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COMPUTING TOTALLY POSITIVE ALGEBRAIC INTEGERS

OF SMALL TRACE

JAMES MCKEE

Abstract. We construct minimal polynomials of totally positive algebraic
integers of small absolute trace by consideration of their reductions modulo
auxiliary polynomials. Many new examples of such polynomials of minimal
absolute trace (for given degree) are found. The computations are pushed to
degrees that previously were unattainable, and one consequence is that the
new examples form the majority of all those known. As an application, we
produce a new bound for the Schur-Siegel-Smyth trace problem.

1. Introduction

1.1. The absolute trace of a totally positive algebraic integer. Let θ be a
totally positive algebraic integer of degree d with minimal polynomial

(1) P (x) = xd − ad−1x
d−1 + ad−2x

d−2 − · · ·+ (−1)da0 .

Here the ai are necessarily all positive integers, given that all the Galois conjugates
of θ are real and positive. The absolute trace of θ is the quantity ad−1/d, namely
the arithmetic mean of the roots of P (x). This cannot be too small: the product of
all the roots of P (x) is a positive integer, so it is at least 1, and then the arithmetic-
geometric mean inequality shows that ad−1 ≥ d, so that the absolute trace is at
least 1. Moreover, the absolute trace is greater than 1 unless P (x) = x− 1.

We shall see that for degree at least 5, one has

(2) ad−1 ≥ �1.78839d� .
This bound is known to be sharp for d = 5, 6, 7, 8, 9, 10, 12, 13, 14 (see §3.2 for
the last of these). It is probably not sharp for d = 11. Minimal traces for degrees
below 5 were provided by Smyth [13].

1.2. The Schur-Siegel-Smyth trace problem. Siegel [12] observed that 2 is a
limit point of the set of absolute traces, on considering the totally positive algebraic
integers 4 cos2(2π/m) for m ∈ N. What is the smallest limit point? This is the
Schur-Siegel-Smyth trace problem. Schur [11] showed that the smallest limit point is
at least

√
e ≈ 1.6487, Siegel [12] improved this bound to 1.7336, and Smyth [13, 14]

improved it further to 1.7719. More recent improvements are mentioned in the
next subsection, and indeed in recent years no record has lasted for very long. Any
examples of totally positive algebraic integers with absolute trace below 2, other
than Siegel’s ‘cosine’ examples are therefore of some interest, and the majority of
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the known examples with degree below 15 have been found using the new method
described in the current paper.

1.3. Smyth’s attack on the trace problem. Since his key paper in 1984 [13], all
improvements to the bound in the trace problem have come from Smyth’s method,
which we now recall briefly. First one finds a collection of ‘good’ polynomials Qi(x)
(more details as to what ‘good’ might mean will be given below), then one uses
semi-infinite linear programming or some other optimisation technique to establish
an inequality of the shape

(3) x−
∑

i∈I

αi log
∣∣Qi(x)

∣∣ ≥ ρ , x > 0 ,

for some subset of the Qi, indexed by I, and where the αi are positive real constants,
chosen to maximise ρ.

Averaging (3) over all the roots of P (x), one obtains

(4)
ad−1

d
≥ ρ+

∑

i

αi

d
log

∣∣Res(P,Qi)
∣∣ .

Here Res(A,B) denotes the resultant of A and B. If P as in (1) has roots θ1,
. . . , θd, then Res(P,B) = B(θ1) · · ·B(θd). This uses that P is monic, but B need
not be. If P has no root in common with any of the Qi (assumed to have integer
coefficients), then each resultant in (4) has absolute value at least 1, and hence the
absolute trace is at least ρ.

Using a variety of selections of polynomials Qi, several improvements on the value
of ρ have been made. In each case, the improvement resulted from using new ‘good’
polynomials. Smyth [13, 14] obtained the bound 1.7719 drawing on polynomials
of degree d up to 7 and trace at most d + 6. Flammang, Grandcolas and Rhin
[5], used cosine polynomials and transforms of small Salem polynomials to improve
this to 1.7735. The author and Smyth [7] found all minimal trace polynomials of
degree 10 (the smallest degree d for which the trace is as small as 2d− 2), and used
these to improve the bound to 1.7783. Aguirre, Bilbao and Peral [1] performed
extensive computations to find good auxiliary polynomials Qi and improved the
bound to 1.7800. In particular, they used a minimal-trace polynomial of degree
13 (the first such appeared in transformed form in [7]). A further improvement by
Aguirre and Peral to 1.7841 [2] exploited four new polynomials of degree 12 and
trace 22 (minimal). Flammang [4] made use of polynomials with not all roots real
to improve the bound to 1.78702; these new polynomials were found using Wu’s
algorithm [16].

