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THE NUMBER OF LATIN SQUARES OF ORDER 11

ALEXANDER HULPKE, PETTERI KASKI, AND PATRIC R. J. ÖSTERGÅRD

Abstract. Constructive and nonconstructive techniques are employed to enu-
merate Latin squares and related objects. It is established that there are
(i) 2036029552582883134196099 main classes of Latin squares of order 11;
(ii) 6108088657705958932053657 isomorphism classes of one-factorizations of
K11,11; (iii) 12216177315369229261482540 isotopy classes of Latin squares of
order 11; (iv) 1478157455158044452849321016 isomorphism classes of loops of
order 11; and (v) 19464657391668924966791023043937578299025 isomorphism
classes of quasigroups of order 11. The enumeration is constructive for the
1151666641 main classes with an autoparatopy group of order at least 3.

1. Introduction

1.1. Latin squares. A Latin square of order n is an n × n array over n symbols
such that every row and column is a permutation of the symbols. Latin squares
are among the most fundamental combinatorial objects, and have many equivalent
formulations [1, Theorem 1.11].

Latin squares are easily seen to exist for every n. It is, however, considerably
more challenging to count the number of distinct Latin squares. In fact, the exact
number is known only for n ≤ 11, with the most recent case n = 11 settled by
McKay and Wanless [14].

Here our interest is to enumerate Latin squares up to equivalence, whereby we
focus on main classes (see §1.3). We refer to [13] for a brief historical account
of enumerating small (n ≤ 6) Latin squares; this history goes as far back as the
eighteenth century and includes pioneering combinatorialists such as Cayley and
Euler. There is a unique main class for n ≤ 3, two main classes for n = 4, 5, and
12 main classes for n = 6. There are 147 main classes for n = 7; this classification
was carried out by Norton [15] and corrected by Sade [17]. Kolesova, Lam, and
Thiel [9] showed that there are 283657 main classes for n = 8. All of these results
were constructive, that is, representative Latin squares were (or could have been)
obtained from each main class. Recently, McKay, Meynert, and Myrvold [13],
on the other hand, counted in a nonconstructive way the number of main classes
for n = 9 and n = 10; these numbers are 19270853541 and 34817397894749939,
respectively.

In this paper, we enumerate the main classes for n = 11 together with related
objects such as quasigroups and loops (see [13] and §5).
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Theorem 1. There are

(i) 2036029552582883134196099 main classes of Latin squares of order 11;
(ii) 6108088657705958932053657 isomorphism classes of one-factorizations of

K11,11;
(iii) 12216177315369229261482540 isotopy classes of Latin squares of order 11;
(iv) 1478157455158044452849321016 isomorphism classes of loops of order 11;

and
(v) 19464657391668924966791023043937578299025 isomorphism classes of

quasigroups of order 11.

1.2. Group actions. We assume familiarity with group actions [16]. The Orbit-
Stabilizer Theorem provides the methodological foundation for counting in [13] as
well as in this paper; a similar approach is also used in [7] in the context of one-
factorizations of a complete graph.

Let Γ be a finite group that acts on a finite set L . For an X ∈ L , denote the
orbit of X by [X] = {γX : γ ∈ Γ} and the stabilizer of X in Γ by ΓX = {γ ∈ Γ :
γX = X}. For a subgroup Π ≤ Γ, denote the conjugacy class of Π in Γ by [Π] =
{γΠγ−1 : γ ∈ Γ} and the normalizer of Π in Γ by ΓΠ =

{
γ ∈ Γ : γΠγ−1 = Π

}
. The

Orbit-Stabilizer Theorem connects the size of an orbit with the size of a stabilizer
subgroup by |Γ| = |[X]| · |ΓX |.

In the context of combinatorial enumeration, the elements of L are called “la-
beled” objects, and the orbits of Γ on L are called “unlabeled” objects. Our
interest is to count the unlabeled objects. To this end, denote by Ni the number
of orbits [X] with |ΓX | = i. Because L partitions into orbits, we have

(1) |L | = |Γ|
∑

i

Ni

i
.

If we now know |Γ|, |L |, and Ni for each i ≥ 2, then we can solve (1) for N1

and obtain the number of unlabeled objects
∑

i Ni. In the earlier studies [7, 13],
the approach is to determine |L | by a nonconstructive counting technique and the
values Ni for i ≥ 2 by a constructive classification up to isomorphism.

In this paper, we extend the nonconstructive tools to the setting of prescribed
symmetry, which enables us to determine the values Ni nonconstructively also for
i > 1. There are two high-level ideas. First, the stabilizer subgroups of the elements
of an orbit form a conjugacy class of subgroups of Γ. Thus, we can split the task
of determining Ni into subtasks indexed by conjugacy classes [Π] with |Π| = i.
Second, we can solve each such subtask via an analog of (1). Namely, instead of
counting individual labeled objects X ∈ L as in (1), we count formal pairs (X,Σ)
consisting of a labeled object X ∈ L and a subgroup Σ ≤ ΓX with Σ ∈ [Π].

Let us now proceed with a more detailed treatment. Denote by N[Π] the number
of orbits [X] with ΓX ∈ [Π]. Taking the sum over all conjugacy classes [Π] with
|Π| = i, we have

(2) Ni =
∑

[Π]:|Π|=i

N[Π] .

For a conjugacy class [Π], define the following two sets of formal pairs:

L[Π] = {(X,Σ) : X ∈ L , Σ ≤ ΓX , Σ ∈ [Π]} ,

C[Π] = {(X,Σ) : X ∈ L , Σ < ΓX , Σ ∈ [Π]} .
(3)
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For X ∈ L , let

(4) S[Π](X) = {Σ ≤ ΓX : Σ ∈ [Π]} .

Observe that S[Π](γX) = γS[Π](X)γ−1 for all γ ∈ Γ. By the Orbit-Stabilizer
Theorem, we thus have

(5)
∣
∣L[Π]

∣
∣ = |Γ|

∑

[X]

|S[Π](X)|
|ΓX | ,

∣
∣C[Π]

∣
∣ = |Γ|

∑

[X]:|Π|<|ΓX |

|S[Π](X)|
|ΓX | .

Because ΓX ∈ [Π] implies both S[Π](X) = {ΓX} and |ΓX | = |Π|, we have (cf. (1))

(6)
∣
∣L[Π]

∣
∣ = |Γ|

N[Π]

|Π| +
∣
∣C[Π]

∣
∣ .

Equation (6) is now the crux of our counting approach: First, we compute
|L[Π]| nonconstructively. Second, we constructively enumerate the orbits [X] with
|Π| < |ΓX |, which gives us |C[Π]| via (4) and (5). Finally, we solve (6) for N[Π].

One further simplification is that the task of computing |L[Π]| can be reduced
from [Π] to a representative group Π ≤ Γ in the conjugacy class. To this end, let

(7) LΠ = {X ∈ L : Π ≤ ΓX} .

From (3), the fact that γLΠ = LγΠγ−1 for all γ ∈ Γ, and the Orbit-Stabilizer
Theorem, we have

(8) |L[Π]| =
∑

Σ∈[Π]

|LΣ| = |[Π]| · |LΠ| =
|Γ|
|ΓΠ|

|LΠ| .

We now proceed to apply this approach in the setting of Latin squares.

1.3. Main classes. We work with the standard triple system representation of
Latin squares. To this end, let R = {r1, r2, . . . , rn}, C = {c1, c2, . . . , cn}, and
S = {s1, s2, . . . , sn} be three pairwise disjoint n-element sets. The intuition is that
R indexes the rows, C indexes the columns, and S is the set of symbols. We use
design-theoretic terminology and call the elements of R∪C ∪S points and the sets
R,C, S point classes.

