get

‖bσ‖ ≤ C h�σ
K |∇·(νL− pI)|H�σ (K),

for �σ ∈ [0, k]. Finally, since |bu(v)| ≤ Λmax
K ‖u − uk‖∂K‖v‖∂K , we easily obtain

that
|bu| ≤ C Λmax

K h�u
K |u|H�u+1(K),

for �u ∈ [0, k], where Λmax
K is given by (2.5). This completes the proof. �

Step 5: Characterization of ΠL − ΠpI. We characterize ΠL − ΠpI in terms
of the projections defined in (3.3). We have the following characterization of the
product ΠL−ΠpI by the normal vector to any of the faces of K.

Proposition 4.6. On the simplex K, we have

(νΠL−ΠpI)nF = (νPFL− PF pI)nF + S|F (Πu− P Fu),

for each face F of K.

Proof. Pick any face F of the simplex K and set

δ := (νΠL−ΠpI)nF − (νPFL− PF pI)nF − S|F (Πu− P Fu).

By the condition on the stabilization tensor S (2.3a), we have that δ ∈ Pk(K).
Moreover, we claim that

(δ,w)K = 0 ∀ w ∈ Pk−1(K),

〈δ,μ〉F = 0 ∀ μ ∈ Pk(F ).

The first equation shows that δ ∈ Pk(K)⊥, and the second implies that δ = 0 on
K, by Lemma 4.1.

It remains to prove the claim. Let us prove the first equation. For any v ∈
Pk−1(K), we have that

(δ,w)K = ((νΠL−ΠpI)nF − (νL− pI)nF − S|F (Πu− u),w)K ,

by definition of PF ,P F and PF , (3.3), and by the fact that, by condition (2.3a),
the tensor S|F is constant. Hence

(δ,w)K = (ν(ΠL− L),w ⊗ nF )K − (Πp− p,nF ·w)K − (Πu− u), S|Fw)K ,



ANALYSIS OF HDG METHODS FOR STOKES FLOW 747

by the equations defining the projection Πh, namely, (2.10a) with G := w ⊗ nF ,
(2.10b) with v := S|Fw, and (2.10c) with q := nF · w. The second equation
readily follows from equation (2.10e) defining the projection Πh and the definition
of PF ,P F and PF , (3.3). This proves the claim and completes the proof. �

Note that with the results obtained so far we can also prove uniqueness for the
system that defines the projection: we only need to apply Propositions 4.2, 4.6 and
Lemma 4.3 to show that if L, u and p vanish, then so do ΠL, Πv and Πp.

Now pick any face F ′ of K. Then the set {nF : F �= F ′} is a basis of Rn and
its dual basis is denoted by {n�

F,F ′ : F �= F ′}. To simplify the notation, from now

on, the sum over all the faces F of K is going to be denoted by
∑

F . Also, the sum
over all the faces F of K, except the face F ′ will be denoted by

∑
F �=F ′ .

Proposition 4.7. In the notations above, for all F ,

νΠL−ΠpI =
∑
F �=F ′

(νPFL−PFpI)(nF,F ′⊗n∗
F,F ′)+

∑
F �=F ′

(
S|F (Πu−P Fu)

)
⊗n∗

F,F ′ .

Proof. Using these two simple facts (A is an arbitrary square matrix)

I =
∑
F �=F ′

nF,F ′ ⊗ n∗
F,F ′ , A =

∑
F �=F ′

(AnF,F ′)⊗ n∗
F,F ′

and Proposition 4.6, the result follows readily. �

Step 6: Estimates for the case of a general S. The remaining estimates of
Theorem 2.1 follow from Proposition 4.7. First, note that

PF (νL− pI) = νPFL− PF pI

and that the dual basis n∗
F,F ′ can be uniformly bounded (depending only on shape

regularity constants of the triangulation). This and the approximation properties
of PF allow us to obtain the bound

‖(νΠL−ΠpI)− (νL− pI)‖K ≤ Ch�σ+1|νL− pI|H�σ+1(K)

+CΛmax
K (‖Πu− u‖K + h�u+1|u|H�u+1(K)).

When tr L = 0, by (2.8) it follows that tr ΠL = 0. Therefore

Πp− p = − 1

n
tr

(
(νΠL−ΠpI)− (νL− pI)

)

and we can obtain a separate bound for ‖Πp− p‖K . Now, we can bound ‖νΠL−
νL‖K . This completes the proof of Theorem 2.1.

Step 7: Estimates for S = SSF . To prove this result, simply take F ′ := F �
K in

Proposition 4.7 to obtain

νΠL−ΠpI =
∑

F �=F�
K

(νPFL− PF pI)(nF,F ′ ⊗ n�
F,F�

K
),

by the definition of the stabilization tensor SSF . The remaining estimates of Theo-
rem 2.2 now follow as in the previous case. This completes the proof of Theorem 2.2.
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Step 8: Estimates for S = Snt. The estimate of the error in the velocity gradient
and in the pressure of Theorem 2.3 follows from the special form of the stabilization
tensor Snt.

We start with an estimate for the velocity gradient. To do that, we need an
auxiliary result which we state next. In it, we use the following notation. For each
face F of K, we denote by BF an orthogonal basis of the vectors orthogonal to nF .

Lemma 4.8. The set

B := {I} ∪ {t⊗ nF : F face of K, t ∈ BF }

is a basis of the space of square matrices of order n.

Proof. We only have to prove that if A is a square matrix of order n such that
A : W = 0 for all W ∈ B, then A = 0. So, assume that A is such a matrix. Since

0 = A : (t⊗ nF ) = (AnF ) · t, ∀t ∈ BF ,

then AnF = λF nF . Using the fact that
∑

F |F |nF = 0 and choosing any face F ′,
we get that

0 = A(
∑
F

|F |nF ) =
∑
F

|F |λFnF =
∑
F �=F ′

|F |(λF − λF ′)nF

and therefore λF = λ for all faces F of K. This implies that A = λ I. But the
condition A : I = 0 implies that λ = 0. This shows that A = 0 and completes the
proof. �

The dual basis to B can be separated as 1
n I and a set of matrices indexed with F

and t ∈ BF : { 1
n I} ∪ {WF,t : F face of K, t ∈ BF }. The estimate for the velocity

gradient follows from the next result.

