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MIXED FORMULATION, APPROXIMATION

AND DECOUPLING ALGORITHM FOR A PENALIZED

NEMATIC LIQUID CRYSTALS MODEL

V. GIRAULT AND F. GUILLÉN-GONZÁLEZ

Abstract. A linear fully discrete mixed scheme, using C0 finite elements in
space and a semi-implicit Euler scheme in time, is considered for solving a
penalized nematic liquid crystal model (of the Ginzburg-Landau type). We
prove: 1) unconditional stability and convergence towards weak solutions, and
2) first-order optimal error estimates for regular solutions (but without im-
posing the well-known global compatibility condition for the initial pressure in
the Navier-Stokes framework). These results are valid in a general connected
polygon or in a Lipschitz polyhedral domain (without any constraints on its
angles).

Finally, since the scheme couples the unknowns, we propose several algo-
rithms for decoupling the computation of these unknowns and establish their
rates of convergence in convex domains when the mesh size is sufficiently small
compared to the time step.

1. Introduction

In this work, we discretize a system of partial differential equations related to the
motion of a nematic liquid crystal. The orientation vector of the molecules is nor-
malized by means of a penalty argument, thus leading to a simplified Ericksen-Leslie
model with the Ginzburg-Landau approximation (see Béthuel, Brezis & Hélein [5]
and Chen [9]).

Let us consider a simplified version of the Ericksen-Leslie model, introduced by
Lin in [23] and analyzed by Lin and Liu in [24, 25] who used a modified Galerkin
approach, and by Shkoller [35] who relied on a contraction mapping argument
coupled with appropriate energy estimates. This model is a modified Navier-Stokes
system that takes into account the liquid crystal nature of the fluid, coupled with
the Ginzburg-Landau equations. A more complete version of this Ericksen-Leslie
model has been studied by Coutand and Shkoller in [11], where local well-posedness
(or global well-posedness for small data) is proven.

The fluid is confined in an open bounded connected domain Ω ⊂ R
N (N = 2

or 3) with boundary ∂Ω. The unknowns are the time-dependent divergence-free
velocity field u(t,x), the pressure p(t,x) of the fluid and the director field d(t,x)

Received by the editor February 11, 2009 and, in revised form, March 1, 2010.
2010 Mathematics Subject Classification. Primary 35Q35, 65M12, 65M15, 65M60.
Key words and phrases. Nematic liquid crystal, Ginzburg-Landau penalization, mixed formu-

lation, finite element method, convergence, stability, error estimates, decoupling algorithm.
The second author was partially supported by DGI-MEC (Spain), Grant MTM2006–07932 and
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representing the orientation of the liquid crystal molecules; thus d is a unit vector:

(1.1) |d| = 1 .

Both theoretically and numerically, enforcing the constraint |d| = 1 is difficult.
Here we choose to satisfy it approximately by imposing the weaker condition |d| ≤ 1
and introducing the following penalty function (of Ginzburg-Landau type) in the
equation of conservation of angular momentum

(1.2) f(d) =
1

ε2
(|d|2 − 1)d , ε > 0 ,

where ε is the penalty parameter. This penalty function was proposed by many au-
thors, in particular, because it has a potential structure; i.e., there exists a potential
function

F (d) =
1

4 ε2
(|d|2 − 1)2 ,

such that

(1.3) ∀d ∈ R
N , f(d) = ∇d(F (d)) .

Interestingly, it turns out that, in the penalized model, the weaker constraint |d| ≤
1 is a consequence of a maximum principle for the Ginzburg-Landau equation.
Indeed, we shall see that if this constraint is satisfied at initial time and on ∂Ω for
all time, then it is also satisfied in the interior of Ω at any time.

Accordingly, we consider the following penalized model in ]0, T [×Ω:

|d| ≤ 1, ∂td+ u · ∇d+ γ(f(d)−Δd) = 0 ,(1.4)

∂tu+ u · ∇u− νΔu+∇p+ λ∇ · (∇d�∇d) = 0 ,(1.5)

∇·u = 0 ,(1.6)

u|∂Ω = 0, d|∂Ω = l ,(1.7)

u|t=0 = u0, d|t=0 = d0 .(1.8)

The functions u0 and d0: Ω → R
N are, respectively, the initial velocity and director

fields, and l :]0, T [×∂Ω → R
N is the Dirichlet boundary data for the director field

d. Concerning the coefficients, ν > 0 represents the viscosity of the fluid, λ > 0
is an elasticity constant and γ > 0 is a relaxation-time constant. Here we use the
tensor notation

∇d�∇d = (∇d)t∇d,

where (∇d)t denotes the transpose of ∇d = (∂di/∂xj)i,j .
In [17], Guillén-González and Rojas-Medar study the asymptotic limit of (1.4)–

(1.8) as ε goes to zero, arriving at a model with the restriction (1.1), |∇d|2d being
its associated Lagrange multiplier. Indeed, when ε → 0 one finds a limit problem,
with (1.4) replaced by

(1.9) |d| = 1, ∂td+ u · ∇d− γ(Δd+ |∇d|2d) = 0.

However, as mentioned above, enforcing (1.1) is difficult and therefore, in this arti-
cle, we only study the penalized model (1.4)–(1.8) with a fixed penalty parameter
ε. In consequence, the generic constants involved in the numerical analysis may
depend (exponentially) on ε.
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As far as numerical approximation is concerned, Liu and Walkington propose and
study two numerical schemes for solving (1.4)–(1.8) in the case where the Dirichlet
boundary data l for the director field d does not depend on time; for both schemes,
they derive error estimates when the solutions are sufficiently smooth. In [29], they
introduce a scheme that discretizes d in a finite element subspace of H2(Ω)N ; this
means that the discrete functions are globally C1. From a practical point of view,
implementing a scheme that uses C1 finite elements is not easy, the more so in three
dimensions. To avoid this regularity, they relax it in [30] by switching to a mixed
formulation where the gradient tensor ∇d is introduced as an auxiliary unknown
tensor. This allows them to work with finite element subspaces of H1(Ω). However,
in this approach, the components of the discrete mixed finite element functions are
strongly coupled, and as the problem is nonlinear, this coupling is not desirable.

In this article, we propose a different mixed formulation of (1.4)–(1.8) where Δd
is introduced as an auxiliary variable. The advantage of using the Laplace instead of
the gradient operator is that the Laplace operator involves less unknowns: M versus
1
2M(M−1). Furthermore, the Laplace operator can be discretized in standard finite

element subspaces of L2(Ω)N , whereas the gradient operator is discretized by [30]
in Raviart-Thomas mixed finite element subspaces of H(div,Ω). We construct a
fully discrete time-stepping linearized Euler scheme that is unconditionally stable
and convergent towards weak solutions of the penalized problem (1.4)–(1.8) and
we derive optimal error estimates when the solution is sufficiently smooth. Since
the scheme is implicit and couples the unknowns, we propose several algorithms
for decoupling the computation of these unknowns, and we establish their rates of
convergence when the mesh size is sufficiently small compared to the time step.

We refer to Prohl [32] for the numerical analysis of a splitting in time projection
scheme in the limit model (1.5)–(1.9).

In [26], two linearized numerical algorithms are presented. The first of them
uses an implicit backward Euler approximation to discretize the time derivative
and the second one uses a characteristic method, but both schemes consider C0-
finite elements in space. Numerical experiments show that both schemes recover
the numerical results obtained in [29], but no analytical justification for the stability
of these schemes is proposed.

In a recent publication, Becker, Feng and Prohl [4] present two nonlinear fully
discrete finite element schemes. The first scheme, applied to the penalized model
(1.4)–(1.8), uses −Δd+fε(d) as an auxiliary variable and is unconditionally stable
(uniformly with respect to ε) and convergent. The second algorithm discretizes
directly the limit problem (1.5)–(1.9); it is conditionally stable, but the convergence
remains an open problem. Both schemes use C0 finite elements for all unknowns.

Finally, a linearized fully discrete C0 finite elements scheme that is conditionally
stable (uniformly with respect to ε) and convergent has been recently analyzed by
Guillén-González and Gutiérrez-Santacreu in [19].

1.1. Summary of results. For simplicity, we denote the spaces of vector-valued
functions L2(Ω)N , H1(Ω)N , etc. by boldface letters L2,H1, etc.

By considering w = −μΔd (with μ =
√
λ) as an auxiliary variable, using this

relation as a constraint and suitably modifying the pressure, we arrive at the fol-
lowing variational formulation equivalent to problem (1.4)–(1.8): Find (u, p,w,d)
satisfying for a.e. t ∈ (0, T ),
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dt

(
u,v

)
+ ν

(
∇u,∇v

)
+
(
u · ∇u,v

)
− μ

(
(∇d)tw,v

)
−
(
p,∇ · v

)
= 0,

∀v ∈ H1
0(Ω),

γ
(
w, e

)
+ μ

{
dt

(
d, e

)
+
(
u · ∇d, e

)
+ γ

(
f(d), e

)}
= 0, ∀e ∈ L2(Ω),

(
∇ · u, q

)
= 0, ∀q ∈ L2

0(Ω),

μ
(
∇d,∇g

)
−
(
w, g

)
= 0, ∀g ∈ H1

0(Ω),

together with the Dirichlet boundary conditions and initial conditions (1.7) and
(1.8) on u and d. Assuming that Ω is a polygon or a Lipschitz polyhedron, we
discretize this formulation in time with a uniform partition of [0, T ] and time step k,
and in space with a stable pair of finite elements for (u, p) such as the mini-element
(P1 +B)×P1 on a triangulation with mesh-size h, a continuous piecewise P1 space
for d and a piecewise P0 space for w. Let (U0h, Ph) ⊂ H1

0(Ω)×L2
0(Ω), Dh ⊂ H1(Ω)

and Wh ⊂ L2(Ω) denote the discrete spaces for (u, p), d and w respectively, and let
tn = nk denote the discrete points in time. We propose the following fully discrete
scheme, starting from a suitable approximation (u0

h,d
0
h) ∈ U0h ×Dh of (u0,d0):

Knowing (un−1
h ,dn−1

h ) ∈ U0h × Dh and given an adequate approximation lnh of
l(tn), compute (un

h,w
n
h) ∈ U0h×Wh and (pnh,d

n
h) ∈ P0h×Dh such that dn

h|∂Ω = lnh
and:(1
k
(un

h − un−1
h ),v

)
+ ν

(
∇un

h,∇v
)
−
(
pnh,∇ · v

)

+
(
un−1
h · ∇un

h +
1

2
∇ · un−1

h un
h,v

)
− μ

(
(∇dn−1

h )twn
h,v

)
= 0, ∀v ∈ U0h,

(1
k
(dn

h − dn−1
h ), e

)
+
(
un
h · ∇dn−1

h , e
)
+

γ

μ

(
wn

h, e
)
=−γ

(
f(dn−1

h ), e
)
, ∀e ∈ Wh,

(
∇ · un

h, q
)
= 0, ∀q ∈ Ph,

μ
(
∇dn

h,∇g
)
−
(
wn

h, g
)
= 0, ∀g ∈ D0h.

We shall prove that this linear semi-implicit scheme has the following properties:

(1) It generates a unique sequence of solutions (un
h,w

n
h, p

n
h,d

n
h).

(2) Under mild regularity assumptions on the data and if the above finite el-
ement spaces are constructed on a quasi-uniform (or uniformly regular)
family of triangulations of Ω, this sequence converges in the appropriate
spaces to a semi-strong solution (u,d) of problem (1.4)–(1.8) (see Defini-
tion 3.1).

(3) If this solution is sufficiently smooth, the error of this scheme measured in
L∞(L2(Ω))∩L2(H1(Ω)) for the velocity and L∞(H1(Ω)) for the direction
vector, is of order one in space and time (see Theorem 6.1).

Although the scheme is linearized, the simultaneous computation of all unknowns
is impractical and, therefore, we present several convergent algorithms for decou-
pling the computation of (uh, ph) and (wh,dh) at each time step. Knowing wn−1

h ,

dn−1
h and un−1

h , these algorithms approximate wn
h, dn

h, un
h and pnh by an itera-

tive method, computing the iterates (ui, pi) and (wi,di) by means of linear and
decoupled problems. Here is one of them:

(1) Take u0 = un−1
h and w0 = wn−1

h .
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(2) Knowing ui−1 and wi−1, compute in parallel
• (wi,di) ∈ Wh ×Dh, with (di)|∂Ω = lnh, solution of

1

k

(
di − dn−1

h , e
)
+

γ

μ

(
wi, e

)
= −

(
ui−1 · ∇dn−1

h , e
)
− γ

(
f(dn−1

h ), e
)

∀e ∈ Wh,

μ
(
∇di,∇g

)
−
(
wi, g

)
= 0 ∀g ∈ D0h,

• (ui, pi) ∈ U0h × Ph solution of

1

k

(
ui − un−1

h ,v
)
+ ν

(
∇ui,∇v

)
−
(
pi,∇ · v

)

= μ
(
(∇dn−1

h )twi−1,v
)
−
(
un−1
h · ∇ui−1 +

1

2
∇ · un−1

h ui−1,v
)

∀v ∈ U0h,
(
∇ · ui, q

)
= 0 ∀q ∈ Ph.

We shall prove that these algorithms converge geometrically to the desired solution.
Our work is organized as follows. In Section 2, we give a list of notation and some

regularity results on general polyhedral domains that we shall need further on. In
Section 3, we construct a suitable lifting of the boundary condition and we give the
main ideas used in analyzing the continuous problem. Section 4 is devoted to the
derivation of the mixed variational formulation. In Section 5, we define the fully
discrete scheme and prove its stability and convergence. In Section 6, we establish
a priori error estimates. Section 7 is devoted to the decoupling algorithms and their
convergence.

2. Preliminaires

2.1. Notation. We shall use the following notation; for the sake of simplicity, we
define them in three dimensions. Let (k1, k2, k3) denote a triple of non-negative
integers, set |k| = k1 + k2 + k3 and define the partial derivative ∂k by

∂kv =
∂|k|v

∂xk1
1 ∂xk2

2 ∂xk3
3

.

