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AN EFFECTIVE BOUND FOR THE HUBER CONSTANT

FOR COFINITE FUCHSIAN GROUPS

J. S. FRIEDMAN, J. JORGENSON, AND J. KRAMER

Abstract. Let Γ be a cofinite Fuchsian group acting on hyperbolic two-space
H. Let M = Γ\H be the corresponding quotient space. For γ, a closed geodesic
of M , let l(γ) denote its length. The prime geodesic counting function πM (u)
is defined as the number of Γ-inconjugate, primitive, closed geodesics γ such
that el(γ) ≤ u. The prime geodesic theorem states that:

πM (u) =
∑

0≤λM,j≤1/4

li(usM,j ) +OM

(
u3/4

log u

)
,

where 0 = λM,0 < λM,1 < · · · are the eigenvalues of the hyperbolic Laplacian

acting on the space of smooth functions on M and sM,j = 1
2
+

√
1
4
− λM,j .

Let CM be the smallest implied constant so that
∣∣∣∣∣∣
πM (u)−

∑

0≤λM,j≤1/4

li(usM,j )

∣∣∣∣∣∣
≤ CM

u3/4

log u
for all u > 1.

We call the (absolute) constant CM the Huber constant.
The objective of this paper is to give an effectively computable upper bound

of CM for an arbitrary cofinite Fuchsian group. As a corollary we bound
the Huber constant for PSL(2,Z), showing that CM ≤ 16,607,349,020,658 ≈
exp(30.44086643).

Introduction

Let Γ be a cofinite Fuchsian group, and let M = Γ \ H be the corresponding
hyperbolic orbifold. Let C(M) denote the set of closed geodesics of M, and let
P(M) denote the set of prime (or primitive) closed geodesics (see [Bus92, page
245]). For each γ ∈ C(M) there exists a unique prime geodesic γ0 and a unique
exponent m ≥ 1 so that γ = γm

0 . Let l(γ) denote the length of γ. Associated to γ
is a unique hyperbolic conjugacy class {Pγ}Γ with norm

Nγ ≡ N(Pγ) = el(γ).

The prime geodesic counting function πM (u) is defined to be the number of
Γ-inconjugate, primitive, hyperbolic elements γ ∈ Γ such that elγ < u.
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Selberg [Sel56] and Huber [Hub59, Hub61a, Hub61b] independently proved the
prime geodesic theorem, which is the asymptotic formula

πM (u) ∼ u

log u
, (u → ∞).

Later, Huber proved a stronger version of the prime geodesic theorem, with error
terms1:

πM (u) =
∑

0≤λM,j≤1/4

li(usM,j ) +OM

(
u3/4

log u

)
,

where 0 = λM,0 < λM,1 < · · · are the eigenvalues of the hyperbolic Laplacian acting
on the space of smooth functions on M and

sM,j =
1

2
+

√
1

4
− λM,j .

For a proof of this theorem, via the Selberg zeta function, see [Hej76, Hej83] and
[Ran78]. Randol [Ran84] and Sarnak [Sar80] also gave of proof using the Sel-

berg trace formula. We call the implied constant inherent in OM ( u
3/4

log u ) the Huber

constant, denoted by CM . The Huber constant is an absolute constant, not an
asymptotic constant2. The Huber constant is the minimal constant that satisfies

∣∣∣∣∣∣
πM (u)−

∑

0≤λM,j≤.1/4

li(usM,j )

∣∣∣∣∣∣
≤ CM

(
u3/4

log u

)
for all u > 1.

The main goal of this paper is to estimate CM for an arbitrary cofinite Fuchsian
group. We determine an effective algorithm by which one can obtain explicit bounds
for CM using elementary geometric and spectral theoretic data associated to M . In
particular, we apply the algorithm in the case of the full modular group PSL(2,Z)
and obtain a precise, numerical bound for the Huber constant.

In [JK02], the authors studied the Huber constant in the following situation: Let
Γ0 be a cofinite Fuchsian group, and let Γ be a finite-index subgroup of Γ0. They
showed that

CM ≤ [Γ0 : Γ] · CM0
.

Hence, if one could estimate this constant for Γ0 = PSL(2,Z), one would have an
estimate for any congruence subgroup. For more applications of these ideas, see
[JK09, JK06, JK01].

In the articles [JK09], [JK06] and [JK01], the authors studied analytic aspects
of Arakelov theory, ultimately developing bounds for special values of Selberg’s
zeta functions, Green’s functions and Faltings’s delta function. The bounds for
these analytic functions involved many explicitly computable analytic and geo-
metric quantities, together with the Huber constant. As such, specific, effective
bounds for the Huber constant then could be used to make the bounds derived
in [JK09], [JK06] and [JK01] effective. With this said, the results in the present
paper complete the analysis in the aforementioned articles, thus providing effective,
numerically computable, bounds for various analytic quantities which appear in the
Arakelov theory of algebraic curves.

1Huber’s error term was slightly different: O(u3/4(logu)−1/2).
2If CM was an asymptotic constant, it would equal zero for the modular group since there are

better estimates for the error term [Iwa02].
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Table 1. Fundamental constants

Constant Value

Γ cofinite Fuchsian group with fundamental domain F
τ number of inequivalent parabolic cusps

Y F = FY ∪
⋃τ

i=0 FY
i , a decomposition of F into cusp sectors FY

i and compact set FY

θR,mR tr(R) = 2 cos(θR), 0 < θR < π; mR = |C(R)|
d For cocompact Γ d is the (hyperbolic) diameter of F
A number of eigenvalues λ of Δ, such that λ ≤ 1

4 , including λ0 = 0

s1

⎧
⎨

⎩

1
2 + +

√
1
4 − λ1 λ1 ≤ 1

4

∞ λ1 > 1
4 ,

here λ1 is the smallest non-zero eigenvalue

N σ1 ≥ · · · ≥ σN are all the poles of φ(s) in the interval ( 1
2 , 1]

c1 minimum of the lower left hand matrix entry of non-parabolic elements

c chosen to satisfy 1 < c < N(Γ) for all hyperbolic γ ∈ Γ

μ log c, a positive lower bound for the length of all closed geodesics

Main result. Our main result is Theorem 4.15 (see §4.8), where we determine an
upper bound for the Huber constant CM in terms of various well studied invariants
of Γ and M such as: the number of small eigenvalues A, the number of exceptional
poles of the scattering matrix N , the smallest positive eigenvalue λ1, the length of
the smallest closed geodesic of M, the decomposition of the fundamental domain
of Γ into cusp sectors, the area of M, and a few other simple, easily computable,
invariants3. We could give the main result by stating our upper bound for CM .
However, the result is so complicated that it would take two pages just to list out
the equation. So, we present our results as an algorithm, rather than a formula.
To help the reader appreciate the complexity (for the case of a general cofinite
Fuchsian group), we state, as a corollary, the simple case of a cocompact, torsion-
free Fuchsian group.

In the process of proving Theorem 4.15, we give an upper bound for the implied
(absolute) constant of the spectral counting μ(r); see Theorem 3.3. In other words,
for an arbitrary cofinite Fuchsian group, we find an explicit constant C, depending
on Γ, so that

μ(r) ≡ |{rn | 0 ≤ rn ≤ r}|+ 1

4π

∫ r

−r

∣∣∣∣
φ′

φ
(
1

2
+ it)

∣∣∣∣ dt ≤ C

(
r2 +

1

4

)
(r ≥ 0).

Next, consider the following table of constants, which are valid only for Γ co-
compact, torsion-free.

Theorem. Let Γ be a cocompact, torsion-free Fuchsian group. Then the constant
Cu is an upper bound for the Huber constant CM , and the constant C is an upper
bound for the implied constant of the spectral counting function of Δ .

In order to estimate CM for general cofinite Fuchsian group we need the following
modified table. Some constants from the cocompact table are redefined.

Theorem. Let Γ be a cofinite Fuchsian group. Then the constant Cu is an upper
bound for the Huber constant CM , and the constant C is an upper bound for the
implied constant of the spectral counting function of Δ .

3These invariants are all known or easily estimated for the modular group.
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Table 2. Algorithm for cocompact, torsion-free case

Constant Value

C1 2e− 2, e = 2.718...

B 2πed

|F| (d is the diameter of F)

C 3
(

|F|
4π + 745B

)

A number of small eigenvalues of Δ including λ0

C10 8480
√

e
2π

C12 (A− 1)(1 + 3C1 +
2

1−s1
(1 + C1)) + 2C1 + 2

C13
41
6 C · C10

C16 C12 + C13 +
3
2π |F|C10

C17 4A+ 4C16

C18 4A+ 5C16

c 1 < c < N(P ) for all P ∈ Γ, hyperbolic

μ log c

C19 C18 +
8A+4C18

1−1/c

C20 C19 +
8A+4C18

μ

C21 |c− 2| 1
log 2 + |2−

√
c| 2

log c

C22
1

1−1/ log(2)

Cu C21A+ C20
c3/4

log c + C20 + C20C22 +
3
4C20C21

To show the usefulness of Theorem 4.15 and Theorem 3.3, we estimate their
respective constants (C and CM ) for the modular group PSL(2,Z). The results are
Theorem 3.4 and Theorem 4.16.

Theorem. Let Γ = PSL(2,Z). Let μ(r) be the spectral counting function (3.7), and
let

C = 1,682,997.

Then for r ≥ 0,

μ(r) ≤ C

(
r2 +

1

4

)
.

Theorem. Let Γ = PSL(2,Z). Then CM ≤ 16,607,349,020,658.

Using the theory laid out in [Sar82], and the excellent open-source computational
program pari/gp [The05], we can explicitly calculate (and list out) the length
spectrum for PSL(2,Z). Our computations suggest that

CM < 2.