Proposition 4.9. We have that

ΠL− L =
∑
F

∑
t∈BF,t

(
(PFL− L) : (t⊗ nF ) + τt(Πu− P Fu) · t

)
WF,t.

Proof. For any square matrix A of order n, we can write that

A =
∑
F

∑
t∈BF,t

(
A : (t⊗ nF )

)
WF,t +

tr A

n
I.

Hence, recalling that A : (t⊗ nF ) = AnF · t, for A := ΠL− L, we get that

ΠL− L =
∑
F

∑
t∈BF,t

(
(ΠL− L)nF · t

)
WF,t,

since tr (ΠL− L) = 0 by (2.10d). The identity now follows after a straightforward
application of Proposition 4.6. This completes the proof. �

The estimate of the pressure follows from that of L and the the following result.

Proposition 4.10. If ∇·u = 0, we have

Πp =
∑
F

|F |
|∂K|

(
PF p+ ν

(
(ΠL− PFL)nF

)
· nF

)
.
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Proof. If we multiply the identity of Proposition 4.6 by |F |
|∂K| , take the dot product

with nF and add over all the faces of K, we obtain

Πp =
∑
F

|F |
|∂K|

(
PF p+ ν

(
(ΠL− PFL)nF

)
· nF − ντn(Πu− P Fu) · nF

)
,

and the identity follows if we show that
∑

F |F |(Πu− P Fu) · nF = 0.
To do that, we begin by noting that, since

∑
F |F |nF = 0, then∑

F

|F |Πu · nF = 0 =
∑
F

|F |ΠRTu · nF ,

where ΠRT is the Raviart-Thomas projection of order k. We are now going to show
that for every face, the polynomial δ := (ΠRTu − P Fu) · nF vanishes. This will
prove the result.

Then pick an arbitrary face F of K and take δ as above. Since ∇·u = 0,
ΠRTu ∈ Pk(K), and so δ ∈ Pk(K). Moreover, it satisfies

(δ, q)K = 0 ∀ q ∈ Pk−1(K),

〈δ, μ〉F = 0 ∀ μ ∈ Pk(F ),

by the definition of P F (3.3) and that of ΠRT. This implies that δ = 0 and
completes the proof. �

The proof of the estimates for L and p in Theorem 2.3 are now a direct conse-
quence of Propositions 4.9 and 4.10. Note that the matrices WF,t in Proposition 4.9
can be bounded uniformly in terms of geometric quantities that depend only on the
shape regularity of the mesh.

5. Numerical results

In this section, we carry out numerical experiments devised to verify the theo-
retical orders of convergence of the approximations provided by the HDG method
given by Theorem 2.4, and those of the postprocessed velocity given by Theorem
2.5.

As a test problem, we take the flow uncovered by Kovasznay [25]. We consider
the Stokes problem whose exact solution coincides with the analytical solution of
the incompressible Navier-Stokes equations obtained by Kovasznay, namely,

u1 = 1− exp(λx1) cos(2πx2),

u2 =
λ

2π
exp(λx1) sin(2πx2),

p =
1

2
exp(2λx1),

where λ = Re
2 −

√
Re2

4 + 4π2 and Re = 1
ν is the Reynolds number. The Kovasznay

flow is also a solution of the Stokes problem with the source term f = −(u · ∇)u.
We take Dirichlet boundary conditions for the velocity as the restriction of the
exact solution to the domain boundary. Here the computational domain is Ω =
(−0.5, 1.5)× (0, 2) and ν = 0.1 so that the Reynolds number is Re = 10.

In our experiments, we consider meshes that are refinements of a uniform mesh
of 32 congruent triangles. Each refinement is obtained by subdividing each triangle
into four congruent triangles. We say that the mesh has level � (h := 2/2�+2) if it
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is obtained from the original mesh by � of these refinements. On these meshes, we
consider polynomials of degree k to represent all the approximate variables using a
nodal basis within each element, with the nodes uniformly distributed.

The results for the SFH method are listed in Table 5.2. Note that the orders of
convergence agree with those predicted by our theoretical analysis summarized in
Tables 2.1 and 2.3. Indeed, note that the errors in the velocity, the pressure, the
velocity gradient are of order k+1, for k ≥ 1, and that the error in the postprocessed
velocity is of order k+2, also for k ≥ 1. For k = 0, the errors in the approximation
of all these variables converge with order one, except for the velocity when τ = h
in which there is no convergence. Note also that the errors for the pressure and
the velocity gradient are independent of the value of the parameter τ defining the
stabilization tensor, in full agreement with our analysis.

The results for several choices of τn and τt are listed in Tables 5.3, 5.4, and
5.5. Again, the numerical results agree with the theoretical analysis summarized in
Table 5.1. Indeed, for τt �= 1/h the errors in the velocity, the pressure, the velocity
gradient are of order k + 1, for k ≥ 1, and that the error in the postprocessed
velocity is of order k + 2, also for k ≥ 1. For τt = 1/h, the order of convergence
of the errors in the velocity gradient and the postprocessed velocity are reduced by
one. Remarkably enough, the pressure seems to converge with the optimal order
of k + 1 (unless τn = 1/h); this is the only case not predicted by our theoretical
results. Finally, for k = 0, the errors in the approximation of all these variables
converge with order one, except for the velocity when τn = τt = h in which there
is no convergence.

Table 5.1. Expected optimal convergence for the method with
S = Snt for the quantities ηu := ‖u − uh‖Ω, ηp := ‖p − ph‖Ω,
ηL := ‖L − Lh‖Ω, ηu� := ‖u − u�

h‖Ω. We take constant values of
τt and any of τn ∈ {h, 1, 1/h}. The quantities with an asterisk are
not valid for the case τt = τn = h. In that case, the quantity has
to be lowered by one unit.

