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VERIFYING A CONJECTURE OF L. RÉDEI FOR p = 13

SÁNDOR SZABÓ

Abstract. In 1970 L. Rédei conjectured that if an elementary p-group G of
order p3 is a direct product of its subsets A and B such that both A and B
contain the identity element of G, then at least one of the factors A and B
cannot span the whole G. We will verify this conjecture for p = 13.

1. Introduction

Let G be a finite abelian group. In this paper we will use multiplicative notation
in connection with abelian groups. We refer to the group operation as multiplica-
tion. The neutral element will be called identity element and will be denoted by e.
Let A and B be subsets of G. The product AB is defined to be {ab : a ∈ A, b ∈ B}.
In a typical situation equal elements occur in the list

(1) ab, a ∈ A, b ∈ B

and so, in a typical situation, |AB| ≤ |A||B| holds. If the elements in the list (1)
are distinct, that is, if |AB| = |A||B|, then we say that the product AB is direct.
When the product AB is direct and is equal to G, then we say that G = AB is a
factorization of G.

Let p be a prime. If G is a direct product of k groups of order p, then we
say that G is an elementary p-group of rank k. A group of order p is necessarily
commutative. The direct product of commutative groups is commutative again.
Therefore elementary p-groups are necessarily abelian groups.

A subset A of G is called normalized if e ∈ A. A factorization G = AB is called
normalized if the factors A and B are both normalized subsets of G. For a subset
A of G the intersection of all subgroups of G that contain A, that is, the span of
A in G is denoted by 〈A〉. If 〈A〉 = G, then A is called a full-rank subset of G.
If a factor is not full-rank, then it is contained in a maximal subgroup of G. A
factorization G = AB is called a full-rank factorization if the factors A and B are
full-rank factors. A subset A of G is called periodic if there is an element g ∈ G\{e}
such that Ag = A. A convenient way to test that a given subset A is periodic is to
compute

L =
⋂

a∈A

Aa−1.

If |L| = 1, then A is not periodic and if |L| ≥ 2, then A is periodic. (For a proof
see Lemma 1.2.1 of [3].)
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In 1970 L. Rédei [2] advanced the following conjecture.

Conjecture 1. Let p be a prime and let G be an elementary p-group of order p3.
If G = AB is a normalized factorization of G, then 〈A〉 �= G or 〈B〉 �= G.

The conjecture appears as Problem 5 in the Open Problems section of [2]. It
can be rephrased such that an elementary p group of rank 3 does not admit any
full-rank normalized factorizations.

The conclusion of the conjecture plainly holds when A = {e} or B = {e} and
so it is enough to consider the cases when |A| �= 1 and |B| �= 1. In fact, we may
assume that |A| = p, |B| = p2. When p = 2, then A\{e} contains only one element
and so 〈A〉 = G cannot hold. Similarly, in the p = 3 case, A\{e} contains only two
elements and consequently A cannot possibly span the entire G. Therefore, Rédei’s
conjecture is interesting for p ≥ 5. S. Szabó and C. Ward [4] settled the p ≤ 11
cases. The p = 5, p = 7 cases required only paper and pencil. In the p = 11 case
the assistance of a computer was needed. The p = 13 case of the computation was
highly infeasible.

In this paper we propose a new approach. Interestingly, in this way even the
p = 5 case is not well suited for hand computation. However, a computer handles
the p = 13 case without difficulty.

2. The exact cover problem

In this section we define three problems. They are the simultaneous complement
factor, the exact cover, and the simultaneous transversal problems.

Problem 1. Given a finite abelian group G and subgroups H1, . . . , Hr of G such
that |H1| = · · · = |Hr|. The problem is to decide if there is a normalized subset B
of G for which G = H1B, . . . , G = HrB are factorizations of G.

Here B is a complement factor to the subgroups H1, . . . , Hr simultaneously. Per-
haps we may refer to this problem as the simultaneous complement factor problem.
In this form the problem is a decision problem. The answer is “yes” or “no”. We
need that variant of the problem that finds B. In fact, we are looking for all possible
B.

The exact cover problem is the following.