So it seems that our result is not sharp.
Why is our result for PSL(2,Z) so much larger than the experimental result?

There are many reasons. Our bound for the spectral counting function is probably
significantly larger when compared to Weyl’s law, an asymptotic result. We are
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Table 3. Algorithm for the general cofinite Fuchsian case

Constant Value

C1 2e− 2

B 4πY (Y + 1)
∑min(2,τ)

j=1 e2dj , see Lemma 1.2 for more details

C3 8τ

C4 5
∑

{R}
1

2mR sin θR

(
1

2θR
+ 1

2(π−θR)

)

C5 8τ + C4 +
|F|
4π + 745B

C6 C5 +
(
2| log c1|+ N

(σN− 1
2 )

2

) √
5√

16π

C7
8
4π

(
2| log c1|+ N

(σN− 1
2 )

2

)

C 3C6 + C7

A number of small eigenvalues of Δ including λ0

C10 8480
√

e
2π

C12 (A− 1)(1 + 3C1 +
2

1−s1
(1 + C1)) + 2C1 + 2

C13
41
6 C · C10

C14 C10
296τ
3π + C10

τ
2 + 2τ log 2

C15
56C10

3

∣∣∣
∑

{R}
1

2mR sin θR

∣∣∣
C16 C12 + C13 + C14 + C15 +

3
2π |F|C10

C17 4A+ 4C16

C18 4A+ 5C16

c 1 < c < N(P ) for all P ∈ Γ, hyperbolic

μ log c

C19 C18 +
8A+4C18

1−1/c

C20 C19 +
8A+4C18

μ

C21 |c− 2| 1
log 2 + |2−

√
c| 2

log c

C22
1

1−1/ log(2)

Cu C21A+ C20
c3/4

log c + C20 + C20C22 +
3
4C20C21

mostly interested in how the Huber constant grows as a function of the various
fundamental constants. Estimating the spectral counting function required absolute
estimates of various infinite sums over primitive hyperbolic classes, and we used
trivial bounds for the hyperbolic counting function. The non-trivial absolute bound
being the sole objective of this paper. However, using PSL(2,Z) specific bounds on
the spectral counting function, the result could be markedly improved.

Connection to existing literature. As stated above, the bound for the Huber
constant obtained in the present paper allows one to complete the analysis in [JK09],
[JK06] and [JK01], resulting in explicit and computable bounds for certain analytic
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quantities in Arakelov theory. We refer the interested reader to these articles for
the precise statements of the main results, from which one can immediately employ
the bounds obtained here in order to further strengthen the analysis presented in
[JK09], [JK06] and [JK01]. We will discuss further applicability of the present
paper to other computational problems.

In [ECJMB], the authors used ideas from Arakelov theory and developed a strat-
egy to compute Galois representations modulo � associated to a fixed modular
form of arbitrary weight. Ultimately, the goal of [ECJMB] is to devise an algo-
rithm, which has complexity that is polynomial in �. A summary of the ideas from
[ECJMB] is given in [Edi06], where the purpose is to focus attention to the weight
twelve modular form associated to PSL(2,Z). The ideas from [ECJMB] have been
used to achieve advances in many other computation problems; see, for example,
[Bo07], [CL09], [Cou09], and [La06] for specific results, as well as the survey article
[Chl08] for more general comments.

As stated in [ECJMB], a key component of the algorithm was to determine
bounds for Arakelov Green’s functions. F. Merkl provided sufficient bounds to
complete the algorithm; however, the bounds from [JK06] are sharper and, as
a result, improve the efficiency of the algorithm from [ECJMB]. Theorem 4.8 of
[JK06] summarizes a bound for the Arakelov Green’s function in terms of hyperbolic
data, including a special value of the Selberg zeta function. This special value was
studied in [JK09] and now can be bounded explicitly using the bounds for the
Huber constant developed in the present paper. Thus, the bounds obtained for the
Huber constant proved here ultimately can be used in the algorithms constructed
in [ECJMB] and subsequent articles.

Going forward, it may be possible that the algorithms of [ECJMB], or similarly
developed ideas, could yield further applications, in which case effective bounds for
the analytic aspects of Arakelov theory would play a role in the implementation
of the resulting algorithms. Indeed, there has been recent progress in expand-
ing Arakelov theory to allow for singular, or non-compact metrics (see [BKK05],
[BKK07], [FG09], and [Ha09]). As a result, one can anticipate further computa-
tional algorithms which utilize these recent extensions of Arakelov theory, in which
case the bounds from [JK09], [JK06] and [JK01] and the present paper may play a
role.

Outline. In brief, the present paper amounts to a careful analysis of the proof of
the prime geodesic theorem, making sure that each step in the proof yields explicitly
computable constants. However straightforward the methodology may sound, there
are many details which involve considerable analytic difficulties.

In §1 we prove some useful lemmas and develop necessary notation. Our argu-
ment consists of many estimates, each with an implicit constant, and our notation
helps to keep track of these constants. At the heart of our argument is a variant
of Karamata’s Tauberian Theorem (Lemma 1.1 in §1.2) that gives an absolute,
instead of an asymptotic, result.

In §2 we study the heat kernel e−Δ t of the Laplace-Beltrami operator for the
hyperbolic orbifold M = Γ \ H. Our main tool is the Selberg trace formula. We
specifically show that e−Δ t = O(1/t) for t ∈ (0, 5], and find the corresponding
explicit O-constant. Note that we focus on the interval (0,5] because small eigen-
values (λ < 1/4) are treated differently in many applications of the Selberg trace
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formula. We will estimate the spectral counting function μ(x) for λ ≥ 1/5 giving
us a small margin of error from the 1/4 cutoff.

Next, in §3, using results from §2 and our variant of Karamata’s Tauberian
theorem (Lemma 1.1), we prove Theorem 3.3, which provides an effective bound
for the spectral counting function. In §3.2 we specialize Theorem 3.3 to the case of
Γ = PSL(2,Z).

Finally, in §4, using Theorem 3.3, we obtain an upper bound for the Huber
constant (Theorem 4.15) and in §4.9, we specialize to the case of Γ = PSL(2,Z).

Concluding remarks. We conclude the introduction by addressing a number of
points which naturally arise when studying the computations presented in this
article.

First, it is possible to further contract the algorithm for bounding the Huber
constant and obtain a bound which can be related to the geometry of M . For
example, the constant c1 is the radius of the largest isometric circle in a certain
fundamental domain for M ; see page 38 of [Iwa97]. Also, the number of small
eigenvalues can be bounded by the topology of M ; see [Zo82]. However, to employ
general results would only further worsen the bound for CM for special important
cases. For example, for the congruence subgroups, the Selberg 1/4 conjecture as-
serts there is only one small eigenvalue, whereas the bound from [Zo82] implies that
the number of small eigenvalues grows at most like the genus of the surface, which
may be true in general cases but most likely is not true in special cases of particular
importance.

Second, the heat kernel style of test functions which we analyze could be re-
placed by studying a different approach to the prime geodesic theorem, namely by
finite difference methods applied to the test functions denoted by ψk; see [Hej83].
In our investigation, we saw no significant difference when looking ahead to the
problem of bounding CM , so we simply selected one approach. We will leave the
problem of studying other ways of proving the prime geodesic theorem to see if the
methodologies lead to improved bounds for the Huber constant.

Finally, it is somewhat striking to see that in the case of the full modular group
the bound we prove is approximately exp(30.45) whereas the numerical investiga-
tions lead one to believe that the true bound is 2, which differ by an order of 1014. In
Fall 2003, the second named author (J.J.) was giving a talk at the Courant Institute
at NYU on preliminary results associated to [JK01]. (As described in [ECJMB], it
was then that Peter Sarnak communicated to the second named author (J.J.) the
problem of bounding Arakelov Green’s functions.) During the lecture, when the
results of [JK09] were described, Sarnak stated that he felt it would be difficult to
obtain a precise, numerical bound for the Huber constant for any group, including
the full modular group. With this stated, the present paper successfully addresses
the problem of determining precise, effective bounds for CM , and it remains to be
seen how, or rather if, methods can be developed to refine the bound for the full
modular group.

1. Preliminary lemmas

In this section we group together certain lemmas that will be used throughout
this paper. Our key lemma is a variant of Karamata’s Tauberian Theorem.
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1.1. Big ‘O’ notation. Let i ∈ N, and let f, g be functions with a common domain
D. The statement

f(x) = Oi(g(x))

means that there exists a positive constant Ci so that

|f(x)| ≤ Ci|g(x)| ∀x ∈ D.

If the domain in question is not clear, we will explicitly state it. We call the constant
Ci absolute

4.

1.2. Karamata’s Tauberian Theorem. In this section we prove a variation of
Karamata’s Tauberian Theorem [Wid41, pp. 189-192]. Our version keeps track of
the implied constants in the original theorem.

We will apply the lemma below with the parameter d = 5. Small eigenvalues
(λ < 1/4) are treated differently in many applications of the Selberg trace formula.
We will estimate the spectral counting function μ(x) for λ ≥ 1/5 giving us a small
margin of error from the 1/4 cutoff.

Lemma 1.1. Let α(t) be a non-negative, non-decreasing function, continuous on
all but a possibly countable subset of (0,∞). Suppose that α(0) = 0 and that the
integral

f(s) ≡
∫ ∞

0

e−st dα(t)

converges for all s > 0. Suppose further that for C > 0, d > 0,

(1.1) f(s) ≤ C

s
, for all 0 < s ≤ d.

Then

α(t) ≤ 3Ct for all t ≥ 1

d
.

Proof. For x ∈ [0, 1] let

g(x) =

{
0 0 ≤ x ≤ e−1,
1
x e−1 ≤ x ≤ 1.

Note that
g(x) ≤ 3 (0 ≤ x ≤ 1).