Then, for any non-negative integer m and number r ≥ 1, recall the classical Sobolev
space (cf. Adams [1] or Nečas [31])

Wm,r(Ω) = {v ∈ Lr(Ω) ; ∂kv ∈ Lr(Ω) ∀|k| ≤ m} ,
equipped with the seminorm

|v|Wm,r(Ω) =

⎡
⎣ ∑
|k|=m

∫

Ω

|∂kv|r dx

⎤
⎦
1/r

,

and norm (for which it is a Banach space)

‖v‖Wm,r(Ω) =

⎡
⎣ ∑
0≤|k|≤m

|v|rWk,r(Ω)

⎤
⎦
1/r

,

with the usual extension when r = ∞. The reader can refer to Lions & Magenes [28]
and [16] for extensions of this definition to non-integral values of m. When r = 2,
this space is the Hilbert space Hm(Ω). The definitions of these spaces are extended
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straightforwardly to vectors, with the same notation, but with the following mod-
ification for the norms in the non-Hilbert case. Let u = (u1,u2,u3); then we
set

‖u‖Lr(Ω) =

[∫

Ω

|u(x)|r dx
]1/r

,

where | · | denotes the Euclidean vector norm for vectors or the Frobenius norm for

tensors. As usual,
(
·, ·
)
denotes the L2(Ω) scalar product.

When the boundary ∂Ω of Ω is a polygon or polyhedron, as will be the case in
the sequel, the trace spaces W s,r(∂Ω) are defined as above for all s ∈ [0, 1] and
p ≥ 1. When s > 1, the situation is more complex and to simplify, we define the
space W s,r(∂Ω) as the trace space of all functions in W s−1/r,r(Ω). For instance,
H3/2(∂Ω) is the trace space of H2(Ω).

Let D(Ω) denote the set of indefinitely differentiable functions with compact
support in Ω. For functions that vanish on the boundary, we define

H1
0 (Ω) = {v ∈ H1(Ω) ; v|∂Ω = 0} ,

and recall Poincaré’s inequality: there exists a constant C such that

(2.10) ‖v‖L2(Ω) ≤ C diam(Ω)|v|H1(Ω) ∀v ∈ H1
0 (Ω) .

Owing to (2.10), we use the seminorm | · |H1(Ω) as a norm on H1
0 (Ω).

We shall also use the standard spaces for incompressible fluids:

H = {v ∈ L2(Ω) ; ∇ · v = 0 in Ω, v · n = 0 on ∂Ω} ,
where n is the unit normal vector to ∂Ω, exterior to Ω,

V = {v ∈ H1
0(Ω) ; ∇ · v = 0 in Ω} ,

L2
0(Ω) = {q ∈ L2(Ω) ;

∫

Ω

q dx = 0} .

As usual, for handling time-dependent problems, it is convenient to consider
functions defined on a time interval ]a, b[ with values in a functional space, say X
(cf. [28]). More precisely, let ‖ · ‖X denote the norm of X; then for any number r,
1 ≤ r ≤ ∞, we define

Lr(a, b;X) = {f measurable in ]a, b[ ;

∫ b

a

‖f(t)‖rXdt < ∞}

equipped with the norm

‖f‖Lr(a,b;X) =

(∫ b

a

‖f(t)‖rXdt

)1/r

,

with the usual modification if r = ∞. It is a Banach space if X is a Banach space.
When r = 2, L2(a, b;Hm(Ω)) is a Hilbert space and, in particular, L2(a, b;L2(Ω))
coincides with L2(Ω×]a, b[). We shall also use spaces with derivatives in time, such
as

H1(a, b;X) = {f ∈ L2(]a, b[;X) ;
∂f

∂t
∈ L2(]a, b[;X)} ,

equipped with the graph norm

‖f‖H1(a,b;X) =
(
‖f‖2L2(a,b;X) + ‖∂f

∂t
‖2L2(a,b;X)

)1/2

,



MIXED FORMULATION, APPROXIMATION AND DECOUPLING ALGORITHM 787

for which is a Hilbert space. To simplify, we shall use the letter Q for the space-time
cylinder Ω×]0, T [ and denote Lp(0, T ;X) by Lp(X), etc.

2.2. Auxiliary regularity results. Let us start with the solution v of the Laplace
equation

(2.11) −Δ v = f in Ω , v|∂Ω = g .

When (f, g) belongs to H−1(Ω) × H1/2(∂Ω), this problem has a unique solution
v in H1(Ω). When Ω has a C1,1 boundary or is convex and (f, g) belongs to
L2(Ω)×H3/2(∂Ω), then v belongs to H2(Ω), with continuous dependence on f and
g (cf. [16]). When Ω is a polygon or polyhedron, without restricting the angles of
∂Ω, v has the following regularity; the first theorem is due to [16] and the second
one to [12].

Theorem 2.1. Let Ω be a polygon in two dimensions. If (f, g) belongs to Lr(Ω)×
W 2−1/r,r(∂Ω) for some r with 1 < r ≤ 4/3, then the solution v of (2.11) belongs
to W 2,r(Ω) with continuous dependence on f and g.

Theorem 2.2. Let Ω be a polyhedron with a Lipschitz-continuous boundary or a
polygon. If (f, g) belongs to Hs−1(Ω)×Hs+1/2(∂Ω) for some s with 0 ≤ s < 1/2,
then the solution v of (2.11) belongs to Hs+1(Ω) with continuous dependence on f
and g.

The first part of the next result for the borderline case s = 1/2 is due to Jerrison
& Kenig [21] and the second part is established by Dauge & Costabel for the Stokes
problem and is written in Girault & Lions [14], but the argument carries over to the
Laplace equation. Both proofs are written in three dimensions, but their conclusions
are valid in two dimensions.

Theorem 2.3. Let Ω be a Lipschitz domain of R
2 or R

3. If f = 0 and g be-
longs to H1(∂Ω), then the solution v of (2.11) belongs to H3/2(Ω) with continuous
dependence on g.

When Ω is a polyhedron with a Lipschitz-continuous boundary or a polygon, g
belongs to H1(∂Ω) and f belongs to L3/2(Ω), then the solution v of (2.11) belongs
to H3/2(Ω) with continuous dependence on f and g.

We have similar regularity results for the solution (v, q) of the Stokes problem
in a connected Lipschitz domain:

(2.12) −Δv +∇ q = f , ∇ · v = 0 in Ω , v|∂Ω = 0 .

When f belongs to H−1(Ω), (2.12) has a unique solution (v, q) in V ×L2
0(Ω) that

depends continuously on f . When f belongs to L2(Ω) and the domain has a C1,1

boundary or is a convex polygon (cf. Kellog & Osborn [22] or [16]) or polyhedron
(cf. [13]), then the solution (v, q) of (2.12) belongs to H2(Ω) × H1(Ω), with con-
tinuous dependence on f . Without restriction on the angles of ∂Ω, the following
theorems hold; the first one can be found in [16] and the second one in [13].

Theorem 2.4. Let Ω be a connected polygon in two dimensions. If f belongs to
Lr(Ω) for some r with 1 < r ≤ 4/3, then the solution (v, q) of (2.12) belongs to
W 2,r(Ω)×W 1,r(Ω) with continuous dependence on f .
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Theorem 2.5. Let Ω be a connected polyhedron with a Lipschitz-continuous bound-
ary or a polygon. If f belongs to Hs−1(Ω) for some s with 0 ≤ s < 1/2, then the
solution (v, q) of (2.12) belongs to Hs+1(Ω)×Hs(Ω) with continuous dependence
on f .

As mentioned above, the following result for the borderline case s = 1/2 is due
to Dauge & Costabel and written in [14]:

Theorem 2.6. Let Ω be a connected polyhedron with a Lipschitz-continuous bound-

ary or a polygon. If f belongs to L3/2(Ω), then the solution (v, q) of (2.12) belongs

to H3/2(Ω)×H1/2(Ω) with continuous dependence on f .

3. The exact problem

Since our primary purpose is numerical approximation, we suppose here that the
domain Ω is a connected polygon or Lipschitz polyhedron. In addition, to simplify
the discussion, we write the analysis for the three-dimensional case. All results
extend easily, with simpler proofs, to plane domains.

3.1. The problem in a semi-variational form. To begin with, let us put (1.5)
into a weak variational form. By taking formally the scalar product of both sides
of (1.5) with a test function v in V , applying Green’s formula and the identity

(3.1) ∇ · (∇d�∇d) =
1

2
∇(|∇d|2) + (∇d)tΔd ,

we obtain

dt

(
u,v

)
+ ν

(
∇u,∇v

)
+
(
u · ∇u,v

)
+ λ

(
(∇d)tΔd,v

)
= 0.

We shall see further on that a similar variational formulation is not needed for (1.4).
This leads us to consider a “semi-strong” solution (u,d) of the penalized problem
(1.4)–(1.8), verifying the system (1.5) for u in the sense of distributions and the
system (1.4) for d pointwise a.e. in Q. To be specific, we introduce the following:

Definition 3.1. Let l be given in H1(0, T ;H1(∂Ω)) and (u0,d0) in H ×H1(Ω)
verifying the compatibility condition l(0) = d0|∂Ω. A pair (u,d) is called a “semi-
strong” solution in ]0, T [ of problem (1.4)–(1.8) if

u ∈ L2(V ) ∩ L∞(H),(3.2)

d ∈ L∞(H1(Ω)) , Δd ∈ L2(L2(Ω)), d|∂Ω×]0,T [ = l,(3.3)

verify the equations

dt

(
u,v

)
+ ν

(
∇u,∇v

)
+
(
u · ∇u,v

)
+ λ

(
(∇d)tΔd,v

)
= 0, ∀v ∈ V ,(3.4)

∂td+ u · ∇d+ γ(f(d)−Δd) = 0,(3.5)

and the initial conditions

(3.6) u|t=0 = u0 d|t=0 = d0 .

Remark 3.2. Since Ω is a Lipschitz polyhedron, the assumption on l and Theorem

2.3 imply that d belongs to L2(H3/2(Ω)). Therefore all terms in (3.4) are well

defined. Of course, when l ∈ H1(0, T ;H3/2(∂Ω)) and Ω is convex or its boundary
is C1,1, then (3.3) yields that d belongs to L2(H2(Ω)). �
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Remark 3.3. The functions u and d are continuous in time, owing to the additional
regularity

∂tu ∈ L1(V ′) and ∂td ∈ L2(L3/2(Ω)) ,

that can be established applying (3.2) and (3.3) to (3.4) and (3.5), respectively.
Therefore, the initial conditions (3.6) make sense. �

System (3.2)–(3.6) is equivalent to the original problem (1.4)–(1.8) in the fol-
lowing sense: If (u,d) satisfies (3.2)–(3.6), then as for the Navier-Stokes equations,
there exists a pressure p̃ in H−1(0, T ;L2

0(Ω)) (at least) such that

∂tu+ u · ∇u− νΔu+∇p̃+ λ(∇d)tΔd = 0 .

In view of (3.1) and setting

p = p̃− 1

2
|∇d|2 ,

we recover (1.5). To simplify the discussion, we drop the tilde and denote p and
p̃ by the same symbol p. Conversely, any solution of (1.4)–(1.8) with the above
regularity solves (3.4)–(3.6).

3.2. Existence of solutions. The problem for d (given u) satisfies the following
crucial maximum principle; see [24, 8, 18].

Lemma 3.4. Let u be given in L2(V ); let |l(t,x)| ≤ 1 a.e. on ∂Ω×]0, T [ and
|d0(x)| ≤ 1 a.e. in Ω and let d be a “strong” solution in ]0, T [ of problem (3.3),
(3.5) and the second part of (3.6). Then d verifies |d(t,x)| ≤ 1 a.e. in Q.

Proof. Let us sketch the main points in the proof; a complete derivation can be
found in the references above. Multiplying (3.5) by d, applying the identity

Δ(d · d) = 2Δd · d+ 2(∇d) · (∇d) ,

and using the positivity of (∇d) · (∇d) = |∇d|2, we obtain

(3.7) ∂t(|d|2 − 1) + 2 γ f(d) · d− γΔ(|d|2 − 1) + (u · ∇)(|d|2 − 1) ≤ 0 a.e. in Q.

Setting
ψ(d) = (|d|2 − 1)+ ,

which belongs to H1
0 (Ω), observing that

f(d) · d (|d|2 − 1)+ ≥ 0 and that

∫

Ω

(u · ∇)
(
|d|2 − 1

)
ψ(d) dx = 0,

and taking the inner product of (3.7) in Ω with ψ(d), we obtain formally the
inequality:

d

dt
‖ψ(d)‖2L2(Ω) + 2γ ‖∇ψ(d)‖2L2(Ω) ≤ 0 a.e. in ]0, T [ .

Together with the fact that ψ(d0) = 0 in Ω, this implies that ψ(d) = 0 a.e. in Q,
and therefore |d| ≤ 1 in Q. �

The proof of existence of solutions is based on this principle. It is used by [24]
in the case where l is independent of time (i.e. l = l(x)) and by [8] in the case
of time-periodic solutions. To handle theoretically the variable non-homogeneous
boundary condition, we propose an adequate lifting similar to that used in [8]: For

any t a.e. in ]0, T [, we define d̃(t) as the solution of the elliptic problem

(3.8) −Δ d̃(t) = 0 in Ω, d̃(t)|∂Ω = l(t) on ∂Ω,
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and we set

d̂ = d− d̃.

Clearly, as d̃ is known, finding d is equivalent to finding d̂. It stems from Theorem

2.3 that d̃ ∈ H1(0, T ;H3/2(Ω)), since l ∈ H1(0, T ;H1(∂Ω)). In particular, d̂ ∈
L∞(H1(Ω)) ∩ L2(H3/2(Ω)) is the solution of the elliptic problem Δ d̂ = Δd and

d̂|∂Ω = 0.

