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BOUNDEDNESS AND STRONG STABILITY

OF RUNGE-KUTTA METHODS

W. HUNDSDORFER AND M. N. SPIJKER

Abstract. In the literature, much attention has been paid to Runge-Kutta
methods (RKMs) satisfying special nonlinear stability requirements indicated
by the terms total-variation-diminishing (TVD), strong stability preserving
(SSP) and monotonicity. Stepsize conditions, guaranteeing these properties,
were derived by Shu and Osher [J. Comput. Phys., 77 (1988) pp. 439-471] and
in numerous subsequent papers. These special stability requirements imply
essential boundedness properties for the numerical methods, among which the
property of being total-variation-bounded. Unfortunately, for many RKMs,
the above special requirements are violated, so that one cannot conclude in
this way that the methods are (total-variation) bounded.

In this paper, we study stepsize-conditions for boundedness directly, rather
than via the detour of the above special stability properties. We focus on
stepsize-conditions which are optimal, in that they are not unnecessarily re-
strictive. We find that, in situations where the special stability properties
mentioned above are violated, boundedness can be present only within a class
of very special RKMs.

As a by-product, our analysis sheds new light on the known theory of
monotonicity for RKMs. We obtain separate results for internal and external
monotonicity, as well as a new proof of the fundamental relation between
monotonicity and Kraaijevanger’s coefficient. This proof distinguishes itself
from older ones in that it is shorter and more transparent, while it requires
simpler assumptions on the RKMs under consideration.

1. Introduction

1.1. Monotonicity and boundedness of Runge-Kutta methods.

1.1.1. Runge-Kutta methods. In this paper we deal with initial value problems, for
systems of ordinary differential equations, which can be written in the form

d

dt
u(t) = F (u(t)) (t ≥ 0), u(0) = u0.(1.1)

We study Runge-Kutta methods (RKMs) for computing numerical approximations
un to the true solution values u(nΔt), where Δt denotes a positive stepsize and
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n = 1, 2, 3, .... The general Runge-Kutta method can be written in the form

y
[n]
i = un−1 + Δt ·

s∑

j=1

aij F (y
[n]
j ) (1 ≤ i ≤ s),(1.2a)

un = un−1 + Δt ·
s∑

j=1

bj F (y
[n]
j ).(1.2b)

Here aij , bj are parameters defining the method. Furthermore, y
[n]
i (1 ≤ i ≤ s) are

internal approximations used for computing the external approximation un from
un−1 (n = 1, 2, 3, . . . ); cf. e.g. Butcher [1, 2] or Hairer, Nørsett and Wanner [12].
If aij = 0 (for all j ≥ i), the method is called explicit.

1.1.2. Monotonicity. In the following, V stands for the vector space on which the
differential equation is defined, and ‖ · ‖ denotes a seminorm on V (i.e.: ‖u+ v‖ ≤
‖u‖ + ‖v‖ and ‖λ v‖ = |λ| ‖v‖ for all u, v ∈ V and real λ). Much attention has
been paid, in the literature, to the following bounds on the internal and external
approximations, respectively,

‖y[n]i ‖ ≤ ‖un−1‖ (for 1 ≤ i ≤ s),(1.3)

‖un‖ ≤ ‖un−1‖.(1.4)

In the literature, the above bounds are often referred to by the term monotonicity
or strong stability. In the following, we will distinguish between (1.3) and (1.4) by
using the terms internal monotonicity and external monotonicity, respectively.

Inequalities (1.3), (1.4) are of particular importance in situations where (1.1)
results from (method of lines) semidiscretizations of time-dependent partial dif-
ferential equations. Choices for ‖ · ‖ that occur in that context include e.g. the
supremum norm ‖x‖ = ‖x‖∞ = supi |ξi| and the total variation seminorm ‖x‖ =
‖x‖TV =

∑
i |ξi+1 − ξi| (for vectors x with components ξi). Numerical processes,

satisfying ‖un‖TV ≤ ‖un−1‖TV , play a special role in the solution of hyperbolic
conservation laws and are called total-variation-diminishing (TVD); cf. e.g. Harten
[14], Shu [27], Shu and Osher [29], LeVeque [25], Hundsdorfer and Verwer [21].

In the literature, conditions on Δt can be found which guarantee (1.3), (1.4).
In many papers, one starts from an assumption about F which, for given τ0 > 0,
essentially amounts to

(1.5) F : V → V, with ‖v + τ0 F (v)‖ ≤ ‖v‖ (for all v ∈ V).

Assumption (1.5) means that the forward Euler method is monotonic with stepsize
τ0. It can be interpreted as a condition on the manner in which the semidiscretiza-
tion is performed in the case that d

dtu(t) = F (u(t)) stands for a semidiscrete version
of a partial differential equation.

For classes of RKMs, positive stepsize-coefficients γ were determined, such that
monotonicity, in the sense of (1.3), (1.4), is present for all Δt with

0 < Δt ≤ γ · τ0;(1.6)

see e.g. Shu and Osher [29], Gottlieb, Shu and Tadmor [11], Shu [28], Spiteri and
Ruuth [33], Ferracina and Spijker [4, 5], Higueras [15, 16], Gottlieb [8], Ruuth [26],
Spijker [32, Section 3.2.1], Gottlieb, Ketcheson and Shu [8].
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1.1.3. Boundedness. For total-variation-diminishing processes, there is trivially the
total-variation-boundedness (TVB) property, in that a finite μ (independent of N ≥
1) exists such that

(1.7) ‖uN‖TV ≤ μ · ‖u0‖TV ,

for the approximation uN obtained by applying method (1.2) for n = 1, . . . , N . In
the solution of hyperbolic conservation laws, condition (1.7) is of crucial importance
for suitable convergence properties when Δt → 0, and it constitutes one of the
underlying reasons why attention has been paid in the literature to (1.3), (1.4);
cf. e.g. LeVeque [25] or Hundsdorfer and Verwer [21].

Unfortunately, there are well-known RKMs, with a record of practical success,
for which there exist no positive stepsize-coefficients γ such that (1.5), (1.6) imply
(1.4); e.g. for the Dormand-Prince formula, cf. e.g. Butcher [2, p. 194], Hairer,
Nørsett and Wanner [12, p. 171]. Moreover, no second-order (implicit) RKMs exist
with γ = ∞; see e.g. Spijker [30, Sections 2.2, 3.2].

These circumstances suggest that there are situations where monotonicity may
be too strong a theoretical demand, and that it is worthwhile to study, along with
monotonicity, also directly the weaker boundedness requirements

‖y[N ]
i ‖ ≤ μ · ‖u0‖ (for 1 ≤ i ≤ s),(1.8)

‖uN‖ ≤ μ · ‖u0‖,(1.9)

for vectors y
[N ]
i , uN obtained by applying method (1.2) for n = 1, 2, . . . , N . Here μ

stands for a finite constant (independent of N ≥ 1) which is allowed to be greater
than 1. Requirement (1.9), with ‖·‖ = ‖·‖TV , still implies the TVB-property, which
highlights the importance of studying (1.9). For the just-mentioned Dormand-
Prince method, e.g., it is an open question if positive γ and finite μ exist such that
(1.5), (1.6) would imply (1.8) or (1.9).

1.2. Scope of the paper.

1.2.1. An approach suitable for studying boundedness without monotonicity. In this
paper, we study the largest factor by which, under conditions (1.5), (1.6), the

quantities maxi‖y[n]i ‖ and ‖un‖ can exceed ‖un−1‖. We study also the maximal

factor by which, under the same conditions, the quantities maxi‖y[N ]
i ‖ and ‖uN‖

can exceed ‖u0‖ (for any N ≥ 1).
This approach makes it possible to settle, for RKMs of a fairly general type, the

interesting question of whether boundedness can be present, when there exists no
positive γ with the property that (1.5), (1.6) imply (1.3), (1.4).

Besides being useful for studying boundedness, the study of the largest factors,
mentioned above, will shed new light on the existing monotonicity theory given in
the literature: we will find separate results for external and internal monotonic-
ity, as well as a new proof of the fundamental relation between monotonicity and
Kraaijevanger’s coefficient (introduced in Kraaijevanger [24]). We believe this proof
is more natural and shorter than the classical one; moreover, the proof requires a
simpler irreducibility condition than usually imposed in the literature.
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For completeness we note that the boundedness of RKMs was studied earlier
in Spijker [31], Ferracina and Spijker [6]. But, the first of these papers is only
relevant to seminorms ‖ · ‖ generated by (pseudo) inner products, excluding, e.g.,
the seminorm ‖ · ‖TV , whereas in the second paper the focus is on establishing
bounds under weaker conditions than (1.5). As a result, the analysis in the present
paper is largely different from the one in the papers just mentioned.

1.2.2. Organization of the paper. After introducing in Section 2 some notation and
definitions needed in the subsequent sections, we present in Section 3 two theorems
which play a central role in this paper, Theorems 3.1 and 3.2.

Theorem 3.1 gives explicit expressions for the largest factors by which, under

conditions (1.5), (1.6), the quantities maxi‖y[n]i ‖ and ‖un‖, respectively, can exceed
‖un−1‖. These expressions are denoted by ϕ(γ) and ψ(γ), respectively. They
depend only on γ and the coefficients aij , bj of the RKM.