τt ∈ {h, 1} τt = 1/h

ηu ηp, ηL ηu� ηu ηp, ηL ηu�

k = 0 1∗ 1 1 0 0 0
k ≥ 1 (k + 1)∗ k + 1 k + 2 k + 1 k k + 1

Finally, let us point out that the postprocessed velocity is H(div)-conforming
and exactly divergence-free. Indeed, it is numerically verified that the divergence
of the postprocessed velocity is zero within machine precision and that its normal
component is continuous across interior faces.
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Table 5.2. History of convergence of the SFH method.

degree mesh ‖u− uh‖Th
‖p− ph‖Th

‖L− Lh‖Th
‖u− u�

h‖Th

k 2h−1 error order error order error order error order

τ = h

4 1.18e+1 −− 1.88e-0 −− 3.22e+1 −− 5.02e-0 −−
8 1.22e+1 −0.05 1.19e-0 0.66 2.06e+1 0.64 2.03e-0 1.31

0 16 1.21e+1 0.01 6.02e-1 0.99 1.13e+1 0.87 6.10e-1 1.73
32 1.22e+1 0.00 3.06e-1 0.97 5.99e-0 0.92 2.11e-1 1.53
64 1.22e+1 0.00 1.60e-1 0.93 3.19e-0 0.91 8.73e-2 1.27

4 4.14e-0 −− 1.22e-0 −− 1.22e+1 −− 1.06e-0 −−
8 2.07e-0 1.00 3.50e-1 1.80 3.71e-0 1.72 1.61e-1 2.73

1 16 1.08e-0 0.94 9.12e-2 1.94 1.01e-0 1.88 2.32e-2 2.79
32 5.47e-1 0.98 2.26e-2 2.01 2.63e-1 1.94 3.14e-3 2.89
64 2.75e-1 0.99 5.59e-3 2.02 6.70e-2 1.97 4.09e-4 2.94

4 8.92e-1 −− 2.64e-1 −− 2.74e-0 −− 1.67e-1 −−
8 2.47e-1 1.85 4.17e-2 2.66 4.39e-1 2.64 1.52e-2 3.46

2 16 6.67e-2 1.89 5.57e-3 2.90 6.11e-2 2.84 1.07e-3 3.83
32 1.70e-2 1.97 7.02e-4 2.99 7.90e-3 2.95 7.03e-5 3.93
64 4.29e-3 1.99 8.75e-5 3.00 1.00e-3 2.98 4.48e-6 3.97

τ = 1

4 8.48e-0 −− 1.88e-0 −− 3.22e+1 −− 5.02e-0 −−
8 4.50e-0 0.92 1.19e-0 0.66 2.06e+1 0.64 2.03e-0 1.31

0 16 1.99e-0 1.17 6.02e-1 0.99 1.13e+1 0.87 6.10e-1 1.73
32 9.08e-1 1.14 3.06e-1 0.97 5.99e-0 0.92 2.11e-1 1.53
64 4.29e-1 1.08 1.60e-1 0.93 3.19e-0 0.91 8.73e-2 1.27

4 2.54e-0 −− 1.22e-0 −− 1.22e+1 −− 1.06e-0 −−
8 6.45e-1 1.98 3.50e-1 1.80 3.71e-0 1.72 1.61e-1 2.73

1 16 1.61e-1 2.01 9.12e-2 1.94 1.01e-0 1.88 2.32e-2 2.79
32 3.91e-2 2.04 2.26e-2 2.01 2.63e-1 1.94 3.14e-3 2.89
64 9.58e-3 2.03 5.59e-3 2.02 6.70e-2 1.97 4.09e-4 2.94

4 5.31e-1 −− 2.64e-1 −− 2.74e-0 −− 1.67e-1 −−
8 7.61e-2 2.8 4.17e-2 2.66 4.39e-1 2.64 1.52e-2 3.46
16 9.70e-3 2.97 5.57e-3 2.90 6.11e-2 2.84 1.07e-3 3.83

2 32 1.21e-3 3.00 7.02e-4 2.99 7.90e-3 2.95 7.03e-5 3.93
64 1.50e-4 3.01 8.75e-5 3.00 1.00e-3 2.98 4.48e-6 3.97

τ = 1/h

4 6.94e-0 −− 1.88e-0 −− 3.22e+1 −− 5.02e-0 −−
8 2.78e-0 1.32 1.19e-0 0.66 2.06e+1 0.64 2.03e-0 1.31

0 16 8.92e-1 1.64 6.02e-1 0.99 1.13e+1 0.87 6.10e-1 1.73
32 3.32e-1 1.42 3.06e-1 0.97 5.99e-0 0.92 2.11e-1 1.53
64 1.48e-1 1.17 1.6e-1 0.93 3.19e-0 0.91 8.73e-2 1.27

4 1.82e-0 −− 1.22e-0 −− 1.22e+1 −− 1.06e-0 −−
8 3.42e-1 2.41 3.5e-1 1.80 3.71e-0 1.72 1.61e-1 2.73

1 16 7.26e-2 2.24 9.12e-2 1.94 1.01e-0 1.88 2.32e-2 2.79
32 1.65e-2 2.13 2.26e-2 2.01 2.63e-1 1.94 3.14e-3 2.89
64 4.02e-3 2.04 5.59e-3 2.02 6.70e-2 1.97 4.09e-4 2.94

4 3.78e-1 −− 2.64e-1 −− 2.74e-0 −− 1.67e-1 −−
8 4.38e-2 3.11 4.17e-2 2.66 4.39e-1 2.64 1.52e-2 3.46

2 16 4.66e-3 3.23 5.57e-3 2.90 6.11e-2 2.84 1.07e-3 3.83
32 5.59e-4 3.06 7.02e-4 2.99 7.90e-3 2.95 7.03e-5 3.93
64 6.92e-5 3.01 8.75e-5 3.00 1.00e-3 2.98 4.48e-6 3.97
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Table 5.3. History of convergence of the HDG method for τn = h.