Remark 3.5. The regularity assumption for l can be relaxed. Indeed, in what
follows, we only need that

d̃ ∈ L∞(H1(Ω)), ∂td̃ ∈ L2(L2(Ω)). �

With this lifting, we can prove the following existence result:

Theorem 3.6. Let T > 0 and Ω be an open, bounded, connected Lipschitz polyhe-
dron. For given u0 ∈ H, d0 ∈ H1 and l ∈ H1(0, T ;H1(∂Ω)) such that l(0) = d0

a.e. on ∂Ω, |d0(x)| ≤ 1 a.e. in Ω and |l(t,x)| ≤ 1 a.e. in ∂Ω×]0, T [, the coupled
Navier-Stokes and Ginzburg-Landau model (1.4)–(1.8) has a global “semi-strong”
solution (u,d).

Proof. Let us sketch the proof; several arguments can already be found in [24] and
[8]. We proceed in four steps.

i) A priori energy equality. Assume that (1.4)–(1.8) has a sufficiently smooth

solution (u,d). Using the lifting function d̃, taking into account that Δd = Δ d̂,
choosing v = u in (3.4), multiplying (3.5) by λ(f(d) −Δd), adding the resulting
equations, and applying twice the relation (1.3), we obtain the a priori energy
equality, as in [8]:

d

dt

(1
2
‖u‖2L2(Ω)+

λ

2
‖∇d̂‖2L2(Ω) + λ

∫

Ω

F (d)dx
)
+ ν‖∇u‖2L2(Ω)

+ λγ‖f(d)−Δd‖2L2(Ω) = λ

∫

Ω

∂td̃ ·Δd dx.

(3.9)

In [24], where l = l(x) does not depend on time, a similar equality is derived with d

instead of d̂ and right-hand side zero. This is possible because, in this case, Green’s
formula yields

−
∫

Ω

(∂td)Δd dx =
1

2

d

dt

∫

Ω

|∇d|2dx .

ii) Construction of a semi-discrete Galerkin solution. Let (um,dm = d̂m + d̃)
be an approximate solution defined by a semi-Galerkin method, where (3.4) is
discretized in a suitable finite-dimensional subspace V m of V and (3.5) is solved
exactly for dm, knowing um. Existence (and uniqueness) of such approximate
solutions is not straightforward, because a fixed-point operator R : v → d → u is
constructed by formulating decoupled problems, first for d and next for u. Then,
the weak estimates for u depend on strong estimates for d, and these in turn depend
on weak estimates for v. The argument in [24] consists in obtaining local in time
approximate solutions (that are fixed points of the above operator R) and extending
them by a continuation argument that allows to reach any time, by progressing on
small time intervals of fixed length.

iii) A priori estimates for the semi-discrete Galerkin solution. Since dm solves
exactly (3.5) with u = um ∈ V , then the maximum principle given in Lemma 3.4
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implies that

(3.10) |dm| ≤ 1 a.e. in Q.

On the other hand, it is easy to check that the pair (um,dm) satisfies the energy
equality (3.9). Therefore, using (3.10) and (1.2), we derive from (3.9) that

um is bounded in L∞(H) ∩ L2(V ),(3.11)

d̂m is bounded in L∞(H1(Ω)),(3.12)

Δd̂m is bounded in L2(L2(Ω)).(3.13)

Then, by virtue of Theorem 2.3, each coefficient of∇ d̂m is bounded in L2(H1/2(Ω)).
Moreover, substituting estimates (3.11)–(3.13) into the equations (3.4)–(3.5) for
(um,dm) and using (3.1), we obtain

∂tum is bounded in L1(V ′),(3.14)

∂td̂m is bounded in L2(L3/2).(3.15)

iv) Compactness and passing to the limit. It follows from (3.14), (3.15) and [36],

that um and ∇d̂m are compact in L2(L2). Then a standard argument permits us
to pass to the limit as m → ∞ in the non-linear terms of (3.4)–(3.5) for (um,dm),
thus yielding existence of a solution. �

3.3. An equivalent problem. The maximum principle in Lemma 3.4 suggests to

truncate the penalty function f , i.e., define f̃ by

f̃(d) = − 1

ε2
(
1− |d|2

)
+

i.e. f̃(d) =

{
f(d) if |d| ≤ 1,
0 otherwise.

Observe that f̃(d) = f(T (d)), where

T (d) =

⎧
⎨
⎩

d if |d| ≤ 1,
d

|d| otherwise,

and f̃ has the potential function F̃ :

(3.16) ∀d ∈ R
N , f̃(d) = ∇d(F̃ (d)), where F̃ (d) =

1

4ε2

[(
1− |d|2

)
+

]2
.

Hence, we replace f by f̃ in (3.5) and it is easy to check that this leads to a problem
equivalent to (3.2)–(3.6), whenever the assumptions of Lemma 3.4 hold.

Proposition 3.7. Let |l(t,x)| ≤ 1 a.e. on ∂Ω×]0, T [ and |d0(x)| ≤ 1 a.e. in Ω.
Then (u,d) is a semi-strong solution of (3.2)–(3.6) if and only if it is a semi-strong
solution of the same problem with (3.5) replaced by

∂td+ u · ∇d+ γ(f̃(d)−Δd) = 0.

From now on, we shall replace f by the truncated function f̃ ; in particular, we
shall use the bound

(3.17) ∀d ∈ R
N , |f̃(d)| ≤ ε−2,

and refer to the Appendix for other properties of f̃ .
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4. A mixed formulation with an auxiliary variable

In order to eliminate Δd in (3.4) and (3.5), we define the auxiliary variable:

w = −
√
λΔd = −μΔd = −μΔd̂ where μ =

√
λ.

Considering that d̂ vanishes on ∂Ω, the relation between d̂ and w is expressed in
variational form through:

∀g ∈ H1
0(Ω) , μ

(
∇d̂,∇g

)
−

(
w, g

)
= 0.

Thus, each w in L2(Ω) (and even in H−1(Ω)) defines a unique d̂ in H1
0(Ω) and we

have the isometries:

(4.1) ‖w‖H−1(Ω) = μ‖∇ d̂‖L2(Ω) and ‖w‖L2(Ω) = μ‖Δd̂‖L2(Ω).

Then, recovering the pressure p, we can replace (3.4) and (3.5) by the equivalent
formulation

∀v ∈ H1
0(Ω) , dt

(
u,v

)
+ ν

(
∇u,∇v

)
+
(
u · ∇u,v

)

−μ
(
(∇d)tw,v

)
−
(
p,∇ · v

)
= 0,

∀e ∈ L2(Ω) , γ
(
w, e

)
+ μ

{
dt

(
d, e

)
+
(
u · ∇d, e

)
+ γ

(
f̃(d), e

)}
= 0,

∀q ∈ L2
0(Ω) ,

(
∇ · u, q

)
= 0,

∀g ∈ H1
0(Ω) , μ

(
∇d̂,∇g

)
−
(
w, g

)
= 0,

(4.2)

where d = d̂ + d̃, d̃ solves (3.8), u ∈ L∞(H) ∩ L2(V ), d ∈ L∞(H1(Ω)) ∩
L2(H3/2(Ω)), w ∈ L2(L2(Ω)), and p ∈ H−1(0, T ;L2

0(Ω)). Since H3/2(Ω) is em-
bedded into W 1,3(Ω), all terms in the first two lines of (4.2) are well defined.

As the last line of (4.2) defines d̂ (and hence d) in terms of w, we can swap w
and d and consider that w is the main variable while d is the auxiliary variable
that can be computed from w. Hence, if w belongs to L2(L2(Ω)), it follows from

Theorem 2.3 that d̂ belongs to L2(H3/2(Ω)). With this idea in mind, let us set (4.2)
into a mixed framework, introducing the following bilinear and trilinear continuous
forms:

a1

(
u,v

)
= ν

(
∇u,∇v

)
∀u,v ∈ H1(Ω),

b
(
u, q

)
= −

(
∇ · u, q

)
∀u ∈ H1(Ω), q ∈ L2(Ω),

c1

(
u,u,v

)
=

(
u · ∇u,v

)
∀u,u,v ∈ H1(Ω).

On one hand, the identity

∀d,v,w ∈ R
N , (∇d)tw · v = (v · ∇)d ·w,

implies

∀d ∈ W 1,3(Ω),w ∈ L2(Ω),v ∈ H1(Ω),
(
(∇d)tw,v

)
= c1

(
v,d,w

)
.

On the other hand, in order to enforce the well-known antisymmetry of c1

(
u, ·, ·

)
:

∀u ∈ V , ∀u,v ∈ H1
0(Ω), c1

(
u,u,v

)
= −c1

(
u,v,u

)
,
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that may not necessarily hold when V is discretized, we replace c1

(
u,u,v

)
by

c̃1

(
u,u,v

)
:=

1

2

{
c1

(
u,u,v

)
− c1

(
u,v,u

)}
= c1

(
u,u,v

)
+

1

2

(
∇ · u,u · v

)
.

Then the first two lines of (4.2) have the form

dt

(
u,v

)
+ a1

(
u,v

)
+ c̃1

(
u,u,v

)
− μ c1

(
v,d,w

)
(4.3)

+b
(
v, p

)
= 0 ∀v ∈ H1

0(Ω),

γ
(
w, e

)
+ μ

{
dt

(
d, e

)
+ c1

(
u,d, e

)
+ γ

(
f̃(d), e

)}
= 0 ∀e ∈ L2(Ω).(4.4)

Finally, defining the spaces

X = H1
0(Ω)×L2(Ω), Y = H1

0(Ω)×W 1,3(Ω), M = L2
0(Ω)×H1

0(Ω),

and the bilinear and trilinear forms a : X ×X → R, c : Y ×X ×X → R through

a
(
(u,w), (v, e)

)
= a1

(
u,v

)
+ γ

(
w, e

)
∀ (u,w), (v, e) ∈ X,

{
c
(
(u,d), (u,w), (v, e)

)
= c̃1

(
u,u,v

)
+ μ

{
c1

(
u,d, e

)
− c1

(
v,d,w

)}
,

∀ (u,d) ∈ Y, ∀ (u,w), (v, e) ∈ X,

we can express more compactly (4.3), (4.4) together with the last two lines of (4.2)
and obtain the following problem: Find u ∈ L∞(H) ∩ L2(V ), d ∈ L∞(H1(Ω)) ∩
L2(H3/2(Ω)), w ∈ L2(L2(Ω)) and p ∈ H−1(0, T ;L2

0(Ω)) the solution of⎧
⎨
⎩

dt

(
(u, μd), (v, e)

)
+ a

(
(u,w), (v, e)

)

+c
(
(u,d), (u,w), (v, e)

)
+ b

(
v, p

)
+ μγ

(
f̃(d), e

)
= 0 ∀(v, e) ∈ X.

(4.5)

b
(
u, q

)
+ μ

(
∇d̂,∇g

)
−
(
w, g

)
= 0 ∀(q, g) ∈ M,(4.6)

with the initial conditions (3.6),

u|t=0 = u0 d|t=0 = d0 ,

where d̂ = d− d̃, d̃ solves (3.8):

−Δ d̃(t) = 0 in Ω, d̃(t)|∂Ω = l(t) on ∂Ω, i.e., (∇ d̃,∇ g) = 0 , ∀g ∈ H1
0(Ω),

l is given in H1(0, T ;H1(∂Ω)) and (u0,d0) in H ×H1(Ω). The above considera-
tions show that this problem is equivalent to (3.2)–(3.6).

The following properties of a
(
·, ·
)
and b

(
·, ·, ·

)
are easy to prove.

Lemma 4.1. The bilinear form a
(
·, ·
)
: X ×X → R is continuous and coercive:

∀ (u,w), (v, e) ∈ X, a
(
(u,w), (v, e)

)
≤ max{ν, γ} ‖u,w‖X‖v, e‖X ,

∀ (u,w) ∈ X, a
(
(u,w), (u,w)

)
≥ min{ν, γ} ‖u,w‖2X .

The trilinear form c
(
·, ·, ·

)
: Y ×X ×X → R is continuous:

∀(u,d) ∈ Y, ∀(u,w), (v, e) ∈ X,

c
(
(u,d), (u,w), (v, e)

)
≤ C‖u,d‖L3(Ω)×W 1,3(Ω)‖u,w‖X‖v, e‖X ,

(4.7)
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and verifies:

(4.8) ∀ (u,d) ∈ Y, ∀ (u,w) ∈ X, c
(
(u,d), (u,w), (u,w)

)
= 0.

5. A fully discrete scheme

Recall that Ω is a bounded, connected Lipschitz polyhedron in R
3. Let Th be a

family of conforming triangulations of Ω, consisting of tetrahedra T with diameter
hT bounded by h, regular in the sense of Ciarlet [10]: there exists a constant σ,
independent of h, such that

(5.1) ∀T ∈ Th ,
hT

ρT
:= σT ≤ σ ,

where ρT denotes the diameter of the ball inscribed in T . To simplify the discussion,
we concentrate on finite element spaces of order one, but the following analysis
carries over to elements of higher order. For an integer k ≥ 0, let Pk denote the
space of polynomials of total degree less than or equal to k. At each time step, we
discretize the velocity u and pressure p with a continuous stable approximation;
more precisely, in each T we take the mini-element (P1 + B)3 × P1, where B is
spanned by the bubble function

(5.2) bT = Π4
i=1λi,

and λi are the barycentric coordinates of the vertices of T . It satisfies the inf-sup or
LBB condition; cf. for instance [15] or [2]. Then, we discretize the direction vector
d by a continuous approximation P1 in each T and the auxiliary function w by
discontinuous approximation P0 in each T . Thus, we introduce the finite element
spaces:

Uh = {vh ∈ C0(Ω)3 ; ∀T ∈ Th,vh|T ∈ (P1 + B)3} ,(5.3)

U0h = Uh ∩H1
0(Ω) (velocity) ,

Ph = {qh ∈ C0(Ω) ; ∀T ∈ Th, qh|T ∈ P1} ∩ L2
0(Ω) (pressure) ,(5.4)

Wh = {wh ∈ L2(Ω)3 ; ∀T ∈ Th,wh|T ∈ P
3
0} (auxiliary function) ,(5.5)

Dh = {gh ∈ C0(Ω)3 ; ∀T ∈ Th, gh|T ∈ P
3
1} ,(5.6)

D0h = Dh ∩H1
0(Ω) (direction vector) ,

Vh = {vh ∈ U0h ; ∀qh ∈ Ph, b(vh, qh) = 0}(5.7)

(discrete divergence-free velocity) ,

and we set Xh = U0h ×Wh and Mh = Ph ×D0h.
As far as discretization in time is concerned, we choose an integer M ≥ 2 and

define the time step and subdivision points:

k =
T

M
, tn = nk , 0 ≤ n ≤ M.