Theorem 3.2 specifies, for RKMs of a general type, the maximal factors by which,

under conditions (1.5), (1.6), the quantities maxi‖y[N ]
i ‖ and ‖uN‖ can exceed ‖u0‖

(for any N ≥ 1). Explicit expressions for these factors are given in terms of ϕ(γ)
and ψ(γ).

In Section 4, monotonicity and boundedness are studied by making use of The-
orems 3.1, 3.2. Section 4.1 gives Lemma 4.1, which relates the conditions ϕ(γ) = 1
and ψ(γ) = 1 to each other. This lemma is quite useful when applying Theo-
rems 3.1, 3.2 in the subsequent Sections 4.2, 4.3.

In Section 4.2 we give four corollaries to Theorems 3.1, 3.2. The Corollar-
ies 4.2, 4.4 characterize stepsize-coefficients γ for monotonicity and boundedness,
respectively. Corollary 4.3 states that, for irreducible RKMs, a value γ cannot be
a stepsize-coefficient for external monotonicity without being at the same time a
stepsize-coefficient for internal monotonicity. Corollary 4.5 is relevant to the ques-
tion, mentioned above, of whether a positive stepsize-coefficient γ for boundedness
can exist in situations where no positive γ exists for monotonicity. The corollary
reveals the surprising fact that for all irreducible RKMs which are not of a very
special type, any stepsize-coefficient γ for boundedness must at the same time be
a stepsize-coefficient for monotonicity.

In Section 4.3, we relate the conditions ψ(γ) = 1 and ϕ(γ) = 1, respectively, to
Kraaijevanger’s coefficient r(A,B) and to a closely related coefficient r(A). The-
orem 4.9 gives a new formal characterization of these coefficients, whereas Corol-
lary 4.10 highlights the relevance of the coefficients to monotonicity and bound-
edness. This corollary covers and supplements the fundamental relation between
external monotonicity and Kraaijevanger’s coefficient, as stated earlier in the liter-
ature; cf. Ferracina and Spijker [4, 5], Higueras [15, 16], Ketcheson [22], Spijker [32,
Section 3.2.1]. In our opinion, the derivation of this relation via the framework of
the present paper (notably Theorem 3.1) is shorter and more transparent than the
one in the literature, cf. Kraaijevanger [24], Ferracina and Spijker [4].

In Section 5, we shortly illustrate the material of Sections 3, 4, in the analy-
sis of concrete RKMs. In Section 5.1, we settle for various RKMs without posi-
tive stepsize-coefficients γ for monotonicity, among which is the Dormand-Prince
method mentioned above, the question of whether positive γ exist corresponding
to boundedness. In Section 5.2, we consider a special example of an irreducible
RKM, with a positive stepsize-coefficient γ for boundedness, but no positive γ for
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monotonicity. Furthermore, we give counterexamples showing that various basic
assumptions, made in Sections 3, 4, cannot be omitted.

In Section 6 we give proofs, needed to complete the material of the preceding
sections. Parts of the proofs of Theorems 3.1, 3.2 and Lemma 4.1 are not straight-
forward and make use of common lemmas, viz. Lemmas 6.1, 6.2, 6.3. For this
reason, and also not to interrupt the presentation in Sections 3 and 4 too much, we
have collected these parts of the proofs in the separate Section 6.

In Section 7 we conclude by summarizing the main findings of the paper.

2. Preliminaries

2.1. Notation to be used throughout the paper. In all of the following we
denote by A the s× s matrix made up of the coefficients aij of the RKM (1.2), and
by B the 1 × s matrix, made up of the coefficients bj , so that the method can be

characterized completely by the (s+ 1)× s matrix
(
A
B

)
.

We denote the s× 1 matrix, with all entries equal to 1, by E.
For any k ≥ 1, we denote the k × k identity matrix by I. For vectors x ∈ R

k

with components ξi, we define ‖x‖∞ = maxi |ξi|.
For given matrix M = (mij), we put ‖M‖∞ = maxx�=0

‖Mx‖∞
‖x‖∞

and we recall the

well-known formula ‖M‖∞ = maxi
∑

j |mij |.
We shall use the notation M(i, :) and M(:, j) to denote the i-th row and j-th

column, respectively, of the matrix M . We define |M | = (|mij |), and denote the
spectral radius of square matrices M by spr(M).

Any inequalities between matrices with the same dimensions, say Q = (qij) and
R = (rij), have to be interpreted entry-wise; i.e., Q ≤ R means that all qij ≤ rij .

2.2. Reducibility. We shall make use of reducibility concepts for RKMs, corre-
sponding to the following definition.

Definition 2.1 (Reducibility and irreducibility concepts).
(a) The RKM (1.2) is called DJ-reducible if there exist disjoint index sets

M and N, where N is nonempty and M ∪ N = {1, 2, ..., s}, such that
bj = 0 (for j ∈ N) and aij = 0 (for i ∈ M, j ∈ N). If such sets do not
exist, the RKM is called DJ-irreducible.

(b) The RKM (1.2) is called row-reducible if there exist indices i 	= j in {1, . . . , s},
such that A(i, :) = A(j, :). If such indices do not exist, the RKM is called
row-irreducible.

(c) The RKM (1.2) is called reducible if it is DJ-reducible or row-reducible or
both. If the RKM is neither DJ-reducible nor row-reducible, it is called
irreducible.

In case there exist sets M, N as in part (a) above, the vectors y
[n]
j in (1.2) with

j ∈ N have no influence on un, so that the Runge-Kutta method is equivalent to
a method with less than s stages. Also in case indices i, j exist as in (b) above,
the Runge-Kutta method essentially reduces to a method with less then s stages.
For more details about the definition in part (a), see e.g. [2, Sect. 381], [3], [24]; for
part (b), cf. e.g. [31] and [32, Sect. 3.2.1].

Clearly, from a practical point of view, it is enough to consider only Runge-Kutta
methods which are irreducible (in the sense of (c)).
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3. Estimating ‖y[n]i ‖ and ‖un‖
3.1. The effect of one Runge-Kutta step. For values γ such that the inverses
occurring below exist, we shall use the notation

(3.1)
C = (cij) = γ A (I + γ A)−1, D = (dj) = γ B (I + γ A)−1,

Z = (zi) = (I − |C|)−1|E − C E|.
Although the matrices C,D,Z depend on γ, we do not express this dependence
explicitly so as to keep our notation simple; in subsequent formulas involving C,D
or Z the dependence of the formulas on γ could always be made clear by substituting
the expressions (3.1) into the formulas at hand.

The following functions ϕ, ψ will play a main role in our approach to monotonic-
ity and boundedness:

ϕ(γ) =

{
‖Z‖∞ if I + γ A is invertible, and spr(|C|) < 1,
∞ otherwise,

(3.2a)

ψ(γ) =

{
|1−DE|+ |D|Z if I + γ A is invertible, and spr(|C|) < 1,
∞ otherwise.

(3.2b)

Theorem 3.1, below, describes the effect on ‖y[n]i ‖ and ‖un‖ of carrying out one
step of method (1.2). It gives conditions on the factors α, β in order that the
following two basic properties are present:

The estimate maxi ‖y[n]i ‖ ≤ α · ‖un−1‖ holds whenever V is a

vector space with seminorm ‖ · ‖, and y
[n]
i is generated from un−1

under conditions (1.5), (1.6).

(3.3a)

The estimate ‖un‖ ≤ β · ‖un−1‖ holds whenever V is a vector
space with seminorm ‖ · ‖, and un is generated from un−1 under
conditions (1.5), (1.6).

(3.3b)

Theorem 3.1 (Expressing the effect of one Runge-Kutta step in terms of ϕ(γ) and
ψ(γ)). Let γ > 0 be given. Then the following two statements hold:
(I) Property (3.3a) is valid with α = ϕ(γ). Moreover, when the RKM is row-

irreducible, then (3.3a) is not valid with any α < ϕ(γ).
(II) Property (3.3b) is valid with β = ψ(γ). Moreover, when the RKM is irre-

ducible, then (3.3b) is not valid with any β < ψ(γ).

In the theorem, as well as throughout the rest of the paper, we have used the
convention ∞·x = ∞ (for all real x ≥ 0). Due to this convention, properties (3.3a)
and (3.3b) make also sense (and are trivially present) in case α = ∞ or β = ∞,
respectively. Note that these cases actually occur in statement (I), (II) when I+γA
is not invertible or spr(|C|) ≥ 1.

Clearly, for irreducible RKMs, the theorem shows that the estimates

(3.4) maxi ‖y[n]i ‖ ≤ ϕ(γ) · ‖un−1‖, ‖un‖ ≤ ψ(γ) · ‖un−1‖
are optimal, in that the factors ϕ(γ), ψ(γ) cannot be replaced by any smaller ones
in the general situation (1.5), (1.6).

In the proof of Theorem 3.1, as well as in the rest of the paper, we shall write
(1.2a) and similar relations often more concisely, by using the following notation
relevant to the vector space V.
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For any integer k ≥ 1, we denote the vector in V
k, with components x1, . . . , xk ∈

V, by

x = [xi] =

⎛

⎜⎝
x1

...
xk

⎞

⎟⎠ ∈ V
k.