Problem 2. Given a universal set U and a family of subsets D1, . . . , Dn of U . The
task is to decide if there are disjoint subsets E1, . . . , Es ∈ {D1, . . . , Dn} such that
U = E1 ∪ · · · ∪ Es.

The sets E1, . . . , Es form an exact cover of U ; whence the name of the problem.
Again the problem in this form is a decision problem and we need that version,
which searches for all possible exact covers of U .

It is known from the theory of computations that the decision version of the
exact cover problem is NP complete. So we cannot expect a polynomial running
time algorithm for this problem. D. E. Knuth [1] presents an algorithm for the
exact cover problem. This is what we will use in this paper.

In order to apply the exact cover algorithm to Rédei’s conjecture we describe
yet another problem that we call the simultaneous transversal problem.

Problem 3. Given a set V and given r partitions P1, . . . , Pr of V , say, Pi =
{Ci,1, . . . , Ci,s}, here Ci,j is a subset of V and each Pi has the same number of el-
ements. The simultaneous transversal problem questions the existence of elements
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v(1), . . . , v(s) of V that form a transversal of the partitions P1, . . . , Pr simultane-
ously.

We need that version of the simultaneous transversal problem that lists all pos-
sible simultaneous transversals of the partitions P1, . . . , Pr. We will see in Section
4 how the simultaneous transversal problem helps in checking Rédei’s conjecture.

Lemma 1. The simultaneous transversal problem can be reduced to the exact cover
problem.

Proof. Let us construct an incidence matrix withm = |V | rows and n = rs columns.
The rows are labeled with the elements of V and the columns are labeled with the
sets Ci,j . For each element v of V we put a bullet into the cell in the row of v and
in the column of Ci,j if v ∈ Ci,j . We can now construct an exact cover problem.
Set the universal set U to be

{C1,1, . . . , C1,s, . . . , Cr,1, . . . , Cr,s}.

To each element v of V we define a subset Dv of U by the assignment

Ci,j ∈ Dv exactly when v ∈ Ci,j .

Using the incidence matrix constructed above one can check that if v(1), . . . , v(s) is
a transversal to the partitions P1, . . . , Pr simultaneously, then the subsetsDv(1), . . . ,
Dv(s) form an exact cover of U . It can also be checked that if v(1), . . . , v(s) ∈ V
for which Dv(1), . . . , Dv(s) is an exact cover of U , then the elements v(1), . . . , v(s)
form a transversal for each partition P1, . . . , Pr simultaneously. �

In order to illustrate the construction we worked out an example. Let V =
{1, 2, 3, 4, 5, 6, 7, 8} and let the partitions P1, P2, P3 be the following:

P1 = {{1, 2, 3, 4}︸ ︷︷ ︸
=C1,1

, {5, 6, 7, 8}︸ ︷︷ ︸
=C1,2

},

P2 = {{1, 3, 5, 7}︸ ︷︷ ︸
=C2,1

, {2, 4, 6, 8}︸ ︷︷ ︸
=C2,2

},

P3 = {{1, 2, 7, 8}︸ ︷︷ ︸
=C3,1

, {3, 4, 5, 6}︸ ︷︷ ︸
=C3,2

}.

The incidence matrix associated with these partitions is depicted in Table 1.

Table 1. The incidence matrix

C1,1 C1,2 C2,1 C2,2 C3,1 C3,2

1 • • •
2 • • •
3 • • •
4 • • •
5 • • •
6 • • •
7 • • •
8 • • •
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Table 2. The p = 5 case

(u, v, w) μ ν (u, v, w) μ ν
(0, 0, 2) 49 2 (1, 1, 1) 3 0
(0, 1, 1) 49 2 (1, 1, 2) 49 2
(0, 1, 2) 25 1 (4, 4, 4) 133 6
(0, 2, 2) 1 0

Table 3. The p = 7 case

(u, v, w) μ ν (u, v, w) μ ν
(0, 0, 2) 529 12 (1, 1, 1) 277 6
(0, 0, 3) 529 12 (1, 1, 2) 361 8
(0, 1, 1) 529 12 (1, 1, 3) 361 8
(0, 1, 2) 397 9 (1, 2, 2) 445 10
(0, 2, 2) 265 6 (3, 3, 3) 583 12
(0, 3, 6) 265 6