A Latin square of order n can now be represented as a set of n2 triples, where
each triple {ri, cj , sk} indicates that the symbol sk occurs in row ri, column cj of
the array. Put otherwise, a Latin square (in triple system representation) is a set L
of triples over R ∪ C ∪ S such that (a) any two points from different point classes
occur together in a unique triple; and (b) no triple contains two points from the
same point class.

Assuming R,C, S are fixed but arbitrary, denote by L the set of all Latin squares
in triple system representation. A “Latin square” in what follows refers to an
element of L . Accordingly, it is convenient to assume in what follows that a “pair”
(of points) refers to a set of two points from two different point classes, and a
“triple” (of points) refers to a set of three points from three different point classes.

Let Γ be the group consisting of all permutations of R ∪ C ∪ S that fix the
partition {R,C, S} setwise. The structure of this group is a wreath product Γ =
Sn � S3

∼= (Sn)
3
� S3 with the three copies of Sn permuting the points within

each of the three point classes, and S3 permuting the point classes. In particular,
|Γ| = 3!(n!)3.
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The orbits of Γ on L are called main classes. Two Latin squares in the same
main class are paratopic. The stabilizer of a Latin square in Γ is called the au-
toparatopy group; the elements of the group are autoparatopisms.

1.4. Proof outline. The rest of this paper constitutes a proof of Theorem 1. Our
approach is to determineNi for i = 2 via nonconstructive techniques enabled by §1.2
and for i > 2 via constructive enumeration of main class representatives. Finally,
we solve for N1 using (1), with |L | given by [14].

We begin in §2 by establishing the necessary background on autoparatopisms
of Latin squares. In §3 we carry out a constructive enumeration of all main
classes of Latin squares admitting an autoparatopy group of order at least 3. In
§4 we carry out a nonconstructive enumeration of Latin squares admitting fixed
autoparatopisms of order 2. Finally, in §5 we complete the proof of Theorem 1 by
applying (1), (2), (4), (5), and (6) to the results of §3 and §4.

2. Groups of autoparatopisms

2.1. Prime order. A group element α ∈ Γ of prime order p is characterized up
to conjugation in Γ by: (a) the prime order p; (b) the number of points fixed in
each of the point classes R, C, and S; and (c) the number of point classes R,C, S
fixed. Denote by fR, fC , and fS the number of points fixed by α in R, C, and S,
respectively. Up to conjugacy we may assume fR ≥ fC ≥ fS . Denote by F the
number of point classes R,C, S fixed by α.

We proceed to narrow down the possible types (p, fR, fC , fS , F ). The results in
the following two lemmata are well known; see, for example, [13, Theorem 1].

Lemma 2. The order p divides 3−F . For each parameter f in fR, fC , fS it holds
that f = 0 or p divides n−f ; furthermore, the latter property must hold for at least
F of the parameters.

Proof. A cycle decomposition of α consists only of p-cycles and fixed points. So if
a point class is fixed—there are F such point classes—and contains f fixed points,
then p divides n− f . Similarly, p divides 3− F . �

Lemma 3. Any group of autoparatopisms of a Latin square that fixes points from
at least two point classes has the property that the fixed points induce a subsquare.
In particular, if fR ≥ 1 and fC ≥ 1 for a nonidentity autoparatopism, then fR =
fC = fS ≤ n/2.

Proof. Consider the triples in a Latin square. If a triple has two fixed points relative
to a group of autoparatopisms, then the third point must also be fixed; otherwise
the two fixed points would occur in at least two triples, which is impossible. Thus,
the number of triples with three fixed points is fRfC = fRfS = fCfS , from which
we conclude fR = fC = fS when fR, fC ≥ 1. Moreover, the triples with three fixed
points induce a Latin square on the fixed points. The order of a proper subsquare
in a Latin square of order n is at most n/2 [1, Theorem 1.42]. �

We must consider the prime orders p = 2, 3, 5, 7, 11 for n = 11. Combining Lem-
mata 2 and 3, we can exclude all other types (p, fR, fC , fS , F ) except those listed
in Table 1. This table also displays data related to the constructive enumeration
to be discussed in §3.
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Table 1. Autoparatopisms of prime order

Type p fR fC fS F T Seeds MT

1 2 1 1 1 3 - - -
2 2 3 3 3 3 - - -
3 2 5 5 5 3 - - -
4 2 1 0 0 1 - - -
5 2 3 0 0 1 - - -
6 2 5 0 0 1 - - -
7 2 7 0 0 1 - - -
8 2 9 0 0 1 - - -
9 2 11 0 0 1 - - -
10 3 2 2 2 3 f3 13 4
11 3 5 5 5 3 f3 30 25
12 3 0 0 0 0 c2n 339638 165
13 5 1 1 1 3 f3 7 1
14 7 4 4 4 3 f3 6 16
15 11 0 0 0 3 m1 28 33
16 11 11 0 0 3 f1m1 1 242

2.2. Order four. We next determine the subgroups Π ≤ Γ of order 4 whose ele-
ments of order 2 belong to the conjugacy classes in Table 1. We call such elements
of order 2 eligible elements.

We first compute the conjugacy classes of elements of Γ (there are 34048 classes)
using standard algorithms and isolate the 374 classes of order 4. Amongst these we
find 6 classes for which the squares of elements are eligible. We observe that the
elements in each of these classes are conjugate to their inverses. Therefore, there
are 6 classes of cyclic groups of order 4. They are listed as types 38–43 in Table 3,
with generator permutations (column “Generators”) appearing in Table 4.

We note that the conjugacy classes of eligible elements, as well as of elements of
order 4 with eligible squares, are determined by their permutation cycle structure
1a12a24a4 for a1 + 2a2 + 4a4 = 3n and the number F of point classes R,C, S that
they fix. Table 2 indicates these 16 conjugacy classes.

To classify elementary abelian subgroups of order 4, we note that each such
subgroup must contain three elements of order 2, any two of which generate the
group. We will first classify such generating pairs (α, β), where both α ∈ Γ and
β ∈ Γ are eligible, and β is contained in the centralizer of α, which we denote by
Γα = {γ ∈ Γ : γαγ−1 = α}. Furthermore, αβ must be eligible as well. Clearly,
any two of the three elements α, β, αβ generate the same group. We therefore
can assume, without loss of generality, that (in an arbitrary total order on the
conjugacy classes of Γ, for example, the “Type” number in Table 2) the class of α
is not larger than the class of β, which is not larger than the class of αβ. If this is
fulfilled, we call the pair (α, β) valid.

Furthermore, we need to classify such pairs only up to conjugacy in Γ. For
this, we may assume that α is the chosen representative of its conjugacy class and
β is chosen up to conjugacy by Γα. We determine the representatives for β by
computing for each eligible α the conjugacy classes of Γα and identifying amongst
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Table 2. Autoparatopism types for order dividing 4

Type Cycles F

1 13215 3

2 19212 3

3 11529 3

4 11216 1

5 13215 1

6 15214 1

7 17213 1

8 19212 1

9 111211 1

10 132346 3

11 152246 3

12 172146 3

13 1946 3

14 112446 1

15 132346 1

16 133 3

these the classes of eligible elements. For each such class representative β we test
whether (α, β) is valid, and collect the valid pairs in a list.

Because conjugacy of subgroups conjugates elements to elements, the lexico-
graphic choice of generating pairs ensures that the only remaining potential conju-
gacy amongst subgroups generated by such pairs can happen if both α and β, or β
and αβ are in the same class under Γ.

A classification of such pairs on the computer finds 37 valid pairs; none of the
corresponding subgroups are conjugate, as verified by explicit conjugacy tests in
Γ. These groups are listed as types 1–37 in Table 3, again generators appear in
Table 4.