Smyth [15] showed that his method could not push the value of ρ in (3) up beyond
2 − 10−41. In a letter to Smyth (mentioned in [15], and published as an appendix
to [2]), Serre showed that Smyth’s method could not produce a bound better than
1.898302 . . . . In practice, getting close to this number by Smyth’s method is infea-
sible, since (as we shall see) there are so many examples of polynomials that have
absolute trace below Serre’s number. Perhaps the smallest limit point of the set
of absolute traces is strictly smaller than 2, and perhaps even smaller than Serre’s
number.

1.4. Plan for this paper. Most of the rest of this paper is devoted to a description
of a new method to produce totally positive algebraic integers of small absolute
trace. Some of the new polynomials found are then used to improve the bound for
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the trace problem. The paper concludes with a discussion of potential applications
and challenges for future research.

All computations were performed using PARI/GP [9].

2. The method

2.1. Bounds on resultants. As observed by Flammang and Rhin [6], the in-
equality (4) bounds

∣∣Res(P,Qi)
∣∣. Their technique for finding polynomials with

constrained roots is to bound the sums of the powers of the roots, using auxiliary
functions much as in (3). Bounds for the coefficients are deduced using Newton’s
identities. In [6], in cases when the computation would otherwise have been too
lengthy, they used resultant bounds to reduce the possibilities for the lower-order
coefficients.

The method in this paper pushes this idea to the extreme, using mainly resultant
information, and relatively little (if any) looping over possible coefficients. The
heuristic used for the new method is to choose a small number of low-degree monic
Qi that are small on [0, 4], and then find P that has small resultant with all the
Qi. This amounts to finding a small resultant of P with the product of the Qi, but
there is considerable computational benefit to working with the Qi separately.

For any polynomial P as in (1), and any monic auxiliary polynomial Qi ∈ Z[x],
define Pi to be the reduction of P modulo Qi. Note that Res(P,Qi) = Res(Pi, Qi).
This resultant should be small, and the coefficients of Pi not too large.

This suggests a very naive search method: for a collection of ‘good’ Qi(x), guess
the values of each Pi, and glue together via the Chinese Remainder Theorem. One
could also easily combine this with Robinson’s algorithm ([10], and see also [7]). A
more intelligent search, making use of a little algebraic number theory, is detailed
in §2.2. A heuristic speed-up, based on an empirical observation of which residues
actually appear, is then described in §2.3. A theoretical explanation of the observed
phenomenon is also given in that section.

Note that not all lists of candidates for the Pi lift to give P with integer coeffi-
cients, and this can cut out many cases at an early stage. This was noted in [6] in
the context of linear Qi. Indeed, one gets a lattice of legitimate reduced polynomi-
als, but the additive structure of this lattice does not fit well with the multiplicative
structure of those polynomials that have small resultants with Qi.

2.2. Resultants and norms. We shall assume that all of our Qi are irreducible
and monic. Let θi be a chosen root of Qi. We use the standard fact (e.g., [3,
Proposition 4.3.4]) that the resultant of Pi and Qi is (plus or minus) the norm of
Pi(θi). For resultant ±1, we are looking for units in Q(θi). For small resultants,
we want elements of small norm, NQ(θi)/Q(Pi(θi)). We summarise these thoughts
in the following proposition.

Proposition 1. Let {Qi}i∈I be a finite collection of monic irreducible polynomials
in Z[x], and let {αi}i∈I be a corresponding set of positive real numbers, and let
ρ ∈ R be such that (3) holds. For each i ∈ I, let θi be a root of Qi. Then for any
totally positive monic polynomial P (x) ∈ Z[x] of degree d and absolute trace t/d,
and with P not divisible by any of the Qi, there holds for each i ∈ I,

(5)
∣∣NQ(θi)/Q(Pi(θi))

∣∣ ≤ exp
(
(t− dρ)/αi

)
,

where Pi is the reduction of P modulo Qi.
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This suggests a more intelligent search method: for each Qi, precompute a list of
units in Q(θi) with coefficients up to some bound, and a set of inequivalent elements
of small norm. Use these to search through possible values of Pi.