For a sequence (vn)n, we denote the (backward) divided difference in time by

δtv
n =

1

k
(vn − vn−1).

Next, we define a discrete lifting of the boundary data l. As Ω is a polyhedron,
the trace of Th on ∂Ω induces a conforming triangulation, ∂Th of ∂Ω. Let SZh

denote the following Scott & Zhang [34] regularization operator on Dh. With each
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node a of Th, we associate once and for all a face ea of Th with vertex a, with the
restriction that ea be contained in ∂Ω when a is a boundary node. Then, for any
function v ∈ W 1,1(Ω), and all vertices a of Th, we define

(5.8) SZhv(a) =
1

|ea|

∫

ea

v(s) ds,

and we interpolate these values with P1 functions in each T . The operator SZh is
stable in W 1,1(Ω) and has optimal approximation properties. The trace of SZhv
on ∂Ω depends only on the trace of v on ∂Ω and vanishes if v vanishes on ∂Ω. Thus
it defines an interpolant of v|∂Ω on ∂Th that we denote by SZhv. Furthermore,
it follows easily from (5.8) that the constraint |d| ≤ 1 implies |SZhd| ≤ 1. Now,
recall that l is continuous in time and belongs to H1(∂Ω); therefore at each time
tn we define the discrete boundary values by lnh = SZh(l(tn)). For analyzing the

numerical scheme, it is convenient to introduce the solution d̃
n

h ∈ Dh of the discrete
problem

(5.9) d̃
n

h|∂Ω = lnh and ∀ gh ∈ D0h ,
(
∇d̃

n

h,∇gh

)
= 0.

By using the stability of SZh|∂Ω in H1/2(∂Ω), one has

‖d̃
n

h‖H1(Ω) ≤ C ‖lnh‖H1/2(∂Ω) = ‖SZhl(tn)‖H1/2(∂Ω) ≤ C ‖l(tn)‖H1/2(∂Ω).

As an initial step, we take for u0
h a suitable approximation of u0 in U0h, stable

in L2(Ω), we take d0
h = SZhd0 and we set d̂

0

h = d0
h − d̃

0

h. In particular, d0
h and

d̂
0

h are approximations of d0 and d̂0 in Dh and D0h, respectively, both stable in
H1(Ω).

Then the fully discrete scheme proceeds as follows:

Step n in time (n ≥ 1). Knowing (un−1
h , d̂

n−1

h ) ∈ U0h ×D0h (with dn−1
h = d̂

n−1

h +

d̃
n−1

h ), find (un
h,w

n
h) ∈ Xh and (pnh, d̂

n

h) ∈ Mh (with dn
h = d̂

n

h + d̃
n

h) solution of:

(
δt(u

n
h, μd̂

n

h), (v, e)
)
+ a

(
(un

h,w
n
h), (v, e)

)
+ b

(
v, pnh

)
(5.10)

+ c
(
(un−1

h ,dn−1
h ), (un

h,w
n
h), (v, e)

)

= −μ
(
γ f̃(dn−1

h ) + δtd̃
n

h, e
)

∀(v, e) ∈ Xh,

b
(
un
h, q

)
+ μ

(
∇d̂

n

h,∇g
)
−
(
wn

h, g
)
= 0 ∀(q, g) ∈ Mh.(5.11)

It is easy to check that (5.10), (5.11) is a square linear system in finite dimension;
therefore, uniqueness of its solution implies existence. Uniqueness of un

h, w
n
h and

d̂
n

h follows from the energy estimates (5.13) in the next subsection; then uniqueness
of pnh is a consequence of the inf-sup condition (see [3], [7], or [15]).

Remark 5.1. Of course, the particular lifting d̃
n

h satisfying (5.9) is only a matter of
theoretical convenience and (5.10), (5.11) is equivalent to: Knowing (un−1

h ,dn−1
h ) ∈
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U0h ×Dh, find (un
h,w

n
h) and (pnh,d

n
h) with dn

h|∂Ω = lnh, the solution of:(
δt(u

n
h, μd

n
h), (v, e)

)
+ a

(
(un

h,w
n
h), (v, e)

)
+ b

(
v, pnh

)

+ c
(
(un−1

h ,dn−1
h ), (un

h,w
n
h), (v, e)

)

= −μ
(
γ f̃(dn−1

h ), e
)

∀(v, e) ∈ Xh,

b
(
un
h, q

)
+ μ

(
∇dn

h,∇g
)
−
(
wn

h, g
)
= 0 ∀(q, g) ∈ Mh.

(5.12)

Moreover, in practical situations, we can assume that l is continuous in space (e.g.
a little better than H1(∂Ω) when N = 3). Then for implementing (5.12), we
approximate l by interpolating its pointwise values on ∂Th. �
Remark 5.2. Owing to the degree of the polynomials, if the inner dihedral angles of

each T in Th is not larger than π/2, then d̃
n

h defined by (5.9) satisfies the maximum
principle (cf. Ciarlet [10]) and hence

∀x ∈ Ω ,
∣∣d̃n

h(x)
∣∣ ≤ 1. �

5.1. Energy estimates. In the sequel, C denotes different constants, always in-
dependent of k and h, but possibly depending exponentially on 1/ε2.

The following stability result is obtained by using standard techniques in the
Navier-Stokes framework: by choosing (v, e) = (un

h,w
n
h) ∈ Xh as test functions in

(5.10) and (q, g) = (pnh, μδtd̂
n

h) ∈ Mh in (5.11), taking into account that

k
∑
n≥1

‖δtd̃
n

h‖2L2(Ω) ≤ C

∫ T

0

‖∂tl(t)‖2H1/2(∂Ω)
dt ≤ C,

and using the coercivity of a
(
·, ·
)
and the antisymmetry of c

(
·, ·, ·

)
given in (4.8),

i.e.,

c
(
(un−1

h ,dn−1
h ), (un

h,w
n
h), (u

n
h,w

n
h)
)
= 0.

Lemma 5.3. There exists C = C(Ω, ν, γ, λ, ‖u0,d0‖L2(Ω)×H1(Ω), l, ε) > 0 such
that

sup
0≤n≤M

‖un
h, d̂

n

h‖L2(Ω)×H1(Ω) ≤ C, k
M∑
n=1

‖un
h,w

n
h‖2H1(Ω)×L2(Ω) ≤ C,(5.13)

M∑
n=1

‖un
h − un−1

h , d̂
n

h − d̂
n−1

h ‖2L2(Ω)×H1(Ω) ≤ C.(5.14)

As ‖d̃
n

h‖H1(Ω) ≤ C ‖l(tn)‖H1/2(∂Ω), the assumptions on l imply that

sup
0≤n≤M

‖d̃
n

h‖H1(Ω) ≤ C;

therefore, the first part of (5.13) yields

(5.15) sup
0≤n≤M

‖dn
h‖H1(Ω) ≤ C.

Remark 5.4. When applying Gronwall’s Lemma in the proof of Lemma 5.3, the

term μγf̃(dn−1
h ) in the right-hand side of (5.10) is responsible for the exponential

dependence of C on 1/ε2. �
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5.2. W 1,3 a priori estimates in space for the director field. From now on,
in order to apply some inverse inequalities, we assume that the triangulation of Ω
is quasi-uniform: There exists a constant τ , independent of h, such that

(5.16) ∀T ∈ Th , τh ≤ hT ≤ σρT .

The following crucial result enables us to bypass a C1 discretization of d.

Lemma 5.5. There exists a constant C > 0 (independent of h and k), such that,

for each n ≥ 1, given wn
h, the solution d̂

n

h of (5.11) satisfies:

(5.17) ‖d̂
n

h‖W 1,r(Ω) ≤ C ‖wn
h‖Ls(Ω),

where r = 3 and s = 3/2 if N = 3, and r = 4 and s = 4/3 if N = 2. In particular,
for each n ≥ 1,

(5.18) ‖d̂
n

h‖W 1,3(Ω) ≤ C ‖wn
h‖L2(Ω).

Proof. We sketch the proof for the reader’s convenience; it is a standard application
of Sobolev imbeddings, elliptic Lp regularity, inverse inequalities and approximation

properties of SZh (cf. for instance [15]). Let wn
h ∈ Wh and let d̂(h) ∈ H1(Ω) solve

the problem:

(5.19) −μΔd̂(h) = wn
h in Ω, d̂(h) = 0 on ∂Ω.

According to Theorems 2.1 and 2.3, we have

• If N = 2, then d̂(h) ∈ W 2,4/3(Ω) and ‖d̂(h)‖W 2,4/3(Ω) ≤ C ‖wn
h‖L4/3(Ω).

• If N = 3, then d̂(h) ∈ H3/2(Ω) and ‖d̂(h)‖H3/2(Ω) ≤ C ‖wn
h‖L3/2(Ω).

When N = 2, Sobolev imbedding W 2,4/3(Ω) ↪→ W 1,4(Ω) yields ‖d̂(h)‖W 1,4(Ω) ≤
C ‖wn

h‖L4/3(Ω), and when N = 3, Sobolev imbedding H3/2(Ω) ↪→ W 1,3(Ω) gives

(5.20) ‖d̂(h)‖W 1,3(Ω) ≤ C ‖wn
h‖L3/2(Ω).

Let us write the remainder of the proof for N = 3, the proof being similar and

giving a sharper result when N = 2. We split ∇ d̂
n

h as follows:

‖∇ d̂
n

h‖L3(Ω) ≤ ‖∇(d̂
n

h − SZhd̂(h))‖L3(Ω) + ‖∇(SZhd̂(h)− d̂(h))‖L3(Ω)

+ ‖∇ d̂(h)‖L3(Ω).

The last term in the above right-hand side is bounded by (5.20) and a bound for
the second one follows easily from the stability of SZh and (5.20):

‖SZhd̂(h)− d̂(h)‖W 1,3(Ω) ≤ C ‖d̂(h)‖W 1,3(Ω) ≤ C ‖wn
h‖L3/2(Ω).

Therefore, it suffices to estimate the first term. For this, setting (5.19) into vari-
ational form and comparing with (5.11) with q = 0, we obtain the orthogonality
relation

(5.21)
(
∇(d̂

n

h − d̂(h)),∇g
)
= 0 ∀ g ∈ D0h.
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Consequently, taking g = d̂
n

h−SZhd̂(h) ∈ D0h, using the approximation properties
of SZh and (5.20), we derive

‖∇(d̂
n

h − SZhd̂(h))‖L2(Ω) ≤ ‖∇(d̂(h)− SZhd̂(h))‖L2(Ω)

≤ C h1/2‖d̂(h)‖H3/2(Ω)

≤ C h1/2‖wn
h‖L3/2(Ω).

(5.22)

Then the inverse inequality (that holds on any finite-element space defined on a
quasi-uniform triangulation in three dimensions)

‖vh‖L3(Ω) ≤ C h−1/2‖vh‖L2(Ω),

yields

(5.23) ‖∇(d̂
n

h − SZhd̂(h))‖L3(Ω) ≤ C ‖wn
h‖L3/2(Ω),

and (5.17) follows from these inequalities. �

Remark 5.6. When Ω is convex, as (5.21) means that d̂
n

h is the finite-element elliptic

projection of d̂(h), the sharp results of [33] and [6] give immediately

‖∇ d̂
n

h‖L3(Ω) ≤ ‖∇ d̂(h)‖L3(Ω).

Also, in this case, d̂(h) belongs to H2(Ω) and the above argument permits us to
somewhat relax the quasi-uniformity of the triangulation. But we prefer to avoid
this convexity assumption. �

Note that (5.13) and (5.18) imply

(5.24) k
∑
n≥1

‖d̂
n

h‖2W 1,3(Ω) ≤ C.

Furthermore, the proof of Lemma 5.5 also shows that

(5.25) ‖d̃
n

h‖W 1,3(Ω) ≤ C ‖l(tn)‖H1(∂Ω).

Indeed, as l(tn) belongs to H1(∂Ω), so does lnh and by virtue of Theorem 2.3, the

solution d̃(h) ∈ H1(Ω) of

−Δ d̃(h) = 0 in Ω, d̃(h) = lnh on ∂Ω,

belongs to H3/2(Ω) and ‖d̃(h)‖H3/2(Ω) ≤ C ‖l(tn)‖H1/2(∂Ω). Then the proof of

(5.25) proceeds as in Lemma 5.5. Hence

k
∑
n≥1

‖d̃
n

h‖2W 1,3(Ω) ≤ C,

and therefore

(5.26) k
∑
n≥1

‖dn
h‖2W 1,3(Ω) ≤ C.
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5.3. A priori fractional estimates in time for the discrete velocity and
director fields. To prove compactness in time of un

h and dn
h, let us sharpen (5.14)

as follows.

Proposition 5.7. There exists a constant C > 0, independent of h and k but
depending on ε, such that for all integers � with 1 ≤ � ≤ M − 1,

(5.27) I� := k
M−�∑
m=1

‖um+�
h − um

h , μ (d̂
m+�

h − d̂
m

h )‖2L2(Ω)×H1(Ω) ≤ C(� k)1/2.

Proof. Let us sum (5.10) over n from n = m + 1 to m + � and take (v, e) =

(um+�
h − um

h ,wm+�
h −wm

h ) as test functions. Owing to (5.11), we have

μ
(
∇(d̂

m+�

h − d̂
m

h ),∇g
)
=

(
wm+�

h −wm
h , g

)
, b

(
um+�
h − um

h , q
)
= 0.