3. Dealing with the symmetries

Let p be a prime greater than 3. Let G be an elementary p-group of order p3.
Consider a normalized factorization G = AB, where |A| = p, |B| = p2. In order
to verify Rédei’s conjecture we assume on the contrary that 〈A〉 = 〈B〉 = G. Our
purpose is to show that such a factorization does not exist. (We can carry this plan
to completion only when p ≤ 13.) Let us choose an element a of A. Multiplying
the normalized factorization G = AB by a−1 we get the normalized factorization
G = Ga−1 = (Aa−1)B of G. Let us choose an element a′a−1 of (Aa−1). In
the factorization G = (Aa−1)B, by Lemma 1.4.3 of [3], the factor (Aa−1) can be
replaced by the subgroup 〈a′a−1〉 to get the normalized factorization G = 〈a′a−1〉B
for each distinct a′, a ∈ A. Suppose for a moment that we know the elements of A.
Among the subgroups 〈a′a−1〉, a′, a ∈ A there may be equal ones. Let H1, . . . , Hr

be all the distinct elements among these subgroups of order p. This means that B
is a transversal to the cosets modulo the subgroups H1, . . . , Hr simultaneously. By
Lemma 1, the simultaneous transversal problem can be reduced to an exact cover
problem. With the exact cover algorithm one can compute all possible choices for
B and it remains to check if 〈B〉 = G holds. But, in fact, we do not know the
elements of A. We will be able to locate five elements of A. As a consequence the
value of r will be 10.

Since 〈A〉 = G, we can choose a basis x, y, z of G such that x, y, z ∈ A. Together
with e there are four fixed elements in A. As p ≥ 5, there is an element a in
A \ {e, x, y, z}. We partition A in the form A = A1 ∪A2, where A1 = {e, x, y, z, a}.
Since the product AB is direct, it follows that the product A1B is also direct. Our
strategy is the following. For each fixed A1 we compute each normalized subset B of
G for which |B| = p2 and the product A1B is direct. If it turns out that each such
B is either periodic or it is not full-rank, then we are done since in this case there
cannot be a counterexample for Rédei’s conjecture. Let xuyvzw, 0 ≤ u, v, w ≤ p−1
be the representation of a in the basis x, y, z. For the sake of brevity we will
represent a by the exponents (u, v, w) only. In a similar way the basis elements x,
y, z can be represented by the exponents (1, 0, 0), (0, 1, 0), (0, 0, 1).
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Table 4. The p = 11 case

(u, v, w) μ ν (u, v, w) μ ν
(0, 0, 2) 8 821 56 (1, 1, 5) 5 517 44
(0, 0, 3) 164 272 232 (1, 2, 2) 5 932 46
(0, 1, 1) 17 470 144 (1, 2, 3) 12 328 68
(0, 1, 2) 8 395 71 (1, 2, 4) 12 379 68
(0, 1, 3) 22 111 115 (1, 3, 3) 5 928 46
(0, 2, 2) 9 236 86 (1, 3, 4) 6 168 46
(0, 2, 3) 7 305 64 (2, 2, 2) 28 198 48
(0, 2, 5) 9 185 86 (2, 2, 3) 41 421 136
(0, 3, 10) 5 406 42 (2, 2, 4) 37 395 92
(0, 5, 8) 5 391 42 (2, 5, 8) 36 235 92
(1, 1, 1) 5 219 42 (2, 6, 7) 53 848 180
(1, 1, 2) 8 403 44 (3, 3, 7) 36 992 92
(1, 1, 3) 19 338 132 (5, 5, 5) 35 194 48
(1, 1, 4) 7 864 44 (7, 7, 10) 53 290 180

The number of choices for a is p3−4 since G has p3 elements and four elements of
G have already been chosen to be in A. We may assume that 0 ≤ u ≤ v ≤ w ≤ p−1
since the basis elements x, y, z can be interchanged among each other. This leaves

(
p+ 2

3

)
− 2 = (1/6)(p+ 2)(p+ 1)(p)− 2

choices for a as the elements e and z have already been chosen to be in A.
We need to further reduce the number of choices for the element a. We will sort

the possible A1 subsets into equivalence classes. It will be enough to work with one
representative from each equivalence class.