Calculations were done in the system GAP [3].
Up to conjugacy in Γ, there are now exactly 43 groups Π ≤ Γ of order 4 whose

elements of order 2 belong to the conjugacy classes in Table 1.
It turns out that these groups are distinguished up to conjugacy in Γ by the

conjugacy classes of their elements (column “Elements”) and the lengths 1a12a24a4

for a1 + 2a2 + 4a4 = 3n of their orbits on R ∪ C ∪ S (column “Orbits”).
We can rule out the following groups with combinatorial arguments.

Lemma 4. The groups of types 1, 3, 4, 5, 9, 10, 13, 16, 24, 27, 40, and 41 are
not admitted by a Latin square of order 11.

Proof. Let R = {1, 2, . . . , 11}, C = {12, 13, . . . , 22}, and S = {23, 24, . . . , 33}.
Types 4, 10, 16, 27, 40, and 41: All point classes contain fixed points, but their

number varies between point classes. This contradicts Lemma 3.
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Table 3. Candidate groups of order 4

Type Generators Elements Orbits T Seeds MT

1* γ1, γ2 3, 6, 9, 16 152843 - - -
2 γ1, γ3 3, 4, 7, 16 1121043 f1m2 102 11
3* γ1, γ4 2, 3, 3, 16 13215 - - -
4* γ1, γ5 2, 3, 3, 16 172942 - - -
5* γ1, γ6 3, 7, 8, 16 152843 - - -
6 γ1, γ7 3, 5, 6, 16 1121043 f1m2 230 11
7 γ1, γ8 1, 2, 3, 16 132943 f3 40 1
8 γ1, γ9 3, 6, 7, 16 152644 f3n 80 10
9* γ1, γ10 3, 4, 5, 16 112844 - - -

10* γ1, γ11 2, 3, 3, 16 1521241 - - -
11 γ1, γ12 3, 5, 8, 16 132943 f3n 80 1
12 γ1, γ13 3, 6, 7, 16 132943 f3n 80 1
13* γ1, γ14 2, 3, 3, 16 192643 - - -
14 γ1, γ15 3, 5, 6, 16 132744 f3n 80 1
15 γ16, γ17 2, 2, 2, 16 1946 f3 12 9
16* γ16, γ18 2, 2, 2, 16 152644 - - -
17 γ16, γ19 1, 1, 2, 16 132346 f3 20 1
18 γ16, γ20 2, 5, 9, 16 132744 f3n 127 1
19 γ16, γ21 2, 7, 7, 16 132744 f3n 83 1
20 γ16, γ22 2, 5, 5, 16 132346 f3n 83 1
21 γ16, γ23 2, 6, 8, 16 132744 f3n 127 1
22 γ16, γ24 2, 4, 8, 16 112844 f1m2 608 11
23 γ16, γ25 2, 6, 6, 16 112844 f1m1 2215 22
24* γ16, γ26 2, 4, 4, 16 112446 - - -
25 γ16, γ27 2, 5, 7, 16 112844 f1m1 2835 22
26 γ16, γ28 2, 2, 2, 16 132943 f3 10 1
27* γ16, γ29 2, 2, 2, 16 172345 - - -
28 γ16, γ30 2, 5, 7, 16 132545 f3n 127 1
29 γ16, γ31 2, 6, 6, 16 132545 f3n 83 1
30 γ16, γ32 2, 4, 6, 16 112645 f1m1 2854 22
31 γ16, γ33 2, 5, 5, 16 112645 f1m1 3351 22
32 γ34, γ35 1, 4, 9, 16 112645 f1m1 194 22
33 γ34, γ36 1, 6, 7, 16 112645 f1m1 2300 22
34 γ34, γ37 1, 5, 8, 16 112645 f1m1 1083 22
35 γ34, γ38 1, 4, 7, 16 112446 f1m1 1696 22
36 γ34, γ39 1, 5, 6, 16 112446 f1m1 6406 22
37 γ34, γ40 1, 4, 5, 16 112247 f1m1 1761 22
38 γ41 2, 13, 13, 16 1946 f3 20 9
39 γ42 2, 10, 10, 16 132346 f3 20 1
40* γ43 2, 11, 11, 16 152246 - - -
41* γ44 2, 12, 12, 16 172146 - - -
42 γ45 2, 15, 15, 16 132346 f3n 4 1
43 γ46 2, 14, 14, 16 112446 f1m1 242 22

*) Excluded by Lemma 4
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Table 4. Generators for Table 3

R = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

C = {12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22}

S = {23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33}

γ1 = (1,2)(3,4)(5,6)(12,13)(14,15)(16,17)(23,24)(25,26)(27,28)

γ2 = (12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,31)(19,29)(20,30)(21,32)(22,33)

γ3 = (8,10)(9,11)(12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,31)(19,29)(20,30)(21,32)(22,33)

γ4 = (1,2)(8,10)(9,11)(16,17)(19,22)(20,21)(27,28)(29,33)(30,32)

γ5 = (1,2)(8,10)(9,11)(12,14)(13,15)(19,22)(23,25)(24,26)(29,33)

γ6 = (1,2)(12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,31)(19,29)(20,30)(21,32)(22,33)

γ7 = (1,2)(8,10)(9,11)(12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,31)(19,29)(20,30)(21,32)(22,33)

γ8 = (3,5)(4,6)(8,10)(9,11)(12,14)(13,15)(19,22)(20,21)(23,25)(24,26)(29,33)(30,32)

γ9 = (3,5)(4,6)(12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,31)(19,29)(20,30)(21,32)(22,33)

γ10 = (1,2)(3,5)(4,6)(8,10)(9,11)(12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,31)(19,29)(20,30)(21,32)(22,33)

γ11 = (1,2)(8,10)(9,11)(16,17)(19,22)(20,21)(23,25)(24,26)(29,33)

γ12 = (9,11)(12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,31)(19,29)(20,30)(21,32)(22,33)

γ13 = (1,2)(9,11)(12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,31)(19,29)(20,30)(21,32)(22,33)

γ14 = (3,5)(4,6)(9,11)(12,14)(13,15)(19,22)(23,25)(24,26)(29,33)

γ15 = (3,5)(4,6)(9,11)(12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,31)(19,29)(20,30)(21,32)(22,33)

γ16 = (1,2)(3,4)(5,6)(7,8)(12,13)(14,15)(16,17)(18,19)(23,24)(25,26)(27,28)(29,30)

γ17 = (1,3)(2,4)(5,7)(6,8)(12,14)(13,15)(16,18)(17,19)(23,25)(24,26)(27,29)(28,30)

γ18 = (1,3)(2,4)(5,7)(6,8)(12,15)(13,14)(16,17)(21,22)(23,26)(24,25)(27,28)(32,33)

γ19 = (1,3)(2,4)(5,7)(6,8)(10,11)(12,14)(13,15)(16,18)(17,19)(21,22)(23,25)(24,26)(27,29)(28,30)(32,33)

γ20 = (12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)(21,32)(22,33)

γ21 = (5,6)(7,8)(12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)(21,32)(22,33)

γ22 = (1,3)(2,4)(5,7)(6,8)(12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)(21,32)(22,33)

γ23 = (7,8)(12,24)(13,23)(14,26)(15,25)(16,28)(17,27)(18,29)(19,30)(20,31)(21,32)(22,33)

γ24 = (10,11)(12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)(21,33)(22,32)

γ25 = (5,6)(7,8)(10,11)(12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)(21,33)(22,32)

γ26 = (1,3)(2,4)(5,7)(6,8)(10,11)(12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)(21,33)(22,32)

γ27 = (7,8)(10,11)(12,24)(13,23)(14,26)(15,25)(16,28)(17,27)(18,29)(19,30)(20,31)(21,33)(22,32)

γ28 = (1,3)(2,4)(7,8)(10,11)(12,15)(13,14)(16,17)(21,22)(23,25)(24,26)(29,30)(32,33)

γ29 = (1,3)(2,4)(7,8)(10,11)(12,14)(13,15)(16,18)(17,19)(23,26)(24,25)(27,30)(28,29)