degree mesh ‖u− uh‖Th
‖p− ph‖Th

‖L− Lh‖Th
‖u− u�

h‖Th
k 2h−1 error order error order error order error order

τt = h

4 3.40e-0 −− 1.16e-0 −− 1.70e+1 −− 2.55e-0 −−
8 4.10e-0 −0.27 5.42e-1 1.10 1.33e+1 0.35 1.42e-0 0.85

0 16 3.94e-0 0.06 3.41e-1 0.67 8.24e-0 0.70 4.88e-1 1.54
32 3.87e-0 0.03 1.94e-1 0.81 4.60e-0 0.84 1.87e-1 1.38
64 3.85e-0 0.01 1.11e-1 0.80 2.54e-0 0.85 8.23e-2 1.18

4 1.45e-0 −− 8.75e-1 −− 7.33e-0 −− 5.80e-1 −−
8 6.84e-1 1.08 2.69e-1 1.70 2.57e-0 1.51 1.06e-1 2.45

1 16 3.45e-1 0.99 7.34e-2 1.87 7.34e-1 1.81 1.62e-2 2.71
32 1.73e-1 1.00 1.86e-2 1.98 1.95e-1 1.92 2.23e-3 2.86
64 8.65e-2 1.00 4.65e-3 2.00 4.99e-2 1.96 2.93e-4 2.93

4 3.20e-1 −− 2.07e-1 −− 1.97e-0 −− 1.02e-1 −−
8 8.23e-2 1.96 3.38e-2 2.62 3.13e-1 2.65 1.07e-2 3.26

2 16 2.13e-2 1.95 4.59e-3 2.88 4.38e-2 2.84 7.20e-4 3.89
32 5.38e-3 1.98 5.86e-4 2.97 5.66e-3 2.95 4.67e-5 3.95
64 1.35e-3 2.00 7.34e-5 3.00 7.15e-4 2.98 2.96e-6 3.98

τt = 1

4 3.11e-0 −− 1.22e-0 −− 1.75e+1 −− 2.62e-0 −−
8 2.99e-0 0.06 5.93e-1 1.04 1.66e+1 0.07 1.73e-0 0.6

0 16 1.62e-0 0.88 5.06e-1 0.23 1.23e+1 0.44 6.67e-1 1.37
32 7.82e-1 1.05 2.82e-1 0.84 7.47e-0 0.72 2.41e-1 1.47
64 3.70e-1 1.08 1.46e-1 0.94 4.14e-0 0.85 9.51e-2 1.34

4 1.22e-0 −− 9.19e-1 −− 8.15e-0 −− 6.31e-1 −−
8 4.14e-1 1.56 2.85e-1 1.69 3.34e-0 1.29 1.39e-1 2.18

1 16 1.20e-1 1.78 7.80e-2 1.87 1.13e-0 1.56 2.46e-2 2.50
32 3.15e-2 1.93 1.99e-2 1.97 3.26e-1 1.80 3.62e-3 2.76
64 8.00e-3 1.98 4.96e-3 2.00 8.69e-2 1.91 4.90e-4 2.89

4 2.74e-1 −− 2.21e-1 −− 2.27e-0 −− 1.16e-1 −−
8 4.84e-2 2.50 3.63e-2 2.61 4.28e-1 2.41 1.42e-2 3.03

2 16 7.14e-3 2.76 4.97e-3 2.87 6.86e-2 2.64 1.11e-3 3.68
32 9.66e-4 2.89 6.42e-4 2.95 9.72e-3 2.82 7.84e-5 3.83
64 1.25e-4 2.95 8.09e-5 2.99 1.29e-3 2.91 5.18e-6 3.92

τt = 1/h

4 2.90e-0 −− 1.28e-0 −− 1.75e+1 −− 2.63e-0 −−
8 2.65e-0 0.13 6.13e-1 1.07 1.82e+1 −0.06 1.90e-0 0.47

0 16 1.18e-0 1.17 9.44e-1 −0.62 1.41e+1 0.37 8.14e-1 1.22
32 4.89e-1 1.27 1.05e-0 −0.15 8.49e-0 0.73 3.75e-1 1.12
64 2.86e-1 0.77 1.12e-0 −0.10 4.79e-0 0.83 2.56e-1 0.55

4 1.08e-0 −− 9.50e-1 −− 8.79e-0 −− 6.72e-1 −−
8 3.18e-1 1.76 3.01e-1 1.66 3.89e-0 1.18 1.64e-1 2.03

1 16 7.30e-2 2.12 8.4e-2 1.84 1.46e-0 1.42 3.14e-2 2.39
32 1.63e-2 2.16 2.19e-2 1.94 5.15e-1 1.50 5.56e-3 2.50
64 3.89e-3 2.07 5.70e-3 1.94 2.12e-1 1.28 1.14e-3 2.29

4 2.51e-1 −− 2.38e-1 −− 2.58e-0 −− 1.30e-1 −−
8 3.86e-2 2.70 3.89e-2 2.61 5.51e-1 2.23 1.81e-2 2.85

2 16 4.51e-3 3.10 5.45e-3 2.84 9.79e-2 2.49 1.58e-3 3.52
32 5.43e-4 3.05 7.82e-4 2.80 1.88e-2 2.38 1.53e-4 3.37
64 6.70e-5 3.02 1.27e-4 2.62 4.18e-3 2.17 1.71e-5 3.16
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Table 5.4. History of convergence of the HDG method for τn = 1.

degree mesh ‖u− uh‖Th
‖p− ph‖Th

‖L− Lh‖Th
‖u− u�

h‖Th
k 2h−1 error order error order error order error order

τt = h

4 2.18e-0 −− 1.22e-0 −− 1.44e+1 −− 2.22e-0 −−
8 1.78e-0 0.29 5.07e-1 1.26 8.97e-0 0.68 1.06e-0 1.06

0 16 1.06e-0 0.75 2.76e-1 0.88 4.82e-0 0.90 3.66e-1 1.54
32 5.93e-1 0.84 1.62e-1 0.77 2.82e-0 0.77 1.65e-1 1.15
64 3.16e-1 0.91 9.96e-2 0.70 1.75e-0 0.69 7.93e-2 1.06

