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EXPONENTIAL CONVERGENCE AND TRACTABILITY OF

MULTIVARIATE INTEGRATION FOR KOROBOV SPACES

JOSEF DICK, GERHARD LARCHER, FRIEDRICH PILLICHSHAMMER,

AND HENRYK WOŹNIAKOWSKI

Abstract. In this paper we study multivariate integration for a weighted
Korobov space for which the Fourier coefficients of the functions decay ex-
ponentially fast. This implies that the functions of this space are infinitely
times differentiable. Weights of the Korobov space monitor the influence of
each variable and each group of variables. We show that there are numerical
integration rules which achieve an exponential convergence of the worst-case
integration error. We also investigate the dependence of the worst-case error
on the number of variables s, and show various tractability results under cer-
tain conditions on weights of the Korobov space. Tractability means that the
dependence on s is never exponential, and sometimes the dependence on s is
polynomial or there is no dependence on s at all.

1. Introduction

Multivariate integration of s-variate functions is a popular research subject es-
pecially the case when the number of variables s is large. We usually want to find
the best possible rate of convergence as well as to control the dependence on s. The
latter problem is related to tractability when we want to guarantee that there is no
exponential dependence on s.

In this paper we study the numerical approximation of integrals∫
[0,1]s

f(x) dx

using quasi-Monte Carlo rules

1

n

n∑
m=1

f(tm).

Here, the quadrature points t1, t2, . . . , tn ∈ [0, 1]s are chosen in some deterministic
way. In our case, ti will be defined by lattice rules of rank one or will be from grids
with varying mesh-sizes. For more information on such quadrature rules see e.g.,
[10, 14].
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We assume that the integrands f are periodic and have a Fourier series repre-
sentation

f(x) =
∑
h∈Zs

f̂(h) exp(2πih · x),

where the Fourier coefficients f̂ are given by

f̂(h) =

∫
[0,1]s

f(x) exp(−2πih · x) dx.

The smoothness of the integrand f is regulated by the decay of its Fourier co-
efficients. Here we assume that the Fourier coefficients decay exponentially fast,
i.e.,

f̂(h) = O(ω|h1|+···+|hs|),

where h = (h1, . . . , hs) ∈ Z
s and 0 < ω < 1.

This corresponds to the Korobov space of infinitely times differentiable functions.
This is a reproducing kernel Hilbert space with the explicitly known kernel. We
study the unweighted case for which all variables and groups of variables are equally
important, as well as the weighted case for which the influence of each variable and
each group of variables is moderated by a suitable weight. We show that the rate
of convergence is independent of weights whereas tractability results are possible
only for properly decaying weights.

Previously, numerical integration of periodic functions has been analyzed for
functions which are α times differentiable in each variable with α < ∞; see for
example [6, 7, 12, 15, 18]. Our approach for infinitely times differentiable functions
is similar to the approach in those papers. Indeed, we also define a suitable re-
producing kernel Hilbert space, although the analysis of the worst-case integration
error turns out to be somewhat different than in the papers cited above.

We show the existence of lattice rules which achieve an exponential convergence
(Theorems 2 and 4). This is done by defining a suitable figure of merit and proving
results on the existence of lattice rules with a large figure of merit (Lemma 2).
A lower bound on the worst-case error reveals that this rate of convergence is
essentially best possible. The upper bound is nonconstructive, as the proof only
shows the existence of suitable lattice rules. We do, however, provide “more”
constructive results. To be more precise, we show how a suitable generating vector
can be found explicitly in some sense (Remark 1). We also show that a quasi-Monte
Carlo rule with the quadrature points from a grid with suitable varying mesh-sizes
achieves an exponential rate of convergence (Theorem 6).

We show that the trigonometric degree of a lattice rule [3, 4, 8, 13] plays an
important role in our study. Indeed, for the unweighted case, the figure of merit
which is used for proving existence results for lattice rules achieving an exponential
convergence coincides with their enhanced trigonometric degree. Hence, lattice
rules with high trigonometric degree are needed for achieving exponential rates of
convergence for integration in the Korobov space.