Since α(t) is non-decreasing, we have, for s > 0,
∫ ∞

0

e−stg(e−st) dα(t) ≤
∫ ∞

0

e−st 3 dα(t).

Next, observing that

g(e−w) =

{
ew 0 ≤ w ≤ 1,
0 1 < w,

an elementary calculation using the fact that α(0) = 0 shows that
∫ ∞

0

e−stg(e−st) dα(t) =

∫ 1/s

0

e−stg(e−st) dα(t)

=

∫ 1/s

0

e−stest dα(t) = α(1/s)− α(0) = α(1/s).

4As opposed to an asymptotic constant, say Ai, that would satisfy |f(x)| ≤ Ai|g(x)| for x
sufficiently large.
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Hence we have

α(1/s) =

∫ ∞

0

e−stg(e−st) dα(t) ≤
∫ ∞

0

e−st 3 dα(t) = 3f(s) ≤ 3C

s
(0 < s ≤ d).

Setting t = 1/s implies that

α(t) ≤ 3Ct

(
t ≥ 1

d

)
. �

Later on, we will let α(t) be the spectral counting function for the Laplacian Δ .

1.3. Trivial counting lemma. Let Γ be a cofinite Fuchsian group. Let π(x)
denote the number of primitive conjugacy classes of hyperbolic elements (of Γ) of
norm not exceeding x (the details are given below). In this section (following [Fis87,
pp. 47-49]) we give an explicit constant B so that for all x ≥ 1, π(x) ≤ Bx. This
result is called the trivial counting lemma.5

Let ρ(z, w) denote the hyperbolic distance on H. For T hyperbolic, define the
norm of T, N(T ), by

N(T ) = exp

(
inf
z∈H

ρ(z, Tz)

)
.

Note that the norm is constant within a fixed conjugacy class {T}Γ. For x ≥ 1
define π(x) by

π(x) ≡ |{{T}Γ ∈ Γ | N(T ) ≤ x }| .
Let F = FY ∩ FY

1 ∩ FY
2 ∩ · · · ∩ FY

τ be a fundamental domain for Γ, where
each FY

j is a cusp sector and FY is compact. Let ζ1, . . . , ζτ be a complete list of
representatives of the Γ equivalence classes of cusps, and let A1, . . . , Aτ be elements
of PSL(2,R) satisfying Ajζj = ∞. In addition, assume that AjFY

j = [0, 1)× [Y,∞).
If τ = 1, then it follows that A1F has a positive Euclidean distance ε to the real

axis (ε ≤ Y ). If τ ≥ 2, set (
a b
c d

)
= A2A

−1
1 .

Note that c �= 0 since A2A
−1
1 does not fix ∞; in this case set ε = min{Y, c−2Y −1}.

Let Kj ≡ {z ∈ AjF | ε ≤ Im(z) ≤ Y + 1}. It follows that Kj has compact
closure, and hence has finite area |Kj |. Finally, let dj be the hyperbolic diameter
of Kj .

Lemma 1.2 ([Fis87, pp. 47-49]). Let Γ be a cofinite, non-compact Fuchsian group.
Then for all x ≥ 1,

π(x) ≤
min(2,τ)∑

j=1

4π

|Kj |
(cosh(log x+ 2dj)− 1) .

Note that π(x) = 0 for x ≤ 1.

Lemma 1.3. Let

B = 4πY (Y + 1)

min(2,τ)∑

j=1

e2dj .

5Note that the hyperbolic (or geodesic) prime number theorem implies that π(x) = o(x) as
x → ∞. Hence this lemma is called trivial, the non-trivial being the prime geodesic theorem. As
our goal is an absolute constant, the trivial lemma will be used in a bootstrapping argument.
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Then

π(x) ≤ Bx (x ≥ 0).

Proof. Since π(x) = 0 for x ≤ 1, we assume that x > 1. By Lemma 1.2 we must
estimate

min(2,τ)∑

j=1

4π

|Kj |
(cosh(log x+ 2dj)− 1) .

Note that for each j, [0, 1)× [Y, Y + 1] ⊂ Kj . Hence

|Kj | ≥
1

Y (Y + 1)
.

The lemma now follows by observing that for y, d > 0,

cosh(y + 2d)− 1 ≤ cosh(y + 2d) ≤ 1

2
(ey+2d + ey+2d) = ey+2d,

and by setting y = log x. �

1.4. Selberg trace formula. The main tool for this paper is the Selberg trace
formula (see [Hej76, Hej83], [Iwa02], [Ven82]).

Theorem 1.4 (Selberg trace formula).

∞∑

n=0

h(rn) +
1

4π

∫

R

h(r)
−φ′

φ
(
1

2
+ ir) dr =

|F|
4π

∫

R

h(r) r tanh(πr) dr

+
∑

{γ}Γ

logN(γ0)

N(γ)1/2 −N(γ)−1/2
g(logN(γ)) +

∑

{R}Γ

1

2mR sin θR

∫

R

e−2rθR

1 + e−2πr
h(r) dr

+
h(0)

4
tr(I −S(

1

2
))− τg(0) log 2− τ

2π

∫

R

h(r)ψ(1 + ir) dr.

Here λn = 1
4 + r2n are the eigenvalues of the hyperbolic Laplacian Δ and

rn =

⎧
⎨

⎩
i +

√
1
4 − λn if 0 ≤ λn ≤ 1

4 ,

+

√
λn − 1

4 if λn ≥ 1
4

(see §2 for some background material on Δ); h(z) is an even holomorphic function
in the strip | Im z| ≤ 1

2 + ε satisfying

|h(z)| = O((|z|+ 1)−2−ε);

{γ}Γ are the conjugacy classes for the hyperbolic elements of Γ with primitive
generator γ0; φ(s) is the determinant of the scattering matrix S(s); |F| is the
hyperbolic area of the fundamental domain F of Γ; g(r) is the Fourier transform of
h(z); {R}Γ are conjugacy classes for the elliptic elements of Γ with mR = |C(R)|
(the order of the centralizer of R in Γ) and tr(R) = 2 cos(θR), 0 < θR < π; τ is
the number of cusps of Γ; and ψ(s) is the logarithmic derivative of the Gamma
function. See see [Hej76, Hej83], [Iwa02], [Ven82], for more details.
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2. Heat kernel for the hyperbolic Laplacian

Let Γ be a cofinite Fuchsian group, and let H(Γ) denote the Hilbert space of
measurable functions f : H �→ C satisfying

• f(γz) = f(z) for all z ∈ H, γ ∈ Γ,
•
∫
F |f(z)| dv(z) < ∞.

Let Δ : H(Γ) �→ H(Γ) be the self-adjoint extension of the (two-dimensional hyper-
bolic) Laplacian. In this section we will estimate (for 0 < t ≤ 5) the function

∞∑

n=0

e−tr2n +
1

4π

∫

R

e−tr2 −φ′

φ
(
1

2
+ ir) dr.

For t > 0, let

h(r) = e−tr2 ,

g(x) =
1√
4πt

e−x2/(4t).

Plugging in the pair h, g into the Selberg trace formula gives an explicit formula
for the (regularized) trace of the heat kernel e−Δ t :

∞∑

n=0

e−tr2n +
1

4π

∫

R

e−tr2 −φ′

φ
(
1

2
+ ir) dr =

|F|
4π

∫

R

e−tr2 r tanh(πr) dr

+
1√
4πt

∑

{P}Γ

logN(P0)

N(P )1/2 −N(P )−1/2
e−(logN(P ))2/(4t)

+
∑

{R}Γ

1

2mR sin θR

∫

R

e−2rθR

1 + e−2πr
e−tr2 dr +

1

4
tr(I −S(

1

2
))

− τ√
4πt

log 2− τ

2π

∫

R

e−tr2ψ(1 + ir) dr,

(2.1)

where λn = 1
4 + r2n are the eigenvalues of Δ .

We will now estimate each of the terms on the right-hand side of equation (2.1)
for 0 < t ≤ 5.

Parabolic term.

Lemma 2.1. Let C3 = 8τ. Then

−τ log 2√
4πt

− τ

2π

∫

R

e−tr2ψ(1 + ir) dr +
1

4
tr(I −S(

1

2
)) = O3(

1

t
) (0 < t ≤ 5).

Proof. We have [GR65, p. 943, 8.361]

ψ(z) =
Γ′

Γ
(z) = log z +

∫ ∞

0

e−uz

(
1

u
− 1

1− e−u

)
du (Re(z) > 0).

Thus it follows that for r ∈ R,

|ψ(1 + ir)| ≤ | log(1 + ir)|+
∫ ∞

0

∣∣∣∣e
−u(1+ir)

(
1

u
− 1

1− e−u

)∣∣∣∣ du

= | log(1 + ir)| −
∫ ∞

0

e−u

(
1

u
− 1

1− e−u

)
du

= | log(1 + ir)| − (ψ(1)− log 1) = | log(1 + ir)| − γ,
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where γ = −0.577... is Euler’s constant. Hence

|ψ(1 + ir)− log(1 + ir)| ≤ −γ.

Now an elementary estimate shows that

(2.2) |ψ(1 + ir)| ≤ 4|r|1/4 + 4 (r ∈ R),

and it follows that
∫

R

e−tr2(4|r|1/4 + 4) dr ≤ 27

t
(0 < t ≤ 5).

Noting that

log 2√
4πt

≤ 1/2

t
(0 < t ≤ 5),

and that S(1/2) is a unitary (τ × τ ) matrix with real entries (hence the diagonal
entries are ±1), concludes the proof. �

Elliptic term. Next, we estimate the elliptic term

∑

{R}

1

2mR sin θR

∫

R

e−2rθR

1 + e−2πr
e−tr2 dr,

where mR are integers and 0 < θR < π.

Lemma 2.2.