4 1.09e-0 −− 8.7e-1 −− 6.29e-0 −− 4.94e-1 −−
8 3.34e-1 1.71 2.58e-1 1.75 1.85e-0 1.77 7.84e-2 2.65

1 16 1.04e-1 1.68 7.03e-2 1.87 4.67e-1 1.98 1.11e-2 2.83
32 2.89e-2 1.85 1.81e-2 1.96 1.19e-1 1.98 1.45e-3 2.93
64 7.63e-3 1.92 4.58e-3 1.98 3.02e-2 1.97 1.88e-4 2.95

4 2.57e-1 −− 2.06e-1 −− 1.81e-0 −− 9.13e-2 −−
8 4.60e-2 2.48 3.27e-2 2.66 2.42e-1 2.90 8.77e-3 3.38

2 16 6.71e-3 2.78 4.42e-3 2.88 3.11e-2 2.96 5.39e-4 4.02
32 9.32e-4 2.85 5.7e-4 2.96 3.93e-3 2.98 3.52e-5 3.94
64 1.23e-4 2.92 7.22e-5 2.98 5.01e-4 2.97 2.28e-6 3.95

τt = 1

4 2.06e-0 −− 1.35e-0 −− 1.47e+1 −− 2.25e-0 −−
8 1.56e-0 0.40 5.75e-1 1.23 1.05e+1 0.48 1.23e-0 0.87

0 16 7.19e-1 1.12 4.82e-1 0.25 6.75e-0 0.64 4.61e-1 1.42
32 3.34e-1 1.10 2.66e-1 0.86 4.14e-0 0.71 2.00e-1 1.20
64 1.58e-1 1.08 1.44e-1 0.89 2.45e-0 0.76 9.38e-2 1.09

4 9.55e-1 −− 9.36e-1 −− 6.97e-0 −− 5.25e-1 −−
8 2.51e-1 1.93 2.87e-1 1.71 2.34e-0 1.57 1.01e-1 2.38

1 16 6.61e-2 1.93 7.85e-2 1.87 7.48e-1 1.65 1.68e-2 2.59
32 1.62e-2 2.03 2.01e-2 1.97 2.08e-1 1.85 2.39e-3 2.81
64 3.98e-3 2.02 5.04e-3 1.99 5.51e-2 1.92 3.21e-4 2.89

4 2.31e-1 −− 2.27e-1 −− 2.12e-0 −− 1.03e-1 −−
8 3.47e-2 2.74 3.77e-2 2.59 3.50e-1 2.60 1.19e-2 3.11

2 16 4.21e-3 3.04 5.1e-3 2.89 4.89e-2 2.84 8.20e-4 3.86
32 5.26e-4 3.00 6.50e-4 2.97 6.56e-3 2.90 5.56e-5 3.88
64 6.54e-5 3.01 8.14e-5 3.00 8.49e-4 2.95 3.62e-6 3.94

τt = 1/h

4 1.96e-0 −− 1.54e-0 −− 1.48e+1 −− 2.25e-0 −−
8 1.62e-0 0.27 7.23e-1 1.09 1.17e+1 0.34 1.39e-0 0.69

0 16 8.02e-1 1.02 1.27e-0 −0.81 8.78e-0 0.41 6.48e-1 1.10
32 4.47e-1 0.84 1.25e-0 0.02 6.21e-0 0.50 3.84e-1 0.75
64 3.06e-1 0.55 1.23e-0 0.02 4.14e-0 0.58 2.85e-1 0.43

4 8.71e-1 −− 9.94e-1 −− 7.58e-0 −− 5.55e-1 −−
8 2.33e-1 1.90 3.35e-1 1.57 2.97e-0 1.35 1.31e-1 2.09

1 16 5.84e-2 1.99 9.84e-2 1.77 1.30e-0 1.19 2.79e-2 2.23
32 1.44e-2 2.02 2.69e-2 1.87 5.18e-1 1.33 5.52e-3 2.34
64 3.64e-3 1.98 7.14e-3 1.91 2.21e-1 1.23 1.17e-3 2.24

4 2.20e-1 −− 2.58e-1 −− 2.48e-0 −− 1.17e-1 −−
8 3.21e-2 2.77 4.83e-2 2.41 5.30e-1 2.23 1.74e-2 2.75

2 16 3.85e-3 3.06 6.83e-3 2.82 9.81e-2 2.43 1.60e-3 3.44
32 4.91e-4 2.97 9.78e-4 2.80 2.01e-2 2.29 1.66e-4 3.27
64 6.32e-5 2.96 1.52e-4 2.68 4.43e-3 2.18 1.84e-5 3.17
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Table 5.5. History of convergence of the HDG method for τn = 1/h.

degree mesh ‖u− uh‖Th
‖p− ph‖Th

‖L− Lh‖Th
‖u− u�

h‖Th
k 2h−1 error order error order error order error order

τt = h

4 1.58e-0 −− 1.25e-0 −− 1.31e+1 −− 2.1e-0 −−
8 9.72e-1 0.7 5.23e-1 1.25 8.00e-0 0.71 9.79e-1 1.10

0 16 4.67e-1 1.06 2.84e-1 0.88 4.57e-0 0.81 3.55e-1 1.46
32 2.43e-1 0.94 1.66e-1 0.77 2.82e-0 0.70 1.65e-1 1.11
64 1.25e-1 0.96 1.01e-1 0.72 1.76e-0 0.68 7.93e-2 1.06

4 8.93e-1 −− 8.78e-1 −− 5.82e-0 −− 4.57e-1 −−
8 2.21e-1 2.02 2.59e-1 1.76 1.68e-0 1.79 7.4e-2 2.63

1 16 6.24e-2 1.82 7.11e-2 1.87 4.57e-1 1.88 1.11e-2 2.73
32 1.56e-2 2.00 1.83e-2 1.96 1.20e-1 1.93 1.49e-3 2.90
64 3.90e-3 2.00 4.61e-3 1.99 3.07e-2 1.97 1.93e-4 2.95