We also study how the worst-case error depends on the number of variables s.
For the unweighted case, despite the fact that the functions are infinitely times dif-
ferentiable, we still get an exponential increase of the worst-case error with growing
s (Theorem 3). This situation can only be remedied by changing to the weighted
case (Theorems 5 and 6 and Corollary 1). This is done by introducing a weighted
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version of the Korobov space, an idea which stems from [17]. It is, however, neces-
sary to change the dependence on the different coordinate directions in a different
way compared to [17] if one wants to have both, independence of the dimension
and an exponential convergence of the worst-case error. Only if one is satisfied
with a polynomial rate of convergence of the form n−α, where α > 0 can be arbi-
trarily large, the weights defined as in [17] suffice to guarantee strong polynomial
tractability (which is the technical term for the worst-case error being bounded in-
dependent of the dimension, see below for details) (Remark 3). If one wants both,
an exponential convergence and strong polynomial tractability, then we need to
weight the variables in a different way. We also investigate under which conditions
on the weights we obtain polynomial tractability.

2. Definition of the problem

We consider a Korobov space H(K) of complex-valued periodic functions defined
on [0, 1]s. The space H(K) is a reproducing kernel Hilbert space with the kernel

K(x,y) =
∑
h∈Zs

ωh exp(2πih · (x− y)) for all x,y ∈ [0, 1]s,

with the usual inner product h · (x − y) =
∑s

j=1 hj(xj − yj), where hj , xj , yj are

the jth components of the vectors h,x,y, correspondingly. (For information about
reproducing kernel Hilbert spaces we refer to [1].)

We assume that ω0 = 1 and ωh may also depend on s, i.e., ωh = ωs,h, and is
nonnegative for all h ∈ Z

s. The kernel K is well defined if we choose ωh such that

(1) |K(x,y)| ≤ K(x,x) =
∑
h∈Zs

ωh < ∞.

For f ∈ H(K) we have

f(x) =
∑
h∈Zs

f̂(h) exp(2πih · x) for all x ∈ [0, 1]s,

and the norm of f from H(K) is given in terms of its Fourier coefficients f̂ by

‖f‖2 =
∑
h∈Zs

|f̂(h)|2ω−1
h < ∞.

The inner product of f and g from H(K) is

〈f, g〉 =
∑
h∈Zs

f̂(h) ĝ(h)ω−1
h .

Smoothness of functions f from H(K) is controlled by how fast ωh goes to zero
as |h| :=

∑s
j=1 |hj | goes to infinity. We assume that there exists ω ∈ (0, 1) such

that

(2) ωh = O
(
ω|h|

)
for all h = (h1, h2, . . . , hs) ∈ Z

s.

Then functions from H(K) are infinitely times differentiable. Indeed, for f ∈
H(K), let α = (α1, α2, . . . , αs) be an arbitrary vector with integers αj ≥ 0. Denote
by

Dαf =
∂ |α|

∂xα1
1 ∂xα2

2 · · · ∂xαs
s

f
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the operator of partial differentiation. Then

Dαf(x) =
∑
h∈Zs

⎡
⎣f̂(h) (2πi)|α|

s∏
j=1

h
αj

j

⎤
⎦ exp(2πih · x),

where, by convention, we take 00 = 1. The last series is convergent. Indeed, for
any ω1 ∈ (ω, 1) there is a number C depending on ω, ω1 and |α| such that

xa ωx ≤ C ωx
1 for all a ∈ [ 0, 2|α| ] and x ∈ [0,∞).