γ30 = (1,3)(2,4)(12,25)(13,26)(14,23)(15,24)(16,27)(17,28)(18,29)(19,30)(20,31)(21,32)(22,33)

γ31 = (1,3)(2,4)(7,8)(12,26)(13,25)(14,24)(15,23)(16,28)(17,27)(18,29)(19,30)(20,31)(21,32)(22,33)

γ32 = (1,3)(2,4)(10,11)(12,25)(13,26)(14,23)(15,24)(16,27)(17,28)(18,29)(19,30)(20,31)(21,33)(22,32)

γ33 = (1,3)(2,4)(7,8)(10,11)(12,26)(13,25)(14,24)(15,23)(16,28)(17,27)(18,29)(19,30)(20,31)(21,33)(22,32)

γ34 = (1,2)(3,4)(5,6)(7,8)(9,10)(12,13)(14,15)(16,17)(18,19)(20,21)(23,24)(25,26)(27,28)(29,30)(31,32)

γ35 = (12,23)(13,24)(14,25)(15,26)(16,29)(17,30)(18,27)(19,28)(20,31)(21,32)(22,33)

γ36 = (7,8)(9,10)(12,23)(13,24)(14,25)(15,26)(16,29)(17,30)(18,27)(19,28)(20,31)(21,32)(22,33)

γ37 = (3,4)(12,23)(13,24)(14,25)(15,26)(16,29)(17,30)(18,27)(19,28)(20,31)(21,32)(22,33)

γ38 = (7,9)(8,10)(12,23)(13,24)(14,25)(15,26)(16,29)(17,30)(18,27)(19,28)(20,31)(21,32)(22,33)

γ39 = (3,4)(7,9)(8,10)(12,23)(13,24)(14,25)(15,26)(16,29)(17,30)(18,27)(19,28)(20,31)(21,32)(22,33)

γ40 = (1,2)(3,5)(4,6)(7,9)(8,10)(12,23)(13,24)(14,25)(15,26)(16,29)(17,30)(18,27)(19,28)(20,31)(21,32)(22,33)

γ41 = (1,2,3,4)(5,6,7,8)(12,13,14,15)(16,17,18,19)(23,24,25,26)(27,28,29,30)

γ42 = (1,2,3,4)(5,6,7,8)(9,10)(12,13,14,15)(16,17,18,19)(20,21)(23,24,25,26)(27,28,29,30)(31,32)

γ43 = (1,2,3,4)(5,6,7,8)(12,13,14,15)(16,17,18,19)(20,21)(23,24,25,26)(27,28,29,30)(31,32)

γ44 = (1,2,3,4)(5,6,7,8)(12,13,14,15)(16,17,18,19)(23,24,25,26)(27,28,29,30)(31,32)

γ45 = (1,13,2,12)(3,15,4,14)(5,17,6,16)(7,19,8,18)(9,20)(10,21)(11,22)(23,24,25,26)(27,28,29,30)

γ46 = (1,13,2,12)(3,15,4,14)(5,17,6,16)(7,19,8,18)(9,20)(10,21)(11,22)(23,24,25,26)(27,28,29,30)(31,32)



LATIN SQUARES OF ORDER 11 1205

Type 1: Let

R1 = {1, 2, 3, 4, 5, 6} , R2 = {7, 8, 9, 10, 11} ,
C1 = {12, 13, 14, 15, 16, 17} , C2 = {18, 19, 20, 21, 22} ,
S1 = {23, 24, 25, 26, 27, 28} , S2 = {29, 30, 31, 32, 33} .

Lemma 3 applied to γ1 reveals that R2 ∪C2 ∪ S2 induces a 5× 5 subsquare. Thus,
there exists no triple with exactly two points from R2 ∪ C2 ∪ S2.

Next consider pairs with one point from C1 and one from S1; there are |C1|·|S1| =
36 such pairs. The action of the group partitions these pairs combined with any
points from R into orbits, exactly six of which have length 4; for example, one such
orbit is

{{x, 12, 25}, {x, 14, 23}, {γ1(x), 13, 26}, {γ1(x), 15, 24}} .
As γ1(x) = x when x ∈ R2, any such x can be in at most one orbit (otherwise
it would occur in at least 2 · 4 = 8 triples together with points from C1, but
|C1| = 6 < 8).

It follows that x ∈ R2 in at most five of the above mentioned six orbits of length
4, whereby x ∈ R1 in at least one of the orbits. Such an orbit with x ∈ R1 contains
two pairs {x, y} with y ∈ C1 (and recall that the third point of the triple is from
S1). Finally, consider how pairs {x, z} with z ∈ S2 are covered. The third point in
the corresponding triple has to come from C1 (by the initial comment). However,
we have 5 points in S2 to be combined with x and 6− 2 = 4 points in C1, which is
not possible.

Type 3: It follows by Lemma 3 that there are 5×5 subsquares over {7, 8, 9, 10, 11},
{18, 19, 20, 21, 22}, {29, 30, 31, 32, 33} and {3, 4, 5, 6, 7}, {12, 13, 14, 15, 18}, {23, 24,
25, 26, 31} for γ1 and γ4, respectively.

Consider the four triples containing point 3 and one point from {19, 20,
21, 22}. By the given subsquare structure, the only possibilities for the third point
of the triple are the points {27, 28}, implying that {3, 27} or {3, 28} would occur
in more than one triple.

Type 5: The proof for Type 1 is applicable as such, since the only difference
between these cases is the additional transposition (1, 2) in generator γ6, which
leads to different orbits—for example, {1, 12, 25}, {2, 14, 23}, {2, 13, 26}, {1, 15, 24}
instead of {1, 12, 25}, {1, 14, 23}, {2, 13, 26}, {2, 15, 24}—but has no impact on the
arguments of the proof.

Type 9: The only point fixed by γ10 is 7, which is then the only possible third
point in triples containing the points in transpositions of γ10 with one point each
from C and S. Since there are 11 such triples, the point 7 does not occur in any
other triples.

By considering possible choices for x in {x, 12, 24}, we get up to symmetry four
cases with the orbits

{{1, 12, 24}, {2, 13, 23}} ,
{{3, 12, 24}, {4, 13, 23}, {5, 13, 23}, {6, 12, 24}} ,
{{8, 12, 24}, {8, 13, 23}, {10, 13, 23}, {10, 12, 24}} , and

{{7, 12, 24}, {7, 13, 23}} .
Because of the earlier argument, we cannot have x = 7, and because pairs of points
occur twice in two other cases, we must have x ∈ {1, 2}.
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Repeated use of the previous reasoning gives that each of the pairs {12, 24},
{13, 23}, {14, 26}, {15, 25}, {16, 28}, and {17, 27} must occur in triples together
with the points 1 and 2 (three times each). Now consider triples {1, x, y} with
y ∈ {29, 30, 31, 32, 33} = S2. It follows from the subsquare implied by γ1 that we
cannot have x ∈ {18, 19, 20, 21, 22} = C2. Now there are |C \ C2| = 6 possible
choices for x, 3 of which already occur in triples together with the point 1; but
6− 3 = 3 < 5 = |S2|.

Type 13: By applying Lemma 3 to γ1 and γ1γ14 we get that there are a 5 × 5
subsquare over {7, 8, 9, 10, 11}, {18, 19, 20, 21, 22}, {29, 30, 31, 32, 33} and a 3 × 3
subsquare over {7, 8, 10}, {18, 20, 21}, {30, 31, 32}, respectively. But the latter is a
subsquare of the former, and a 5 × 5 square cannot contain a 3 × 3 subsquare [1,
Theorem 1.42].

Type 24: Analogously to the case of Type 9, we argue that, as the only point
fixed by γ26 is 9, this point occurs exactly in triples with the other two points from
transpositions of γ26.