∑

{R}

1

2mR sin θR

∫

R

e−2rθR

1 + e−2πr
e−tr2 dr ≤

∑

{R}

1

2mR sin θR

(
1

2θR
+

1

2(π − θR)

)
.

In particular, if

C4 = 5
∑

{R}

1

2mR sin θR

(
1

2θR
+

1

2(π − θR)

)
,

then
∑

{R}

1

2mR sin θR

∫

R

e−2rθR

1 + e−2πr
e−tr2 dr = O4(

1

t
) (0 < t ≤ 5).

Proof. For 0 < θ < π, and t > 0,

e−2rθ

1 + e−2πr
e−tr2 ≤ fθ(r) ≡

{
e−2rθ r ≥ 0,

e2r(π−θ) r < 0.

The lemma now follows from the equation

∫

R

fθR(r) dr =
1

2θR
+

1

2(π − θR)
. �
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Identity term.

Lemma 2.3. For all t > 0,

(2.3)

∣∣∣∣
|F|
4π

∫

R

re−r2t tanh(πr) dr

∣∣∣∣ ≤
|F|
4π

1

t
.

Proof. Since | tanh(πr)| ≤ 1 for r ∈ R,

|F|
4π

∫

R

re−r2t tanh(πr) dr(2.4)

= 2
|F|
4π

∫ ∞

0

re−r2t tanh(πr) dr ≤ 2
|F|
4π

∫ ∞

0

re−r2t dr =
|F|
4π

1

t
. �

Hyperbolic term. Since Γ is discrete, there exists a hyperbolic conjugacy class
{Ps} with minimal norm N(Ps) > 1. Choose c > 0 so that

1 < c < N(Ps).

Lemma 2.4. For 0 < t ≤ 5,

1√
4πt

∑

{P}Γ

logN(P0)

N(P )1/2 −N(P )−1/2
e−(logN(P ))2/(4t) ≤ 745B

t
.

Proof. First note that for a hyperbolic element P,

N(P ) = N(P0)
j

for some integer j ≥ 0. Since N(P ) > 1, N(P0) ≤ N(P ). Noting that

log x

x1/2 − x−1/2
≤ 1 (x > 1),

implies

1√
4πt

∑

{P}Γ

logN(P0)

N(P )1/2 −N(P )−1/2
e−(logN(P ))2/(4t)

≤ 1√
4πt

∑

{P}Γ

logN(P )

N(P )1/2 −N(P )−1/2
e−(logN(P ))2/(4t)

≤ 1√
4πt

∑

{P}Γ

e−(logN(P ))2/(4t).

Rewriting the last sum as a Stieltjes integral we get

1√
4πt

∑

{P}Γ

e−(logN(P ))2/(4t) =
1√
4πt

∫ ∞

c

e−(log x)2/(4t) dπ(x).
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Integrating by parts, and the trivial counting lemma (Lemma 1.3) yield

1√
4πt

∫ ∞

c

e−(log x)2/(4t) dπ(x) ≤ 1√
4πt

∫ ∞

c

log x

2tx
e−(log x)2/(4t) Bx dx

=
B

2t

1√
4πt

∫ ∞

c

(log x)e−(log x)2/(4t) dx

≤ B

2t

1√
4πt

∫ ∞

1

(log x)e−(log x)2/(4t) dx

= B

(
1

2
et erf(

√
t) +

1

2
et +

1√
4πt

)

≤ B

(
et +

1√
4πt

)

≤ 745B

t
(0 < t ≤ 5).

The last estimate is a trivial estimate. �

Spectral terms. We have now bounded all the terms on the right side of the trace
formula. By Lemmas 2.1, 2.2, 2.3, and 2.4, we have

Lemma 2.5. Let

C5 = 8τ + C4 +
|F|
4π

+ 745B.

Then ∣∣∣∣∣

∞∑

n=0

e−tr2n +
1

4π

∫

R

e−tr2 −φ′

φ
(
1

2
+ ir) dr

∣∣∣∣∣ = O5(
1

t
) (0 < t ≤ 5).

3. Explicit bound for the spectral counting function

We would like to apply Lemma 1.1 to the equation

(3.1)

∣∣∣∣∣

∞∑

n=0

e−tr2n +
1

4π

∫

R

e−tr2 −φ′

φ
(
1

2
+ ir) dr

∣∣∣∣∣ = O5(
1

t
) (0 < t ≤ 5)

but a minor problem stops us: The real-valued function −φ′

φ ( 12+ir) may be negative

for some values of r. However, at the cost of a small error term, we will (following

Selberg) replace the signed function −φ′

φ ( 12 + ir) with a non-negative function.

Notation. Recall from §1.3 that ζ1, . . . , ζτ are a complete list of representatives
of the Γ equivalence classes of cusps, and A1, . . . , Aτ are elements of PSL(2,R)
satisfying Ajζj = ∞. Set

Γi ≡ AiΓA
−1
i .

It follows that ∞ is a cusp for Γi.
For each γ ∈ PSL(2,R) let c(γ) denote the lower left-hand matrix entry of γ.

Now set

Δi ≡ {γ ∈ Γi | γ(∞) �= ∞},
and let

(3.2) c1 = min
i=1...τ

{|c(γ)| | γ ∈ Δi}.
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Since Γ is discrete, Shimizu’s Lemma [EGM98, p. 48] asserts6 that c1 > 0.

Modified scattering matrix. Recall from §1.4 that φ(s) is the determinant of
the scattering matrix. Let σ1 ≥ σ2 ≥ · · · ≥ σN be all the poles of φ(s) in the
interval ( 12 , 1], and let

φr(s) ≡ c2s−1
1 φ(s)

N∏

j=1

s− σj

s− 1 + σj
.

Lemma 3.1. For all r ∈ R,

(1)
−φ′

r

φr
( 12 + ir) is non-negative.

(2)
∣∣∣∣
−φ′

φ
(
1

2
+ ir)− −φ′

r

φr
(
1

2
+ ir)

∣∣∣∣ ≤ 2| log c1|+
N

(σN − 1
2 )

2 + r2
.

Proof. Item (1) is proved in [Ven82, Theorem 3.5.5]. (2) follows from elementary
estimates: Taking the logarithmic derivative of both sides of the equation

θr(s) = c2s−1
1 φ(s)

N∏

j=1

s− σj

s− 1 + σj
,

plugging in s = 1
2 + ir, and recalling that 1

2 < σN ≤ · · · ≤ σ1 ≤ 1, we obtain

∣∣∣∣
−φ′

φ
(
1

2
+ ir)− −φ′

r

φr
(
1

2
+ ir)

∣∣∣∣ =

∣∣∣∣∣∣
−2 log c1 +

N∑

j=1

1

(− 1
2 + ir − σj)(

1
2 + ir − σj)

∣∣∣∣∣∣

≤ |2 log c1|+
N∑

j=1

1

(σN − 1
2 )

2 + r2
= 2| log c1|+

N
(σN − 1

2 )
2 + r2

. �

Let

W (λ) =

⎧
⎨

⎩
1
4π

∫√λ− 1
4

−
√

λ− 1
4

∣∣∣φ
′

φ ( 12 + ir)
∣∣∣ dr, λ ≥ 1

4 ,

0, 0 ≤ λ ≤ 1
4 ,

Q(λ) =

⎧
⎨

⎩
1
4π

∫√λ− 1
4

−
√

λ− 1
4

−φ′
r

φr
( 12 + ir) dr, λ ≥ 1

4 ,

0, 0 ≤ λ ≤ 1
4 ,

and let N(λ) = |{λn | λn ≤ λ}|.

Lemma 3.2. Let

C6 = C5 +

(
2| log c1|+

N
(σN − 1

2 )
2

) √
5√

16π
,

C7 =
8

4π

(
2| log c1|+

N
(σN − 1

2 )
2

)
.

Then the following statements hold:

(1)
∫∞
0

e−tλd(N(λ) +Q(λ)) ≤ C6

t (0 < t ≤ 5).

(2) N(λ) +Q(λ) ≤ 3C6λ (λ ≥ 1
4 ).

6For PSL(2,Z), c1 = 1.
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(3) N(λ) +W (λ) ≤ (3C6 + C7)λ (λ ≥ 1
4 ).

Proof. (1) A simple calculation using λn = 1
4 + r2n shows that

∫ ∞

0

e−tλd(N(λ) +Q(λ)) = e−t/4

( ∞∑

n=0

e−tr2n +
1

4π

∫

R

e−tr2 −φ′
r

φr
(
1

2
+ ir) dr

)
.

Since e−t/4 ≤ 1,

∫ ∞

0

e−tλd(N(λ) +Q(λ)) ≤
( ∞∑

n=0

e−tr2n +
1

4π

∫

R

e−tr2 −φ′
r

φr
(
1

2
+ ir) dr

)
.

Note that both sides of the above inequality are positive. Let

(3.3) U(r) =
−φ′

φ
(
1

2
+ ir)− −φ′

r

φr
(
1

2
+ ir).

Then rewriting (3.1) gives us

(3.4)

∣∣∣∣∣

∞∑

n=0

e−tr2n +
1

4π

∫

R

e−tr2
(
−φ′

r

φr
(
1

2
+ ir) + U(r)

)
dr

∣∣∣∣∣ ≤
C5

t
(0 < t ≤ 5).

But Lemma 3.1, and a crude estimate (see equation (3.6) for the idea of the esti-
mate), show that

1

4π

∫

R

e−tr2 |U(r)| dr ≤
(
2| log c1|+

N
(σN − 1

2 )
2

)
1√
16π

1√
t
,

and since
1√
t
≤

√
5

t
(0 < t ≤ 5),

it follows that
∣∣∣∣∣

∞∑

n=0

e−tr2n +
1

4π

∫

R

e−tr2 −φ′
r

φr
(
1

2
+ ir) dr

∣∣∣∣∣

≤
C5 +

(
2| log c1|+ N

(σN− 1
2 )

2

) √
5√

16π

t
(0 < t ≤ 5).