Corresponding to any p×k matrix M = (mij), we define a linear operator M from

V
k to V

p by M (x) = y, with y = [yi] ∈ V
p, yi =

∑k
j=1 mij xj (1 ≤ i ≤ p) for

x = [xi] ∈ V
k. When F : V → V, we define F : Vk → V

k by F (y) = [F (yi)] ∈ V
k

for y = [yi] ∈ V
k.

Combining the vectors y
[n]
i , occurring in (1.2a), into the vector y[n] = [y

[n]
i ] ∈ V

s,
the relations (1.2) can thus be written compactly as

y[n] = E un−1 +Δt ·AF (y[n]),(3.5a)

un = un−1 +Δt ·BF (y[n]).(3.5b)

Below we give the proof, which is rather short, of property (3.3) with the values
α = ϕ(γ), β = ψ(γ). The proof of the optimality of these values under suitable
irreducibility assumptions, is less straightforward and will be given in Section 6.2.

Partial proof of Theorem 3.1: proving (3.3) with α=ϕ(γ) and β = ψ(γ). Without
loss of generality, assume I + γ A is invertible and spr(|C|) < 1. We shall rewrite
(3.5) in a convenient form, not much different from [24, p. 503], by introducing the

vectors z
[n]
i = y

[n]
i + Δt

γ F (y
[n]
i ) and z[n] = [z

[n]
i ]. Using (1.5), (1.6), we have

‖z[n]i ‖ =
∥∥(1− Δt

γ τ0

)
y
[n]
i + Δt

γ τ0

(
y
[n]
i + τ0F (y

[n]
i

)∥∥

≤
(
1− Δt

γ τ0

) ∥∥y[n]i

∥∥+ Δt
γ τ0

∥∥y[n]i

∥∥ = ‖y[n]i ‖.

Substituting ΔtF (y[n]) = γ · (z[n] − y[n]) into (3.5a), one arrives easily at the
following property (3.6a). Using a similar substitution into (3.5b), combined with
the expression for y[n] in (3.6a), it can be seen that the following relation (3.6b) is
valid as well:

y[n] = (E −CE) un−1 +C z[n], with ‖z[n]i ‖ ≤ ‖y[n]i ‖ (for 1 ≤ i ≤ s),(3.6a)

un = (1−DE) un−1 +D z[n].(3.6b)

From (3.6a) there follows (I − |C|) [‖y[n]i ‖] ≤ |E −C E| ‖un−1‖. Multiplying this
inequality by (I − |C|)−1 = I + |C|+ |C|2 + · · · ≥ 0, we obtain

(3.7) [‖y[n]i ‖] ≤ Z ‖un−1‖,

with Z defined in (3.1). Therefore, maxi ‖y[n]i ‖] ≤ ‖Z‖∞‖un−1‖ = α ‖un−1‖, where
α = ϕ(γ).

Using (3.6b), (3.7), we obtain ‖un‖ ≤ |1 − DE| ‖un−1‖ + |D|Z ‖un−1‖ =
β ‖un−1‖, where β = ψ(γ). �

3.2. The accumulated effect of consecutive Runge-Kutta steps. Theorem
3.2, below, describes the effect of applying method (1.2) for n = 1, 2, . . . , N . It
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gives conditions, on the factors αN , βN , in order that the following two properties
are present:

The estimate maxi ‖y[N ]
i ‖ ≤ αN · ‖u0‖ holds whenever V is a

vector space with seminorm ‖ · ‖, and y
[N ]
i is generated from u0

under conditions (1.5), (1.6).

(3.8a)

The estimate ‖uN‖ ≤ βN ·‖u0‖ holds whenever V is a vector space
with seminorm ‖ · ‖, and uN is generated from u0 under conditions
(1.5), (1.6).

(3.8b)

In the theorem, we will refer to the following condition on the RKM:

(3.9) There is no pair of indices i, j with A(i, :) = 0 and A(j, :) = B.

We will say that the RKM is of general type if (3.9) holds, and of special type
otherwise. For some comments on (3.9), see Remark 3.3 below.

Theorem 3.2 (Expressing the accumulated effect of N consecutive Runge-Kutta
steps in terms of ϕ(γ) and ψ(γ)). Let γ > 0 and N ≥ 1. Then the following two
statements hold:
(I) Property (3.8a) is valid with αN = ϕ(γ)ψ(γ)N−1. Moreover, when the RKM

is row-irreducible and of general type (in the sense of (3.9)), then (3.8a) is
not valid with any αN < ϕ(γ)ψ(γ)N−1.

(II) Property (3.8b) is valid with βN = ψ(γ)N . Moreover, when the RKM is
irreducible and of general type (in the sense of (3.9), then (3.8b) is not valid
with any βN < ψ(γ)N .

For irreducible RKMs of general type, the theorem shows that the estimates

(3.10) maxi ‖y[N ]
i ‖ ≤ ϕ(γ)ψ(γ)N−1 · ‖u0‖, ‖uN‖ ≤ ψ(γ)N · ‖u0‖

are optimal in the general situation (1.5), (1.6), because the factors ϕ(γ)ψ(γ)N−1

and ψ(γ)N cannot be replaced by any smaller ones.
Below we shall prove (3.8), with αN = ϕ(γ)ψ(γ)N−1, βN = ψ(γ)N . The proof

of the optimality of these values (under the appropriate irreducibility conditions
and condition (3.9)) is less straightforward and will be postponed to Section 6.3.

Partial proof of Theorem 3.2: proving (3.8) with αN =ψ(γ)N−1ϕ(γ), βN =ψ(γ)N .
By Theorem 3.1, properties (3.3a), (3.3b) are present with α = ϕ(γ), β = ψ(γ).
Repeated application of (3.3b) yields property (3.8b) with βN = ψ(γ)N .

Using (3.3a) (with n = N and α = ϕ(γ)) and (3.8b) (with N replaced by N − 1
and βN−1 = ψ(γ)N−1), we obtain:

maxi ‖y[N ]
i ‖ ≤ ϕ(γ) ‖uN−1‖ ≤ ϕ(γ) ψ(γ)N−1 ‖u0‖,

i.e. (3.8a) with αN = ϕ(γ)ψ(γ)N−1. �

Remark 3.3 (About condition (3.9)). In proving optimality of (3.10), we shall
rewrite N steps of method (1.2) as one step of a (formal) RKM with Ns stages;
cf. (6.6) in Section 6.3. Our proof will need row-irreducibility of the latter RKM,
which means that the original method (1.2) must satisfy (3.9).

When condition (3.9) is violated, one might say that the RKM suffers from
a weak kind of reducibility, which is apparent when N ≥ 2 consecutive steps of
the RKM are carried out: only N(s − 1) + 1 different internal stages play a role,
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rather than the standard value of Ns; cf. the ‘FASAL property’, [2]. Note that any
DJ-irreducible, explicit RKM automatically satisfies (3.9).

The natural question arises of whether condition (3.9) can be omitted in the
above Theorem 3.2. In Section 5.2.1, we will show by means of a counterexample
that the estimates (3.10) need not be optimal if (3.9) would be omitted.

4. Monotonicity and boundedness

4.1. The conditions ϕ(γ) = 1 and ψ(γ) = 1. Clearly, by Theorems 3.1, 3.2, the
magnitudes of ϕ(γ) and ψ(γ) are crucial for monotonicity and boundedness. For
this reason, in the present Section 4.1, we have a closer look at the size of these two
quantities.

Below, we shall frequently use that Z, defined in (3.1), satisfies

(4.1) Z ≥ E (when I + γ A is invertible, and spr(|C|) < 1).

This follows from (I − |C|)−1 = I + |C| + |C|2 + · · · ≥ 0 together with Z ≥
(I − |C|)−1(E − |C|E) = E.

When I+γ A is invertible, and spr(|C|) < 1, we see from (3.2), (4.1) that ϕ(γ) ≥
1 and ψ(γ) ≥ |1−DE|+ |D|E ≥ 1− |D|E + |D|E = 1. Consequently

(4.2) ϕ(γ) ≥ ϕ(0) = 1, ψ(γ) ≥ ψ(0) = 1 (for all real γ).

In view of (4.2) and Theorem 3.1, the following condition is crucial for prop-
erty (1.3):

(4.3) ϕ(γ) = 1.

Lemma 4.1, below, states that (4.3), combined with requirement

(4.4) |1−DE|+ |D|E = 1,

implies that

(4.5) ψ(γ) = 1.

Via (4.2) and Theorem 3.1, we see that condition (4.5) is crucial for the mono-
tonicity property (1.4). Note that the left-hand member of (4.4) is a variant of the
expression for ψ(γ) in (3.2b).

The following lemma will be applied in Sections 4.2, 4.3.

Lemma 4.1 (Relating conditions ϕ(γ) = 1 and ψ(γ) = 1 to each other). Prop-
erty (4.3), combined with (4.4), implies (4.5). Conversely, when the RKM is DJ-
irreducible, property (4.5) implies (4.3) and (4.4).