4 2.28e-1 −− 2.07e-1 −− 1.74e-0 −− 9.00e-2 −−
8 3.64e-2 2.64 3.30e-2 2.65 2.33e-1 2.90 8.77e-3 3.36

2 16 4.35e-3 3.06 4.52e-3 2.87 3.14e-2 2.89 5.59e-4 3.97
32 5.48e-4 2.99 5.80e-4 2.96 4.03e-3 2.96 3.66e-5 3.93

64 6.86e-5 3.00 7.30e-5 2.99 5.10e-4 2.98 2.34e-6 3.97

τt = 1

4 1.55e-0 −− 1.45e-0 −− 1.32e+1 −− 2.10e-0 −−
8 9.84e-1 0.66 6.11e-1 1.24 8.29e-0 0.67 1.04e-0 1.01

0 16 4.23e-1 1.22 5.68e-1 0.11 4.84e-0 0.78 3.76e-1 1.47
32 2.23e-1 0.92 3.34e-1 0.76 3.20e-0 0.60 1.72e-1 1.13
64 1.17e-1 0.92 1.91e-1 0.81 2.06e-0 0.64 8.08e-2 1.09

4 8.16e-1 −− 9.77e-1 −− 6.43e-0 −− 4.85e-1 −−
8 1.99e-1 2.03 3.13e-1 1.64 2.02e-0 1.67 9.63e-2 2.33

1 16 5.70e-2 1.81 8.93e-2 1.81 7.08e-1 1.52 1.72e-2 2.48
32 1.46e-2 1.97 2.44e-2 1.87 2.08e-1 1.76 2.57e-3 2.75
64 3.74e-3 1.96 6.40e-3 1.93 5.80e-2 1.85 3.60e-4 2.83

4 2.15e-1 −− 2.35e-1 −− 2.06e-0 −− 1.00e-1 −−
8 3.31e-2 2.70 4.12e-2 2.51 3.46e-1 2.58 1.21e-2 3.05

2 16 3.95e-3 3.07 6.21e-3 2.73 5.10e-2 2.76 9.31e-4 3.70
32 5.12e-4 2.95 8.37e-4 2.89 7.38e-3 2.79 7.02e-5 3.73
64 6.58e-5 2.96 1.09e-4 2.94 1.01e-3 2.86 4.93e-6 3.83

τt = 1/h

4 1.51e-0 −− 1.77e-0 −− 1.32e+1 −− 2.10e-0 −−
8 1.11e-0 0.44 1.08e-0 0.71 8.78e-0 0.59 1.16e-0 0.85

0 16 5.30e-1 1.07 2.32e-0 −1.11 5.72e-0 0.62 5.45e-1 1.09
32 3.88e-1 0.45 2.53e-0 −0.12 4.76e-0 0.27 3.93e-1 0.47
64 3.44e-1 0.18 2.64e-0 −0.06 4.39e-0 0.11 3.45e-1 0.19

4 7.66e-1 −− 1.09e-0 −− 7.08e-0 −− 5.19e-1 −−
8 2.04e-1 1.91 4.75e-1 1.19 2.88e-0 1.30 1.42e-1 1.87

1 16 5.67e-2 1.84 2.00e-1 1.25 1.75e-0 0.72 3.92e-2 1.85
32 1.43e-2 1.99 9.25e-2 1.11 8.85e-1 0.98 9.89e-3 1.99
64 3.60e-3 1.99 4.39e-2 1.08 4.46e-1 0.99 2.50e-3 1.99

4 2.10e-1 −− 2.84e-1 −− 2.5e-0 −− 1.18e-1 −−
8 3.23e-2 2.70 7.20e-2 1.98 6.13e-1 2.03 2.03e-2 2.53

2 16 3.82e-3 3.08 1.62e-2 2.15 1.40e-1 2.13 2.44e-3 3.06
32 4.85e-4 2.98 3.68e-3 2.14 3.56e-2 1.97 3.17e-4 2.94
64 6.12e-5 2.99 8.65e-4 2.09 9.02e-3 1.98 4.07e-5 2.96



ANALYSIS OF HDG METHODS FOR STOKES FLOW 755

6. Concluding remarks

We end the paper with some comments on the different effects of the stabilization
parameters τn and τt, on alternative postprocessings of the velocity and on the
expected similarity of our results with HDG methods for linear isotropic elasticity.

The role of τn and τt. It is interesting to note that the HDG method with the
stabilization Snt displayed very different convergence properties with respect to the
size of τn and τt. It kept its optimal convergence and superconvergence properties
whenever τt remained of order one. This suggests that HDG-like methods that use
approximate velocities whose normal components are continuous, that is, methods
for which V h ⊂ H(div,Ω), should also have the above-mentioned convergence
properties. This constitutes the subject of ongoing research.

On the other hand, by taking τt = 1/h, the loss of the optimality in the conver-
gence of the velocity gradient, but not of the pressure when τn �= 1/h, was observed;
this might be a two-dimensional phenomenon. In any case, the above-mentioned
loss implies that the postprocessed velocity no longer converges faster than the
original approximation. This suggests that this might also be true for HDG-like
methods using velocity spaces whose tangential components are continuous, that
is, methods for which V h ⊂ H(curl,Ω).

Alternative postprocessings for the case k = 0. Let us emphasize that the
HDG method for k = 0 can be considered to be a finite volume method. As we
have seen, if the stabilization tensor S is suitably chosen, not only the velocity but
also its gradient and pressure converge with order one.

In this case, since the postprocessed velocity u�
h can at most converge with order

one, it is reasonable to consider simpler ways to compute postprocessings. Here,
we want to briefly discuss the following alternatives:

uRT,∗
h (x) :=

∑
F

|F |
n|K| (x− xF ) ûh|F · nF ,

uCR,∗
h (x) :=

∑
F

(1− nλF (x)) ûh|F .