This gives
(
μ(d̂

m+�

h − d̂
m

h ),wm+�
h −wm

h

)
= ‖μ∇(d̂

m+�

h − d̂
m

h )‖2L2(Ω)

and
m+�∑

n=m+1

b(um+�
h − um

h , pnh) = 0.

Therefore,

‖um+�
h − um

h , μ (d̂
m+�

h − d̂
m

h )‖2L2(Ω)×H1(Ω)

= −k
m+�∑

n=m+1

a
(
(un

h,w
n
h), (u

m+�
h − um

h ,wm+�
h −wm

h )
)

−k

m+�∑
n=m+1

c
(
(un−1

h ,dn−1
h ), (un

h,w
n
h), (u

m+�
h − um

h ,wm+�
h −wm

h )
)

−k μ

m+�∑
n=m+1

(
γ f̃(dn−1

h ) + δtd̃
n

h,w
m+�
h −wm

h

)
.

Let us multiply the above expression by k, sum it over m from m = 1 to m = M−�
and invert the order of summation; then n runs from 2 to M and m runs from
max(1, n − �) to min(n − 1,M − �). The contribution to I� of the term involving
a1 has the bound:

k2
∣∣∣
M−�∑
m=1

m+�∑
n=m+1

ν
(
∇un

h,∇(um+�
h − um

h )
)∣∣∣

≤ k2ν

M∑
n=2

‖∇un
h‖L2(Ω)

min(n−1,M−�)∑
m=max(1,n−�)

‖∇(um+�
h − um

h )‖L2(Ω).

But

min(n− 1,M − �)−max(1, n− �) ≤ �− 1.
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Therefore, a Cauchy-Schwarz inequality applied to both sums yields

k2
∣∣∣
M−�∑
m=1

m+�∑
n=m+1

ν
(
∇un

h,∇(um+�
h − um

h )
)∣∣∣ ≤ ν(k(�− 1))1/2(k(M − 1))1/2

×
( M∑
n=2

k‖∇un
h‖2L2(Ω)

)1/2(M−�∑
m=1

k‖∇(um+�
h − um

h )‖2L2(Ω)

)1/2

.

In view of the second part of (5.13), both sums in this right-hand side are bounded
by a constant C, independent of h and k. Thus

(5.28) k2
∣∣∣
M−�∑
m=1

m+�∑
n=m+1

ν
(
∇un

h,∇(um+�
h − um

h )
)∣∣∣ ≤ Cν(k�)1/2T 1/2.

By replacing all occurrences of ∇ui
h by wi

h, the term involving a2 has a similar
bound with another constant C:

(5.29) k2
∣∣∣
M−�∑
m=1

m+�∑
n=m+1

γ
(
wn

h,w
m+�
h −wm

h

)∣∣∣ ≤ Cγ(k�)1/2T 1/2.

As far as the non-linear terms are concerned, consider the term ((∇dn−1
h )twn

h,

um+�
h − um

h ). By the above argument and Sobolev imbeddings, we obtain

μk2
∣∣∣
M−�∑
m=1

m+�∑
n=m+1

(
(∇dn−1

h )twn
h,u

m+�
h − um

h

)∣∣∣ ≤ Cμ(k(�− 1))1/2

×
( M∑
n=2

k‖wn
h‖2L2(Ω)

)1/2(M−1∑
n=1

k‖∇dn
h‖2L3(Ω)

)1/2

×
(M−�∑
m=1

k‖∇(um+�
h − um

h )‖2L2(Ω)

)1/2

≤ Cμ(k�)1/2,

owing to the second part of (5.13) and (5.26).

In view of (3.17), the term involving f̃ has the bound

μk2
∣∣∣
M−�∑
m=1

m+�∑
n=m+1

γ
(
f̃(dn−1

h ),wm+�
h −wm

h

)∣∣∣

≤ γ
μ

ε2
|Ω|1/2T (k(�− 1))1/2

(M−�∑
m=1

k‖wm+�
h −wm

h ‖2L2(Ω)

)1/2

≤ Cγ
μ

ε2
|Ω|1/2T (k�)1/2.
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Finally, the term involving δtd̃
n

h has the bound

μk2
∣∣∣
M−�∑
m=1

m+�∑
n=m+1

(
δtd̃

n

h,w
m+�
h −wm

h

)∣∣∣

≤ μ(k(�− 1))1/2T 1/2
( M∑
n=2

k‖δtd̃
n

h‖2L2(Ω)

)1/2(M−�∑
m=1

‖wm+�
h −wm

h ‖2L2(Ω)

)1/2

≤ Cμ(k�)1/2T 1/2,

owing to (5.25) and the assumption on l. Then (5.27) follows by collecting these
estimates. �

Remark 5.8. As stated in Remark 5.2, there are particular meshes on which the

lifting d̃
n

h satisfies the maximum principle. But extending this result to dn
h is

problematic. In particular, the steps in the proof of Lemma 3.4 cannot be applied
to the discrete system (5.10), (5.11). �

5.4. Weak convergence. In order to establish convergence, it is convenient to
associate the following functions with the solution of (5.10), (5.11). First, let
uhk ∈ C0([0, T ];H1

0(Ω)) and dhk ∈ C0([0, T ];H1(Ω)) be affine in each subinter-
val [tn−1, tn], 1 ≤ n ≤ M , with uhk(tn) = un

h, dhk(tn) = dn
h, 0 ≤ n ≤ M . Next,

let ur
hk, ul

hk, dr
hk, dl

hk be constant in each subinterval ]tn−1, tn[, 1 ≤ n ≤ M ,

with (ur
hk,d

r
hk)

∣∣
[tn−1,tn[

= (un
h,d

n
h), (ul

hk,d
l
hk)

∣∣
]tn−1,tn]

= (un−1
h ,dn−1

h ) respec-

tively, 1 ≤ n ≤ M . We define similarly the continuous functions d̂hk, d̃hk and

the piecewise constant functions wr
hk, d̂

r

hk, d̃
r

hk, d̂
l

hk and d̃
l

hk. Then the scheme
(5.10)–(5.11) can be written in terms of these functions as follows, eliminating the
pressure as usual by taking v in Vh, see (5.7):

∀(v, e) ∈ Vh ×Wh ,
(
dt(uhk, μd̂hk), (v, e)

)
+ a

(
(ur

hk,w
r
hk), (v, e)

)

+ c
(
(ul

hk,d
l
hk), (u

r
hk,w

r
hk), (v, e)

)
= −μ

(
γ f̃(dl

hk) + dtd̃hk, e
)
,

(5.30)

and

(5.31) ∀(q, g) ∈ Mh , b
(
ur
hk, q

)
+ μ

(
∇d̂

r

hk,∇g
)
−
(
wr

hk, g
)
= 0.

Lemma 5.3 implies, in particular, that the following inclusions hold with con-
stants independent of k and h, but depending on ε:

(ur
hk, d̂

r

hk), (u
l
hk, d̂

l

hk), (uhk, d̂hk) in L∞(L2(Ω)×H1(Ω)),

(ur
hk,w

r
hk) in L2(H1(Ω)×L2(Ω)).

Furthermore, it stems from (5.15) that the following inclusions are also uniform in
h and k,

dr
hk,d

l
hk,dhk in L∞(H1(Ω)).

Moreover, (5.14) easily implies that

(5.32)
‖ur

hk − ul
hk, d̂

r

hk − d̂
l

hk‖L2(L2(Ω)×H1(Ω)) ≤ C k1/2,

‖ur
hk − uhk, d̂

r

hk − d̂hk‖L2(L2(Ω)×H1(Ω)) ≤ C k1/2.
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Finally, (5.24) and (5.26) yield that the next inclusions are uniform in h and k:

d̂
r

hk,d
r
hk in L2(W 1,3(Ω)).

From these uniform bounds, we infer that there is a subsequence (h′, k′) ⊂ (h, k),

still denoted by (h, k), and limit functions (ur, d̂
r
), (ul, d̂

l
), (u, d̂) and w such that

lim
(h,k)→(0,0)

(ur
hk, d̂

r

hk) = (ur, d̂
r
) weakly* in L∞(L2(Ω)×H1(Ω)),

lim
(h,k)→(0,0)

(ul
hk, d̂

l

hk) = (ul, d̂
l
) weakly* in L∞(L2(Ω)×H1(Ω)),

lim
(h,k)→(0,0)

(uhk, d̂hk) = (u, d̂) weakly* in L∞(L2(Ω)×H1(Ω)),

lim
(h,k)→(0,0)

(ur
hk,w

r
hk) = (ur,w) weakly in L2(H1(Ω)×L2(Ω)).

Next, (5.32) implies that the limit functions satisfy

ur = ul = u , d̂
r
= d̂

l
= d̂.

Similarly, the properties of the lifting sequences d̃
r

hk, d̃
l

hk and d̃hk, imply that this

convergence can be extended to dr
hk, d

l
hk and dhk. Finally,

lim
(h,k)→0

d̂
r

hk = d̂ weakly in L2(W 1,3(Ω)).

Clearly, these weak convergences together with the approximation properties of
the finite element spaces Uh, Ph, Wh, Dh, and Vh (for which we use the inf-sup
condition), allow us to pass to the limit in all bilinear terms of (5.30) and (5.31).
But passing to the limit in the non-linear terms requires compactness in space and
time. While compactness in space is a straightforward consequence of Sobolev’s
imbeddings, proving compactness in time is much more delicate. This is the object
of the next section.

5.5. Compactness and passing to the limit. For proving that

lim
(h,k)→(0,0)

c
(
(ul

hk,d
l
hk), (u

r
hk,w

r
hk), (v, e)

)
= c

(
(u,d), (u,w), (v, e)

)
,

lim
(h,k)→(0,0)

(
f̃(dl

hk), e
)
=

(
f̃(d), e

)
,

which will lead to the conclusion that (u,d,w) solves (4.5), (4.6) with test function

v in V , it suffices to show that the sequence of functions (ur
hk, d̂

r

hk) is compact

in L2(L2(Ω)×H1(Ω)). Indeed, in view of (5.32), the same result will be true for

(ul
hk, d̂

l

hk) and (uhk, d̂hk). This compactness argument will be split into two steps:

Step 1. Compactness of (ur
hk, d̂

r

hk) in L2(L2(Ω)×L2(Ω)).

We shall use the following theorem applied to (ur
hk, d̂

r

hk).
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Theorem 5.9. The sequence of solutions (ur
hk, d̂

r

hk) is compact in L2(L2(Ω) ×
L2(Ω)) if there exists a constant C, independent of h and k, such that

∀δ ∈]0, T [ ,
∫ T−δ

0

‖ur
hk(t+ δ)− ur

hk(t), μ(d̂
r

hk(t+ δ)− d̂
r

hk(t))‖2L2(Ω)×H1(Ω) dt

≤ C δ1/2.

(5.33)

Proof. Considering that the sequence (ur
hk, d̂

r

hk) is bounded in L2(H1(Ω)×H1(Ω)),
the Kazhikhov’s type a priori fractional estimate in time (5.33) implies compactness

of (ur
hk, d̂

r

hk) in L2(L2(Ω) × L2(Ω)), as a consequence of a vector extension of
the Kolmogorov’s characterization of relatively compact sets in L2(0, T ); see for
instance [36]. �

The corollary below states that the a priori estimate (5.33) stems from Proposi-
tion 5.7.

Corollary 5.10. Proposition 5.7 implies that the sequence of solutions (ur
hk, d̂

r

hk)

is compact in L2(L2(Ω)×L2(Ω)).

Proof. We must prove (5.33) for all real numbers δ ∈]0, T [, and it suffices to write
the proof for ur

hk. The argument depends upon the value of δ.
(i) If δ ∈]0, k[, then for any function f in L1(0, T ), we can write
∫ T−δ

0

f(t) dt =

M−2∑
i=0

(∫ ti+1−δ

ti

f(t) dt+

∫ ti+1

ti+1−δ

f(t) dt

)
+

∫ tM−δ

tM−1

f(t) dt.

As the functions ur
hk are independent of time on each subinterval ]tn−1, tn], 1 ≤

n ≤ M , this splitting leads to:
∫ T−δ

0

‖ur
hk(t+ δ)− ur

hk(t)‖2L2(Ω) dt = δ

M−1∑
i=1

‖ui+1
h − ui

h‖2L2(Ω).

But (5.14) implies that

δ

M−1∑
i=1

‖ui+1
h − ui

h‖2L2(Ω) ≤ C δ,

and as δ < k and necessarily k < 1, this implies (5.33) for 0 < δ < k.
(ii) Now, let 1 ≤ � ≤ M − 1 and take δ = �k. Proceeding as above and applying

(5.27), we easily derive:
∫ T−�k

0

‖ur
hk(t+ �k)− ur

hk(t)‖2L2(Ω) dt = k
M−�∑
m=1

‖um+�
h − um

h ‖2L2(Ω) ≤ C(�k)1/2.

This establishes (5.33) for δ = �k.
(iii) Finally, consider the remaining case where 1 ≤ � ≤ M − 1 and δ = k(�+ η),

with η ∈]0, 1[. Then the left-hand side of (5.33) splits as follows:
∫ T−δ

0

‖ur
hk(t+ δ)− ur

hk(t)‖2L2(Ω) dt

= k(1− η)

M−�∑
m=1

‖um+�
h − um

h ‖2L2(Ω) + k η

M−(�+1)∑
m=1

‖um+�+1
h − um

h ‖2L2(Ω).
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Applying (5.27), this becomes:
∫ T−δ

0

‖ur
hk(t+ δ)− ur

hk(t)‖2L2(Ω) dt ≤ C k1/2
(
(1− η)�1/2 + η(�+ 1)1/2

)
.

But all η ∈]0, 1[ and all positive integers � satisfy

(1− η)�1/2 + η(�+ 1)1/2 ≤
√
2(�+ η)1/2,

whence (5.33) holds for δ = k(�+ η) and therefore in all cases. �

Step 2. Compactness of dr
hk in L2(H1(Ω)).