By considering possible choices for x in {x, 12, 24}, we get up to symmetry three
cases with the orbits

{{1, 12, 24}, {3, 13, 23}, {4, 12, 24}, {2, 13, 23}} ,
{{10, 12, 24}, {10, 13, 23}, {11, 13, 23}, {11, 12, 24}} , and

{{9, 12, 24}, {9, 13, 23}} .
But because of the earlier argument, we cannot have x = 9, and pairs of points
occur twice in the other two cases. �

We remark that the combinatorial proofs in Lemma 4 were triggered by computer
searches showing nonexistence.

3. Constructive enumeration

3.1. Admissible groups. We recall the following corollary of the Sylow Theorems.

Theorem 5 ([16, Corollary 4.15]). Let Λ be a finite group, let p be a prime, and
let k be a positive integer. If pk divides |Λ|, then Λ contains a subgroup of order pk.

Let us say that a Latin square L admits Λ ≤ Γ as a group of autoparatopisms if
Λ ≤ ΓL. Combining Theorem 5 with the analysis in §2, we have that every Latin
square L of order 11 with |ΓL| ≥ 3 admits at least one subgroup conjugate to: (a)
a group of odd prime order in Table 1; or (b) a group of order 4 in Table 3 not
excluded by Lemma 4. Let us call these groups the admissible groups.

3.2. The enumeration. We apply the framework in [5] to construct exactly one
representative from each main class of Latin squares admitting at least one admis-
sible group.

Associated with each conjugacy class [Π] of admissible groups is a set of seeds,
at least one of which is guaranteed to occur in every Latin square admitting Π.

The formal definition of a seed is as follows. Let Π ≤ Γ be an admissible group.
Let T ⊆ R ∪C ∪ S be a set of points whose size and composition is determined by
column “T” in Tables 1 and 3 as follows:

fi : indicates i points fixed by Π;
mi : indicates i points moved by Π;
ci : indicates i points in same point class;
n : see item (d) below.
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(For example, “f1m2” indicates that T consists of 3 points, 1 point fixed by Π, and
2 points moved by Π.) Finally, let S be a union of Π-orbits of triples such that,
referring to the elements of S as blocks,

(a) any pair occurs in at most one block;
(b) each point in T occurs in exactly n blocks;
(c) T has nonempty intersection with at least one block on every Π-orbit on

S; and
(d) the set T occurs in at least one block unless the composition of T has the

“n” indicator.

Each such tuple (Π, T,S) is a seed associated with the conjugacy class [Π].
Let γ ∈ Γ act on a seed by γ(Π, T,S) = (γΠγ−1, γT, γS). The orbits of Γ on the

set of all seeds are the isomorphism classes of seeds. A Latin square L contains (or
extends) a seed (Π, T,S) if Π ≤ ΓL and S ⊆ L.

Given a seed (Π, T,S), the task of finding all Latin squares that extend the
seed is an instance of the exact cover problem. In particular, the task is to cover
exactly once all uncovered pairs using Π-orbits of triples; each triple covers the
pairs occurring in it.

Our constructive enumeration approach now proceeds as follows. First, we clas-
sify the seeds up to isomorphism using the algorithms described in [5]. The number
of nonisomorphic seeds associated with each conjugacy class of admissible groups
is given in column “Seeds” in Tables 1 and 3. Once the seeds have been classified,
we use libexact [8] to find all extensions of each seed to a Latin square. As each
extension L of a seed (Π, T,S) is constructed, it is subjected to isomorph rejection
tests developed in [5], which derive from the canonical augmentation technique of
McKay [12]. First, we identify a canonical ΓL-orbit of seeds contained in L. If
(Π, T,S) does not occur in the identified orbit, we reject L from further considera-
tion. Second, we test whether L is the lexicographic minimum of its Γ(Π,T,S)-orbit.
If not, we reject L from further consideration. Otherwise we accept L as the unique
representative of its main class. See [6] for a detailed exposition of classification of
combinatorial objects.

From an implementation perspective the present algorithm is almost identical
to the one used in [5, 7]. Some additional implementation effort was required to
work with the groups of order 4, and to implement associated correctness checks
(to be discussed in §3.3). In particular, we must list all subgroups of order 4 in
ΓL. This was implemented essentially using brute force, that is, by iterating over
all elements of order 4, and all pairs of elements of order 2 that generate a group
of order 4. (This strategy suffices because ΓL is in most cases small; see Table 12.)

In the search we find 105670178597 Latin squares that extend the seeds. Among
these, we find 1151666641 main classes. The number of main classes Ni for each
i ≥ 3 is given later in Table 12.

The search was distributed to a network of 155 Linux PCs using the batch system
autoson [11]. In total the search consumed about 1.3 years of CPU time.

3.3. Correctness. We carry out a double counting check to gain confidence in the
correctness of the constructive enumeration. The validation procedures considered
in this section and later in §4.4 are essential as, for example, number theoretic
properties discussed in [18] and elsewhere are not applicable here.
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Table 5. Double count values for odd prime orders

Type p fR fC fS F Count
10 3 2 2 2 3 88699187523260511795806208000000
11 3 5 5 5 3 12309174115893617098752000000000
12 3 0 0 0 0 19601984696323546934786654208000000
13 5 1 1 1 3 710224896233056606617600000
14 7 4 4 4 3 1186258276475008450560000000
15 11 0 0 0 3 5968708870624483737600000
16 11 11 0 0 3 38160882055721779200000

Fix a conjugacy class of admissible groups [Π]. We compute in two different
ways the total number of tuples ((Σ, T,S),L) where (Σ, T,S) is a seed contained
in L and satisfying Σ ∈ [Π].

For a Latin square L, denote by seeds[Π](L) the number of seeds associated with
[Π] contained in L. For a seed (Σ, T,S), denote by ext(Σ, T,S) the number of
extensions of the seed into a Latin square. By the Orbit-Stabilizer Theorem, we
have

(9) |Γ|
∑

[L]

seeds[Π](L)
|ΓL|

= |Γ|
∑

[(Σ,T,S)]:Σ∈[Π]

ext(Σ, T,S)
|Γ(Σ,T,S)|

,

where the sum on the left-hand side is over the main classes of Latin squares, and
the sum on the right-hand side is over the isomorphism classes of seeds associated
with [Π].

The right-hand side of (9) is accumulated for each classified seed (Π, T,S). In
particular, ext(Π, T,S) is simply the number of solutions found in the exact cover
search when extending (Π, T,S).

The left-hand side of (9) is accumulated whenever a constructed L is accepted
as the representative of its main class; that is, for every [Π] we compute seeds[Π](L)
and accumulate accordingly. To compute seeds[Π](L), we iterate over the subgroups
Σ ≤ ΓL with Σ ∈ [Π]. For each such Σ, we accumulate seeds[Π](L) by the value
listed in column MT in Tables 1 and 3. To justify this, first observe that whenever
Σ and T are fixed, L determines S in a seed (Σ, T,S) occurring in L. In particular,
S is the union of all Σ-orbits that contain a triple that has nonempty intersection
with T . Now, whenever Σ is fixed, MT counts the number of eligible sets T . The
valuesMT can be determined using combinatorial arguments based on the structure
of Π and the size and composition constraints for T in relation to Π.

Let us give two examples to illustrate the combinatorial arguments. First, Type
12 in Table 1 has MT = 165 because there are 3

(
11
2

)
= 165 ways to select two

distinct points in a common point class. Second, Type 15 in Table 3 has MT = 9
because T must consist of 3 points fixed by Σ and must occur as a subset of (that
is, must be equal to) a triple. There are 9 choices for such a T by Lemma 3, namely
the 9 triples of the subsquare of order 3 induced by the points fixed by Σ.