(3.5)

(1) is now proved.
(2) follows from the fact that N(λ)+Q(λ) is non-decreasing, (1), and Lemma 1.1.
To prove (3), note that (3.3) implies that

N(λ) +W (λ) ≤ N(λ) +Q(λ) +
1

4π

∫ √
λ− 1

4

−
√

λ− 1
4

|U(t)| dt.

Next, using Lemma 3.1, a trivial estimate gives

(3.6)

∫ √
λ− 1

4

−
√

λ− 1
4

|U(t)| dt ≤
∫ √

λ− 1
4

−
√

λ− 1
4

(
2| log c1|+

N
(σN − 1

2 )
2 + r2

)
dt

≤
∫ √

λ− 1
4

−
√

λ− 1
4

(
2| log c1|+

N
(σN − 1

2 )
2

)
dt.
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(3) now follows from the equation
√
λ+

1

4
≤ 4λ (λ ≥ 1/4). �

3.1. Implied constant for the spectral counting function. Recall that λn =
1
4 + r2n. Also note that for λn ≥ 1

4 , we have rn ≥ 0.
Let

(3.7) μ(r) = |{rn | 0 ≤ rn ≤ r}|+ 1

4π

∫ r

−r

∣∣∣∣
φ′

φ
(
1

2
+ it)

∣∣∣∣ dt.

Lemma 3.2(3) immediately implies that

μ(r) ≤ N(r2 +
1

4
) +W (r2 +

1

4
) ≤ (3C6 + C7)(r

2 +
1

4
) (r ≥ 0).

We summarize our result:

Theorem 3.3. Let C = 3C6 + C7. Then

μ(r) ≤ C

(
r2 +

1

4

)
(r ≥ 0).

3.2. Explicit estimate for the modular group. Let Γ = PSL(2,Z). In this
section we will give an explicit upper bound for the number C which depends on
B,C3, C4, C5, C6, and C7.

The constant B. From the trivial counting lemma (§1.3) we have

B = 4πY (Y + 1)

min(2,τ)∑

j=1

e2dj ,

where τ = 1. Let F be the standard fundamental domain of Γ such that

F = {z ∈ H | − 1

2
≤ Re z ≤ 1

2
, |z| ≥ 1}.

The euclidian distance of F , to the x-axis, is ε =
√
3
2 . We can decompose F =

F0 ∪ F(Y ), where

F(Y ) = {z ∈ H | − 1

2
≤ Re z ≤ 1

2
, Im z > Y },

with Y = 2.
Recall that K1 = {z ∈ F | 3

2 ≤ Im(z) ≤ Y + 1}. Let d1 be the hyperbolic

diameter ofK1. To estimate d1 note that cosh(ρ(z, w)) = 1+ |z−w|2
Im z Imw , where ρ(z, w)

is the hyperbolic distance between z and w. An elementary calculation shows that
d1 < 2.3. Hence B < 753.

The constant C4. It is known that Γ has two classes of elliptic elements, rep-
resented by

R =

(
0 −1
1 0

)

and

S =

(
1 −1
1 0

)
.

Elementary calculations show that mR = 2 (the order of the centralizer of R in Γ)
and that 0 = 2 cos(θR) where 0 < θR < π; thus θR = π

2 . Similarly, mS = 3 and

θS = π
3 . From Lemma 2.2 it follows that C4 < 3

2 .
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The remaining constants. Now C3 = 8τ = 8, and |F| = π
3 .

The number c1 = 1 and there is only one pole (at s = 1) for the scattering
matrix φ(s), so N = 1 and σN = 1. Now C6, C7, and C can be easily computed.
The result is

Theorem 3.4. Let Γ = PSL(2,Z). Let μ(r) be the spectral counting function (3.7),
and let

C = 1,682,997.

Then for r ≥ 0,

μ(r) ≤ C

(
r2 +

1

4

)
.

The estimate for C is probably not sharp. However, we did not use any of the
number theoretic properties of PSL(2,Z) to arrive at the estimate; we only assumed
that Γ was a cofinite Fuchsian group.

4. Bound for the Huber constant

In this section, we adapt Randol’s proof ([Ran84]) of the prime geodesic theorem
to an arbitrary cofinite Fuchsian group. Along the way, using Theorem 3.3, we will
obtain an upper bound for the Huber constant CM . Our main references are [Ran84,
pp. 295-300] and [Bus92, Section 9.6].

4.1. Explicit bump function. For T > 0 set

IT (x) =

{
1 |x| ≤ T,
0 |x| > T.

For functions f, g on R, we set

f̂(x) ≡ 1√
2π

∫

R

f(y)e−ixy dy

and

(f ∗ g)(x) ≡ 1√
2π

∫

R

f(x− y)g(y) dy.

Lemma 4.1. There exists a non-negative function φ(x) with the following proper-
ties:

(1) φ ∈ C∞
0 (R) with supp(φ) ⊂ [−1, 1].

(2) φ̂(0) = 1.

(3) Let C1 = 2(e− 1). Then φ̂(εz)− 1 = O1(ε) for 0 < ε ≤ 1, and z ∈ i[− 1
2 , 1].

(4) Let b > 0, C
(b)
2 = 848√

2π
eb. Then for z = r + it, |t| ≤ b, we have

φ̂(z) = O2((1 + |r|)−2), (r ∈ R, |t| ≤ b).

Proof. Let

c0 =

∫ 1

−1

exp

(
1

x2 − 1

)
dx = 0.4439938 . . . ,

and let

φ(x) =

√
2π

c0

{
exp( 1

x2−1 ) |x| < 1,

0 |x| ≥ 1.

(1) and (2) now follow from the definition of φ.
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For w ∈ C, |w| ≤ 1, observe that

|ew − 1| = |w +
w2

2
+

w3

3!
+ . . . , | = |w| · |1 + |w|

2
+

|w|2
3!

+ . . . , |

≤ |w| · |1 + 1

2
+

1

3!
+ . . . , | = (e− 1)|w|.

For 0 < ε ≤ 1 and z ∈ i[− 1
2 , 1], note that |εz| ≤ 1. Let w = εz. By the definition

and (2), it follows that

φ̂(εz)− 1 =
1√
2π

∫

R

φ(y)e−iwy dy − 1

=
1√
2π

∫

R

φ(y)e−iwy dy − 1√
2π

∫

R

φ(y) dy =
1√
2π

∫ 1

−1

φ(y)(e−iwy − 1) dy.

Now, since
φ(y)√
2π

≤ 1 (y ∈ R),

it follows that

|φ̂(εz)− 1| ≤
∫ 1

−1

|e−iwy − 1| dy

≤
∫ 1

−1

(e− 1)|w| dy = 2(e− 1)|w| = 2(e− 1)|εz| ≤ 2(e− 1)ε.

This proves (3).

Next we prove (4). Suppose | Im(z)| ≤ b. Then since φ̂(0) = 1 it follows that

|φ̂(z)| ≤ eb.

Integrating by parts, twice, shows that for z �= 0,

|φ̂(z)| ≤ 1

|z|2
1√
2π

eb
∫ 1

−1

|φ′′(y)| dy.

Now, a simple calculation7 shows that

|φ′′(y)| ≤ 106 (−1 ≤ y ≤ 1).

Hence, for z �= 0,

|φ̂(z)| ≤ 1

|z|2
212√
2π

eb.

Finally, observing that

1 ≤ 2

1 + |z|2 (|z| ≤ 1)

and
1

|z|2 ≤ 2

1 + |z|2 (|z| ≥ 1),

it follows that

|φ̂(|z|)| ≤ 1

|z|2 + 1

424√
2π

eb ≤ 1

r2 + 1

424√
2π

eb ≤ 1

(|r|+ 1)2
848√
2π

eb

7First note that φ′′(x) = φ(x)
(x2−1)4

(3x4−1). Next, using elementary calculus maximize
φ(x)

(x2−1)4

and (3x4 − 1), separately, and multiply their maximums. Of course, this argument does not yield
the optimal bound.
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since
1

r2 + 1
≤ 2

(|r|+ 1)2
(r �= 0).

This concludes the proof. �

4.2. Explicit lemmas. In this section we prove some lemmas which allow us to
obtain explicit constants from Randol’s proof of the prime geodesic theorem. Recall
(§4.1), and the definitions of IT (x) and φ. For ε > 0, define

φε(x) ≡ ε−1φ(ε−1x),

and define

gεT (x) ≡
(
2 cosh(

x

2
)
)
(IT ∗ φε)(x).

Set

hε
T (r) = ĝεT (r).

It follows that

hε
T (r) = S(r +

i

2
) + S(r − i

2
),

where

S(w) =

(
2

w
sin (Tw)

)
φ̂ε(w), S(0) = 2T.

Note that

φ̂ε(w) = φ̂(εw).

The main idea behind the proof is to apply the Selberg trace formula to the pair
hε
T (r), gεT (x), and to extract the leading and error term from the trace formula.

Much of our effort will be spent on giving explicit estimates to each term in the
trace formula.

We next set up some important notation. For 0 ≤ λk ≤ 1
4 , a small eigenvalue,

define rk and sk, by

rk ≡ i
+

√
1

4
− λk ≡ i(sk −

1

2
).

Let A denote the number small eigenvalues:

A ≡ |{λk | λk ≤ 1

4
}|.

Explicitly, 0 = λ0 < λ1 ≤ · · · ≤ λA ≤ 1
4 .

Lemma 4.2. Let C10 = 10 848√
2π

√
e, then for r ≥ 0, 0 < ε ≤ 1,

(1) |hε
T (r)| ≤ C10e

T/2(1 + r)−1(1 + εr)−2.
(2) For r ∈ [0, 1

ε ],

|hε
T (r)| ≤ C10

eT/2

1 + r
.