The compactness of d̂
r

hk in L2(H1
0(Ω)) follows from the convergence

lim
(h,k)→(0,0)

‖d̂
r

hk‖L2(H1
0(Ω)) = ‖d‖L2(H1

0(Ω)).

Indeed, by taking g = d̂
r

hk in (5.31), using the compactness of d̂
r

hk in L2(L2(Ω))
and finally taking g = d in (4.6), we obtain

∫ T

0

‖∇d̂
r

hk(t)‖2L2(Ω) dt =

∫ T

0

(
whk(t), d̂

r

hk(t)
)
dt →

∫ T

0

(
w(t),d(t)

)
dt

=

∫ T

0

‖∇d(t)‖2L2(Ω) dt.

Then the compactness of the lifting sequence d̃
r

hk, yields the compactness of dr
hk in

L2(H1(Ω)).
By combining this with the material of Section 5.4, we obtain immediately the

following convergence theorem.

Theorem 5.11. The limit functions u, d and w solve problem (4.5), (4.6) with
test function v in V .

Remark 5.12. As in the Navier-Stokes equations, establishing convergence of the
pressure is more delicate because it involves convergence of the time derivative of the
discrete velocity whose proof is fairly long and intricate; cf. Lions [27] and Temam
[37]. To avoid this difficulty and save space we turn directly to error estimates. �

6. Error estimates

In this section, we shall prove that, if the exact solution is sufficiently smooth,
the error of the scheme (5.10), (5.11) (or equivalently (5.12)) is of order one in time
and space. As usual, this is achieved by inserting in the error equations suitable
interpolations of the exact solution.

We shall need to approximate both the velocity and its time derivative by the
same operator, and since we do not want to impose much regularity on this de-
rivative, we need an operator that is stable in a larger space than W 1,1(Ω). For
this, it is convenient to use the following variant Jh of SZh, introduced in [14], that
takes averages in elements instead of faces. Thus, for each interior node a of Th, we
associate once and for all an element Ta of Th with vertex a, and for any function
v ∈ L1(Ω), and all interior vertices a of Th, we define

(6.1) Jhv(a) =
1

|Ta|

∫

Ta

v(x) dx.
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To enforce the zero boundary value, we set Jhv(a) = 0 on all boundary vertices
a, and we interpolate these values with P1 functions in each T . This operator is
stable in Lr(Ω) for any r and it has optimal approximation properties in spaces of
functions that vanish on the boundary. Now, to approximate the velocity in each
element T , we define the operator Ih by

(6.2) ∀v ∈ L1(T ) , Ihv|T = Jhv|T + bT cT , cT =
1∫

T
bT dx

∫

T

(v − Jhv)(x)dx,

where bT is the bubble function defined in (5.2). By construction, Ihv belongs to
U0h if v belongs to L1(Ω) and it is easy to check that the approximation properties
of Ih stem directly from those of Jh. Furthermore, it satisfies

(6.3) ∀T ∈ Th, ∀v ∈ L1(T ) ,

∫

T

(v − Ihv)(x)dx = 0.

This property implies on one hand that (cf. [15])

(6.4) ∀v ∈ H1
0(Ω), ∀qh ∈ Ph ,

(
∇ · (v − Ihv), qh

)
= 0,

which in turn implies a uniform inf-sup condition. On the other hand, (6.3) readily
yields that

(6.5) ∀v ∈ L2(Ω) , ‖v − Ihv‖H−1(Ω) ≤ C h ‖v − Ihv‖L2(Ω).

We approximate the director field and the pressure with the regularization operator
SZh defined in (5.8). Strictly speaking SZh does not preserve the zero mean value
in Ω, but it is easy to correct it without changing its approximation properties.
To avoid a multiplicity of notation, we still denote the corrected operator by SZh.
Finally, we approximate the auxiliary field w by the L2 projection operator Kh on
constants in each T :

(6.6) ∀T ∈ Th, ∀w ∈ L2(T ) , Khw|T =
1

|T |

∫

T

w(x)dx.

In addition to (6.5), we shall use the following approximation and stability prop-
erties of Ih, SZh and Kh, valid for any number p ∈ [1,∞]:

‖Ihv‖Wn,p(Ω) ≤ C ‖v‖Wn,p(Ω) n = 0, 1,(6.7)

‖Ihv − v‖Wn,p(Ω) ≤ C h|v|Wn+1,p(Ω) n = 0, 1,

‖SZhd− d‖Wn,p(Ω) ≤ C h|d|Wn+1,p(Ω) n = 0, 1,(6.8)

‖Khw‖Lp(Ω) ≤ C‖w‖Lp(Ω) , ‖Khw − w‖Lp(Ω) ≤ C h|w|W 1,p(Ω),(6.9)

‖SZhp− p‖L2(Ω) ≤ C h|p|H1(Ω).(6.10)

With these operators, we define the (fully discrete) errors

enu := un
h − Ihu(tn), end := dn

h − SZhd(tn), enw := wn
h −Khw(tn).

6.1. Consistency errors. By integrating (4.5) with respect to time between tn−1

and tn, by taking (4.6) at time t = tn, and by subtracting (5.12), we obtain the
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error equations respectively for all (vh, eh) ∈ Xh and (qh, gh) ∈ Mh:

k δt

((
u(tn)− un

h, μ(d(tn)− dn
h)
)
, (vh, eh)

)

+

∫ tn

tn−1

a
((

u(t)− un
h,w(t)−wn

h

)
, (vh, eh)

)
dt+

∫ tn

tn−1

b
(
vh, p(t)− pnh

)
dt

+

∫ tn

tn−1

(
c
(
(u(t),d(t)), (u(t),w(t)), (vh, eh)

)

− c
(
(un−1

h ,dn−1
h ), (un

h,w
n
h), (vh, eh)

))
dt

+ μ γ

∫ tn

tn−1

(
f̃
(
d(t)

)
− f̃

(
dn−1
h

)
, eh

)
dt = 0,

(6.11)

b
(
u(tn)− un

h, qh

)
+ μ

(
∇(d(tn)− dn

h),∇ gh

)
−
(
w(tn)−wn

h, gh

)
= 0.(6.12)

This system involves the following consistency error terms (the derivative with
respect to time is denoted by a prime):

En
h,1(vh, eh) =

∫ tn

tn−1

((
u′(t)− Ihu

′(t), μ
(
d′(t)− SZhd

′(t)
))
, (vh, eh)

)
dt,

En
h,a(vh, eh) = En

h,a,1(vh, eh) + En
h,a,2(vh, eh)

=

∫ tn

tn−1

a
((

u(t)− Ihu(t),w(t)−Khw(t)
)
, (vh, eh)

)
dt

+

∫ tn

tn−1

a
((

Ih
(
u(t)− u(tn)

)
,Kh

(
w(t)−w(tn)

))
, (vh, eh)

)
dt,

En
h,b(vh) =

∫ tn

tn−1

(
p(t)− SZhp(t),∇ · vh

)
dt

+

∫ tn

tn−1

(
SZh

(
p(t)− p(tn)

)
,∇ · vh

)
dt,

En
h,f (eh) = En

h,f,1(eh) + En
h,f,2(eh)

= μγ

∫ tn

tn−1

(
f̃
(
d(t)

)
− f̃

(
SZhd(t)

)
, eh

)
dt

+ μγ

∫ tn

tn−1

(
f̃
(
SZhd(t)

)
− f̃

(
SZhd(tn−1)

)
, eh

)
dt,

En
h,c(vh, eh) = En

h,c,1(vh, eh) + En
h,c,2(vh, eh) + En

h,c,3(vh, eh) + En
h,c,4(vh, eh)

=

∫ tn

tn−1

c
((

u(t),d(t)
)
,
(
u(t)− Ihu(t),w(t)−Khw(t)

)
, (vh, eh)

)
dt

+

∫ tn

tn−1

c
((

u(t),d(t)
)
,
(
Ih(u(t)− u(tn)),Kh(w(t)−w(tn))

)
, (vh, eh)

)
dt

+

∫ tn

tn−1

c
((

u(t)− Ihu(t),d(t)− SZhd(t)
)
,
(
Ihu(tn),Khw(tn)

)
, (vh, eh)

)
dt
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+

∫ tn

tn−1

c
((

Ih(u(t)− u(tn−1)), SZh(d(t)− d(tn−1))
)
,

(
Ihu(tn),Khw(tn)

)
, (vh, eh)

)
dt,

Ẽn
h (gh) = μ

(
∇(d(tn)− SZhd(tn)),∇ gh

)
−
(
w(tn)−Khw(tn), gh

)
.

Note that on one hand the second term in En
h,b(vh) vanishes because vh belongs to

Vh, and on the other hand, we use (6.4) in the definition of Ẽn
h (gh).

Let us bound each term, assuming that the solution is sufficiently smooth. To
simplify the notation, we drop the dependence on vh and eh and we set In =
(tn−1, tn). For estimating En

h,1, we apply (6.5) and the first part of (6.7) with
n = 0, p = 2:

∣∣∣
∫ tn

tn−1

(
u′(t)− Ihu

′(t),vh

)
dt
∣∣∣ ≤ C h ‖u′‖L2(In;L2(Ω))k

1/2|vh|H1(Ω);

and we apply (6.8) with n = 0, p = 2:
∣∣∣
∫ tn

tn−1

(
d′(t)− SZhd

′(t), eh
)
dt
∣∣∣ ≤ C h ‖d′‖L2(In;H1(Ω))k

1/2‖eh‖L2(Ω).

Thus

(6.13)
∣∣En

h,1

∣∣ ≤ Chk1/2
∥∥u′, μd′∥∥

L2(In;L2(Ω)×H1(Ω))

∥∥vh, eh
∥∥
X
.

Similarly, by applying the second part of (6.7) with n = 1, p = 2 and (6.9), we
obtain

(6.14)
∣∣En

h,a,1

∣∣ ≤ Chk1/2
∥∥ν u, γw∥∥

L2(In;H2(Ω)×H1(Ω))

∥∥vh, eh
∥∥
X
.

To estimate the second term in En
h,a, we consider, for instance,

∫ tn

tn−1

(
∇ Ih

(
u(t)− u(tn)

)
,∇vh

)
dt =

(
∇ Ih

∫ tn

tn−1

(
u(t)− u(tn)

)
dt,∇vh

)

= −
(
∇ Ih

∫ tn

tn−1

( ∫ tn

t

u′(s)ds
)
dt,∇vh

)
= −

∫ tn

tn−1

(s− tn−1)
(
∇ Ihu

′(s),∇vh

)
ds.

Thus, applying the first part of (6.7) with n = 1, p = 2, we derive:

(6.15)
∣∣∣
∫ tn

tn−1

(
∇ Ih

(
u(t)− u(tn)

)
,∇vh

)
dt
∣∣∣ ≤ C√

3
k3/2‖u′‖L2(In;H1(Ω))|vh|H1(Ω).

Hence,

(6.16)
∣∣En

h,a,2

∣∣ ≤ C√
3
k3/2

∥∥ν u′, γw′∥∥
L2(In;H1(Ω)×L2(Ω))

∥∥vh, eh
∥∥
X
.

Similarly,

(6.17)
∣∣En

h,b

∣∣ ≤ C h‖p‖L2(In;H1(Ω))k
1/2|vh|H1(Ω).

Now, we turn to the non-linear terms. First, considering that |d| ≤ 1 and the
operator SZh preserves this property, we apply formula (8.1) in the Appendix and
obtain ∣∣f̃(d(t))− f̃

(
SZhd(t)

)∣∣ ≤ 3

ε2
∣∣d(t)− SZhd(t)

∣∣.
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Applying (6.8) with n = 0, p = 2, yields

∣∣En
h,f,1

∣∣ ≤ μγ
3

ε2
C h ‖d‖L2(In;H1(Ω))k

1/2‖eh‖L2(Ω).

For the second term in En
h,f , by applying again formula (8.1), we have

∣∣f̃(SZhd(t)
)
− f̃

(
SZhd(tn−1)

)∣∣ ≤ 3

ε2
∣∣SZh

(
d(t)− d(tn−1)

)∣∣.
Therefore, proceeding as in the derivation of (6.15), we obtain

∣∣En
h,f,2

∣∣ ≤ μγ

√
3

ε2
C‖d′‖L2(In;H1(Ω))k

3/2‖eh‖L2(Ω).

Therefore,

(6.18)
∣∣En

h,f

∣∣ ≤ μγ
C

ε2
k1/2

(
3h‖d‖L2(In;H1(Ω)) +

√
3k‖d′‖L2(In;H1(Ω))

)
‖eh‖L2(Ω).

It remains to consider the terms involving trilinear form c. First, as u(t) belongs
to V , we write the first term of En

h,a,1 as follows:
∫ tn

tn−1

(
u(t) · ∇(u(t)− Ihu(t)),vh

)
dt = −

∫ tn

tn−1

(
u(t) · ∇vh,u(t)− Ihu(t)

)
dt.

Therefore, applying the second part of (6.7) with n = 0, p = 3 and Sobolev’s
imbedding, we obtain

∣∣∣
∫ tn

tn−1

(
u(t) · ∇(u(t)− Ihu(t)),vh

)
dt
∣∣∣

≤ C hk1/2‖u‖L∞(In;H1(Ω))‖u‖L2(In;W 1,3(Ω))|vh|H1(Ω).

For the second term in En
h,c,1, we use the second part of (6.7) with n = 0, p = 6

and (6.9) with p = 2:

∣∣∣
∫ tn

tn−1

(
(u(t)− Ihu(t)) · ∇d(t), eh

)
dt
∣∣∣+

∣∣∣
∫ tn

tn−1

(
vh · ∇d(t),w(t)−Khw(t)

)
dt
∣∣∣

≤ C hk1/2‖d‖L∞(In;W 1,3(Ω))

∥∥u,w∥∥
L2(In;W 1,6(Ω)×H1(Ω))

∥∥vh, eh
∥∥
X
.