Here xF denotes the vertex opposite to the face F and λF (·) is the corresponding
barycentric coordinate—not to be confused with the eigenvalues of the stabilization
tensor in (2.3) and (2.4).

The function uRT,∗
h is nothing but the modification of the lowest-order Raviart-

Thomas projection; see [2, 16]. It is in H(div,Ω) and is divergence-free by the
equation (2.2c) defining the HDG method; as a consequence uRT,∗

h is constant on

each simplex. The function uCR,∗
h is a Crouzeix-Raviart-like projection. It is not in

H(div,Ω) but its divergence is equal to zero inside each element thanks to equation
(2.2c). On the other hand, its average on each face of the triangulation is uniquely
defined.

We present the error and order convergence of ‖u−uRT,�
h ‖Th

and ‖u−uCR,�
h ‖Th

in Table 6.1 for the SFH method and in Table 6.2 for the HDG method for several
choices of τn and τt.
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For the SFH method, we observe that the approximation u∗
h is better than uCR,�

h

which in turn is better than the approximation uRT,�
h . A similar result holds for

the other choice of the stabilization parameter S. Note that for the SFH method,
the errors are independent of the value of the parameter τ defining the stabilization
tensor.

Table 6.1. History of convergence of ‖u − uRT,�
h ‖Th

and ‖u −
uCR,�
h ‖Th

for the special case k = 0 for the SFH method.

‖u − u
RT,�
h ‖Th

‖u − u
CR,�
h ‖Th

mesh τ = h τ = 1 τ = 1/h τ = h τ = 1 τ = 1/h
2h−1 error order error order error order error order error order error order

4 6.55e-0 −− 6.55e-0 −− 6.55e-0 −− 13.4e-0 −− 13.4e-0 −− 13.4e-0 −−
8 3.49e-0 0.91 3.49e-0 0.91 3.49e-0 0.91 5.22e-0 1.36 5.22e-0 1.36 5.22e-0 1.36

16 1.68e-0 1.06 1.68e-0 1.06 1.68e-0 1.06 1.56e-0 1.74 1.56e-0 1.74 1.56e-0 1.74

32 8.45e-1 0.99 8.45e-1 0.99 8.45e-1 0.99 5.29e-1 1.56 5.29e-1 1.56 5.29e-1 1.56

64 4.26e-1 0.99 4.26e-1 0.99 4.26e-1 0.99 2.16e-1 1.29 2.16e-1 1.29 2.16e-1 1.29

Another postprocessing of the velocity for k ≥ 1. Let us note that, if we
are not interested in obtaining an H(div)-conforming postprocessed velocity u◦, we
can use the projection by Stenberg [31], or the following slight modification:

(∇u◦
h − Lh,∇v)K = 0 ∀ v ∈ Pk+1(K),

(u◦
h − uh,v)K = 0 ∀ v ∈ P0(K).

These projections have convergence properties similar to those of the projection
introduced in this paper and are simpler to implement.

Extension to the isotropic linear elasticity equations. An HDG method
for the equations linear three-dimensional isotropic elasticity can be easily defined
which should have convergence properties similar to the ones displayed by the
method just analyzed. Indeed, note that the corresponding equations (with pre-
scribed displacement at the border) can be written as

L−∇u = 0 on Ω,

−∇·(μL) +∇ p = f on Ω,

ε p+∇·u = 0 on Ω,

u = g on ∂Ω,

where ε = (1 − 2 ν)(1 + ν)/E. Here E is the Young modulus and ν ∈ (0, 1/2]
is the Poisson ratio. The advantage of this formulation is that is holds for both
compressible (ν ∈ (0, 1/2)) and incompressible (ν = 1/2) materials. Examples of
methods using this formulation are the Galerkin least-squares method introduced
and studied in [22] and the LDG method considered in [19].

Clearly, for incompressible materials, this system of equations is essentially the
same as the Stokes system (1.1). It is thus reasonable to expect that the HDG
methods for this formulation will have the same convergence properties.
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Table 6.2. History of convergence of ‖u − uRT,�
h ‖Th

and ‖u −
uCR,�
h ‖Th

for the special case k = 0 for the HDG method.

‖u − u
RT,�
h ‖Th

‖u − u
CR,�
h ‖Th

mesh τt = h τt = 1 τt = 1/h τt = h τt = 1 τt = 1/h
2h−1 error order error order error order error order error order error order

τn = h
4 6.32e-0 −− 6.32e-0 −− 6.32e-0 −− 6.97e-0 −− 7.14e-0 −− 7.17e-0 −−
8 3.23e-0 0.97 3.42e-0 0.89 3.61e-0 0.81 3.62e-0 0.95 4.41e-0 0.69 4.84e-0 0.57
16 1.60e-0 1.01 1.65e-0 1.05 1.83e-0 0.98 1.24e-0 1.55 1.70e-0 1.37 2.06e-0 1.23
32 8.30e-1 0.95 8.46e-1 0.97 1.06e-0 0.79 4.66e-1 1.41 6.08e-1 1.49 9.30e-1 1.15
64 4.22e-1 0.98 4.28e-1 0.98 7.17e-1 0.57 2.03e-1 1.20 2.36e-1 1.37 6.29e-1 0.56

τn = 1
4 6.34e-0 −− 6.34e-0 −− 6.33e-0 −− 6.06e-0 −− 6.14e-0 −− 6.15e-0 −−
8 3.17e-0 1.00 3.31e-0 0.94 3.57e-0 0.83 2.69e-0 1.17 3.11e-0 0.98 3.50e-0 0.81
16 1.59e-0 0.99 1.63e-0 1.02 1.87e-0 0.93 9.19e-1 1.55 1.16e-0 1.43 1.62e-0 1.11
32 8.27e-1 0.94 8.48e-1 0.94 1.13e-0 0.72 4.08e-1 1.17 4.96e-1 1.22 9.46e-1 0.77
64 4.21e-1 0.97 4.34e-1 0.97 7.83e-1 0.53 1.95e-1 1.07 2.30e-1 1.11 6.99e-1 0.44