(3) For r ∈ [ 1ε ,∞),

|hε
T (r)| ≤ C10

eT/2

ε2r3
.
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Proof. We prove (1); (2) and (3) will then follow from elementary estimates.
Recall that for r ≥ 0,

hε
T (r) = S(r +

i

2
) + S(r − i

2
),

where

S(w) =

(
2

w
sin (Tw)

)
φ̂ε(w),

and note that φ̂ε(w) = φ̂(εw). By Part 4 of Lemma 4.1, with b = 1/2, it follows
that

φ̂(ε(r ± i

2
)) = O2((1 + εr)−2),

where

C2 ≡ C
(1/2)
2 =

848√
2π

√
e.

Now
2

|r ± i
2 |

≤ 5

1 + r

and

| sinT (r ± i

2
)| ≤ eT/2.

Hence,

|hε
T (r)| ≤ 2

5

1 + r
C2(1 + εr)−2. �

The next lemma will be used repeatedly.

Lemma 4.3. Let u(r) be a non-decreasing function on [0,∞) that satisfies

|u(r)| ≤ cr2 + b (r ≥ 0); c, b > 0.

Then ∫ ∞

0

|hε
T (r)| du(r) ≤ K

eT/2

ε
,

where K = C10

(
6c+ 10b

3

)
.

Proof. By Lemma 4.2, it suffices to estimate

(4.1)

∫ 1/ε

0

1

1 + r
du(r) and

∫ ∞

1/ε

1

r3
du(r).

Integrating by parts, yields

∫ 1/ε

0

1

1 + r
du(r) =

[
u(r)

1 + r

]1/ε

0

+

∫ 1/ε

0

u(r)

(1 + r)2
dr

≤ c/ε2 + b

1 + 1/ε
+ b+

∫ 1/ε

0

cr2 + b

(1 + r)2
dr ≤ c

ε
+ b+

3c

ε
+

b

ε
≤ 4c+ 2b

ε
.

A similar argument shows that
∫ ∞

1/ε

1

r3
du(r) ≤ (c+ b)ε+ (c+

b

3
)ε = (2c+

4b

3
)ε.

Hence, ∫ ∞

0

|hε
T (r)| du(r) ≤ C10

(
6c+

10b

3

)
eT/2

ε
. �
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4.3. The leading term of the prime geodesic theorem. In this section we
show that the sum ∑

λk≤ 1
4

hε
T (rk)

gives us the leading term of the prime geodesic theorem. In the next section, we
will see that the above sum is a term in the Selberg trace formula.

Lemma 4.4. Let ε = e−T/4, and

C12 ≡ (A− 1)

(
1 + 3C1 +

2

1− s1
(1 + C1)

)
+ 2C1 + 2.

Then ∣∣∣∣∣∣

∑

λk≤ 1
4

hε
T (rk)−

∑

λk≤ 1
4

eskT

sk

∣∣∣∣∣∣
= O12(e

3T/4),

where

s1 ≡
{

1
2 + +

√
1
4 − λ1 λ1 ≤ 1

4 ,

∞ λ1 > 1
4 .

Proof. First we deal with the case λ0 = 0. We have

hε
T (r0) = hε

T (
i

2
) =

2

i
sin(iT )φ̂(iε) + 2T = φ̂(iε)(eT − e−T ) + 2T

= (1 +O1(ε))(e
T − e−T ) + 2T.

Hence,

|hε
T (r0)−eT | ≤ C1εe

T +e−T | O1(ε)|+2T ≤ C1εe
T +1+C1ε+2T ≤ (2C1+2)e3T/4.

The last inequality follows from the trivial bound 1 + 2T ≤ 2e3T/4, and by noting
that ε = e−T/4.

Next, we handle the (possible) case of non-zero small eigenvalues. Let 0 < k ≤ A,

λ = λk, r = rk, s = sk.

It follows that

hε
T (r) =

φ̂(iεs)

s

(
esT − e−sT

)
+

φ̂(iε(s− 1))

s− 1

(
e(s−1)T − e−(s−1)T

)
.

Here, 1
2 ≤ s ≤ s1 < 1. By Lemma 4.1, Part 3,

φ̂(iεs) = 1 +O1(ε) and φ̂(iε(s− 1)) = 1 +O1(ε).

Therefore,
∣∣∣∣h

ε
T (r)−

esT

s

∣∣∣∣ ≤
esT

s
+ (1 + | O1(ε)|)e−sT +

1

|s− 1| (1 + eT/2)(1 + | O1(ε)|)

≤ 1
1
2

eTC1ε+ (1 + C1ε) +
1

1− s1
(1 + eT/2)(1 + C1ε).

Next, set ε = e−T/4. We obtain
∣∣∣∣h

ε
T (r)−

esT

s

∣∣∣∣ ≤
(
1 + 3C1 +

2

1− s1
(1 + C1)

)
e3T/4.
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Then, finally, we have
∣∣∣∣∣∣

∑

λk≤ 1
4

hε
T (rk)−

∑

λk≤ 1
4

eskT

sk

∣∣∣∣∣∣

≤
[
(A− 1)

(
1 + 3C1 +

2

1− s1
(1 + C1)

)
+ 2C1 + 2

]
e3T/4.

Of course, if there are no non-zero small eigenvalues, then A = 1. �

4.4. Application of the trace formula. Let Γ be a cofinite Fuchsian group, and
let M = Γ \ H be the corresponding hyperbolic orbifold. Let C(M) denote the
set of closed geodesics of M, and let P(M) denote the set of prime (or primitive)
closed geodesics (see [Bus92, p. 245]). For each γ ∈ C(M) there exists a unique
prime geodesic γ0 and a unique exponent m ≥ 1 so that γ = γm

0 . Let l(γ) denote
the length of γ. Associated to γ is a unique hyperbolic conjugacy class {Pγ}Γ with
norm

Nγ ≡ N(Pγ) = el(γ).

For γ ∈ C(M) define

Λ(γ) ≡ logNγ0
= l(γ0).

Let

Hε(T ) =
∑

γ∈C(M)

Λ(γ)

N
1/2
γ −N

−1/2
γ

gεT (x),

H(T ) =
∑

l(γ)≤T

Λ(γ)
1 +N−1

γ

1−N−1
γ

.

Note that Hε(T ) is an approximation of H(T ), and that for any ε > 0, ([Ran84,
p. 298])

(4.2) Hε(T − ε) ≤ H(T ) ≤ Hε(T + ε).

An application of the Selberg trace formula yields

∑

λn≤ 1
4

hε
T (rn) +

∑

λn>
1
4

hε
T (rn) +

1

4π

∫

R

hε
T (r)

−φ′

φ
(
1

2
+ ir) dr

=
|F|
4π

∫

R

rhε
T (r) tanh(πr) dr

+Hε(T ) +
∑

{R}

1

2mR sin θR

∫

R

e−2rθR

1 + e−2πr
hε
T (r) dr +

hε
T (0)

4
tr(I −S(

1

2
))

− τgεT (0) log 2−
τ

2π

∫

R

hε
T (r)ψ(1 + ir) dr.

(4.3)

Our next goal is to let ε = e−T , and estimate each term, in terms of the variable
T.

Recall from Theorem 3.3 that

μ(r) ≤ C

(
r2 +

1

4

)
(r ≥ 0).
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Lemma 4.5. Let ε = e−T/4,

C13 =
41

6
CC10.

Then ∣∣∣∣∣∣

∑

λn>
1
4

hε
T (rn) +

1

4π

∫

R

hε
T (r)

−φ′

φ
(
1

2
+ ir) dr

∣∣∣∣∣∣
= O13(e

3T/4).

Proof.

∣∣∣∣∣∣

∑

λn>
1
4

hε
T (rn) +

1

4π

∫

R

hε
T (r)

−φ′

φ
(
1

2
+ ir) dr

∣∣∣∣∣∣

≤
∑

λn>
1
4

|hε
T (rn)|+

1

4π

∫

R

|hε
T (r)|

∣∣∣∣
φ′

φ
(
1

2
+ ir)

∣∣∣∣ dr =

∫ ∞

0

|hε
T (r)| dμ(r).

By Theorem 3.3, μ(r) ≤ C(r2 + 1
4 ). The result now follows from Lemma 4.3. �

Lemma 4.6. Let ε = e−T/4,

C14 = C10
296τ

3π
+ C10

τ

2
+ 2τ log 2,

then

τ

2π

∫

R

|hε
T (r)ψ(1 + ir)| dr +

∣∣∣∣
hε
T (0)

4
tr(I −S(

1

2
))

∣∣∣∣+ |τgεT (0) log 2| = O14(e
3T/4).

Proof. We previously saw (equation (2.2)) that for r ∈ R,

|ψ(1 + ir)| ≤ 4|r|1/4 + 4.

Hence |ψ(1 + ir)| ≤ 8(1 + |r|), and
τ

2π

∫ ∞

−∞
|hε

T (r)ψ(1+ ir)| dr ≤ τ

2π

∫ ∞

−∞
|hε

T (r)|8(1+ |r|) dr =
τ

2π

∫ ∞

0

|hε
T (r)| du(r),

where

u(r) =

∫ r

−r

8(1 + |x|) dx = 16(
r2

2
+ r) ≤ 16(

3

2
r2 + 1) (r ∈ R).

An application of Lemma 4.3 yields

τ

2π

∫ ∞

0

|hε
T (r)| du(r) ≤ C10

296τ

3π

eT/2

ε
.