Then ωh = O(ω|h|) implies

|Dαf(x)| =

∣∣∣∣∣∣
∑
h∈Zs

[
f̂(h)ω

−1/2
h

]⎡⎣ω1/2
h (2πi)|α|

s∏
j=1

h
αj

j

⎤
⎦ exp(2πih · x)

∣∣∣∣∣∣

= O

⎛
⎜⎝‖f‖

⎡
⎣∑
h∈Zs

(2π)2|α|
s∏

j=1

|hj |2αjω|hj |

⎤
⎦
1/2
⎞
⎟⎠

= O

⎛
⎝‖f‖

[∑
h∈Zs

ω
|h|
1

]1/2⎞
⎠

= O
(
‖f‖

(
1 +

2

1− ω1

)s/2
)

< ∞,

as claimed.

Consider multivariate integration,

I(f) =

∫
[0,1]s

f(x) dx for all f ∈ H(K).

The problem is well normalized since

‖I‖ = sup
f∈H(K), ‖f‖≤1

∣∣∣∣∣
∫
[0,1]s

f(x) dx

∣∣∣∣∣ = 1.

We approximate I(f) by algorithms that use finitely many function values. It is
known that we can restrict ourselves to linear algorithms and approximate I(f) by

An,s(f) =
n∑

m=1

amf(tm)

for some complex numbers am and sample points tm ∈ [0, 1]s. For am = n−1,
we obtain popular quasi-Monte Carlo (QMC) algorithms that are often used in
computational practice, especially for large s. By

ewor(An,s) = sup
f∈H(K), ‖f‖≤1

|I(f)− An,s(f)|

we mean the worst-case error of An,s. Since I(f) = 〈f, 1〉, then

I(f)−An,s(f) =

〈
f, 1−

n∑
m=1

amK(·, tm)

〉
.
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Therefore,

ewor(An,s) =

∥∥∥∥1−
n∑

m=1

amK(·, tm)

∥∥∥∥.
This can be easily computed to be

[ewor(An,s)]
2
= 1− 2

n∑
m=1

am +

n∑
k,m=1

akamK(tk, tm).

For QMC algorithms, am = n−1, the last formula simplifies to

[ewor(An,s)]
2
= −1 +

1

n2

n∑
k,m=1

K(tk, tm).

Let e(n, s) be the nth minimal worst-case error,

e(n, s) = inf
aj ,tj , j=1,2,...,n

sup
f∈H(K), ‖f‖≤1

∣∣∣∣I(f)−
n∑

m=1

amf(tm)

∣∣∣∣.
For n = 0 we approximate I(f) simply by zero, and e(0, s) = ‖I‖ = 1 for all s.

What do we want to demand on the behavior of e(n, s) to capture the notion of
exponential convergence and tractability?

By exponential convergence we mean that there exist numbers q ∈ (0, 1), p > 0
and a function C : N → (0,∞) such that

(3) e(n, s) ≤ C(s) qn
p

for all s, n ∈ N.

Let
n(ε, s) = min{n : e(n, s) ≤ ε}

be the minimal number of function values needed to obtain an ε approximation.
If (3) holds, then

(4) n(ε, s) ≤
⌈(

ln C(s) + ln ε−1

ln q−1

)1/p
⌉

for all s ∈ N, ε ∈ (0, 1).

Observe that if (4) holds, then

e(n+ 1, s) ≤ C(s) qn
p

for all s, n ∈ N.

This means that (3) and (4) are essentially equivalent.
Hence, exponential convergence implies that asymptotically with respect to ε, we

need to perform O
([

ln ε−1
]1/p)

function values to compute an ε approximation

to multivariate integrals. However, it is not clear how long we have to wait to
see this nice asymptotic behavior especially for large s. This, of course, depends
on C(s) and is the subject of tractability. Tractability means that we control the
behavior of C(s) and rule out the cases for which n(ε, s) depends exponentially on
s. Since there are many ways of controlling the lack of exponential dependence, we
have many notions of tractability. We restrict ourselves to two such notions in this
paper; for more on tractability see [11].

We say that we have exponential convergence with polynomial tractability iff there
exist nonnegative numbers A, p1, p2 such that

n(ε, s) ≤ A
(
s p1 +

[
ln ε−1

]p2
)

for all s ∈ N, ε ∈ (0, 1).
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If p1 = 0, we say that we have exponential convergence with strong polynomial
tractability.