τn = 1/h
4 6.36e-0 −− 6.36e-0 −− 6.36e-0 −− 5.72e-0 −− 5.74e-0 −− 5.73e-0 −−
8 3.15e-0 1.01 3.23e-0 0.98 3.46e-0 0.88 2.48e-0 1.21 2.63e-0 1.12 2.91e-0 0.98
16 1.59e-0 0.99 1.59e-0 1.02 1.84e-0 0.91 8.91e-1 1.47 9.42e-1 1.48 1.35e-0 1.11
32 8.26e-1 0.94 8.22e-1 0.95 1.18e-0 0.64 4.07e-1 1.13 4.25e-1 1.15 9.65e-1 0.48
64 4.21e-1 0.97 4.18e-1 0.97 9.18e-1 0.37 1.95e-1 1.06 1.99e-1 1.10 8.46e-1 0.19

Appendix A. A characterization of the BDM projection in 3D

It is well known that the BDM projection of a sufficiently smooth function u
into Pk+1(K), k ≥ 0, is determined by the following equations:

〈(ΠBDMu− u) · n, μ〉F =0 ∀ μ ∈ Pk+1(F ) ∀F face of K,

(ΠBDMu− u,∇w)K = 0 ∀ w ∈ Pk(K),

(ΠBDMu− u,p)K = 0 ∀ p ∈ Φk+1(K),

where Φk+1(K) is the set of polynomials in Pk+1(K) that are divergence-free and
whose normal component is zero on ∂K; see [4].

Next, we give an alternative characterization of this projection motivated by
the need to define our post-processed approximate velocity. The result itself is
a consequence of a characterization of Φk+1(K) that can be derived from [12,
Lemma 2.4].

Proposition A.1. For any k ≥ 0, we have that the BDM-projection onto Pk+1(K)
is characterized by the equations

〈(ΠBDMu− u) · n, μ〉F =0 ∀ μ ∈ Pk+1(F ) ∀F face of K,

(ΠBDMu− u,∇w)K = 0 ∀ w ∈ Pk(K),

(∇×(ΠBDMu− u), (∇×v) BK)K = 0 ∀ v ∈ Sk(K).

Proof. The result follows if we prove that

(A.1) Φk+1(K) = {∇× ((∇×v)BK) : v ∈ Sk(K)}
and that the tangential components of (∇×v)BK on ∂K are zero.

Let us first prove the second assertion. If we take any vector-valued function a,
by the definition of the symmetric matrix bubble BK , we have that, on the face
λi = 0,

aBK = λi−3λi−2λi−1(a ·∇λi)∇λi,
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and we immediately see that the tangential component is identically equal to zero.
The proof of (A.1) is done in several steps. First, it is clear that functions of

the form ∇×(aBK) are divergence free. As a second step we are going to prove
that all of these functions have zero normal component on ∂K. By symmetry, it is
enough to prove that

(A.2) ∇λ3 · (∇×(aBK))
∣∣∣
λ3=0

= 0.

To prove this, note first that by the chain rule, we can write

∇λ3 · (∇×w) =

2∑
m=0

∂

∂λm

(
∇λ3 · (∇λm ×w)

)
.

If we apply this formula to

w = aBK =
3∑

�=0

λ�−3λ�−2λ�−1(a · ∇λ�)∇λ�

the term for � = 3 vanishes as well as those with � = m. We therefore have to prove
that the functions

2∑
�=0

⎛
⎜⎝

2∑
m=0
m �=�

(
∇λ3 · (∇λm ×∇λ�)

) ∂

∂λm

(
λ�−3λ�−2λ�−1(a · ∇λ�)

)
⎞
⎟⎠ =:

2∑
�=0

f�

vanish at λ3 = 0. This is actually true for each f� separately. We show in detail
the case � = 0 (the other two follow by symmetry). Simple arguments show that

f0

∣∣∣
λ3=0

=

2∑
m=1

(
∇λ3 · (∇λm ×∇λ0)

) ∂

∂λm

(
λ1λ2λ3(a · ∇λ0)

)∣∣∣
λ3=0

=
(
λ1λ2 (a · ∇λ0)

2∑
m=1

(
∇λ3 · (∇λm ×∇λ0)

) ∂λ3

∂λm

)∣∣∣
λ3=0

=−
( 2∑

m=1

(
∇λ3 · (∇λm ×∇λ0)

))(
λ1λ2(a · ∇λ0)

)∣∣∣
λ3=0

.

However,

∇λ3 · (∇(λ1 + λ2)×∇λ0) = −∇λ3 · (∇(λ0 + λ3 − 1)×∇λ0) = 0

which proves that f0 = 0 on λ3 = 0. This finishes the proof of (A.2).
Consider now the map

T : Sk(K) −→ Φk+1(K)
v �−→ ∇×((∇×v)BK).

We have just shown that functions of the form ∇×((∇×v)BK) are divergence
free and have zero normal component on ∂K. It is simple to see that they are
polynomials of degree no greater than k + 1 when v is a vector-valued polynomial
function of degree not greater than k. This means that T is well defined. By [27,
Lemma 2], dimSk(K) = dimΦk+1(K), so if we prove that T is one–to–one, then
it will be onto and (A.1) will have been proven.
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If Tv = 0, then 0 = (v, Tv)K = (∇×v, (∇×v)BK)K . Since

a · (aBK) =

2∑
�=0

λ�−1λ�−2λ�−3|a · ∇λ�|2,

we easily see that if Tv = 0, then ∇×v = 0 in K. Thus v = ∇ψ for some
ψ ∈ Pk+1(K). However, since Sk(K) is orthogonal to ∇Pk+1(K), we find that
v = 0, and the proof is complete. �

The set equality (A.1) is also true if we take v in the larger spaces Pk(K) [12,
Lemma 2.4] and Nk(K) [23, Lemma 2.3]. Actually, the spaces Sk(K), Nk(K),
and Pk(K) differ only by gradients [27], which are in the null space of curl and
therefore in the null space of the operator T in our proof. Our self-contained proof
gives the smallest space which makes (A.1) true.
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