Next, an application of Lemma 4.2, the inequalities | tr(I − S( 12 ))| ≤ 2τ and
|gεT (0)| ≤ 2, imply

∣∣∣∣
hε
T (0)

4
tr(I −S(

1

2
))

∣∣∣∣+ |τgεT (0) log 2| ≤
τC10

2
eT/2 + 2τ log 2

≤
(
τC10

2
+ 2τ log 2

)
e3T/4. �
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Lemma 4.7. Let ε = e−T/4,

C15 =
56C10

3

∣∣∣∣∣∣

∑

{R}

1

2mR sin θR

∣∣∣∣∣∣
,

then ∣∣∣∣∣∣

∑

{R}

1

2mR sin θR

∫

R

e−2rθR

1 + e−2πr
hε
T (r) dr

∣∣∣∣∣∣
= O15(e

3T/4).

Proof. Since
∣∣∣∣

e−2rθR

1 + e−2πr

∣∣∣∣ ≤ 1,

∣∣∣∣∣∣

∑

{R}

1

2mR sin θR

∫

R

e−2rθR

1 + e−2πr
hε
T (r) dr

∣∣∣∣∣∣
≤

∣∣∣∣∣∣

∑

{R}

1

2mR sin θR

∣∣∣∣∣∣

∫ ∞

0

|hε
T (r)| du(r),

where u(r) = 2r. Hence |u(r)| ≤ 2r2 + 2, and applying Lemma 4.3 yields
∣∣∣∣∣∣

∑

{R}

1

2mR sin θR

∫

R

e−2rθR

1 + e−2πr
hε
T (r) dr

∣∣∣∣∣∣
≤

⎛

⎝56C10

3

∣∣∣∣∣∣

∑

{R}

1

2mR sin θR

∣∣∣∣∣∣

⎞

⎠ e3T/4.

�

Lemma 4.8.

|F|
4π

∫ ∞

−∞
|hε

T (r) r tanh(πr)| dr ≤ 3

2π
|F|C10

eT/2

ε
.

Proof. Since r tanh(πr) is even, it suffices to estimate

|F|
2π

∫ ∞

0

|hε
T (r) r tanh(πr)| dr ≤ |F|

2π

∫ ∞

0

|hε
T (r)| r dr =

|F|
2π

∫ ∞

0

|hε
T (r)| du(r),

where u(r) =
∫ r
0
x dx = r2

2 . (Note that we used the trivial estimate | tanh(πr)| ≤ 1.)
The result now follows from Lemma 4.3. �

Our main result for this section is

Lemma 4.9. Let ε = e−T/4, and let

C16 = C12 + C13 + C14 + C15 +
3

2π
|F|C10.

Then

Hε(T ) =
∑

λk≤ 1
4

eTsk

sk
+O16(e

3T/4).

Proof. The proof follows immediately from equation (4.3), and Lemmas 4.4, 4.5,
4.6, 4.7, 4.8. �
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4.5. Upper bound for the Huber constant. In this section we prove the main
result of this paper.

4.6. Asymptotics for H(T ).

Lemma 4.10. Let ε = e−T/4,

C17 = 4A+ 4C16,

C18 = 4A+ 5C16.

Then

(1) H(T )−Hε(T ) = O17(e
3T/4).

(2) H(T ) =
∑

λk≤ 1
4

eTsk

sk
+O18(e

3T/4).

Proof. We first prove (1). Recall from equation (4.2) that

(4.4) Hε(T − ε) ≤ H(T ) ≤ Hε(T + ε).

In addition, it follows from the definition of Hε(T ) that

(4.5) Hε(T − ε) ≤ Hε(T ) ≤ Hε(T + ε).

By Lemma 4.9 we have

Hε(T ± ε) =
∑

λk≤ 1
4

e(T±ε)sk

sk
+O16(e

3(T±ε)/4).

Now, setting ε = e−T/4, it follows from elementary estimates that

|Hε(T + ε)−Hε(T − ε)| ≤ 4Ae3T/4 + 4C16e
3T/4.

Part (1) now follows from (4.4) and (4.5). Part (2) follows immediately from
Lemma 4.9. �
4.7. The Chebyshev function. Define

Ψ(T ) ≡
∑

l(γ)≤T

Λ(γ),

where Λ(γ) = l(γ0). Since Γ is discrete, there exists a hyperbolic conjugacy class
{Ps} with minimal norm N(Ps) > 1. Choose c > 0 so that

1 < c < N(Ps).

Lemma 4.11. Let

C19 = C18 +
4

1− c−1
(2A+ C18).

Then

Ψ(T ) =
∑

λk≤ 1
4

eTsk

sk
+O19(e

3T/4).

Proof. By Lemma 4.10,

H(T ) =
∑

λk≤ 1
4

eTsk

sk
+O18(e

3T/4).

Since

H(T ) =
∑

l(γ)≤T

Λ(γ)
1 +N−1

γ

1−N−1
γ

,
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we can rewrite H(T ) as

H(T ) = Ψ(T ) +
∑

l(γ)≤T

Λ(γ)
2N−1

γ

1−N−1
γ

.

Both of the above terms are positive for all T. Thus, from Lemma 4.10 and a crude
estimate (for each small eigenvalue, 1

2 ≤ sk ≤ 1, hence eskt ≤ et), it follows that

(4.6) Ψ(T ) ≤ H(T ) ≤ (2A+ C18)e
T .

But

∑

l(γ)≤T

Λ(γ)
2N−1

γ

1−N−1
γ

≤ 2

1− c−1

∑

l(γ)≤T

Λ(γ)N−1
γ =

2

1− c−1

∫ T

0

e−x dΨ(x)

≤ 2

1− c−1
(2A+ C18)(1 + T ).

The last inequality is obtained by integrating by parts and using (4.6). Next, using
the crude bound (1 + T ) ≤ 2e3T/4, we obtain

∑

l(γ)≤T

Λ(γ)
2N−1

γ

1−N−1
γ

≤ 4

1− c−1
(2A+ C18)e

3T/4.

Finally, ∣∣∣∣∣Ψ(T )−
∑

sk

eTsk

sk

∣∣∣∣∣ ≤ (C18 +
4

1− c−1
(2A+ C18))e

3T/4. �

4.8. The Huber constant. Let

Θ(T ) =
∑

l(γ)≤T
γ primitive

Λ(γ).

Choose μ > 0 so that μ < l(γ) for all γ ∈ C(M).

Lemma 4.12.

Θ(T ) =
∑

λk≤ 1
4

eTsk

sk
+O20(e

3T/4),

where

C20 = C19 +
4

μ
(2A+ C18).

Proof. Let m(T ) = [T/μ], then ([Bus92, p. 251])

Ψ(T )−Θ(T ) =

m(T )∑

m=2

Θ(T/m) ≤ m(T )Θ(T/2) ≤ T

μ
Ψ(T/2).

By (4.6),

T

μ
Ψ(T/2) ≤ 1

μ
TeT/2(2A+ C18) ≤

4

μ
e3T/4(2A+ C18).

Hence,

|Θ(T )−Ψ(T )| ≤ 4

μ
e3T/4(2A+ C18).

The lemma now follows. �
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Let x = eT , and let

θ(x) ≡
∑

Nγ≤x
γ primitive

Λ(γ).

With this change of variable, Lemma 4.12 becomes

θ(x) =
∑

λk≤ 1
4

xsk

sk
+O20(x

3/4).

Let

li(x) =

∫ x

2

dy

log y
,

and recall the definition of the constant c (§4.7). We have

Lemma 4.13. Let

C21 = |c− 2| 1

log 2
+ |2−

√
c| 2

log c
.

Then for s ∈ [ 12 , 1], ∣∣∣∣
∫ x

c

ys−1

log y
dy − li(xs)

∣∣∣∣ ≤ C21.

Proof. An elementary argument shows that
∣∣∣∣
∫ x

c

ys−1

log y
dy − li(xs)

∣∣∣∣ =
∣∣∣∣
∫ 2

cs

dy

log y

∣∣∣∣ .

Now, if cs ≥ 2, then
∣∣∣∣
∫ 2

cs

dy

log y

∣∣∣∣ ≤ (cs − 2)
1

log 2
≤ (c− 2)

1

log 2
.

If cs < 2, then
∣∣∣∣
∫ 2

cs

dy

log y

∣∣∣∣ ≤ (2− cs)
1

log cs
≤ (2− c1/2)

2

log c
.

Hence, in either case,
∣∣∣∣
∫ 2

cs

dy

log y

∣∣∣∣ ≤ |c− 2| 1

log 2
+ |2− c1/2| 2

log c
. �

Lemma 4.14. Let

C22 =

(
1− 1

log 2

)−1

.

Then for x > 1,

li(x) ≤ C22
x

log x
.

Proof. Integrating by parts give us

li(x) =

∫ x

2

dy

log y
≤ x

log x
+

∫ x

2

dy

(log y)2
≤ x

log x
+

1

log 2

∫ x

2

dy

log y
.

The lemma now follows. �
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Theorem 4.15. Let

Cu = C21A+ C20
c3/4

log c
+ C20 + C20C22 +

3

4
C20C21.

Then for all x > 1, ∣∣∣∣∣∣
π(x)−

∑

λk≤ 1
4

li(xsk)

∣∣∣∣∣∣
≤ Cu

x3/4

log x
.

In particular, CM ≤ Cu.

Proof. First note that

π(x) =

∫ x

c

dθ(y)

log y
.

First, for notational convenience, set

f(y) ≡ θ(y)−
∑

λk≤ 1
4

ysk

sk
= O20(y

3/4).

Next, ∫ x

c

dθ(y)

log y
=
∑

λk≤ 1
4

∫ x

c

ysk−1

log y
dy +

∫ x

c

df(y)

log y
.

By Lemma 4.13,

∑

λk≤ 1
4

∫ x

c

ysk−1

log y
dy =

∑

λk≤ 1
4

li(xsk) +AO21(1).