Note that if w �= 0, then among the elements x, y, z, a the elements x, y, a can
also be used as a basis for G. Setting

x1 = x, y1 = y, z1 = a, a1 = z

we get that

a1 = x−w−1u
1 y−w−1v

1 zw
−1

1 .

In other words, (u, v, w) can be replaced by (−w−1u,−w−1v, w−1). Here the oper-
ations are understood in Zp.

Similarly, if v �= 0, then (u, v, w) can be replaced by (−v−1u, v−1,−v−1w) and
if u �= 0, then (u, v, w) can be replaced by (u−1,−u−1v,−u−1w).

Multiplying the factorization G = AB = (A1 ∪A2)B by x−1 we get the normal-
ized factorization G = Gx−1 = (Ax−1)B = (A1x

−1 ∪ A2x
−1)B of G. Therefore,

the product (A1x
−1)B is direct. This means that the elements e, x, y, z, a of A1

can be replaced by the elements

x−1, e, yx−1, zx−1, ax−1

of A1x
−1 when A is replaced by Ax−1 in the factorization G = AB. Setting

x1 = x−1, y1 = yx−1, z1 = zx−1, a1 = ax−1

we get that

a1 = x1−u−v−w
1 yv1z

w
1 .
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In short (u, v, w) can be replaced by (1− u− v − w, v, w).
Similarly, (u, v, w) can be replaced by (u, 1−u−v−w,w) and (u, v, 1−u−v−w).
Let us define a graph Γ. The nodes of Γ are the elements of Z3

p . We send a
directed edge from the node

(2) (u, v, w)

to the node

(3) (u′, v′, w′)

of Γ if u′, v′, w′ is only a rearrangement of the elements u, v, w. Further, we connect
the node (2) with a directed edge to the node (3) if (u′, v′, w′) is equal to one of
the following:

(−w−1u,−w−1v, w−1), (w �= 0),

(−v−1u, v−1,−v−1w), (v �= 0),

(u−1,−u−1v,−u−1w), (u �= 0),

(1− u− v − w, v, w), (u, 1− u− v − w,w), (u, v, 1− u− v − w).

One can verify easily that if there is a directed edge from node (2) to node (3),
then there is a directed edge from node (3) to node (2). The two directed edges
can be replaced conveniently by a single undirected edge. Thus the edges of the
graph Γ are finally not directed. We decompose Γ into connected components and
we choose one representative from each component. The symmetry reduction part
of the argument can be summarized in the following result.

Lemma 2. The equivalence classes and the nodes of the connected components of
the graph Γ are identical.

The equivalence classes can be described in a more formal way. We define a
relation ∼ on Z3

p . Namely, the element (2) is in relation to the element (3) if there
is a directed edge from node (2) to node (3). One can see that the ∼ relation is
symmetric. The reflexive and transitive closure of ∼ is an equivalence relation. The
equivalence classes are the same as the nodes of the connected components in Γ.

We discard the elements of the components of (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1),
(p − 1, p − 1, p − 1). The reason for the last exclusion is that among the elements
of A \ {e, x, y, z} the element a can be chosen such that the quantity u + v + w is
as small as possible. Now in the u = v = w = p − 1 case there are no choices left
for the elements in A \ {e, x, y, z} if p ≥ 7.

4. The computations

We describe the set U and the subsetsD1, . . . , Dn of U in the exact cover problem
more explicitly. There is an incidence matrix associated with the exact cover prob-
lem and we describe this incidence matrix. There are ten subgroups H1, . . . , H10

such that G = H1B, . . . , G = H10B are normalized factorizations of G. The sub-
groups H1, . . . , H10 are spanned by the elements

ex−1, ey−1, ez−1, ea−1, xy−1, xz−1, xa−1, yz−1, ya−1, za−1,

respectively. The incidence matrix has |G| = p3 rows and (10) · p2 columns. The
rows are labeled by the elements of G. Each of the first p2 columns contains a
translated copy of the subgroup H1, that is, a coset modulo H1. These cosets are
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Table 5. The p = 13 case