The computed left-hand and right-hand sides of (9) agree for each [Π] in our
constructive enumeration, which gives us confidence that the results are correct.
We display the double count values for reference in Tables 5 and 6.
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Table 6. Double count values for order 4

Type Count

2 671631524180703313920000000
6 2014894572542109941760000000
7 3516906890255319171072000000
8 54951670160239362048000000000

11 1831722338674645401600000000
12 5495167016023936204800000000
14 21980668064095744819200000000
15 307619449557019948744704000000
17 39732092772896030588928000000
18 13737917540059840512000000000
19 268164150381968086794240000000
20 65282584150364362113024000000
21 179508789190115249356800000000
22 16790788104517582848000000000
23 1663496959090765967917056000000
25 501843074867821516161024000000
26 18539743730111373901824000000
28 355683843723842644082688000000
29 568713151711703904288768000000
30 246354443069481975545856000000
31 573841974259992911413248000000
32 23802621216964125445324800000
33 22878993544910822248022016000000
34 1477320700587875009298432000000
35 464500362123374411907072000000
36 12596852214923599074557952000000
37 61521447614952423555072000000
38 919890958482406920683520000000
39 39728022278810086932480000000
42 45133638424943262695424000000
43 2532319498770923774803968000000

4. Nonconstructive enumeration

4.1. One-factorizations with symmetry. Our objective in this section is to
reduce the task of computing |LΠ| for subgroups Π ≤ Γ with |Π| = 2 to the task
of counting one-factorizations of a complete bipartite graph with forced symmetry.

We refer to [19] for basic graph-theoretic terminology. All graphs considered are
undirected, loopless, and without parallel edges. A one-factor of a graph G is a
spanning 1-regular subgraph of G. A one-factorization of G is a set F of one-factors
of G such that every edge of G occurs in a unique one-factor in F . Denote by LF(G)
the number of distinct one-factorizations of G.

Let Kn,n be the complete bipartite graph with vertex set R ∪C and bipartition
{R,C}. Let F be a one-factorization of Kn,n, and let f : S → F be a bijection
that “labels” the one-factors in F with elements of S.

Lemma 6. There is a one-to-one correspondence between the tuples (F , f) and the
Latin squares in L .
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Proof. Each triple {ri, cj , sk} in a Latin square L corresponds to the edge {ri, cj}
in the one-factor f(sk) in F . �

In particular, Lemma 6 implies

|L | = n! · LF(Kn,n) .

We now introduce forced symmetry into this setting, that is, we proceed to study
LΠ in light of Lemma 6. Our task is fortuitously simplified by the assumption
|Π| = 2, which implies that Π fixes at least one of the point classes R,C, S setwise.
Without loss of generality (up to conjugation of Π in Γ), in what follows we will
assume that Π fixes S setwise.

Let Φ be the group consisting of all permutations of R∪C that fix the partition
{R,C} setwise. Let Φ act on the set of spanning subgraphs of Kn,n by permuting
the vertices, and extend the action in the natural way to one-factorizations of such
graphs.

Observe that each element π ∈ Π can be restricted to R ∪ C because Π fixes S
setwise. Let Δ be the restriction of Π to R ∪ C, and observe that Δ ≤ Φ.

Consider now a Latin square L with Π ≤ ΓL, and let (F , f) be the corresponding
tuple given by Lemma 6. We clearly have Δ ≤ ΦF . However, it is not the case
that any tuple (F , f) with Δ ≤ ΦF corresponds to a Latin square with Π ≤ ΓL. In
particular, the action of Δ on F need not be “compatible” with the action of Π on
S. We proceed with a detailed analysis.

Let F be a one-factorization of Kn,n with Δ ≤ ΦF , and let f : S → F be a
bijection. For any δ ∈ Δ, define δ̄ as the permutation of R ∪C ∪F induced by the
action of δ on R ∪ C and on F . (We assume that R ∪ C and F are disjoint sets.)
Note that δ̄ is well defined because δ ∈ Δ ≤ ΦF . Let Δ̄ = {δ̄ : δ ∈ Δ}. Extend
f by the identity mapping on R ∪ C to the mapping f̄ : R ∪ C ∪ S → R ∪ C ∪ F .
Let f̄−1Δ̄f̄ = {f̄−1δ̄f̄ : δ ∈ Δ}, and observe that f̄−1Δ̄f̄ ≤ Γ. We say that (F , f)
agrees with Π if f̄−1Δ̄f̄ = Π.

Lemma 7. The tuple (F , f) agrees with Π if and only if the corresponding Latin
square L satisfies Π ≤ ΓL.

Proof. This follows from Lemma 6 because Π fixes S setwise. �

We say that F is compatible with Π if there exists an f : S → F such that (F , f)
agrees with Π. Denote by Ψ the group of all permutations of R ∪ C ∪ S that fix
R ∪ C pointwise.

Lemma 8. Let F be compatible with Π. Then there are exactly |ΨΠ| bijections f
such that (F , f) agrees with Π.

Proof. Fix a reference bijection and establish a one-to-one correspondence between
the set of all bijections and ΨΠ. �

Denote by LF(Kn,n,Π) the number of distinct one-factorizations of Kn,n com-
patible with Π. From Lemmata 7 and 8 it thus follows that

(10) |LΠ| = |ΨΠ| · LF(Kn,n,Π) .

The next three lemmata rely on our assumption that Π has order 2.
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Lemma 9. Suppose Π restricted to S has a1 orbits of length 1 and a2 orbits of
length 2. Then

(11) |ΨΠ| = a1!a2!2
a2 .

Proof. There are a1!a2!2
a2 permutations in Ψ that fix the nonidentity element of

Π under conjugation. �

Lemma 10. Let F be a one-factorization of Kn,n with Δ ≤ ΦF . Then F is
compatible with Π if and only if the action of Δ on F has an equal number of
orbits of each length as the action of Π on S.

Proof. The permutation of S induced by the nonidentity element of Π can be rela-
belled (by conjugation with an appropriate f) to the permutation of F induced by
the nonidentity element of Δ if and only if there are an equal number of cycles of
each length. �

Let G be a spanning subgraph of Kn,n. We say that a one-factorization F of G
is a (Δ,�a)-factorization if (a) Δ ≤ ΦF ; and (b) for each i = 1, 2, the action of Δ on
F has ai orbits of length i with �a = (a1, a2). Denote by LF(G,Δ,�a) the number of
distinct (Δ,�a)-factorizations of G.

Lemma 11. Suppose Π restricted to S has a1 orbits of length 1 and a2 orbits of
length 2. Then

(12) LF(Kn,n,Π) = LF(Kn,n,Δ,�a) .

Proof. This is immediate from Lemma 10. �

We have now reduced the task of computing |LΠ| via (10), (11), and (12) to
computing LF(Kn,n,Δ,�a).

We employ two different methods to compute the values LF(Kn,n,Δ,�a) for the
conjugacy classes of order 2 in Table 1. The first method stems from a recursion
over regular spanning subgraphs of Kn,n that has evolved over a period of more
than half a century into the form presented by McKay and Wanless [14]. The
second method extends a “forward accumulation” technique used in [7] to count
the number of distinct one-factorizations of K14.

Our present contribution is to modify both methods to take into account the
symmetry forced by Δ and the required structure �a = (a1, a2) for the lengths of
the Δ-orbits of one-factors.

4.2. Backward recursion. For convenience in what follows, let us abbreviate
�e1 = (1, 0) and �e2 = (0, 1). We say that a spanning subgraph G of Kn,n is
(Δ,�a)-factorizable if G has at least one (Δ,�a)-factorization. Observe that a (Δ,�a)-
factorizable graph is necessarily k-regular with k =

∑
i iai. Furthermore, each

(Δ,�a)-factorizable graph decomposes into an edge-disjoint union consisting of a1
(Δ, �e1)-factorizable and a2 (Δ, �e2)-factorizable graphs. Denote by I(G,Δ, i) the set
of all (Δ, �ei)-factorizable spanning subgraphs of G.