Let us illustrate the idea by considering the problem of finding all degree-10
totally positive algebraic integers of trace 18 (a computation that was performed in
[7] in 150 hours on a single processor (with the same code running in 35 hours on a
fast modern laptop), but that now can be verified much more quickly). We choose
Qi whose degrees sum to 9 = d − 1, or close to it: any shortfall will be made up
by looping over certain coefficients. Here a good choice is to use Q1, Q2, Q3, Q4,
Q7 from Table 1, with a degree sum of 8, and loop over the possible values of a8 in
(1). Using Proposition 1 with the value of ρ = 1.78839 following from the selection
of polynomials and coefficients in Table 1, we find that the absolute value of the
resultant of our putative degree-10 polynomial P with each of these five auxiliary
polynomials is at most 1, 1, 4, 1, 5 (here assuming that P is not one of Q25, Q26,
Q27, so that we can apply Proposition 1). Thus the constant term of P must be 1,
the remainder on dividing P by x− 1 must be ±1, and the remainder on dividing
P by x − 2 lies between −4 and 4 (and is not 0). The resultant with x2 − 3x + 1
must be ±1, so that the residue of P modulo x2 − 3x + 1 is a unit in the relevant
quadratic field, so it is plus or minus an integer power of x−1 (modulo x2−3x+1).
Luckily the cubic field defined by Q7 has no nonunits for which the modulus of the
norm is as small as 5, so that we are just looking at plus or minus products of
integer powers of generators of the unit group: x2 − 3x+ 1 and x− 1.

To continue, we need to obtain bounds for the leading coefficient of the reduction
of P modulo each of the nonlinear auxiliary polynomials, Q4 and Q7. One can get
fairly weak bounds quite simply. The coefficients a0, . . . , a8 in (1) are bounded
above by the corresponding coefficients of (x−18/10)10. Then one can reduce each
relevant power of x modulo each relevant Qi and take appropriately signed linear
combinations of these reductions to bound the leading coefficient of Pi from above
and below. Using the leading coefficient of Pi, one can bound the powers of the
relevant units. The search was completed in 3.5 hours, taking only 10% of the
previous time on the same machine. Now see the final paragraph of §2.3 for an
even more dramatic reduction in the time, but without proof of completeness.

2.3. Good residues and bad. One rapidly observes that some residues modulo
some Qi are much more prevalent than others of the same norm. Being able to
predict in advance which residues are more likely to occur greatly speeds the search:
one can find the majority of solutions in a tiny fraction of the time.

Define

(6) mi = Qi(x)/(x− θi,max) ,

where θi,max is the largest root of Qi(x) (all theQi used will be totally real, although
in the spirit of Flammang’s work [4] one might wish to relax this constraint). If Pi

is close to a real multiple of mi, then its resultant with Qi will be small. It was
observed that without exception the values of Pi for some 106 degree-12 P that
had been computed using the method of §2.2 were close to a multiple of mi. This
provided a much faster way of performing the search: loop through multiples of
mi, round coefficients to the nearest integer, and allow small perturbations of the
coefficients.
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One can explain this phenomenon for the specific Qi used as follows. We treat
the quadratic case Qi = Q4 = x2 − 3x + 1 in detail (other cases are similar). Let
α, β be the roots of Q4, with α < β. Note that β is actually a Pisot number,
since |α| < 1 < β. Write (for j ≥ 0) xj ≡ rjx + sj (mod Q4). Then one obtains
recurrence relations for the rj , with solution

rj =
αj − βj

α− β
, sj =

βj−1 − αj−1

α− β
.

In particular, we see that rjx + sj = 0 has root (αj−1 − βj−1)/(αj − βj). Since
αj → 0 as j → ∞, this root approaches 1/β = α. Moreover, this root approaches
α from below. Since one can easily show that a1 > a0, we conclude that P4, the
reduction of P modulo Q4, is a sum of linear polynomials with roots between 0 and
α: given that this sum must have its root close to either α or β, it is no surprise
that α is favoured.

We can illustrate this heuristic variant by returning to the degree 10, trace 18
problem. Choosing Q1, Q2, Q3, Q4, Q7 with resultant bounds all 1, leading coef-
ficient bounds 1, 1, 8, 1, 16 (respectively), and no perturbation of the coefficients,
all three polynomials were found within 2 seconds(!), looping over a8, but of course
without proof that the list is complete.

3. Results

3.1. Degree 9 revisited. It is known [2] that there are 686 irreducible polynomials
of degree 9 with all roots real and positive, and trace 17 (the smallest possible for
degree 9). Can our method find them all?