We say that we have exponential convergence with weak tractability1 iff

lim
ε−1+s→∞

lnn(ε, s)

ln ε−1 + s
= 0.

In this paper we always consider exponential convergence, and therefore if we
say (strong) polynomial tractability or weak tractability we always mean exponen-
tial convergence with (strong) polynomial tractability or with weak tractability.
Obviously, polynomial tractability implies weak tractability.

Assume that (3) is satisfied. Then (strong) polynomial tractability holds if

sup
s∈N

s−τ ln (1 + C(s)) < ∞ for some τ ≥ 0.

If so, then we have (strong) polynomial tractability with p1 = τ/p and p2 = 1/p.
Weak tractability holds if

lim
s→∞

ln (1 + ln (1 + C(s)))

s
= 0.

Hence, strong polynomial tractability holds if C(s) are uniformly bounded in s,
polynomial tractability holds if there exist nonnegative numbers A and τ such that

C(s) ≤ exp (As τ ) for all s ∈ N,

and weak tractability holds if

C(s) = exp (exp (o(s))) as s → ∞.

The conditions on C(s) seem to be quite weak since even for singly exponential
C(s) we have polynomial tractability, and for “almost” doubly exponential C(s)
we have weak tractability. We shall see later for which ωh we can indeed guarantee
(strong) polynomial and weak tractability.

We also add that if (3) is sharp, i.e., there exists a positive number C independent
of n and s such that

e(n, s) ≥ C C(s) qn
p

for all s, n ∈ N,

then the conditions on C(s) presented above are also necessary.

3. Lower bound

We study multivariate integration for Korobov spaces for different choices of ωh.
All of our choices of ωh will lead to the exponential convergence or to an almost
exponential convergence. However, tractability will hold only for some choices of
ωh. In this short section we establish a lower bound on e(n, s) in terms of ωh that
will allow us later to verify tractability for specific choices of ωh. The idea of the
proof of this lower bound is adopted from [16].

Let k and t be positive integers. For s ≥ k, define the set

As,k,t = {h ∈ Z
s : s− k of hj are 0 and k of hj are from {1, 2, . . . , t}} .

1Weak tractability without specifying the rate of convergence is defined as

lim
ε−1+s→∞

ln n(ε, s)

ε−1 + s
= 0.

Hence, exponential convergence with weak tractability differs from weak tractability in the role
of ε.
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The cardinality of As,k,t is clearly
(
s
k

)
tk.

Theorem 1. Let k and t be positive integers. With the notation from above, the
nth minimal worst-case error satisfies

(5) e(n, s) ≥

⎡
⎣ max
h∗∈As,k,t

∑
h∈As,k,t

1

ωh−h∗

⎤
⎦
−1/2

for all n <

(
s

k

)
tk.

Proof. Take an arbitrary algorithm An,s(f) =
∑n

m=1 amf(tm). Define

g(x) =
∑

h∈As,k,t

bh exp(2πih · x) for all x ∈ [0, 1]d

such that g(tm) = 0 for all m = 1, 2, . . . , n. Since we have n homogeneous linear
equations and |As,k,t| > n unknowns bh, there exists a nonzero vector of such bh’s,
and we can normalize the bh’s by assuming that

max
h∈As,k,t

|bh| = bh∗ = 1 for some h∗ ∈ As,k,t.

Define the function

f(x) = c exp(−2πih∗ · x) g(x) = c
∑

h∈As,k,t

bh exp(2πi(h− h∗) · x),

where a positive c is chosen such that ‖f‖ ≤ 1. More precisely, we have

‖f‖2 = c2
∑

h∈As,k,t

|bh|2
1

ωh−h∗

≤ c2
∑

h∈As,k,t

1

ωh−h∗
≤ c2 max

h∗∈As,k,t

∑
h∈As,k,t

1

ωh−h∗
.