Counting in two different ways the number of distinct (Δ,�a)-factorizations of G
with one individualized Δ-orbit consisting of i one-factors, we obtain, for ai ≥ 1,

(13) ai · LF(G,Δ,�a) =
∑

F∈I(G,Δ,i)

LF(F,Δ, �ei) · LF(G− F ,Δ,�a− �ei) .
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In particular, if we know (for example, by recursion) the value LF(H,Δ,�a− �ei)
for all (Δ,�a − �ei)-factorizable H, we can use (13) to compute LF(G,Δ,�a) for all
(Δ,�a)-factorizable G. Furthermore, LF(G,Δ,�a) needs to be computed for only
one representative (G,Δ) chosen from the Φ-orbit [(G,Δ)]. Here Φ acts on G by
permutation of vertices and on Δ by conjugation.

This is analogous to the method (without the forced Δ and �a) used in [13] and
other earlier studies on counting Latin squares.

4.3. Forward accumulation. We can visit every (Δ,�a)-factorizable orbit [(G,Δ)]
with ai ≥ 1 by the following procedure: For each (Δ,�a − �ei)-factorizable orbit
[(H,Δ)], consider exactly one tuple (H,Δ) from the orbit; for each such tuple
(H,Δ), consider each graph F ∈ I(Kn,n −H,Δ, i); for each tuple (H,F,Δ), visit
the (Δ,�a)-factorizable orbit [(H ∪ F,Δ)].

To compute the value LF(G,Δ,�a) for each visited orbit [(G,Δ)], we associate
with [(G,Δ)] an accumulator variable x[(G,Δ)] that is initially set to zero and in-
cremented whenever [(G,Δ)] is visited. Our objective is to have the value ai ·
LF(G,Δ,�a) in x[(G,Δ)] when the procedure terminates.

We proceed to analyze the visiting procedure, with the objective of determin-
ing an appropriate increment to the counter variable on each visit. The follow-
ing two lemmata are immediate consequences of the Orbit-Stabilizer Theorem (cf.
[7, Lemmata 1,2]).

Lemma 12. Any tuple (G,Δ) in the orbit [(H ∪ F,Δ)] admits exactly

σ(H,F,Δ) =
|Φ(H∪F,Δ)|
|Φ(H,F,Δ)|

decompositions G = H ′ ∪ F ′ into tuples (H ′, F ′,Δ) in the orbit [(H,F,Δ)].

Lemma 13. The procedure visits an orbit [(H ∪ F,Δ)] exactly

τ (H,F,Δ) =
|Φ(H,Δ)|
|Φ(H,F,Δ)|

times via tuples (H ′, F ′,Δ) in the orbit [(H,F,Δ)].

It now follows from Lemma 12 and (13) that, for ai ≥ 1,

ai · LF(G,Δ,�a) =
∑

(H,F,Δ):H∪F=G

LF(F,Δ, �ei) · LF(H,Δ,�a− �ei)

=
∑

[(H,F,Δ)]:H∪F=G

σ(H,F,Δ) · LF(F,Δ, �ei) · LF(H,Δ,�a− �ei) .

(14)

This observation enables us to accumulate the value ai · LF(G,Δ,�a) to x[(G,Δ)].
Namely, each time [(G,Δ)] is visited via a tuple (H,F,Δ), we increment x[G,Δ)] by
the rule

(15) x[(G,Δ)] ← x[(G,Δ)] +
σ(H,F,Δ)

τ (H,F,Δ)
· LF(F,Δ, �ei) · LF(H,Δ,�a− �ei) .

Equivalently, for each tuple (H,F,Δ) considered by the visiting procedure, we apply
the rule

(16) x[(H∪F,Δ)] ← x[(H∪F,Δ)] +
|Φ(H∪F,Δ)|
|Φ(H,Δ)|

· LF(F,Δ, �ei) · LF(H,Δ,�a− �ei) .
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Analogously to [7, Lemma 3], we have the following result.

Lemma 14. The total accumulation to x[(G,Δ)] is ai · LF(G,Δ,�a).

Proof. By Lemma 13 and (15), the total accumulation to x[(G,Δ)] from an orbit
[(H,F,Δ)] satisfying G = H ∪ F is σ(H,F,Δ) · LF(F,Δ, �ei) · LF(H,Δ,�a− �ei).
Taking the sum over all such classes, the claim follows by (14). �

4.4. Implementation and correctness. Associated with each graph F in §4.2
and §4.3 there are exactly LF(F,Δ, �ei) distinct Δ-orbits (of length i) of one-factors;
that is, the distinct (Δ, �ei)-factorizations of F . From an implementation perspective
it is convenient to iterate over these Δ-orbits directly instead of the underlying
graphs F . In particular, we achieve the required accumulation in (13) and (16)
without computing the values LF(F,Δ, �ei) explicitly.

Starting with the empty spanning subgraph of Kn,n, we use the forward accumu-
lation method to compute the values LF(G,Δ,�a) for all (Δ,�a)-factorizable orbits
[(G,Δ)]. We carry out the forward accumulation in two different ways. First, we
accumulate the Δ-orbits in order of increasing length; that is, we first add all Δ-
orbits of length 1, and then the Δ-orbits of length 2. Second, as a consistency
check, we add the orbits in order of decreasing length.

In addition to the forward accumulation method, we verify the results using
the recursion (13), that is, when we have accumulated the value LF(G,Δ,�a) by
addition of orbits of length i, we apply (13) to check the result using the values
LF(H,Δ,�a− �ei).

The two different orders of adding orbits enable yet another way to cross-check
the results (cf. [2] and [7]). Namely,

(17) LF(Kn,n,Δ,�a+�b) =

∑
[(G,Δ)]

|ΦΔ|
|Φ(G,Δ)| · LF(G,Δ,�a) · LF(Kn,n −G,Δ,�b)

(
a1+b1
a1

)(
a2+b2
a2

)

holds for every nonnegative �a = (a1, a2) and �b = (b1, b2) with
∑

i i(ai + bi) = n,
where the sum is over all (Δ,�a)-factorizable orbits [(G,Δ)]. Due to the two different

orders of adding orbits, we cannot utilise all possible decompositions �a + �b for
checking, however. For example, if we add orbits in the orders 1,1,1,2,2,2,2 and
2,2,2,2,1,1,1, then we can use eight different decompositions in (17).

The approaches were implemented using the C programming language with the
help of three software libraries: nauty [10] for isomorphism testing, the GNU Mul-
tiple Precision Arithmetic Library [4] for handling large integers (and intermediate
rationals), and libexact [8] for simplifying the search for Δ-orbits of one-factors.
The number of orbits [(G,Δ)] at any step of the search never exceeded 200000, so
memory requirement was not a major issue of the search (compare with [7, 13]).
The computations took about 20 days on a contemporary Linux PC.

4.5. Results. The numbers of (Δ,�a)-factorizable orbits [(G,Δ)] are shown in Ta-
bles 7 and 8 for situations when the one-factor orbits are appended in order of
increasing and decreasing length i, respectively. The leftmost column contains the
number of one-factor orbits

∑
i ai, and there is one column for each of the conjugacy

classes of order 2 in Table 1.
The second column of Table 10 summarizes the results of the search, which

enable us to determine the values |L[Π]| in the rightmost column of Table 10 via
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the combination of (8), (10), (11), and (12). That is,

|L[Π]| =
|Γ|
|ΓΠ|

· a1!a2!2a2 · LF(K11,11,Δ, (a1, a2)),

where |Γ| = 3!(11!)3 and the values |ΓΠ| are displayed in Table 9; these are derived
by considering the number of permutations in Γ that fix the nonidentity element of
Π under conjugation.