First we select auxiliary polynomials with degree sum 8 (or close to it), say
Q1, Q2, Q3, Q4, Q7. Letting di be the degree of Qi, the following strategy was
employed. Initial bounds for the resultant of Pi with Qi were set to be 2di , with the
same initial bounds for the leading coefficients; for nonlinear Qi initial permitted
perturbations of each coefficient were set to 1. For each parameter in turn, the
parameter was repeatedly doubled and the method of §2.3 applied until no new
polynomials were found; then the parameter being varied was reduced to the largest
observed value. The parameters were cycled through, being treated in this way,
until no new polynomials were produced. The final parameters, from which all 686
polynomials were found, are shown in the following table.

polynomial x x− 1 x− 2 x2 − 3x+ 1 x3 − 5x2 + 6x− 1

resultant bound 3 3 23 11 83
leading coefficient bound 3 3 23 55 133
permitted perturbation 0 0 0 1 8
of coefficients

The rationale for this approach was that any missing polynomials would be
extreme outliers with respect to one or more of the parameters. Encouraged by this
success for degree 9, the same strategy was employed to produce the 209 degree-12
trace-22 examples mentioned in §4.1.

3.2. New minimal-trace examples. For degrees 12, 13, 14, the minimal trace
is, respectively, 22, 24, 26. Prior to this work, only a handful of examples were
known ([7], [1], [2]), with none for degree 14. For degree 12, see §4.1 below, where
the list of known examples is extended to 209 in number.
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For degree 13, trace 24, take the auxiliary polynomials Q1, Q2, Q3, Q4, Q7, Q11.
Using the method of §2.3, some 1148 polynomials were found within a few days.
Similarly, for degree 14, trace 26, some 3872 polynomials were found. Since none
of these has appeared in print before, we celebrate by presenting one:

x14 − 26x13 + 298x12 − 1984x11 + 8513x10 − 24701x9 + 49494x8 − 68757x7

+65607x6 − 42064x5 + 17471x4 − 4437x3 + 627x2 − 42x+ 1 .

The online version of this paper contains a link to lists of all these minimal-trace
examples.

3.3. New examples with absolute trace below 2. We can apply the construc-
tion to other nonminimal (or possibly nonminimal) cases: degree 10 and trace 19,
degree 11 and trace 21 (perhaps minimal), degree 12 and trace 23, degree 13 and
trace 25, degree 14 and trace 27. Thousands more examples are easily found.

For degree 10 and trace 19, the auxiliary polynomials used were Q1, Q2, Q3, Q4,
Q7, with resultant bounds 2, 3, 4, 16, 32; for Q4 and Q7, the bounds for the leading
coefficients of the Pi were, respectively, 64 and 128, and the permitted perturbations
of the nonleading coefficients of the rounded integer multiples of m4 and m7 were,
respectively, 1 and 2. The sum of the degrees of the auxiliary polynomials is only
8; this shortfall was made up by looping over a8 in the range 140–155.

For degree 11 and trace 21, the auxiliary polynomials chosen were Q1, Q2, Q3,
Q4, Q5, Q7, with resultant bounds, respectively, 2, 3, 4, 16, 32, 32. For Q4, Q5, Q7,
the leading coefficients of the Pi were bounded by 64, 128, 128, and the permitted
perturbations of the coefficients were 1, 1, 2.

The following table shows the number of polynomials found in each case, includ-
ing the minimal-trace examples of §3.2. It should be stressed that these searches
were not exhaustive, and the numbers given are lower bounds for the total number
of examples.

degree trace number of examples found
10 19 2503
11 21 8496
12 22 209
13 24 1148
14 26 3872

4. A new lower bound for the trace problem

4.1. New auxiliary polynomials. Using the method of §2.3 and the strategy of
§3.1, some 209 polynomials of degree 12 and trace 22 were found; previously 4 of
these had appeared in the literature [2]. The auxiliary polynomials used were Q1,
Q2, Q4, Q7, Q11 from Table 1. The bounds on the resultants were 1, 1, 5, 13, 139.
The bounds on the leading coefficients of the residues were 1, 1, 34, 136, 1207. The
bounds on the permitted perturbations of the coefficients were 0, 0, 0, 4, 5.

4.2. The linear programming. Adding our 209 degree 12 trace 22 totally pos-
itive polynomials to Flammang’s list of 35 polynomials, linear programming was
used to obtain the lower bound advertised in (2). The Qi and αi are tabulated in
Table 1. A word about the confidence in the numerical accuracy of this bound is
in order. One can use calculus to identify the position of the local minima of the
function on the left of (3) to any desired accuracy; but how confident can we be
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in the function values at these local minima? This question is simplified by the
following lemma.