The sum of these two bounds gives
∣∣En

h,c,1

∣∣ ≤ C hk1/2
(
μ‖eh‖L2(Ω)‖d‖L∞(In;W 1,3(Ω))‖u‖L2(In;W 1,6(Ω))

+ |vh|H1(Ω)

(
‖u‖L∞(In;H1(Ω))‖u‖L2(In;W 1,3(Ω))

+ μ‖d‖L∞(In;W 1,3(Ω))‖w‖L2(In;H1(Ω))

))
.

(6.19)

Next, proceeding as in the derivation of (6.15), we write
∫ tn

tn−1

(
u(t) · ∇ Ih

(
u(t)− u(tn)

)
,vh

)
dt = −

∫ tn

tn−1

(
u(t) · ∇vh,

∫ t

tn

Ihu
′(s)ds

)
dt.

Hence, applying the first part of (6.7) with n = 0, p = 3, we have
∣∣∣
∫ tn

tn−1

(
u(t) · ∇ Ih

(
u(t)− u(tn)

)
,vh

)
dt
∣∣∣

≤ C√
3
k3/2‖u‖L∞(In;H1(Ω))‖u′‖L2(In;L3(Ω))|vh|H1(Ω).
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Similarly, arguing as in the proof of (6.15), we have the following bound for the
second term in En

h,c,2:

∣∣∣
∫ tn

tn−1

(
Ih(u(t)− u(tn)) · ∇d(t), eh

)
dt
∣∣∣+

∣∣∣
∫ tn

tn−1

(
vh · ∇d(t),Kh(w(t)−w(tn))

)
dt
∣∣∣

≤ C√
3
k3/2

(
‖d‖L∞(In;W 1,6(Ω))‖u′‖L2(In;L3(Ω))‖eh‖L2(Ω)

+ ‖d‖L∞(In;W 1,3(Ω))‖w′‖L2(Ω×In)|vh|H1(Ω)

)
.

Hence,

∣∣En
h,c,2

∣∣ ≤ C√
3
k3/2

(
μ‖eh‖L2(Ω)‖d‖L∞(In;W 1,6(Ω))‖u′‖L2(In;L3(Ω))

+ |vh|H1(Ω)

(
‖u‖L∞(In;H1(Ω))‖u′‖L2(In;L3(Ω))

+ μ‖d‖L∞(In;W 1,3(Ω))‖w′‖L2(Ω×In)

))
.

(6.20)

Next, the bound for En
h,c,3 is a straightforward variant of (6.19), and we skip the

details: ∣∣En
h,c,3

∣∣ ≤ C hk1/2
(
μ‖eh‖L2(Ω)‖u‖L∞(In;H1(Ω))‖d‖L2(In;W 2,3(Ω))

+ |vh|H1(Ω)

(
‖u‖L∞(In;H1(Ω))‖u‖L2(In;W 1,3(Ω))

+ μ‖w‖L∞(In;L2(Ω))‖d‖L2(In;W 2,3(Ω))

))
.

(6.21)

Similarly, the bound for En
h,c,4 is a straightforward variant of (6.20)

∣∣En
h,c,4

∣∣ ≤ C√
3
k3/2

(
μ‖eh‖L2(Ω)‖u‖L∞(In;H1(Ω))‖d′‖L2(In;W 1,3(Ω))

+ |vh|H1(Ω)

(
‖u‖L∞(In;H1(Ω))‖u′‖L2(In;L3(Ω))

+ μ‖d′‖L2(In;W 1,3(Ω))‖w‖L∞(In;L2(Ω))

))
.

(6.22)

Finally, we easily derive a bound for Ẽn
h , applying (6.8) with p = 2, n = 1 and the

second part of (6.9) with p = 6/5:

(6.23)
∣∣∣Ẽn

h (gh)
∣∣∣ ≤ C h|gh|H1(Ω)

(
μ‖d(tn)‖H2(Ω) + ‖w(tn)‖W 1,6/5(Ω)

)
.

6.2. Total error estimates. Let En
h denote the sum of the consistency errors in

the first system:

En
h (vh, eh) = En

h,1(vh, eh) + En
h,a(vh, eh) + En

h,b(vh) + En
h,f (eh) + En

h,c(vh, eh).

Then the error equations (6.11), (6.12) can be expressed in terms of the total errors
enu, e

n
d, e

n
w: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀(vh, eh) ∈ Vh ×Wh ,

k
(
δt(e

n
u, μe

n
d), (vh, eh)

)
+ k a

(
(enu, e

n
w), (vh, eh)

)

+k c
(
(Ihu(tn−1), SZhd(tn−1)), (e

n
u, e

n
w), (vh, eh)

)

+k c
(
(en−1

u , en−1
d ), (un

h,w
n
h), (vh, eh)

)

= En
h (vh, eh)− kμγ

(
f̃(dn−1

h )− f̃(SZhd(tn−1)), eh

)
,

(6.24)



810 V. GIRAULT AND F. GUILLÉN-GONZÁLEZ

∀gh ∈ D0h , kμ
(
∇end,∇gh

)
− k

(
enw, gh

)
= kẼn

h (gh).(6.25)

Note that there is no pressure error term in the left-hand side of (6.24) because vh

belongs to Vh and similarly, there is no velocity error term in the left-hand side of
(6.25) because enu belongs to Vh.

Let us choose (vh, eh) = (enu, e
n
w) ∈ Vh × Wh in (6.24) and substitute into it

(6.25) with gh = μδte
n
d ∈ D0h. Since

k
(
enw, μδte

n
d

)
= kμ2

(
∇end,∇δte

n
d

)
− kẼn

h (μδte
n
d),

and in view of (4.8),

c
(
(Ih(u(tn−1), SZhd(tn−1)), (e

n
u, e

n
w), (enu, e

n
w)

)
= 0,

c
(
(en−1

u , en−1
d ), (un

h,w
n
h), (e

n
u, e

n
w)

)

= c
(
(en−1

u , en−1
d ), (Ihu(tn),Khw(tn)), (e

n
u, e

n
w)

)
,

this gives

(6.26)

1

2

{
‖enu‖2L2(Ω) − ‖en−1

u ‖2L2(Ω) + ‖enu − en−1
u ‖2L2(Ω)

}

+
μ2

2

{
|end|2H1(Ω) − |en−1

d |2H1(Ω) + |end − en−1
d |2H1(Ω)

}

+νk|enu|2H1(Ω)
+ γk‖enw‖2

L2(Ω)
= En

h (e
n
u, e

n
w) + kμẼn

h (δte
n
d)

−k c
(
(en−1

u , en−1
d ), (Ihu(tn),Khw(tn)), (e

n
u, e

n
w)

)

−kμγ
(
f̃(dn−1

h )− f̃(SZhd(tn−1)), e
n
w

)

:= I1 + I2 + I3 + I4.

Let us bound first I1, I3 and I4. The bound for I1 is based on (6.13), (6.16)–(6.22).
Next,

∣∣I3
∣∣ ≤ Ck

∥∥u(tn),w(tn)
∥∥(

W 1,3(Ω)∩L∞(Ω)
)
×L3(Ω)

×
∥∥en−1

u , μen−1
d

∥∥
L2(Ω)×H1(Ω)

∥∥enu, enw
∥∥
X
,

(6.27)

owing to the first part of (6.7) with p = 3, n = 1 and the first part of (6.9) with
p = 3. Finally,

∣∣I4
∣∣ ≤ μγ

k

ε2

∫

Ω

Max
(
3, 1 + |dn−1

h |
)
|en−1

d ||enw|dx

≤ Ck
μγ

ε2
(‖dn−1

h ‖L3(Ω) + 1)‖en−1
d ‖L6(Ω)‖enw‖L2(Ω)

≤ Ck
μγ

ε2
‖en−1

d ‖L6(Ω)‖enw‖L2(Ω),

(6.28)

owing to properties (8.1) and (8.2) of f̃ established in the Appendix, and owing to

the uniform bound for ‖dn−1
h ‖L3(Ω) that stems from (5.15).

Accordingly, by summing (6.26) from n = 1 to n = m, applying suitably Young’s
inequality, and using the above inequalities, estimate for dn

h given in (5.15), and
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the fact that the initial errors are zero, we derive the intermediate error inequality:

‖emu ‖2L2(Ω) + μ2|emd |2H1(Ω) +

m∑
n=1

(
‖enu − en−1

u ‖2L2(Ω) + μ2|end − en−1
d |2H1(Ω)

)

+

m∑
n=1

k
(
ν|enu|2H1(Ω) + γ‖enw‖2L2(Ω)

)

≤ C
(
‖u,w‖2

L∞
(
(W 1,3(Ω)∩L∞(Ω))×L3(Ω)

) + 1
)

×
m∑

n=1

k
(
‖en−1

u ‖2L2(Ω) + μ2|en−1
d |2H1(Ω)

)

+ C h2
(
‖u,w‖2L2(H2(Ω)×H1(Ω)) + ‖d‖2H1(H1(Ω))

+ ‖u′‖2L2(L2(Ω)) + ‖p‖2L2(H1(Ω))

+ ‖d‖2L∞(W 1,3(Ω))‖u,w‖2L2(W 1,6(Ω)×H1(Ω))

+ ‖d‖2L2(W 2,3(Ω))‖u,w‖2L∞(H1(Ω)×L2(Ω))

+ ‖u‖2L2(W 1,3(Ω))‖u‖2L∞(H1(Ω))

)

+ C k2
(
‖u′,w′‖2L2(H1(Ω)×L2(Ω)) + ‖d‖2L∞(W 1,6(Ω))‖u′,w′‖2L2(L3(Ω)×L2(Ω))

+ ‖d′‖2L2(H1(Ω)) + ‖d′‖2L2(W 1,3(Ω))‖u,w‖2L∞(H1(Ω)×L2(Ω))

+ ‖u‖2L∞(H1(Ω))‖u′‖2L2(L3(Ω))

)
+ 2μ

∣∣
m∑

n=1

kẼn
h (δte

n
d)
∣∣.

(6.29)

In order to estimate I2, it is useful to switch the discrete time derivative from

end to Ẽn
h by means of a “discrete” integration by parts, as follows:

kμ
m∑

n=1

Ẽn
h (δte

n
d) = −kμ

m∑
n=2

δtẼn
h (e

n−1
d ) + μẼm

h (emd )

and

δtẼm
h (em−1

d ) = μ
(
∇δt(d(tm)− SZhd(tm)),∇em−1

d

)

−
(
δt(w(tm)−Khw(tm)), em−1

d

)
.

Then, applying (6.23), we derive

2
∣∣∣

m∑
n=1

kẼn
h (μδte

n
d)
∣∣∣

≤ C μh k1/2
m∑

n=1

(
μ‖d′‖L2(In;H2(Ω)) + ‖ w′‖L2(In;W 1,6/5(Ω))

)
|en−1

d |H1(Ω)

+ C μh‖(μd,w)‖L∞(H2(Ω)×W 1,6/5(Ω))|emd |H1(Ω)

≤ δ μ2
m∑

n=1

k|en−1
d |2H1(Ω) + δ μ2|emd |2H1(Ω)

+
C

δ
μh2

(
‖μd′,w′‖2

L2(H2(Ω)×W 1,6/5(Ω))
+ ‖μd,w‖2

L∞(H2(Ω)×W 1,6/5(Ω))

)
,
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for any δ > 0, for instance, δ = 1/2. When substituted into (6.29), this choice
yields

‖emu ‖2L2(Ω) +
1

2
μ2|emd |2H1(Ω) +

m∑
n=1

(
‖enu − en−1

u ‖2L2(Ω) + μ2|end − en−1
d |2H1(Ω)

)

+
m∑

n=1

k
(
ν|enu|2H1(Ω) + γ‖enw‖2L2(Ω)

)

≤ C(h2 + k2) + C
m∑

n=1

k
(
‖en−1

u ‖2L2(Ω) + μ2|en−1
d |2H1(Ω)

)
.

Then Gronwall’s Lemma implies the main result of this section.

Theorem 6.1. Assume that the triangulation is quasi-uniform (see (5.16)) and
the solution (u, p,d) has the following regularity:

(u,d,w) ∈ L2(H2(Ω)×W 2,3(Ω)×H1(Ω)),

u ∈ L∞(W 1,3(Ω) ∩L∞(Ω)), p ∈ L2(H1(Ω)),

(∂tu, ∂td, ∂tw) ∈ L2(H1(Ω)×H2(Ω)×W 1,6/5(Ω)).

Then the fully discrete scheme (5.10), (5.11) satisfies the optimal error estimates
for 1 ≤ m ≤ n:

‖emu ‖2L2(Ω) +
1

2
μ2|emd |2H1(Ω)

+

m∑
n=1

(
‖enu − en−1

u ‖2L2(Ω) + μ2|end − en−1
d |2H1(Ω)

)

+

m∑
n=1

k
(
ν|enu|2H1(Ω) + γ‖enw‖2L2(Ω)

)
≤ C(h2 + k2),

(6.30)

with a constant C that depends exponentially on 1
ε2 , but is independent of h, k, and

m.

Note that the regularity assumptions on the velocity and pressure do not require
a global compatibility condition on the initial data. More precisely, Lin and Liu
establish in [24] local existence in time of solutions with this regularity and global
existence in time with the same regularity when the viscosity parameter ν is large
enough.

Pressure error estimates are similar to those obtained for the Navier-Stokes equa-
tions [37], but as expected, they rely on upper bounds for the difference quotients
δte

n
u and δte

n
d. In three dimensions, these can be respectively derived by testing the

velocity’s error system with the discrete time derivative δte
n
u and applying strong

estimates for the linear discrete Stokes problem, and by testing the auxiliary vari-
able’s (w) error system with the discrete time derivative δte

n
w and applying strong

estimates for the linear discrete Poisson problem. This argument is rather different
from that used in deriving error estimates for the velocity and will be the subject
of a forthcoming work [20].
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7. Decoupling the computation of the velocity and directions fields

Computing the solution of (5.10), (5.11) is highly time-consuming because this
system, albeit linear, couples all unknowns and its matrix has a complex structure.
In this section, we propose three algorithms for decoupling, at least partly, this
computation.