Hence, we can take

c =

⎡
⎣ max
h∗∈As,k,t

∑
h∈As,k,t

1

ωh−h∗

⎤
⎦
−1/2

.

Note that f(tm) = 0 and this implies that An,s(f) = 0. Furthermore, I(f) =
c bh∗ = c. Hence,

ewor(An,s) ≥ |I(f)−An,s(f)| = I(f) = c.

Since this holds for all am and tm, we conclude that e(n, s) ≥ c, as claimed. �

4. Lattice rules

In this section we choose our linear algorithms for approximating multivariate
integrals as lattice rules of rank one. They are a special case of quasi-Monte Carlo
algorithms for which the sample points tm = {(m− 1)g/n}, where {x} denotes the
fractional parts (componentwisely) of the vector x, and g ∈ {0, 1, . . . , n − 1}s is
called a generator of a lattice rule with n assumed to be prime. Hence, lattice rules
are given by

An,s(f) =
1

n

n∑
m=1

f

({
(m− 1)g

n

})

with g ∈ {0, 1, . . . , n− 1}s and n is prime.
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4.1. Unweighted case. In this subsection we consider probably the most natural
choice of ωh for which the Korobov space consists of infinitely times differentiable
functions. Namely, we take

ωh = ω|h| for some ω ∈ (0, 1).

Note that for all vectors h ∈ Z
s for which |h| = v for some positive integer v,

we have ωh = ωv. In particular, if we permute components of h, then we do not
change the coefficient ωh. Hence, if we permute variables of f ∈ H(K) and obtain
the function

g(x) = f(xj1 , xj2 , . . . , xjs)

for some permutation (j1, j2, . . . , js) of (1, 2, . . . , s), then g ∈ H(K) and ‖g‖ = ‖f‖.
In this sense the choice of ωh = ω|h| does not distinguish successive variables and
that is why it is called unweighted.

The reproducing kernel now takes the form

K(x,y) =
∑
h∈Zs

ω|h| exp(2πih · (x− y)) for all x,y ∈ [0, 1]s.

To stress the role of the generator g, we denote the worst-case error of the lattice
rule An,s by en,s(g) := ewor(An,s). It is known that ([7])

e2n,s(g) =
∑

h∈Lg\{0}
ω|h|,

where the dual lattice is given by

Lg = {h ∈ Z
s : h · g ≡ 0 (mod n)}.

We define a suitable figure of merit by

ρ(g) = min
h∈Lg\{0}

|h|.

Note that this figure of merit is the same as the enhanced trigonometric degree of
a lattice rule; see [3, 4, 8, 13].

We bound the worst-case error using the figure of merit in the following lemma.

Lemma 1. Let n be a prime. Then for any g ∈ {0, 1, . . . , n− 1}s we have

ω ρ(g) ≤ e2n,s(g) ≤ ω ρ(g)2s(1− ω)−s

(
ρ(g) + s− 1

s− 1

)
.

Proof. We have

e2n,s(g) =
∑

h∈Lg\{0}
ω|h| =

∞∑
k=ρ(g)

∑
h∈Lg\{0}

|h|=k

ω|h|

=
∞∑

k=ρ(g)

ωk
∑

h∈Lg\{0}
|h|=k

1 ≤
∞∑

k=ρ(g)

ωk2s
(
k + s− 1

s− 1

)

≤ ωρ(g)2s(1− ω)−s

(
ρ(g) + s− 1

s− 1

)
,
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where we used

(6)

∞∑
k=ρ

(
k + r − 1

r − 1

)
ωk ≤ ωρ

(
ρ+ r − 1

r − 1

)
(1− ω)

−r
,

which can be shown using the binomial theorem; see [9, Lemma 2.18] or [5, Lemma
6]. On the other hand, from the first line above we also have e2n,s(g) ≥ ωρ(g). �

We now prove an existence result of generators g with a large figure of merit.