Lemma 2. With the Qi and αi given in Table 1, define the function F (x) for x > 0
by

F (x) = x−
70∑

i=1

αi log
∣∣Qi(x)

∣∣ .

Then F ′′(x) > 0 for all positive x for which it is defined.

Proof. Define gi(x) = log |Qi(x)|. We have F ′′(x) = −
∑

αig
′′
i (x). Now if Qi is

totally real, then since

g′i(x) =
Q′

i(x)

Qi(x)
=

∑ 1

x− θi,k
,

where the θi,k are the roots of Qi, the contribution to F ′′ from such Qi is strictly
positive.

But some of Flammang’s polynomials are not totally real, and indeed the corre-
sponding g′′i (x) do change sign. To cope with these, the roots of all these trouble-
some g′′i were computed, and the real line was split into intervals, in each of which
at most three of the g′′i were positive (hence contributing negatively to F ′′). In each
such interval, a small set of totally real Qi was found such that their contribution
to F ′′ dominated those of the awkward g′′i . In this way one could establish that
F ′′ had no real roots without having to deal with polynomials of impossibly large
degree. For example, in the interval [0, 0.15], the troublesome Flammang polyno-
mials are Q17, Q29 and Q34; in this interval, one can check (using Sturm’s theorem)
that −α1g1 − α17g17 − α29g29 − α34g34 has positive second derivative throughout
the interval, and hence so does F . �

Content that F ′′(x) > 0 for x > 0, we now split the positive real axis into 631
subintervals, with endpoints given by the roots of all the Qi (and also ∞). In each
subinterval I, a bisection technique was used to find three points x1 = x2 − h <
x2 < x3 = x2 + h with F (x2) < max{F (x1), F (x3)}, and with all the F (xi) very
close. Then in I a lower bound for F is given by 2F (x2) − max{F (x1), F (x3)}.
For the polynomials and coefficients given in Table 1, the smallest of these lower
bounds over all the subintervals I was 1.78839, giving (2).

5. Applications and challenges

5.1. Degrees 11 and 15. Extensive searches have failed to find any examples with
degree 11 and trace 20. The method of §2.2, with more work on bounding resultants
and coefficients, could surely polish off this case. But the possibility of an empty
output makes the challenge relatively unexciting. Similar comments hold for degree
15 and trace 27, although a complete search using the method of §2.2 is considerably
more daunting. A more straightforward challenge is to update and extend the table
in §3.3.

5.2. Variants of the method. For each degree d, one might consider several
subsets of the Qi for which the sum of the degrees was close to d − 1. One could
then run the method of §2.3 on each subset, and pool the results. Keeping the
bounds moderately small would greatly speed the search. The hope would be
that nearly all polynomials would fall into one of the subsets considered, so that



1048 JAMES MCKEE

a majority of all possible examples would be found in a fraction of the time. For
degree/trace combinations where a more systematic search would be impossible,
this might be an attractive variant.

Rather than precomputing lists of potentially good residues that might never be
used, an alternative strategy of growing lists of popular residues might be profitable
for large degrees. Start with lists Li such that small-trace polynomials are known
with Pi ∈ Li. Search for more polynomials using only these ‘good’ residues. Any
new polynomials found via auxiliary polynomials Qi (i ∈ I) can be used to grow
the lists Lj for j �∈ I.

5.3. Improving the rigorous variant. If the method is to be used for an ex-
haustive search, then the resultant bounds should be the best-known derived from
expressions of the form (4), and coefficient bounds need to be rigorously derived.
One improvement would be to do the right optimisation for bounding each resul-
tant, rather than doing a single global optimisation for ρ; one might find a smaller
value of ρ which gives a better bound for the resultant of P with Qi because the
value of αi is larger.

5.4. Trace 2d − 3. What is the smallest d for which there is a totally positive
algebraic integer that has degree d and trace 2d−3? Certainly we have d ≥ 15. The
construction in [8] for Salem numbers of arbitrary trace produces a Salem number
τ of degree 76 and trace −3. The totally positive algebraic integer τ + 1/τ + 2 has
degree 38 and trace 2d − 3 = 73. An extension of the interlacing technique in [8]
produces an example with degree only 27:

x27 − 51x26+1223x25 − 18339x24+192898x23 − 1513373x22+9192976x21

−44303101x20+172186638x19 − 545699142x18+1420423645x17 − 3049383852x16

+5408448828x15−7920958921x14 + 9554306801x13 − 9447108297x12+7604508649x11

−4936587363x10+2552735579x9−1034886788x8+322250908x7 − 75059956x6

+12632359x5 − 1466911x4 + 110409x3 − 4934x2 + 114x− 1 .