7.1. Algorithms. For any n ≥ 1, given wn−1
h , dn−1

h , un−1
h and pn−1

h , we present
three iterative algorithms for approximating wn

h, d
n
h, u

n
h and pnh.

(1) (a) Let w0 be a first guess for wn
h; for instance, w0 = wn−1

h , if n > 1, or
w0 = −μKh(Δd0), if n = 1; see (6.6).

(b) For i ≥ 1, knowing wi−1, compute (ui, pi) ∈ U0h ×Ph the solution of:

∀v ∈ U0h ,
1

k

(
ui − un−1

h ,v
)
+ ν

(
∇ui,∇v

)
−
(
pi,∇ · v

)

+
(
un−1
h · ∇ui +

1

2
∇ · un−1

h ui,v
)
= μ

(
(∇dn−1

h )twi−1,v
)
,

∀q ∈ Ph ,
(
∇ · ui, q

)
= 0.

(c) Next, compute (wi,di) ∈ Wh×Dh, with (di)|∂Ω = lnh, the solution of:

∀e ∈ Wh ,
1

k

(
di − dn−1

h , e
)
+

γ

μ

(
wi, e

)
= −

(
ui · ∇dn−1

h , e
)
− γ

(
f̃(dn−1

h ), e
)
,

∀g ∈ D0h , μ
(
∇di,∇g

)
−
(
wi, g

)
= 0.

(2) (a) Let u0 = un−1
h .

(b) Knowing ui−1, compute (wi,di) ∈ Wh × Dh, with (di)|∂Ω = lnh, the
solution of:

∀e ∈ Wh ,
1

k

(
di − dn−1

h , e
)
+

γ

μ

(
wi, e

)
= −

(
ui−1 · ∇dn−1

h , e
)
− γ

(
f̃(dn−1

h ), e
)
,

∀g ∈ D0h , μ
(
∇di,∇g

)
−
(
wi, g

)
= 0.

(c) Next, compute (ui, pi) ∈ U0h × Ph solving:

∀v ∈ U0h ,
1

k

(
ui − un−1

h ,v
)
+ ν

(
∇ui,∇v

)
−
(
pi,∇ · v

)

+
(
un−1
h · ∇ui +

1

2
∇ · un−1

h ui,v
)
= μ

(
(∇dn−1

h )twi,v
)
,

∀q ∈ Ph ,
(
∇ · ui, q

)
= 0.

(3) (a) Let u0 = un−1
h and w0 = wn−1

h , if n > 1, or w0 = −μKh(Δd0), if
n = 1.

(b) Knowing ui−1 and wi−1, compute in parallel
• (wi,di) ∈ Wh ×Dh, with (di)|∂Ω = lnh, the solution of

∀e ∈ Wh ,
1

k

(
di − dn−1

h , e
)
+

γ

μ

(
wi, e

)
= −

(
ui−1 · ∇dn−1

h , e
)
− γ

(
f̃(dn−1

h ), e
)
,

∀g ∈ D0h , μ
(
∇di,∇g

)
−
(
wi, g

)
= 0,
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• and (ui, pi) ∈ U0h × Ph, the solution of

∀v ∈ U0h ,
1

k

(
ui − un−1

h ,v
)
+ ν

(
∇ui,∇v

)
−
(
pi,∇ · v

)

= μ
(
(∇dn−1

h )twi−1,v
)
−
(
un−1
h · ∇ui−1 +

1

2
∇ · un−1

h ui−1,v
)
,

∀q ∈ Ph ,
(
∇ · ui, q

)
= 0.

In the practical implementation of these three schemes, the problems for (wi,di)
have the generic form: Given F , compute (w,d) ∈ Wh ×Dh, with d|∂Ω = lnh, such
that:

∀e ∈ Wh , μ
1

k

(
d, e

)
+ γ

(
w, e

)
=

(
F , e

)
,(7.1)

∀g ∈ D0h , μ
(
∇d,∇g

)
−
(
w, g

)
= 0.(7.2)

Note that, since Wh is generated by constant functions in each element, the term

γ
(
w, e

)
has a diagonal mass matrix, and hence (7.1) defines w as an explicit

function of d. When substituted into (7.2), this gives a linear elliptic equation
where d is the only unknown. Once this equation is solved, w is recovered from its
explicit expression in terms of d.

Remark 7.1. If we change the discrete space Wh to the space generated by P1 finite
elements, i.e., Wh = Dh, then choosing e = g ∈ D0h in (7.1) and using (7.2), we
arrive at the following problem: Compute d ∈ Dh with d|∂Ω = lnh such that

∀ g ∈ D0h ,
1

k

(
d, g

)
+ γ

(
∇d,∇g

)
=

1

μ

(
F , g

)
.

Afterward, w can be computed from (7.1), the matrix of this system being the mass

matrix (with P1 basis functions) arising from the term γ
(
w, e

)
.

7.2. Convergence. The convergence of these algorithms when i → ∞ (for fixed
h, k, n) follows from a fixed-point argument. For the sake of conciseness, we only
present this proof for the parallel algorithm that achieves a stronger decoupling,
but the proofs of convergence for the other algorithms follow the same lines.

Introducing the notation

U i = ui − ui−1, Pi = pi − pi−1, Di = di − di−1, W i = wi −wi−1,

we obtain the following equations for i ≥ 2:

• (W i,Di) ∈ Wh ×D0h, satisfies:

∀e ∈ Wh ,
μ

k

(
Di, e

)
+ γ

(
W i, e

)
=− μ

(
U i−1 · ∇dn−1

h , e
)
,

∀g ∈ D0h , μ
(
∇Di,∇g

)
=
(
W i, g

)
;

• (U i, Pi) ∈ U0h × Ph satisfies:

∀v ∈ U0h ,
1

k

(
U i,v

)
+ν

(
∇U i,∇v

)
−
(
Pi,∇ · v

)
= μ

(
(∇dn−1

h )tW i−1,v
)

−
(
un−1
h · ∇U i−1 +

1

2
∇ · un−1

h U i−1,v
)
,

∀q ∈ Ph ,
(
∇ ·U i, q

)
= 0.
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The first system with test function (e, g) = (W i,Di) gives

1

k
‖μ∇Di‖2L2(Ω) + γ ‖W i‖2L2(Ω) = −μ

(
U i−1 · ∇dn−1

h ,W i

)
.

The second system with test function (v, q) = (U i, Pi) becomes

1

k
‖U i‖2L2(Ω) + ν ‖∇U i‖2L2(Ω) = μ

(
(∇dn−1

h )tW i−1,U i

)

−
(
un−1
h · ∇U i−1 +

1

2
∇ · un−1

h U i−1,U i

)
.

By adding these two equations, we have the following a priori estimates for W i,Di

and U i:

1

k

(
‖μ∇Di‖2L2(Ω) + ‖U i‖2L2(Ω)

)
+ γ ‖W i‖2L2(Ω) + ν ‖∇U i‖2L2(Ω)

≤ ‖un−1
h ‖L6(Ω) ‖∇U i−1‖L2(Ω)‖U i‖L3(Ω)

+
1

2
‖∇ · un−1

h ‖L2(Ω) ‖U i−1‖L6(Ω)‖U i‖L3(Ω)

+ μ ‖∇dn−1
h ‖L6(Ω)

(
‖W i−1‖L2(Ω)‖U i‖L3(Ω) + ‖U i−1‖L3(Ω)‖W i‖L2(Ω)

)
.

(7.3)

These estimates yield useful bounds provided dn
h is bounded in W 1,6(Ω) and un

h is

bounded in H1(Ω). This is the subject of the next lemma.

Lemma 7.2. Let the space and time steps satisfy the mild condition h2 ≤ θ k for
some constant θ independent of h and k. Suppose Ω is convex and l is the trace of
a function l in H2(Ω). Then, under the hypotheses of Theorem 6.1, there exists a
constant C, independent of h and n, such that

(7.4) ∀n ≥ 1 , ‖dn
h‖W 1,6(Ω) ≤ C.

Similarly,

(7.5) ∀n ≥ 1 , ‖un
h‖H1(Ω) ≤ C.

Proof. The proof is a straightforward variant of that of Lemma 5.5, with the func-
tion d(h) defined by

−μΔd(h) = wn
h in Ω, d(h)|∂Ω = L|∂Ω.

The function d(h) − L ∈ H1
0(Ω) solves a Laplace equation with right-hand side

wn
h + μΔL ∈ L2(Ω). Since Ω is convex, it belongs to H2(Ω) and we easily derive

that

‖d(h)‖W 1,6(Ω) ≤ C
(
‖wn

h‖L2(Ω) + μ ‖L‖H2(Ω)

)
.

Then (7.4) follows from the a priori estimate (6.30), and the fact that the relation
between h and k implies that there exists a constant C, independent of h and n,
such that

∀n ≥ 1 , ‖wn
h‖L2(Ω) ≤ C.

The second inequality (7.5) is a straightforward consequence of (6.30) and the
relation between h and k. �

Then, we have the following convergence theorem.
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Theorem 7.3. Under the hypotheses of Lemma 7.2, and if k is sufficiently small,
there exists a constant L < 1, independent of h and k, such that for all i ≥ 1:

‖μ∇(di − dn
h)‖2L2(Ω) + ‖ui − un

h‖2L2(Ω) + k
(
γ ‖wi −wn

h‖2L2(Ω)

+ ν ‖∇(ui − un
h)‖2L2(Ω)

)

≤ Li
{
‖un−1

h − un
h‖2L2(Ω) + k

(
γ ‖wn−1

h −wn
h‖2L2(Ω) + ν ‖∇(un−1

h − un
h)‖2L2(Ω)

)}
.

(7.6)

Proof. For any i ≥ 1, set

Ai = ‖μ∇Di‖2L2(Ω) + ‖U i‖2L2(Ω) + k
(
γ ‖W i‖2L2(Ω) + ν ‖∇U i‖2L2(Ω)

)
.

By substituting (7.4) and (7.5) into (7.3), and applying the interpolation inequality

∀v ∈ H1
0 (Ω) , ‖v‖2L3(Ω) ≤ C‖v‖L2(Ω)‖∇ v‖L2(Ω) ,

and Young’s inequality, we obtain

Ai ≤ Ck
(
‖∇U i−1‖L2(Ω)‖U i‖1/2L2(Ω)

‖∇U i‖1/2L2(Ω)

+ μ‖W i−1‖L2(Ω)‖U i‖1/2L2(Ω)
‖∇U i‖1/2L2(Ω)

+ μ‖W i‖L2(Ω)‖U i−1‖1/2L2(Ω)
‖∇U i−1‖1/2L2(Ω)

)

≤ 1

2
Ai +

1

2
E
√
k
(
‖U i−1‖2L2(Ω) + k(γ‖W i−1‖2L2(Ω) + ν‖∇U i−1‖2L2(Ω))

)
,

where E = E(μ, γ, ν) > 0. Let 0 < L < 1 be a fixed number and define k0 > 0 by

√
k0 =

L

E
(i.e. E

√
k0 = L).

Then, for all k ≤ k0, we have

Ai ≤ LAi−1.

Thus the mapping defining di,ui,wi is a contraction and

lim
i→∞

di = dn
h inH1(Ω) , lim

i→∞
ui = un

h inH1(Ω) , lim
i→∞

wi = wn
h inL2(Ω).

Of course, by taking the difference between the equations of the algorithm and
(5.10), (5.11), we immediately derive that the differences ui−un

h, di−dn
h, wi−wn

h

satisfy the analogue of the estimate (7.3) with the same constants. Therefore, the
above argument yields

‖μ∇(di − dn
h)‖2L2(Ω) + ‖ui − un

h‖2L2(Ω)

+ k
(
γ ‖wi −wn

h‖2L2(Ω) + ν ‖∇(ui − un
h)‖2L2(Ω)

)

≤ Li
{
‖u0 − un

h‖2L2(Ω) + k
(
γ ‖w0 −wn

h‖2L2(Ω) + ν ‖∇(u0 − un
h)‖2L2(Ω)

)}
,

thus proving (7.6). �
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8. Appendix

Recall the definition of f̃ :

∀d ∈ R
N , f̃(d) =

{ 1

ε2
(|d|2 − 1)d if |d| ≤ 1,

0 otherwise.

Proposition 8.1. The function f̃ is locally Lipschitz-continuous in the following
sense:

(i) For all d, e ∈ R
N such that |d| ≤ 1 and |e| ≤ 1, we have

(8.1) |f̃(d)− f̃(e)| ≤ 3

ε2
|d− e| .

(ii) For all d, e ∈ R
N such that |d| > 1 and |e| ≤ 1, we have

(8.2) |f̃(d)− f̃(e)| ≤ 1

ε2
(1 + |d|) |d− e| .

Proof. Let |d| ≤ 1 and |e| ≤ 1; then

f̃(d)− f̃(e) =
1

ε2

{
(|d|2 − 1)d− (|e|2 − 1)e

}

=
1

ε2

{
(|d|2 − 1)(d− e) + (|d|2 − |e|2)e

}

=
1

ε2

{
(|d|2 − 1)(d− e) + (d− e) · (d+ e)e

}

≤ 1

ε2
|d− e|

{
||d|2 − 1|+ |d|+ |e|

}

≤ 3

ε2
|d− e| .

Similarly, let |e| ≤ 1 and |d| > 1, then

|f̃(d)− f̃(e)| = |f̃(e)| = 1

ε2
(1− |e|2)|e|

≤ 1

ε2
(|d|2 − |e|2) = 1

ε2
(d− e) · (d+ e) ≤ 1

ε2
(|d|+ 1)|d− e|. �
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Dunod, Paris, 1968.

[29] Liu, C. and Walkington, N.J., Mixed methods for the approximation of liquid crystal flows,
M2AN 36 2, (2002), pp. 205–222. MR1906815 (2003c:76011)

[30] Liu, C. and Walkington, N.J., Approximation of liquid crystal flows, SIAM J. Numer. Anal.
37 3, (2000), pp. 725–741. MR1740379 (2000k:65174)
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