Partial proof of Lemma 4.1: proving (4.5) from (4.3), (4.4). A combination of
(4.3) and (4.1) yields Z = E, so that ψ(γ) is equal to the left-hand member of
(4.4). Hence, (4.3), (4.4) entail (4.5). �

The proof of (4.3), (4.4) from (4.5), for DJ-irreducible methods, is not so straight-
forward and is postponed to Section 6.1.
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4.2. Stepsize-coefficients for monotonicity and boundedness.

4.2.1. Stepsize-coefficients for monotonicity. Let a stepsize Δt > 0, a vector space
V with seminorm ‖ · ‖ and a function F : V → V be given. We will say that the
RKM (1.2) is internally or externally monotonic, respectively, if (1.3) or (1.4) holds

whenever the vectors y
[n]
i , un, un−1 ∈ V satisfy (1.2).

We will say that a value γ ∈ [0, ∞] is a stepsize-coefficient for internal or ex-
ternal monotonicity, respectively, if the RKM is internally or externally monotonic
whenever V is vector space with seminorm ‖ · ‖ and (1.5), (1.6) are fulfilled.

Theorem 3.1 yields the following corollary:

Corollary 4.2 (Characterization of stepsize-coefficients for monotonicity). For 0 <
γ < ∞, the following statements are valid:
(I) When the RKM is row-irreducible, then γ is a stepsize-coefficient for internal

monotonicity if and only if ϕ(γ) = 1.
(II) When the RKM is irreducible, then γ is a stepsize-coefficient for external

monotonicity if and only if ψ(γ) = 1.

In view of Lemma 4.1, there follows

Corollary 4.3 (External monotonicity implies internal monotonicity). Assume the
RKM is irreducible. Then any stepsize-coefficient γ for external monotonicity is a
stepsize-coefficient for internal monotonicity as well.

4.2.2. Stepsize-coefficients for boundedness. Let a stepsize Δt > 0, a vector space
V with seminorm ‖ · ‖ and a function F : V → V be given. We will say that
the RKM (1.2) is internally bounded with factor μ, if for all N ≥ 1 we have (1.8),

whenever y
[N ]
i ∈ V is generated by applying (1.2) for n = 1, . . . , N . Similarly, we

will say that the RKM (1.2) is externally bounded with factor μ, if for all N ≥ 1 we
have (1.9), whenever uN ∈ V is generated by applying (1.2) for n = 1, . . . , N .

We will call a value γ ∈ [0, ∞] a stepsize-coefficient for internal or external
boundedness, respectively, if the RKM is internally or externally bounded, with
some finite factor μ, whenever V is a vector space with seminorm ‖ · ‖ and (1.5),
(1.6) are fulfilled. Here, the factor μ is understood to depend only on γ and the
(coefficients aij , bj of the) RKM under consideration.

Theorem 3.2 yields the following corollary:

Corollary 4.4 (Characterization of stepsize-coefficients for boundedness). For 0 <
γ < ∞, the following statements are valid:
(I) When the RKM is row-irreducible and of general type (3.9), then γ is a

stepsize-coefficient for internal boundedness if and only if ψ(γ) = 1.
(II) When the RKM is irreducible and of general type (3.9), then γ is a stepsize-

coefficient for external boundedness if and only if ψ(γ) = 1.

A combination of the last three corollaries yields

Corollary 4.5 (Boundedness implies monotonicity for RKMs of general type).
Assume the RKM is irreducible and of general type (3.9), and let γ be any stepsize-
coefficient for internal or external boundedness. Then γ is necessarily a stepsize-
coefficient for internal monotonicity as well as for external monotonicity.

For irreducible methods of general type, the last corollary thus shows, rather sur-
prisingly, that requiring just boundedness, instead of (the a priori stronger property
of) monotonicity, cannot lead to a more favourable (larger) stepsize-coefficient γ.
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4.3. Maximal stepsize-coefficients γ and the coefficients r(A), r(A,B).

4.3.1. The coefficients r(A) and r(A,B). Below we shall define Kraaijevanger’s
coefficient as well as a closely related coefficient by using the following conditions,
in which γ denotes a real variable:

I + γ A is invertible,(4.6)

γA (I + γA)−1 ≥ 0, γA (I + γA)−1E ≤ E,(4.7)

γB (I + γA)−1 ≥ 0, γB (I + γA)−1E ≤ 1.(4.8)

Definition 4.6 (Coefficients r(A) and r(A,B)). We define

r(A) = sup{γ : γ ≥ 0 and (4.6), (4.7) hold},
r(A, B) = sup{γ : γ ≥ 0 and (4.6), (4.7), (4.8) hold}.

The value r(A,B), defined above, is closely related to a quantity introduced
in Kraaijevanger [24] and will be referred to as Kraaijevanger’s coefficient. For
completeness, we note that the original definition in [24] amounts essentially to

R = sup{ρ : ρ ∈ R and (4.6), (4.7), (4.8) hold for all γ ∈ [0, ρ]}.
The following theorem implies, among other things, that the value r(A, B) (Defi-
nition 4.6) is equal to Kraaijevanger’s value R:

Theorem 4.7 (Fulfillment of conditions (4.6), (4.7), (4.8)). Any finite γ, with
0 ≤ γ ≤ r(A), satisfies (4.6), (4.7). Similarly, any finite γ, with 0 ≤ γ ≤ r(A, B),
satisfies (4.6), (4.7), (4.8).

This theorem can be viewed as a (somewhat stronger) version of earlier re-
sults about r(A, B) in the literature; for related material, see [24, Lemma 4.4],
[17, Prop. 2.11], [19, Thm. 4]. The theorem follows easily from material in [32,
Thm. 2.2 (ii), Sect. 3.2.2].

Definition 4.6 implies that r(A) and r(A, B) are always nonnegative. It is rela-
tively easy to determine whether the coefficients r(A) and r(A, B) are positive, and
to compute (numerically) their actual size; cf. [24, 4, 32]. In fact, for many RKMs,
explicit expressions or numerical values were obtained for r(A, B); cf. [24, 4, 7, 23].

4.3.2. The relevance of r(A), r(A,B) to monotonicity and boundedness. The fol-
lowing lemma is crucial in linking monotonicity or boundedness to the coefficients
defined in Section 4.3.1.

Lemma 4.8 (Relating the conditions ϕ(γ) = 1 and ψ(γ) = 1 to (4.6), (4.7), (4.8)).
For 0 < γ < ∞, the following statements are valid.
(I) Property ϕ(γ) = 1 is equivalent to (4.6), (4.7).
(II) Property ψ(γ) = 1 follows from conditions (4.6), (4.7), (4.8). Conversely,

when the RKM is DJ-irreducible, property ψ(γ) = 1 implies (4.6), (4.7),
(4.8).

Proof. About Statement (I). Assume first ϕ(γ) = 1. From (3.2a) we have im-
mediately (4.6). Because ‖Z‖∞ = 1, we see from (4.1) that Z = E. Hence,
|E − C E| + |C|E = E = (E − C E) + C E, which implies that (E − C E) =
|E − C E| ≥ 0 and C = |C| ≥ 0. We have thus also proved property (4.7).

Next, assume conversely (4.6), (4.7). Because C ≥ 0, we can apply the Perron-
Frobenius theory as presented e.g. in [18, p. 503], so as to conclude that spr(|C|) < 1,
provided C has no real eigenvalues λ ≥ 1.
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Because C = I − (I + γ A)−1, the value λ = 1 is no eigenvalue of C. Moreover,
we see from |C|E = C E ≤ E that ‖C‖∞ ≤ 1, so that C has no eigenvalues λ > 1.
Consequently, spr(|C|) < 1. Because Z = (I−C)−1(E−C E) = E, we thus arrive,
via (3.2a), at ϕ(γ) = 1.

About Statement (II). Clearly, (4.8) implies (4.4). Conversely, (4.4) implies

|D|E = 1− |1−DE| ≤ DE ≤ |D|E,

so that |D|E = DE, 1−DE = |1−DE|, which leads to (4.8). Hence,

(4.9) Property (4.4) is equivalent to (4.8) (when I + γ A is invertible).

The proof of Statement (II) is easily completed by combining Statement (I),
Lemma 4.1 and (4.9). �

The above lemma, combined with Definition 4.6, yields directly

Theorem 4.9 (Characterizing r(A) and r(A,B) in terms of the functions ϕ(γ),
ψ(γ)). Let the RKM be DJ-irreducible. Then

r(A) = sup{γ : γ ≥ 0 and ϕ(γ) = 1}, r(A, B) = sup{γ : γ ≥ 0 and ψ(γ) = 1}.
We do not think that the above new characterizations of r(A) and r(A,B) are

more handy than the original ones in Definition 4.6 for actually computing these
coefficients. But, unlike the characterizations in Definition 4.6, the new ones in
Theorem 4.9 are clearly related to monotonicity and boundedness properties of the
RKM; cf. Sections 3, 4.2. In fact, Definition 4.6 seems most suitable for actually
computing r(A), r(A,B), whereas Theorem 4.9 gives an easy understanding of the
relevance of these coefficients to monotonicity.

Our last corollary summarizes interesting conclusions, about maximal stepsize-
coefficients for monotonicity and boundedness, obtainable from the above. Corol-
lary 4.10 follows from a combination of Lemma 4.8, Theorem 4.7 and the material
of Section 4.2.