Applying the method of §2.3 optimistically one might discover an example of even
smaller degree.

5.5. Discriminants of totally real polynomials. Totally real polynomials of
small absolute trace have relatively small discriminants. The techniques of this
paper could be applied to the search for small discriminants of totally real polyno-
mials.

6. Appendix: the polynomials and coefficients for the bound (2)

Here we list the 70 polynomials Q1,. . . ,Q70 and their corresponding coefficients
that were selected from 244 possible polynomials by the linear programming routine.
They are ordered by degree, and then by the values of their coefficients. Of the 70
polynomials, 32 appeared in Flammang’s list [4], and the remaining 38 are from the
new list of 209 degree-12 trace-22 polynomials (three of the four used by Aguirre
and Peral [2] were selected: numbers 32, 33, 46). All computations were performed
using a precision of 28 significant digits; the coefficients are displayed only to 10
decimal places.
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Table 1: Auxiliary polynomials and their coefficients for the bound (2)

i Qi αi

1 x 0.5458822075
2 x− 1 0.4768270490
3 x− 2 0.0732017208

4 x2 − 3x+ 1 0.1796348117
5 x2 − 4x+ 2 0.0095848069
6 x2 − 4x+ 1 0.0060806088

7 x3 − 5x2 + 6x− 1 0.0684812443
8 x3 − 6x2 + 9x− 1 0.0062431622
9 x3 − 6x2 + 9x− 3 0.0034242075

10 x3 − 6x2 + 8x− 1 0.0004435369

11 x4 − 7x3 + 13x2 − 7x+ 1 0.0302909976
12 x4 − 7x3 + 14x2 − 8x+ 1 0.0239553796

13 x5 − 9x4 + 27x3 − 31x2 + 12x− 1 0.0075885021
14 x5 − 9x4 + 28x3 − 35x2 + 15x− 1 0.0048599436
15 x5 − 9x4 + 26x3 − 29x2 + 11x− 1 0.0042532436
16 x5 − 9x4 + 27x3 − 32x2 + 13x− 1 0.0022305210

17 x6 − 10x5 + 35x4 − 52x3 + 33x2 − 9x+ 1 0.0015266587
18 x6 − 11x5 + 44x4 − 78x3 + 59x2 − 15x+ 1 0.0002437391

19 x7 − 13x6 + 63x5 − 143x4 + 157x3 − 78x2 + 16x− 1 0.0010027729

20 x8 − 15x7 + 90x6 − 277x5 + 467x4 − 428x3 + 200x2 − 42x+ 3 0.0015333021
21 x8 − 14x7 + 78x6 − 221x5 + 339x4 − 277x3 + 111x2 − 19x+ 1 0.0014339129
22 x8 − 15x7 + 89x6 − 269x5 + 445x4 − 402x3 + 187x2 − 40x+ 3 0.0011925457
23 x8 − 14x7 + 78x6 − 222x5 + 345x4 − 289x3 + 120x2 − 21x+ 1 0.0006074869

24 x9 − 16x8 + 103x7 − 345x6 + 651x5 − 703x4 + 424x3 − 135x2

+20x− 1 0.0020620779

25 x10 − 18x9 + 135x8 − 549x7 + 1320x6 − 1920x5 + 1662x4 − 813x3

+206x2 − 24x+ 1 0.0054614574
26 x10 − 18x9 + 134x8 − 538x7 + 1273x6 − 1822x5 + 1560x4 − 766x3

+200x2 − 24x+ 1 0.0035987602
27 x10 − 18x9 + 134x8 − 537x7 + 1265x6 − 1798x5 + 1526x4 − 743x3

+194x2 − 24x+ 1 0.0030737869
28 x10 − 18x9 + 135x8 − 550x7 + 1331x6 − 1967x5 + 1760x4 − 916x3

+256x2 − 32x+ 1 0.0013072598

29 x12 − 21x11 + 190x10 − 972x9 + 3103x8 − 6439x7 + 8780x6

−7789x5 + 4372x4 − 1483x3 + 283x2 − 27x+ 1 0.0073877754
30 x12 − 21x11 + 190x10 − 972x9 + 3102x8 − 6430x7 + 8750x6

−7742x5 + 4336x4 − 1470x3 + 281x2 − 27x+ 1 0.0037158977
31 x12 − 22x11 + 208x10 − 1108x9 + 3666x8 − 7840x7 + 10948x6