Table 7. Number of (Δ,�a)-factorizable orbits, increasing length

∑
i ai \ Type 1 2 3 4 5 6 7 8 9

0 1 1 1 1 1 1 1 1 1

1 1 1 1 6 6 6 6 6 6

2 304 10 10 1089 22 22 22 22 22

3 34792 16 10 170321 1365 1365 1365 1365 1365

4 8530 949 5 33851 184239 30429 30429 30429 30429

5 20 1464 1 46 35286 146085 146085 146085 146085

6 1 11 1 1 49 32039 125763 125763 125763

7 1 1 1 45 19567 19567 19567

8 1 1 36 630 630

9 1 21 21

10 1 1

11 1

Table 8. Number of (Δ,�a)-factorizable orbits, decreasing length

∑
i ai \ Type 1 2 3 4 5 6 7 8 9

0 1 1 1 1 1 1 1 1 1

1 5 6 1 6 6 6 6 6 6

2 8528 1464 3 266 266 266 266 1089 22

3 34792 1182 1 266 266 266 170321 35186 1365

4 319 16 5 6 6 33851 187719 184239 30429

5 1 10 10 1 46 1524 35286 178732 146085

6 1 1 10 1 5 49 1475 32039 125763

7 1 1 1 4 45 1220 19567

8 1 1 3 36 630

9 1 2 21

10 1 1

11 1
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Table 9. |ΓΠ| for conjugacy classes with |Π| = 2

Type |ΓΠ|
1 (1! · 5! · 25)3 · 3! = 339738624000
2 (3! · 4! · 24)3 · 3! = 73383542784
3 (5! · 3! · 23)3 · 3! = 1146617856000
4 1! · 5! · 25 · 11! · 2 = 306561024000
5 3! · 4! · 24 · 11! · 2 = 183936614400
6 5! · 3! · 23 · 11! · 2 = 459841536000
7 7! · 2! · 22 · 11! · 2 = 3218890752000
8 9! · 1! · 21 · 11! · 2 = 57940033536000
9 11! · 0! · 20 · 11! · 2 =3186701844480000

Table 10. |L[Π]| for conjugacy classes with |Π| = 2

Type LF(K11,11,Δ,�a) |L[Π]|
1 157811617463135109120 680681075601465561779007809126400000
2 16482860057738870784 197485300889612684060962848768000000
3 57076088832000000 109414881030165485322240000000000
4 81867724734136320 391332044120479692845639270400000
5 91614680894074060800 437923008879888637579625496576000000
6 984580848455978188800 4706348408721523581497414516736000000
7 588014650532826316800 2810741057151330357801067216896000000
8 39448015149028147200 188563593954724468142515421184000000
9 252282619805368320 1205924234796020705924638310400000

5. Number of equivalence classes

5.1. Main classes. As a result of the computations described in §3 and §4, we
have a constructive enumeration for all main classes with an autoparatopy group of
order at least 3. The numbers of such main classes are given in Table 12 for i ≥ 3.
Table 10 enables us to solve the number of main classes with an autoparatopy group
of order 2. Indeed, we compute |C[Π]| by direct summation over the constructed
main classes (5), and use (6) together with Table 10 to arrive at Table 11.

Table 11 and Table 12 (for i ≥ 3) give

(18) |Γ|
∑

i≥2

Ni

i
= 9023583561995938862980803959193600000 .

The number of distinct Latin squares of order 11 is [14]

|L | = 11! · 10! · 5363937773277371298119673540771840
= 776966836171770144107444346734230682311065600000 .

(19)

Solving for N1 in (1) using (18) and (19), we obtain

N1 = 2036029552535590421717241

and hence ∑

i

Ni = 2036029552582883134196099 .
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Table 11. |C[Π]| and N[Π] for conjugacy classes with |Π| = 2

Type |C[Π]| N[Π]

1 1788612130139530711950950400000 3567419044431
2 2090765465832065147338752000000 1035003382971
3 40157841013697699905536000000 573229534
4 37761778205327560959590400000 2050761205
5 1253232559784675856089088000000 2295134347303
6 3238510153755989660663808000000 24665809156818
7 2028400471919270993854464000000 14730996126592
8 252164628166875895037952000000 988254629517
9 14823428114332518344294400000 6320133846

N2 47291560812217

Table 12. Main classes of Latin squares of order 11

i Ni

1 2036029552535590421717241
2 47291560812217
3 1111651266
4 39004721
5 9131
6 960771
7 1294
8 30390
9 2636
10 323
11 3
12 4191
14 105
15 4
16 631
18 625
20 37
21 37
22 4

i Ni

24 274
27 27
30 4
32 16
36 86
40 4
42 5
48 9
54 18
60 1
63 3
72 14
108 5
110 2
120 1
162 1
324 1
7260 1∑
i Ni 2036029552582883134196099

Table 12 gives the number Ni of main classes for each order i of the autoparatopy
group.

5.2. One-factorizations and isotopy classes. For a Latin square L, denote by
Par(L) the autoparatopy group of L, and denote by Is(L) the subgroup of Par(L)
that fixes each of the point classes R,C, S setwise. This group is called the au-
totopy group of L, and its elements are called autotopisms. Let Ty(L) = 3, 2, 1, 1
when |Par(L)|/|Is(L)| = 1, 2, 3, 6, respectively. Observe that these quantities are
independent of the main class representative L because Is(L) is a normal subgroup
of Par(L).
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Table 13. Orders of autoparatopy and autotopy groups

|Par| |Is| Main classes
1 1 2036029552535590421717241
2 1 42688565155281
2 2 4602995656936
3 1 933551378
3 3 178099888
4 2 36528967
4 4 2475754
5 5 9131
6 1 742503
6 2 28147
6 3 164658
6 6 25463
7 7 1294
8 4 27705
8 8 2685
9 3 2125
9 9 511
10 5 275
10 10 48
11 11 3
12 2 2201
12 4 400
12 6 1470
12 12 120
14 7 79
14 14 26
15 5 4
16 8 607
16 16 24
18 3 486
18 6 35
18 9 96

|Par| |Is| Main classes
18 18 8
20 10 22
20 20 15
21 7 32
21 21 5
22 11 2
22 22 2
24 4 213
24 8 6
24 12 55
27 9 27
30 5 2
30 10 2
32 16 16
36 6 70
36 12 10
36 18 6
40 20 4
42 14 2
42 21 3
48 8 9
54 9 17
54 27 1
60 10 1
63 21 3
72 12 14
108 18 5
110 55 2
120 60 1
162 27 1
324 54 1

7260 1210 1

By [13, Theorem 2(ii) and 2(iii)], each main class [L] splits into Ty(L) isomor-
phism classes of one-factorizations of Kn,n (cf. §4.1) and into 3! · |Is(L)|/|Par(L)|
isotopy classes.

Taking the sum over all main classes, we obtain Theorem 1(ii) and (iii). Table 13
gives the order of the autoparatopy group and the order of the autotopy group for
each main class.

5.3. Quasigroups and loops. A permutation with ai cycles of length i for i ≥ 1
is said to have cycle structure (a1, a2, . . .). For an autotopism α ∈ Is(L), define
f(α) =

∏
i ai! i

ai and g(α) = a1 if α is not the identity permutation and has
the same cycle structure (a1, a2, . . .) in each of the point classes R,C, S; otherwise
f(α) = g(α) = 0.
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The number of isomorphism classes of quasigroups is, by [13, Theorem 4],

(20)
|L |
n!

+
∑

[L]

3!

|Par(L)|
∑

α∈Is(L)

f(α)2 .

The number of isomorphism classes of loops is, by [13, Theorem 5],

(21)
|L |

n! · (n− 1)! 2
+
∑

[L]

3!

|Par(L)|
∑

α∈Is(L)

g(α)2 .

We obtain Theorem 1(iv) and (v) by (19), (20), (21), and summation over the
main classes.
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