Corollary 4.10 (Relating monotonicity and boundedness to the coefficients r(A),
r(A, B)).
(Ia) When the RKM is row-irreducible, the largest stepsize-coefficient for internal

monotonicity is equal to r(A).
(Ib) When the RKM is irreducible, the largest stepsize-coefficient for external

monotonicity is equal to r(A,B).
(IIa) When the RKM is irreducible and of general type, the largest stepsize-

coefficient for internal boundedness is equal to r(A,B).
(IIb) When the RKM is irreducible and of general type, the largest stepsize-

coefficient for external boundedness is equal to r(A,B).

For any given irreducible RKM, Corollary 4.10 highlights once more that requir-
ing boundedness instead of monotonicity may lead to a more favourable stepsize-
coefficient γ only when the method violates (3.9).

Statement (Ia) is related to results obtained earlier in the literature via quite
different proofs; cf. e.g. [32]. Statement (Ib) is closely related to statements in
[4, 15, 22]. The irreducibility requirement demanded in these three papers is more
restrictive than in the above corollary; cf. Definition 2.1. Furthermore, the proofs
given (or referred to) in these papers actually make use of an ingenious but compli-
cated construction going back to Kraaijevanger [24]; for details see [24, pp. 485-496,
pp. 505-508] and [4, p. 1091]. We think the proof of Statement (Ib) in the present
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paper, via the functions ϕ(γ), ψ(γ), is essentially shorter and more transparent
than in the above references.

For completeness we note that in the existing monotonicity literature related to
(Ia), (Ib), a monotonicity concept is often used that is somewhat stronger than the
one defined at the start of Section 4.2.1, in that ‖ · ‖ is not necessarily a seminorm
but is only required to satisfy the convexity requirement

(4.10) ‖θ u+ (1− θ)v‖ ≤ θ ‖u‖+ (1− θ)‖v‖ (for all u, v ∈ V and 0 ≤ θ ≤ 1).

Clearly, any stepsize coefficient γ corresponding to this stronger monotonicity con-
cept is at the same time a stepsize coefficient for monotonicity in the sense of
Section 4.2.1. Hence statements (Ia), (Ib) of Corollary 4.10 have some relevance
to the former monotonicity concept as well: any stepsize coefficient for internal or
external monotonicity in the stronger sense cannot exceed r(A) or r(A,B), respec-
tively.

Note that not all findings in the present paper would remain valid if the assump-
tion that ‖ · ‖ is a seminorm would have been replaced consistently by (4.10). One
easily sees, e.g., that Theorems 3.1, 3.2 cannot be true after such a replacement.

5. Examples and applications

In this section, we shall give illustrations and counterexamples corresponding to
the theory of Sections 3, 4. We shall focus on values of γ, μ for which the following
two properties are present:

Restriction 0 < Δt ≤ γ ·τ0 implies the bound maxi ‖y[N ]
i ‖ ≤ μ·‖u0‖

whenever N ≥ 1, V is a vector space with seminorm ‖ · ‖, and y
[N ]
i

is generated from u0 by applying (1.2), for n = 1, . . . , N , under
condition (1.5).

(5.1)

Restriction 0 < Δt ≤ γ · τ0 implies the bound ‖uN‖ ≤ μ · ‖u0‖
whenever N ≥ 1, V is a vector space with seminorm ‖ · ‖, and
uN is generated from u0 by applying (1.2), for n = 1, . . . , N , under
condition (1.5).

(5.2)

Clearly, γ is a stepsize-coefficient for internal or external boundedness if and only
if, for some (finite) μ, we have property (5.1) or (5.2), respectively.

5.1. Conclusions from Section 4 about boundedness for actual RKMs.

5.1.1. Two simple RKMs. We consider two simple explicit RKMs with s = 2 stages,
the nonzero coefficients aij , bj of which are given by (5.3) and (5.4), respectively:

a2 1 = 1, b1 = b2 = 1/2,(5.3)

a2 1 = −20, b1 = 41/40, b2 = −1/40.(5.4)

Both methods are of second order and yield identical numerical approximations
when applied to linear autonomous problems.

In [10], monotonicity properties of the two methods were compared to each other,
both theoretically and by a numerical experiment. Furthermore, in [20], bounded-
ness results for the methods were obtained, via (laborious) ad-hoc calculations.
Below we shall recover and extend the last-mentioned results, without any labori-
ous calculations, by using the material of Section 4. Note that both methods are
irreducible, cf. Definition 2.1, and of general type (3.9).
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We find easily, from Definition 4.6, that

r(A) = r(A,B) = 1 (for method (5.3)), r(A) = r(A,B) = 0 (for method (5.4)).

Applying Corollary 4.10, Parts (Ia), (Ib), it follows that for method (5.3) the largest
stepsize-coefficient, for either internal or external monotonicity, is equal to γ = 1;
whereas for method (5.4) it equals γ = 0.

By further applications of Corollary 4.10, we obtain conclusions about internal
and external boundedness of the methods. For method (5.3) we find:

(5.5) For any given μ ≥ 1, the largest γ, with either property (5.1) or
(5.2), is equal to γ = 1.

Similarly, we find for method (5.4):

(5.6) For any given μ ≥ 1, the largest γ, with either property (5.1) or
(5.2), is equal to γ = 0.

It follows that method (5.3) is superior to (5.4) regarding both internal and
external boundedness, with any factor μ ≥ 1. We think these conclusions neatly
supplement and confirm the discussion of the methods in the two papers mentioned
above.

5.1.2. Solving the question of boundedness for some well-known RKMs. The ques-
tion of whether positive γ and finite μ exist, with either property (5.1) or (5.2), can
in many cases be answered quite easily by applying Corollary 4.10, notably for the
RKMs listed below:

• 4-th order “3/8−Rule” of Kutta; cf. e.g. [12, p. 137],
• 4-th order method of Gill; cf. e.g. [1, p. 183], [2, p. 167] and [12, p. 138],
• Butcher’s methods of orders 5, 6, 7, respectively, as specified e.g. in [2, pp 92, 177,

179],
• 8-th order method of Cooper and Verner; cf. e.g. [1, p. 208] and [2, p. 180],
• Radau-IA methods as specified e.g. in [1, p. 228] and [2, pp. 207, 208],
• Lobatto-III and Lobatto-IIIB methods as specified e.g. in [2, pp. 210, 211],
• 5-th order method of Higham and Hall; cf. e.g. [13, p. 27],
• 7-th order method of Fehlberg; cf. e.g. [12, p. 194] and [2, p. 192],
• 5-th order Dormand-Prince method and 8-th order Prince-Dormand method as given

e.g. in [12, pp. 171, 195] and [2, p. 194].
All of the above methods have a coefficient matrix A containing some negative
entry aij . It follows, via Definition 4.6 and Theorem 4.7, that r(A) = r(A,B) = 0.
Since the methods are irreducible, we can apply Corollary 4.10, Parts (Ia), (Ib).
It follows for all methods that the largest stepsize-coefficient, for either internal or
external monotonicity, is equal to γ = 0.

Because all methods satisfy (3.9), we can also apply Parts (IIa), (IIb) of Corollary
4.10 to obtain conclusions about internal and external boundedness. As r(A,B) = 0,
we arrive for all methods listed above, somewhat disappointingly, at the (negative)
conclusion (5.6).

5.2. Counterexamples.

5.2.1. Boundedness in the absence of monotonicity when (3.9) is violated. We shall
give an example showing that the restriction on γ for of RKMs can be less severe
than for monotonicity, when condition (3.9) is violated. The example will prove
that condition (3.9) cannot be omitted in Theorem 3.2 and in Corollaries 4.4, 4.5,
4.10.
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We consider method (1.2), with s = 2, a1,1 = a1,2 = 0, a2,1 = b1 = (1−θ), a2,2 =
b2 = θ, where θ > 1. This method is irreducible, but violates (3.9). Combining
Definition 4.6 and Theorem 4.7, one sees that r(A) = r(A,B) = 0. Applying
Corollary 4.10, Parts (Ia), (Ib), it follows that the largest stepsize-coefficient, for
either internal or external monotonicity, is equal to γ = 0. This follows also from
Theorem 3.1 or Corollary 4.2, because a direct computation using (3.2) yields

(5.7) ϕ(γ) = ψ(γ) = 1 + 2 (θ − 1) γ (for γ ≥ 0).

To obtain conclusions about internal and external boundedness of the method,
we consider γ > 0 and assume that (1.2) holds for 1 ≤ n ≤ N under the assumptions
(1.5), (1.6). Defining fn = ΔtF (un), we have

un = u0 + (1− θ)f0 +

n−1∑

i=1

fi + θ fn (1 ≤ n ≤ N),

where for n = 1 we use the convention
∑ 0

i=1 fi = 0. By introducing vn−1 =

u0 + (1− θ)f0 +
∑n−1

i=1 fi (1 ≤ n ≤ N), there follows

un = vn−1 + θ fn (1 ≤ n ≤ N),(5.8a)

vn = vn−1 + fn (1 ≤ n ≤ N − 1).(5.8b)

Using (5.8a) to eliminate fn from (5.8b), we obtain vn = (1− θ−1) vn−1 + θ−1 un,
and therefore

‖vn‖ ≤ max {‖vn−1‖, ‖un‖} (1 ≤ n ≤ N − 1).