−9877x5 + 5589x4 − 1885x3 + 349x2 − 31x+ 1 0.0023864597
32 x12 − 22x11 + 207x10 − 1092x9 + 3561x8 − 7474x7 + 10213x6

−9012x5 + 5007x4 − 1676x3 + 314x2 − 29x+ 1 0.0023448210
33 x12 − 22x11 + 204x10 − 1050x9 + 3322x8 − 6752x7 + 8944x6

−7677x5 + 4177x4 − 1388x3 + 265x2 − 26x+ 1 0.0016259610
34 x12 − 21x11 + 189x10 − 958x9 + 3023x8 − 6196x7 + 8352x6

−7341x5 + 4097x4 − 1389x3 + 267x2 − 26x+ 1 0.0012617180
35 x12 − 22x11 + 207x10 − 1093x9 + 3575x8 − 7549x7 + 10410x6

−9284x5 + 5204x4 − 1748x3 + 327x2 − 30x+ 1 0.0012560669
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Table 1: (continued) Auxiliary polynomials and coefficients.

i Qi αi

36 x12 − 22x11 + 207x10 − 1094x9 + 3587x8 − 7607x7 + 10558x6

−9501x5 + 5387x4 − 1830x3 + 343x2 − 31x+ 1 0.0010625610

37 x12 − 22x11 + 206x10 − 1075x9 + 3443x8 − 7042x7 + 9313x6

−7935x5 + 4289x4 − 1425x3 + 274x2 − 27x+ 1 0.0010268366
38 x12 − 22x11 + 208x10 − 1108x9 + 3667x8 − 7851x7 + 10995x6

−9977x5 + 5702x4 − 1952x3 + 368x2 − 33x+ 1 0.0008735994
39 x12 − 22x11 + 207x10 − 1093x9 + 3575x8 − 7551x7 + 10428x6

−9343x5 + 5293x4 − 1811x3 + 346x2 − 32x+ 1 0.0007246854
40 x12 − 22x11 + 207x10 − 1093x9 + 3574x8 − 7539x7 + 10373x6

−9219x5 + 5145x4 − 1718x3 + 318x2 − 29x+ 1 0.0006473624
41 x12 − 22x11 + 207x10 − 1093x9 + 3573x8 − 7529x7 + 10336x6

−9154x5 + 5088x4 − 1695x3 + 315x2 − 29x+ 1 0.0005662111
42 x12 − 22x11 + 207x10 − 1092x9 + 3562x8 − 7485x7 + 10260x6

−9112x5 + 5121x4 − 1745x3 + 334x2 − 31x+ 1 0.0005486744
43 x12 − 22x11 + 206x10 − 1076x9 + 3456x8 − 7106x7 + 9462x6

−8101x5 + 4364x4 − 1428x3 + 268x2 − 26x+ 1 0.0005162692
44 x12 − 22x11 + 206x10 − 1077x9 + 3470x8 − 7182x7 + 9666x6

−8391x5 + 4582x4 − 1511x3 + 283x2 − 27x+ 1 0.0003868376
45 x12 − 22x11 + 207x10 − 1094x9 + 3588x8 − 7617x7 + 10598x6

−9582x5 + 5475x4 − 1880x3 + 356x2 − 32x+ 1 0.0003838813
46 x12 − 22x11 + 208x10 − 1109x9 + 3679x8 − 7908x7 + 11134x6

−10166x5 + 5846x4 − 2009x3 + 377x2 − 33x+ 1 0.0003538106
47 x12 − 22x11 + 208x10 − 1108x9 + 3665x8 − 7829x7 + 10902x6

−9784x5 + 5492x4 − 1834x3 + 337x2 − 30x+ 1 0.0002879600
48 x12 − 22x11 + 208x10 − 1108x9 + 3666x8 − 7839x7 + 10940x6

−9854x5 + 5559x4 − 1868x3 + 346x2 − 31x+ 1 0.0002180755
49 x12 − 22x11 + 206x10 − 1080x9 + 3505x8 − 7345x7 + 10059x6

−8921x5 + 4984x4 − 1674x3 + 314x2 − 29x+ 1 0.0001855736
50 x12 − 22x11 + 208x10 − 1109x9 + 3679x8 − 7907x7 + 11124x6

−10130x5 + 5787x4 − 1964x3 + 363x2 − 32x+ 1 0.0001837541
51 x12 − 22x11 + 206x10 − 1077x9 + 3471x8 − 7192x7 + 9706x6