Now ∫ x

c

df(y)

log y
=

f(x)

log x
− f(c)

log c
+

∫ x

c

f(y)
dy

y(log y)2
,

and (using Lemma 4.13),
∫ x

c

|f(y)| dy

y(log y)2
≤ C20

∫ x

c

y3/4
dy

y(log y)2

= C20

(
c3/4

log c
+

x3/4

log x
+

3

4

∫ x

c

y(
3
4−1) dy

log y

)

≤ C20

(
c3/4

log c
+

x3/4

log x
+

3

4
(li(x3/4) + C21)

)
.

But by Lemma 4.14,
3

4
li(x3/4) ≤ C22

x3/4

log x
.

Hence, putting everything together, for x > 1,
∣∣∣∣∣∣
π(x)−

∑

λk≤ 1
4

li(xsk)

∣∣∣∣∣∣
≤ C21A+C20

c3/4

log c
+C20

x3/4

log x
+C20C22

x3/4

log x
+

3

4
C20C21,

and using the trivial inequality 1 < x3/4

log x , we obtain
∣∣∣∣∣∣
π(x)−

∑

λk≤ 1
4

li(xsk)

∣∣∣∣∣∣
≤ Cu

x3/4

log x
,
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where

Cu = C21A+ C20
c3/4

log c
+ C20 + C20C22 +

3

4
C20C21. �

4.9. The Huber constant for PSL(2,Z). For Γ = PSL(2,Z), we can take c =
6.85. Also, Γ has no small eigenvalues (except for the trivial one), so A = 1. Using
the computations in §3.2, an explicit value for Cu can be calculated:

Theorem 4.16. Let Γ = PSL(2,Z). Then Cu = 16,607,349,020,658 is an upper
bound for the Huber constant.

Using the theory laid out in [Sar82], and the excellent open-source computational
program pari/gp [The05], we can explicitly calculate (and list out) the length
spectrum for PSL(2,Z). Our computations suggest that

CM < 2.

So it seems that our result is probably not sharp!

Computer experiments for PSL(2,Z)

Let Γ0 = PSL(2,Z), and Γ be a finite index subgroup of Γ0. Let {P0} denote
the set of primitive hyperbolic conjugacy classes of Γ. We compute length spectrum
(norms of primitive hyperbolic conjugacy classes) using the ideas of [Sar82].

Let Q(x, y) = ax2+ bxy+ cy2 be a primitive, indefinite binary quadratic form of
discriminant d = b2−4ac > 0. Two forms [a, b, c] and [a′, b′, c′] are called equivalent
(in the narrow sense) if they are related by a unimodular transformation.

Consider the map φ which sends the form [a, b, c] to the matrix

(
td−bud

2 −cud

aud
td+bud

2

)
,

where td, ud > 0 is the fundamental solutions of Pell’s equation t2 − du2 = 4. Set

εd =
td +

√
d ud

2
.

Let D be the set of fundamental discriminants {d > 0, d ≡ 0, 1 mod 4} and let
h(d) denote the number of inequivalent primitive forms of discriminant d. For each
d ∈ D let Q1(d), . . . , Qh(d)(d) be a complete set of inequivalent forms of discriminate
d. Finally, set

QF =
⋃

d∈D
{Q1(d), . . .Qh(d)(d)}.

Lemma 4.17 ([Sar82]). The set φ(QF ) is the set of conjugacy classes of primitive
hyperbolic elements of PSL(2,Z). The norm of each hyperbolic element φ(Qi(d)) is
ε2d.
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Using the above ideas, one can compute the primitive conjugacy classes for
Γ0 = PSL(2,Z). We next explain how to compute the length spectrum for Γ, a
finite-index normal subgroup of Γ0.

Let Γ�Γ0 be a finite-index normal subgroup of Γ0 = PSL(2,Z), G = Γ0/Γ, and
n = |G|. For each primitive conjugacy class {Pγ} of Γ0 let m represent the order
of Pγ ∈ G. It follows that {Pm

γ } is a subset of Γ that splits into conjugacy classes
with respect to Γ.

Lemma 4.18 ([Sar82]). The number of conjugacy classes into which {Pm
γ } splits

in Γ is k = n/m = |G|/m.

5. Algorithm for computing primitive conjugacy classes

Let Γ � Γ0, x > 0. We wish to compute the norms and multiplicities of all
primitive hyperbolic conjugacy classes {Pγ} with norm N({Pγ}) ≤ x.

Step 1. Compute the primitive conjugacy classes for the modular group Γ0

of norm x or less. Since ε2d is the norm of a prime element that is mapped by the

function φ it follows that
√
x ≥ εd >

√
d/2. Thus it suffices to consider discriminants

d < 4x in order to guarantee that all norms less than x are achieved. In other
words, if d > 4x, then ε2d > x.

For each d ∈ Dx = {d ∈ D | ε2d ≤ x}, compute h(d) and representatives of in-
equivalent quadratic forms of discriminant d. For each representativeQi(d) compute
φ(Qi(d)) in order to obtain representatives for {Pγ} in Γ0.

Step 2. From step 1, let z = Pγ be a representative of a class in Γ0 of norm
ε2d. Compute the order m of z in G = Γ0/Γ. Then {Pm

γ } splits into k = |G|/m
primitive conjugacy classes each with norm ε2md .

Step 3. From step 2, we count the primitive conjugacy classes with norm ε2md ≤ x.
One thing we can do is verify the prime geodesic theorem for the group Γ. We

can implement these algorithms using the computer package PARI/GP.

Pari/GP Algorithm.

IsProp(D) = if((D%4 == 1||(D)%4 == 0) && issquare(D), 0, 1);
QFBclassno(D) = qfbclassno(D) ∗ if(D < 0 || norm(quadunit(D)) <
0, 1, 2);
QUADunit(D) = quadunit(D) ∗ if(D < 0 || norm(quadunit(D)) <
0, quadunit(D), 1);
Li(x) = −eint1(log(1/x));
MaxD = 10000;
{
for(D = 5,MaxD, if(IsProp(D) == 0,
n = QUADunit(D) ∧ 2.0;
if(n < MaxD,
m = QFBclassno(D);
q = Li(n);
write(”FILE.csv”, n”, ”m”, ”D”, ”q))));
}
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Table 4. Data for the modular group

1 2 3 4 5 6 7 8 9 10 11
6.85 1 5 4.68 1 4.68 3.68 3.05 1.21 2.62 1.41
13.93 2 12 7.75 3 2.58 4.75 4.44 1.07 3.73 1.27
22.96 2 21 10.87 5 2.17 5.87 5.92 .99 4.79 1.23
33.97 2 32 14.17 7 2.02 7.17 7.49 .96 5.83 1.23
33.97 1 8 14.17 8 1.77 6.17 7.49 .82 5.83 1.06
46.98 2 45 17.69 10 1.77 7.69 9.15 .84 6.85 1.12
61.98 4 60 21.45 14 1.53 7.45 10.87 .68 7.87 0.95
78.99 2 77 25.45 16 1.59 9.45 12.68 .75 8.89 1.06
97.99 2 24 29.69 18 1.65 11.69 14.55 .80 9.9 1.18
97.99 4 96 29.69 22 1.35 7.69 14.55 .53 9.9 0.78
118.99 1 13 34.17 23 1.49 11.17 16.48 .68 10.91 1.02
118.99 2 117 34.17 25 1.37 9.17 16.48 .56 10.91 0.84
141.99 4 140 38.9 29 1.34 9.9 18.48 .54 11.92 0.83
166.99 4 165 43.86 33 1.33 10.86 20.53 .53 12.92 0.84
193.99 2 48 49.06 35 1.40 14.06 22.65 .62 13.93 1.01
193.99 4 192 49.06 39 1.26 10.06 22.65 .44 13.93 0.72
223 4 221 54.49 43 1.27 11.49 24.82 .46 14.93 0.77
254 2 28 60.15 45 1.34 15.15 27.04 .56 15.94 0.95
254 4 252 60.15 49 1.23 11.15 27.04 .41 15.94 0.7
287 4 285 66.04 53 1.25 13.04 29.31 .45 16.94 0.77
322 2 80 72.17 55 1.31 17.17 31.63 .54 17.94 0.96
322 1 20 72.17 56 1.29 16.17 31.63 .51 17.94 0.9
322 4 320 72.17 60 1.20 12.17 31.63 .38 17.94 0.68
359 4 357 78.51 64 1.23 14.51 34 .43 18.95 0.77
398 2 44 85.08 66 1.29 19.08 36.42 .52 19.95 0.96
398 8 396 85.08 74 1.15 11.08 36.42 .30 19.95 0.56
439 2 437 91.88 76 1.21 15.88 38.88 .41 20.95 0.76
482 4 120 98.89 80 1.24 18.89 41.39 .46 21.95 0.86
482 8 480 98.89 88 1.12 10.89 41.39 .26 21.95 0.5
527 4 525 106.12 92 1.15 14.12 43.94 .32 22.96 0.62
574 4 572 113.57 96 1.18 17.57 46.53 .38 23.96 0.73
623 2 69 121.23 98 1.24 23.23 49.16 .47 24.96 0.93

Key: Length spectrum calculations for the modular group.

(1) x, the actual primitive length spectrum (norms); when norms repeat, they come
from different quadratic forms,

(2) multiplicity of given norm,
(3) discriminant of corresponding quadratic form,
(4) li(x), the integral logarithm of x where x is equal to the value of column 1,
(5) π(x), a running total of the number of norms less than x where x is equal to the

value of column 1,

(6) π(x)
li(x)

; this column verifies the prime geodesic theorem,

(7) |li(x)− π(x)|,
(8) x3/4/(log(x))1/2,
(9) the ratio of (7)/(8),
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(10) x1/2, this is the conjectured true error term,
(11) the ratio of (7)/(10).
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