From (5.8a) we see also that ‖vn−1‖ = ‖
(
1 + θΔt

τ0

)
un − θΔt

τ0

(
un + τ0 F (un)

)
‖ ≥(

1 + θΔt
τ0

)
‖un‖ − θΔt

τ0
‖un‖ = ‖un‖, so that

‖un‖ ≤ ‖vn−1‖ (1 ≤ n ≤ N).

It follows that ‖vn‖ ≤ ‖vn−1‖, and therefore ‖vn‖ ≤ ‖v0‖ (0 ≤ n ≤ N − 1).

We thus find ‖un‖ ≤ ‖v0‖ = ‖u0 + (1 − θ)Δt F (u0)‖ = ‖
(
1 + (θ−1)Δ t

τ0

)
u0 −

(θ−1)Δt
τ0

(
u0 + τ0 F (u0)

)
‖. Hence,

(5.9) ‖un‖ ≤ μ ‖u0‖ (1 ≤ n ≤ N), with μ = 1 + 2 (θ − 1) γ.

It follows that any γ > 0 is a stepsize-coefficient for internal and external bound-
edness, although it is no stepsize-coefficient for internal or external monotonicity.
Furthermore, it follows that condition (3.9) cannot be omitted in Theorem 3.2,
because (5.7), (5.9) imply: μ < ϕ(γ)ψ(γ)N−1 = ψ(γ)N (for γ > 0, N > 1). It is
also clear from the above that (3.9) cannot be omitted in Corollaries 4.4, 4.5, 4.10.

For completeness we note that the bound (5.9) was also given in [20] (proved by
a longer computation than above), and that (5.9), when combined with (5.7) and
Theorem 3.1, leads to the following conclusion:

(5.10) For any given μ ≥ 1, the largest γ with either property (5.1) or (5.2)
is equal to γ = μ−1

2 (θ−1) .
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5.2.2. The necessity of row- and DJ-irreducibility. We shall give counterexamples
showing that the conditions of row- and DJ-irreducibility cannot be omitted in
Sections 3, 4.

Necessity of row-irreducibility.
Consider method (1.2), with s = 2, b1 = ai,1 = 2, b2 = ai,2 = −1 (for i =

1, 2). One sees that the method satisfies (3.9) and is DJ-irreducible, but not row-
irreducible. Furthermore, it is easy to see that r(A) = r(A,B) = 0. By (4.2) and
Theorem 4.9, it follows that ϕ(γ) > 1, ψ(γ) > 1 (for γ > 0).

Clearly, the RKM is equivalent to the backward Euler method y
[n]
1 = un−1 +

Δt F (y
[n]
1 ), un = un−1 + Δt F (y

[n]
1 ). In line with Corollary 4.10, for the latter

method the maximal stepsize-coefficient γ for (internal or external) monotonicity
equals γ = ∞. Therefore, the same holds for the original RKM. It follows that
the requirement of row-irreducibility cannot be omitted in Theorems 3.1, 3.2 and
Corollaries 4.2, 4.4, 4.10.

Necessity of DJ-irreducibility.
Consider method (1.2), with s = 2, a1,1 = −1, a1,2 = a2,1 = 0, a2,2 = 1,

b1 = 0, b2 = 1. Clearly, the method satisfies (3.9) and is row-irreducible, but not
DJ-irreducible. We have r(A) = r(A,B) = 0, and from (3.2) it can be seen that
ϕ(γ) = (1−2 γ)−1, ψ(γ) = 1 (for 0 ≤ γ < 1/2) and ϕ(γ) = ψ(γ) = ∞ (for γ ≥ 1/2).

The approximations un, generated by this RKM, can also be obtained by the
backward Euler method mentioned above. Consequently, for the given RKM, any
γ ≥ 0 is a stepsize-coefficient for external monotonicity. Using this property, it can
be concluded that none of the theorems and corollaries in Sections 3, 4, where the
condition of DJ-irreducibility occurs, would remain true if that condition would be
omitted.

6. Proofs related to Lemma 4.1 and Theorems 3.1, 3.2

6.1. Completing the proof of Lemma 4.1. The following lemma, about the
matrices C = (cij), D = (dj) defined in (3.1), will be used in completing the proofs
of Lemma 4.1 and Theorem 3.1.

Lemma 6.1 (A useful property of the matrices C = (cij), D = (dj)). Let the
RKM be DJ-irreducible, and consider γ 	= 0 with I + γ A invertible. Then for each
i0 with 1 ≤ i0 ≤ s, the following property is present:

(6.1) We have di0 	= 0, or there exist indices in, . . . , i1 ∈ {1, . . . , s} with
din cinin−1

· · · ci1i0 	= 0.

Proof of Lemma 6.1. Suppose (6.1) would not hold for all i0. We define N to be
the subset of {1, . . . , s} consisting of all i0 violating (6.1), and M the set of all
remaining indices in {1, . . . , s}. We shall first prove that the entries dj , cij have
the properties imposed on bj , aij , respectively, in part (a) of Definition 2.1.

Let i ∈ M, j ∈ N. Then dj = 0. Furthermore, we have cij = 0 if di 	= 0,
because di cij = 0. If di = 0, we have din cinin−1

· · · ci1i 	= 0 for some indices
in, . . . , i1. Because j ∈ N, there follows: din cinin−1

· · · ci1i cij = 0, which implies
again that cij = 0. We have thus proved that dj , cij have the properties stated in
Definition 2.1, part (a).

Next, we denote by vj (with j ∈ N) the column vector in R
s, with j-th component

equal to 1 and all other components equal to 0, and we denote the subspace of Rs

spanned by all vj (with j ∈ N) by X. In view of the properties of dj , cij , just
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proved, we have D vj = 0, C vj ∈ X (j ∈ N). We define wk = (I + γ A)−1vk
(k ∈ N), so that

γ B wk = 0 and γ Awk ∈ X (k ∈ N).

Using the expression (I + γ A)−1 = I − C, we see that wk (k ∈ N) are linearly
independent vectors in the subspace X. We can thus express each vj as a linear
combination of the vectors wk, so that

γ B vj = 0 and γ A vj ∈ X (j ∈ N).

Because γ 	= 0, the coefficients bj , aij satisfy the conditions imposed on them in
Definition 2.1, part (a). This contradicts DJ-irreducibility, so that property (6.1)
holds (for each i0). �

Proof of (4.3), (4.4) for DJ-irreducible RKMs satisfying (4.5). It is enough to con-
sider γ 	= 0, and to show that, under assumption (4.5), we have Z = E. We shall
prove Z = E from (4.5) using (6.1).

Because of |1−DE|+ |D|Z = ψ(γ) = 1 = (1−DE) +DE and (4.1), we have
0 ≥ (I −DE)− |1−DE| = |D|Z −DE ≥ 0, which implies that

(6.2) |D|Z = DE, and di zi = di (for 1 ≤ i ≤ s).

Let any index i0 ∈ {1, . . . , s} be given. If di0 	= 0, we see from (6.2) that zi0 = 1.
If, on the other hand, di0 = 0, there are indices in, . . . , i1 as in (6.1). Because
din 	= 0, the equality din zin = din implies that zin = 1.

Because Z = (I+ · · ·+ |C|n−1) |E−C E|+ |C|nZ ≥ |C|nZ+(I+ · · ·+ |C|n−1)(I
− |C|)E, we have Z ≥ |C|n Z + (I − |C|n)E. Hence, |C|n (Z −E) ≤ Z −E, which
implies that

|cinin−1
· · · ci1i0 | (zi0 − 1) +

∑
|cinjn−1

· · · cj1j0 | (zj0 − 1) ≤ zin − 1 = 0,

where the summation is over all indices jk with (jn−1, . . . , j0) 	= (in−1, . . . , i0).
Since all zj0 ≥ 1 and cinin−1

· · · ci1i0 	= 0, there follows: zi0 = 1.
We have thus proved that zi = 1 for all i ∈ {1, . . . , s}, i.e. Z = E. �

6.2. Completing the proof of Theorem 3.1. In the present section, we will
complete the proof of Theorem 3.1 by proving the inequalities ϕ(γ) ≤ α and ψ(γ) ≤
β, respectively, from the estimates maxk ‖y[n]k ‖ ≤ α · ‖un−1‖ and ‖un‖ ≤ β · ‖un−1‖
occurring in (3.3). Our proof will make use of these estimates in situations where
V, ‖ ·‖ and F are specified by the following key Lemma 6.2. Our proof will also use
Lemma 6.3, which gives a condition under which property (4.6), needed in Lemma
6.2, is present. Lemmas 6.2, 6.3 will also be used in the next section for completing
the proof of Theorem 3.2.

We note that Lemma 6.2 is related to material in [20, proofs of Lemmas 4.5,
4.6], but the lemma does not follow directly from that paper.