−8473x5 + 4673x4 − 1563x3 + 296x2 − 28x+ 1 0.0001826723
52 x12 − 22x11 + 206x10 − 1078x9 + 3483x8 − 7248x7 + 9838x6

−8641x5 + 4786x4 − 1599x3 + 300x2 − 28x+ 1 0.0001665401
53 x12 − 22x11 + 205x10 − 1065x9 + 3412x8 − 7035x7 + 9455x6

−8221x5 + 4513x4 − 1501x3 + 283x2 − 27x+ 1 0.0001535104
54 x12 − 22x11 + 207x10 − 1092x9 + 3560x8 − 7463x7 + 10168x6

−8927x5 + 4931x4 − 1646x3 + 310x2 − 29x+ 1 0.0001390283
55 x12 − 22x11 + 208x10 − 1109x9 + 3678x8 − 7896x7 + 11078x6

−10037x5 + 5691x4 − 1914x3 + 351x2 − 31x+ 1 0.0001195768
56 x12 − 22x11 + 207x10 − 1092x9 + 3560x8 − 7464x7 + 10176x6

−8948x5 + 4952x4 − 1654x3 + 311x2 − 29x+ 1 0.0001059823
57 x12 − 22x11 + 207x10 − 1093x9 + 3574x8 − 7539x7 + 10373x6

−9218x5 + 5142x4 − 1716x3 + 318x2 − 29x+ 1 0.0000879702
58 x12 − 22x11 + 207x10 − 1094x9 + 3587x8 − 7607x7 + 10558x6

−9502x5 + 5391x4 − 1835x3 + 345x2 − 31x+ 1 0.0000846965
59 x12 − 22x11 + 207x10 − 1096x9 + 3611x8 − 7723x7 + 10850x6

−9914x5 + 5717x4 − 1972x3 + 372x2 − 33x+ 1 0.0000804006
60 x12 − 22x11 + 207x10 − 1092x9 + 3560x8 − 7462x7 + 10160x6

−8902x5 + 4892x4 − 1616x3 + 300x2 − 28x+ 1 0.0000747105
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Table 1: (continued) Auxiliary polynomials and coefficients.

i Qi αi

61 x12 − 22x11 + 206x10 − 1077x9 + 3468x8 − 7164x7 + 9608x6

−8307x5 + 4527x4 − 1497x3 + 282x2 − 27x+ 1 0.0000612360

62 x12 − 22x11 + 206x10 − 1078x9 + 3482x8 − 7239x7 + 9806x6

−8584x5 + 4733x4 − 1575x3 + 296x2 − 28x+ 1 0.0000393296
63 x12 − 22x11 + 205x10 − 1065x9 + 3414x8 − 7053x7 + 9518x6

−8330x5 + 4612x4 − 1548x3 + 294x2 − 28x+ 1 0.0000371271
64 x12 − 22x11 + 209x10 − 1124x9 + 3772x8 − 8218x7 + 11740x6

−10879x5 + 6347x4 − 2212x3 + 421x2 − 37x+ 1 0.0000253111
65 x12 − 22x11 + 208x10 − 1108x9 + 3665x8 − 7829x7 + 10903x6

−9792x5 + 5513x4 − 1855x3 + 345x2 − 31x+ 1 0.0000205517
66 x12 − 22x11 + 205x10 − 1065x9 + 3413x8 − 7043x7 + 9479x6

−8254x5 + 4533x4 − 1505x3 + 283x2 − 27x+ 1 0.0000123957
67 x12 − 22x11 + 206x10 − 1079x9 + 3493x8 − 7288x7 + 9922x6

−8745x5 + 4867x4 − 1638x3 + 310x2 − 29x+ 1 0.0000094705
68 x12 − 22x11 + 207x10 − 1093x9 + 3573x8 − 7530x7 + 10343x6

−9172x5 + 5109x4 − 1706x3 + 317x2 − 29x+ 1 0.0000079329
69 x12 − 22x11 + 205x10 − 1064x9 + 3401x8 − 6988x7 + 9354x6

−8104x5 + 4441x4 − 1480x3 + 281x2 − 27x+ 1 0.0000054356

70 x13 − 23x12 + 230x11 − 1313x10 + 4730x9 − 11240x8 + 17929x7

−19217x6 + 13689x5 − 6338x4 + 1837x3 − 313x2 + 28x− 1 0.0025727620

Note. See the online version of this paper for a link to: Some minimal trace totally
positive algebraic integers (degrees 12, 13, 14)
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