(u, v, w) μ ν (u, v, w) μ ν
(0, 0, 2) 5 473 284 1 260 (1, 2, 3) 109 045 154
(0, 0, 3) 968 556 454 (1, 2, 4) 101 386 128
(0, 0, 4) 4 298 656 480 (1, 2, 5) 363 248 232
(0, 1, 1) 13 917 302 1 052 (1, 3, 3) 109 054 102
(0, 1, 2) 145 575 315 (1, 3, 4) 157 195 102
(0, 1, 3) 46 613 211 (1, 3, 5) 259 315 258
(0, 1, 5) 57 472 289 (1, 4, 4) 352 851 180
(0, 2, 2) 105 918 306 (2, 2, 2) 1 870 787 156
(0, 2, 3) 34 129 176 (2, 2, 3) 2 716 963 286
(0, 2, 4) 41 198 228 (2, 2, 4) 2 281 198 234
(0, 2, 6) 34 515 176 (2, 2, 5) 2 874 367 468
(0, 3, 3) 35 224 176 (2, 3, 3) 2 628 622 208
(0, 3, 12) 122 517 462 (2, 3, 4) 2 362 932 182
(0, 4, 4) 34 189 176 (2, 4, 4) 2 376 057 312
(1, 1, 1) 144 796 50 (2, 5, 10) 2 284 413 156
(1, 1, 2) 84 748 152 (3, 3, 4) 3 615 745 624
(1, 1, 3) 157 783 152 (3, 4, 8) 2 352 047 182
(1, 1, 4) 58 055 126 (3, 6, 6) 3 746 063 676
(1, 1, 5) 63 713 152 (3, 8, 8) 2 830 535 234
(1, 1, 6) 206 530 464 (5, 5, 5) 4 040 525 1 092
(1, 2, 2) 152 439 206

pairwise disjoint. Similarly, each of the second p2 columns contains a coset modulo
H2 and the cosets are pairwise disjoint. Finally, each of the tenth p2 columns con-
tains a coset modulo H10. These cosets are pairwise disjoint as well. The columns
are labeled by the elements of the universal set U . Therefore, |U | = (10) · p2. A
solution to this simultaneous transversal problem is the same as the solution to the
simultaneous complement factor problem for the subgroups H1, . . . , H10. The inci-
dence matrix provides the definition of the subsets D1, . . . , Dn. As a consequence
n must be equal to p3.

The p = 5, 7, 11, 13 cases are handled separately but in a similar manner. In
each case the computation can be divided into four steps.

(1) Constructing a transversal for the equivalence classes.
(2) Setting up the incidence matrix for the exact cover.
(3) Finding all possible exact covers.
(4) Inspecting the arising complement factors.

The source code is available at [5] .
In the p = 5 case the graph Γ splits into 8 connected components. We discard

the component containing (0, 0, 0). In the remaining 7 cases using the exact cover
algorithm we compute all possible factors B. The result is summarized in Table
2. The μ stands for the number the nodes of the searching tree and ν denotes the
number of the possible B’s found. In each case the resulting B was periodic. We
know from the last paragraph of Section 2 of [4] that if B is periodic, then it cannot
be part of a full-rank factorization. We point out that in this case we cannot rule
out the component containing (4, 4, 4).
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In the p = 7 case the graph Γ consists of 13 connected components. Two of
them we discard and in the remaining 11 cases we used the exact cover algorithm
to compute all possible B. The result is in Table 3. Again all B were periodic and
so there is no counterexample for Rédei’s conjecture when p = 7.

In the p = 11 case the graph Γ has 30 connected components, two of which we
discarded. Then we computed the possible B sets. All of them were periodic. The
details are presented in Table 4.

When p = 13 the graph Γ has 43 connected components. We sort out two of
them and so we end up with 41 instances of the exact cover problem. The results
are summarized in Table 5. Each of the computed B proved to be periodic.

We spell out the result of the computer aided search more formally.

Theorem 1. Conjecture 1 holds for p ≤ 13.
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