Lemma 6.2. Let the RKM be row-irreducible. Let positive τ0, γ be given, such
that (4.6) holds, and let θ ∈ R, X ∈ R

s be given, with

(6.3) θ ≥ 0, 0 ≤ X ≤ |E − C E| θ + |C|X.

Then there exist a seminorm ‖·‖ in V = R
s+2, a function F : V → V satisfying (1.5)

and vectors u0, u1, y
[1]
k ∈ V (1 ≤ k ≤ s) satisfying (1.2), with n = 1, Δt = γ · τ0,
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such that

[‖y[1]k ‖] = |E − C E| ‖u0‖+ |C|X,(6.4a)

‖u1‖ = |1−DE| ‖u0‖+ |D|X, ‖u0‖ = θ.(6.4b)

Proof of Lemma 6.2. We put V = R
s+2, n = 1 and Δt = γ · τ0. Below, in step 1,

we shall determine u0, u1, y
[1]
k , z

[1]
k ∈ V satisfying (6.4) and (3.6). Next, in step 2,

we shall derive (3.5), (1.5) from (3.6).

Step 1. We denote the components of X by xk (1 ≤ k ≤ s) and define the seminorm

‖v‖ = max {|vi| : 1 ≤ i ≤ s+ 1} (for v ∈ V with components vi (1 ≤ i ≤ s+ 2)).

We write simply yk, zk instead of y
[1]
k , z

[1]
k and define the components zik of zk ∈ V

(1 ≤ k ≤ s), and ui, 0 of u0 ∈ V, as follows:

zik = sgn(cik) xk (1 ≤ i ≤ s), zs+1, k = sgn(dk) xk, zs+2, k = ζk,

ui, 0 = sgn
(
1−

∑

l

cil

)
· θ (1 ≤ i ≤ s), us+1, 0 = sgn(1−DE) · θ, us+2, 0 = 0.

Here cik, dk denote the entries of C, D (cf. (3.1)), ζk will be specified in Step 2,
and sgn(ξ) = 1 (for ξ ≥ 0), sgn(ξ) = −1 (for ξ < 0).

We define y[1] = [yk] ∈ V
s and u1 ∈ V by the equalities in (3.6) (with n = 1).

It can be seen that, with these definitions, property (6.4) is present. Furthermore,
combining the equality [‖zk‖] = X with (6.3), (6.4), we see that the inequalities in
(3.6a) are fulfilled as well.

Step 2. To arrive at (3.5), (1.5), we define f = [fk] ∈ V
s by f = 1

τ0
(z[1] − y[1]).

Using (3.6), it can be seen that

y[1] = E u0 +ΔtA f, u1 = u0 +ΔtB f, ‖yk + τ0 fk‖ ≤ ‖yk‖ (1 ≤ k ≤ s).

We denote the last component of the vector yk ∈ V by ηk (1 ≤ k ≤ s). Further-
more, we denote the vectors in R

s, with components ηk, ζk, by η and ζ, respectively.
From the equality in (3.6a), we have η = C ζ. Because the rows of A are different
from each other, the same holds for the rows of C. This allows us to choose ζ ∈ R

s

such that ηj 	= ηk (for j 	= k). Hence yj 	= yk (for j 	= k).
In view of the last property of the vectors yk, we can define F : V → V by

F (v) = fk (for v = yk) and F (v) = 0 (for v ∈ V \ {y1, . . . , ys}).
With this F , we have (1.5) as well as (3.5) (with n = 1). �

Lemma 6.3. For given γ > 0, assumption (4.6) is fulfilled, when γ1 exists satisfy-
ing

γ
2 < γ1 < γ, I + γ1 A is invertible, and

C1 = γ1 A (I + γ1 A)−1 satisfies spr(|C1|) < 1.

Proof of Lemma 6.3. We have I + γ A = (I + γ1 A) (I + H), with H = εC1 and
ε = γ−γ1

γ1
. Because spr(H) ≤ spr(|H|) = |ε| spr(|C1|) < 1, we can conclude that the

matrix I + γ A is invertible. �

Proof of ϕ(γ) ≤ α for row-irreducible RKMs satisfying (3.3a). Assume property
(3.3a) holds with α < ∞. We shall prove ϕ(γ) ≤ α, in two steps.
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Step 1. Assume first (4.6). We shall prove spr(|C|) < 1, by showing that the
assumptions

(6.5) Y ∈ R
s, |C|Y = λY, Y ≥ 0, λ ≥ 1

imply Y = 0. This implication proves that spr(|C|) < 1, in view of the Perron-
Frobenius theory (cf. e.g. [18, p. 503]).

Under the assumptions (6.5), the inequalities (6.3) hold with θ = 0, X = Y ,
so that we can apply Lemma 6.2. It follows from (6.4), (3.3a) that ‖Y ‖∞ ≤
‖|C|Y ‖∞ = maxk ‖y[1]k ‖ ≤ α ‖u0‖ = α θ = 0, which proves Y = 0. Hence,
spr(|C|) < 1.

The inequalities (6.3) hold also with the choice θ = 1, X = (I−|C|)−1|E−C E|.
Applying Lemma 6.2 in this situation, we conclude from (6.4), (3.3a) that ϕ(γ) =

‖X‖∞ = maxk ‖y[1]k ‖ ≤ α ‖u0‖ = α, which completes the proof of ϕ(γ) ≤ α under
assumption (4.6).

Step 2. Next, we shall prove (4.6). We choose any γ1 ∈ (γ/2, γ) for which I + γ1 A
is invertible. Because property (3.3a) holds for the given γ, it holds also with γ
replaced by γ1. By what we proved in Step 1, the matrix C1 = γ1 A (I + γ1 A)−1

has spr(|C1|) < 1. Applying Lemma 6.3, we arrive at (4.6). This completes the
proof of ϕ(γ) ≤ α. �

Proof of ψ(γ) ≤ β for irreducible RKMs satisfying (3.3b). We assume (3.3b) with
β < ∞, and shall prove ψ(γ) ≤ β. By the same argument as used in the above
proof of ϕ(γ) ≤ α (Step 2), one sees that we can assume (4.6).

Under the assumptions (6.5), we shall again prove Y = 0.
Applying Lemma 6.2, with θ = 0 and X = Y similarly as above, we find from

(6.4b), (3.3b): |D|Y = ‖u1‖ ≤ β ‖u0‖ = β θ = 0. Hence, the products of corre-
sponding components of D and Y satisfy di yi = 0 (1 ≤ i ≤ s). It follows that
yi0 = 0 if di0 	= 0.

On the other hand, if di0 = 0, then by Lemma 6.1 there exists in, . . . , i1 ∈
{1, . . . , s} with din cinin−1

· · · ci1i0 	= 0. Hence, din 	= 0, so that yin = 0. Because 0 =
λn yin =

∑
|cinjn−1

| · · · |cj1j0 | yj0 (where the summation is over all jn−1, . . . , j1, j0)
there follows: |cinin−1

| · · · |ci1i0 | yi0 = 0. Thus we still have yi0 = 0, so that Y = 0.
By the Perron-Frobenius theory, we conclude that spr(|C|) < 1.

Using Lemma 6.2, with the choice θ = 1, X = (I − |C|)−1|E − C E|, we find
from (6.4b), (3.3b), that ψ(γ) = ‖u1‖ ≤ β ‖u0‖ = β, which completes the proof of
ψ(γ) ≤ β. �

6.3. Completing the proof of Theorem 3.2. In this section, we consider an
arbitrary row-irreducible RKM of general type (3.9). We shall denote by uN the
Runge-Kutta approximation, obtained after consecutive applications of formula
(1.2) starting from u0, and by un (1 ≤ n ≤ N − 1) the corresponding intermediate
approximations. In the following proof of the inequalities αN ≥ ϕ(γ)ψ(γ)N−1 and
βN ≥ ψ(γ)N , we assume αN < ∞, βN < ∞ and (4.6). By the same argument as
used in Section 6.2 (Step 2 of the proof of ϕ(γ) ≤ α), it can be seen that we lose
no generality in making assumption (4.6).
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In view of (3.5b), we have un = u0 +Δt ·
∑n

j=1BF (y[j]) (1 ≤ n ≤ N), so that

by using (3.5a) there follows:

y[n] = E u0 +Δt ·
[
AF (y[n]) +

n−1∑

j=1

EB F (y[j])
]

(1 ≤ n ≤ N),(6.6a)

uN = u0 +Δt ·
N∑

j=1

B F (y[j])
)
.(6.6b)

The formulas (6.6) can be viewed as describing one step of a (formal) RKM with
m = N ·s stages. Any vectors y[n] ∈ V

s, uN ∈ V satisfy (6.6) if and only if they are
generated by N consecutive applications of method (1.2), starting from u0. Below,
we shall prove the bounds αN ≥ ϕ(γ)ψ(γ)N−1 and βN ≥ ψ(γ)N , by applying
Lemma 6.2 and Theorem 3.1 to the RKM (6.6).

By T we denote the m × m coefficient matrix corresponding to the m internal
stages (6.6a) of the m-stage RKM. One sees that T has a block Toeplitz structure,
being made up of s × s blocks Tn,j = Tn−j+1. where Tk = 0 (k ≤ 0), T1 = A,
Tk = E B (k > 1).

Because I + γ A is invertible, the same holds for I + γ T . Furthermore, the
row-irreducibility of method (1.2) combined with (3.9) implies that all rows of T
are different from each other. Consequently, the RKM specified by (6.6) satisfies
the assumptions required for an application of Lemma 6.2, with s, A, E, C, respec-
tively, replaced by m, T, S and P , where S is the m × 1 matrix with all entries
equal to 1, and P = γ T (I + γ T )−1. Note that P is a block Toeplitz matrix, made
up of s× s blocks Pn,j = Pn−j+1 where Pk = 0 (k ≤ 0), P1 = C.

Proof of αN ≥ ϕ(γ)ψ(γ)N−1 for row-irreducible RKMs, of general type, satisfying
(3.8a).

Step 1. To prove spr(|C|) < 1, we assume (6.5). We shall show that Y = 0.
Let X = [Xn] ∈ R

m, where the subvectors Xn ∈ R
s satisfy Xn = 0 (1 ≤ n ≤

N − 1) and XN = Y . Because |P |X = λX ≥ X ≥ 0, we have (6.3) with θ = 0
and with |C| replaced by |P |. Applying Lemma 6.2 (with this replacement) to
RKM (6.6), we see via (6.4) that, for some vector space V with seminorm ‖ · ‖,
some function F satisfying (1.5), and vectors u0, y

[n] satisfying (6.6a) with (1.6),
we have ‖u0‖ = 0 and η = |P |X, where η ∈ R

m is made up of subvectors ηn ∈
R

s (1 ≤ n ≤ N) with components ηi,n = ‖y[n]i ‖ (1 ≤ i ≤ s).
Property (3.8a) implies: αN · ‖u0‖ ≥ ‖ηN‖∞ = ‖λY ‖∞. Hence, Y = 0, which

(by the Perron-Frobenius theory) implies: spr(|C|) < 1.

Step 2. Because spr(|C|) < 1, we have spr(|P |) < 1 as well. We apply Lemma
6.2 once more to the RKM specified by (6.6), but now with the choices θ = 1 and
X = (I − |P |)−1|S − P S|.

It follows via (6.4) that η = |S − P S| + |P |X = X, where η = [ηn] ∈ R
m and

the vectors ηn ∈ R
s (1 ≤ n ≤ N) have components ηi,n = ‖y[n]i ‖ (1 ≤ i ≤ s).

Property (3.8a) implies: αN ≥ ‖ηN‖∞. Writing X = [Xn] ∈ R
m, with Xn ∈ R

s,
we have ‖ηN‖∞ = ‖XN‖∞, so that also αN ≥ ‖XN‖∞. In step 3, below, we shall
find that ‖XN‖∞ = ϕ(γ)ψ(γ)N−1, which will complete the proof.

Step 3. We write R = [Rn] = S − P S, with Rn ∈ R
s (1 ≤ n ≤ N). Using

(I + γ T ) [Rn] = S, we obtain (I + γ A)Rn + γ E B (R1 + · · ·+ Rn−1) = E, which
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implies that (I+γ A)Rn = (I−ED) (I+γ A)Rn−1 (for n > 1), with D defined in
(3.1). Because (I+γ A)R1 = E, there follows: Rn = (I+γ A)−1 (I−ED)n−1E =
(I + γ A)−1E (1−DE)n−1 (for n ≥ 1). Hence,

|Rn| = |E − C E| ρn−1 (1 ≤ n ≤ N), with ρ = |1−DE|.

Using (I+γ T )P = γ T , we obtain (I+γ A)Pn+γ E B (P1+· · ·+Pn−1) = γ E B
(n > 1), which implies (I + γ A)Pn = (I − ED) (I + γ A)Pn−1 (for n > 2).
Because (I + γ A)P2 = ED, there follows: Pn = (I + γ A)−1 (I − ED)n−2ED =
(I + γ A)−1E (1−DE)n−2D (for n ≥ 2). Hence,

|P1| = |C|, |Pn| = ρn−2 |E − C E| |D| (2 ≤ n ≤ N).

Using (I − |P |) [Xn] = |R|, in combination with the above expressions for
|Rn| and |Pn|, we obtain (I−|C|)Xn = ρn−1 |E−C E|+|P2|

(
ρn−2 X1+· · ·+Xn−1

)
.

We modify this relation, by multiplying it with ρ and replacing n by n−1. Subtract-
ing this modified equality from the original one, we obtain (I−|C|) (Xn−ρXn−1) =
|P2|Xn−1, i.e. Xn =

(
ρ I + (I − |C|)−1 |P2|

)
Xn−1 (n ≥ 2).

Repeated application of the last equality, in combination with the formulas
(I − |C|)−1 |P2| = Z |D| and X1 = Z (where Z is defined in (3.1)), yields:

Xn = (ρ I + Z |D|)n−1 Z = Z (ρ+ |D|Z)n−1 = Z ψ(γ)n−1 (1 ≤ n ≤ N),

which implies ‖XN‖∞ = ϕ(γ)ψ(γ)N−1. �

Proof of βN ≥ ψ(γ)N for irreducible RKMs, of general type, satisfying (3.8b).

Step 1. We shall first prove that DJ-irreducibility of method (1.2) implies the same
property for the formal RKM specified by (6.6). We denote by Ā = (āk,l), B̄ = (b̄l)
the matrices which are related to (6.6) in the same manner as A, B are related to
(1.2). (We could have stuck to the notation T instead of Ā, but the latter is more
convenient here.)

Suppose (6.6) would be DJ-reducible; i.e., b̄l = 0, āk,l = 0 (for all k ∈ M̄, l ∈ N̄),
where M̄∪ N̄ = {1, . . . ,m}, M̄∩ N̄ = ∅, N̄ 	= ∅. We write j ≡ l when the difference
l − j is an integer multiple of s, and put

N = {j : 1 ≤ j ≤ s, and j ≡ l for some l ∈ N̄}, M = {1, . . . , s} \N.

It can be seen that N is nonempty and bj = 0 (j ∈ N), aij = 0 (i ∈ M, j ∈ N). This
contradicts DJ-irreducibility of method (1.2), and thus proves DJ-irreducibility of
method (6.6).

Step 2. Consider the vectors y
[N+1]
i obtained after N +1 steps of method (1.2). By

Theorem 3.1, Part (I), we have maxi‖y[N+1]
i ‖ ≤ ϕ(γ) ‖uN‖, so that an application

of (3.8b) yields: maxi‖y[N+1]
i ‖ ≤ ϕ(γ) βN ‖u0‖. Hence, (3.8a) holds (with N + 1

replacing N , and αN+1 = ϕ(γ) βN ). By Theorem 3.2, Part (I), there follows

ϕ(γ)ψ(γ)N ≤ ϕ(γ) βN .

In Step 3, below, we shall prove that ϕ(γ) is finite, which in combination with the
above inequality will complete the proof of βN ≥ ψ(γ)N .
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Step 3. We denote by ψ̄(γ) the function which is related to the matrices Ā, B̄ in
the same way as the function ψ(γ) is related to A, B.

Because the RKM specified by (6.6) is row- and DJ-irreducible, we can apply
Theorem 3.1, Part (II), to it, so as to conclude from (3.8b) that βN ≥ ψ̄(γ). By
assumption, βN is finite, so that the same holds for ψ̄(γ). Consequently, spr(|P |) <
1, and therefore also spr(|C|) < 1. It is evident from (3.2a) that ϕ(γ) is finite. �

7. Conclusions

We have studied for s-stage Runge-Kutta methods (RKMs), specified by coef-
ficients aij , bj , the important properties of boundedness and monotonicity (also
called strong-stability). The focus has been on stepsize-coefficients γ which are
decisive for these properties.

The crucial question has been considered of whether stepsize-coefficients, relevant
to boundedness, can be larger than optimal stepsize-coefficients for monotonicity.
For irreducible RKMs we have found, to our surprise, that this may happen only
within a class of very special RKMs. The class consists of the RKMs for which
indices i, j exist with:

(ai,1, . . . , ai,s) = (0, . . . , 0) and (aj,1, . . . , aj,s) = (b1, . . . , bs).

As a result, any irreducible explicit RKM allows no positive stepsize-coefficient γ
relevant to boundedness, as soon as it admits no positive γ for monotonicity.

As a by-product of studying the above question, we have found a new character-
ization of Kraaijevanger’s coefficient and recovered the well-known fundamental re-
lation between this coefficient and monotonicity, as stated in the existing literature.
We think the derivation of this relation in the present paper is more transparent
and shorter than the classical one. Moreover, it requires a simpler irreducibility
condition than usually imposed in the literature.

As a further by-product, we have found extensions in various directions of the
relation between monotonicity and Kraaijevanger’s coefficient, mentioned above.
Separate conclusions have been obtained for internal and external monotonicity, as
well as a direct connection between these two properties. Moreover, new character-
izations have been found of stepsize-coefficients for monotonicity or boundedness.

We have applied the theoretical findings of the paper to various well-known
RKMs. Furthermore, a special instance has been examined of an irreducible RKM
with no positive stepsize-coefficient γ for monotonicity, but with still a positive γ
for boundedness. A systematic search for methods with this property may be a
subject of future research.
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