Lemma 2. For a prime number n, there exists a g ∈ {0, 1, . . . , n− 1}s such that

ρ(g) ≥ �2−1(s!n)1/s� − s.

Proof. For a given h = (h1, . . . , hs) ∈ Z
s \{0} with |hi| < n for 1 ≤ i ≤ s, there are

ns−1 choices of g ∈ {0, 1, . . . , n− 1}s such that g · h ≡ 0 (mod n). Furthermore,

|{h ∈ Z
s : |h| = 	}| ≤ 2s

(
	+ s− 1

s− 1

)
.

Let ρ < n be a given positive integer (note that ρ(g) < n always). Then

|{h ∈ Z
s : |h| ≤ ρ}| ≤ 2s

ρ∑
�=0

(
	+ s− 1

s− 1

)
= 2s

(
ρ+ s

s

)
.

Therefore,

|{g ∈ {0, 1, . . . , n− 1}s : ρ(g) ≤ ρ}| ≤ ns−12s
(
ρ+ s

s

)
.

Note that the total number of possible generators g ∈ {0, 1, . . . , n−1}s is ns. Thus,
if

(7) ns−12s
(
ρ+ s

s

)
< ns,

then there exists a g ∈ {0, 1, . . . , n− 1}s such that ρ(g) > ρ. We estimate

2s
(
ρ+ s

s

)
≤ 2s(ρ+ s)s(s!)−1.

Thus (7) is satisfied if 2s(ρ+ s)s(s!)−1 < n, i.e., for ρ = �2−1(s!n)1/s� − s− 1. �

An upper bound on the figure of merit is presented in [8, Section 5].

Lemma 3. For any n ∈ N and any g ∈ {0, 1, . . . , n− 1}s we have

ρ(g) ≤ (s!n)1/s.

Remark 1. It is possible to give in some sense explicit examples of “good lattice
points” satisfying

ρ(g) ≥ c(s)n1/s

for some positive c(s). But it seems to be not so easy to obtain c(s) as large as in
the existence proof of Lemma 2.

For example, consider an algebraic number field F of degree s + 1 and let

1, δ1, . . . , δs be algebraic integers forming a basis of F . Let δ
(1)
j , . . . , δ

(s)
j be the

conjugates of δj , 1 ≤ j ≤ s.
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For an integer n ≥ 1, let gj = gj(n) be the nearest integer to δjn. Then by
Dirichlet’s theorem [2, p. 23], for any integer N ≥ 1 there exists an n, 1 ≤ n ≤ N ,
such that

max
1≤j≤s

∣∣∣∣δj − gj(n)

n

∣∣∣∣ ≤ 1

nN1/s
.

Now let h = (h1, . . . , hs) ∈ Z
s \ {0} be such that g1h1 + · · ·+ gshs ≡ 0 (mod n).

For 1 ≤ j ≤ s define

xj = h1δ
(j)
1 + · · ·+ hsδ

(j)
s − h1g1 + · · ·+ hsgs

n

and

xs+1 = h1δ1 + · · ·+ hsδs −
h1g1 + · · ·+ hsgs

n
.

Then we have

|xs+1| =
∣∣∣h1δ1 + · · ·+ hsδs − h1

g1
n

− · · · − hs
gs
n

∣∣∣
≤

s∑
j=1

|hj |
∣∣∣δj − gj

n

∣∣∣ ≤ |h|
nN1/s

.

Furthermore, for 1 ≤ j ≤ s, we have

|xj | ≤ |xj − xs+1|+ |xs+1| ≤
s∑

i=1

|hi||δ(j)i − δi|+
|h|

nN1/s

≤ |h|
(
max
1≤i≤s

|δ(j)i − δi|+
1

nN1/s

)
.

By the definition of the xj , the product x1 · · ·xs+1 is a nonzero integer, and, there-
fore,

1 ≤ |x1 · · ·xs+1| ≤
|h|s+1

nN1/s

s∏
j=1

(
max
1≤i≤s

|δ(j)i − δi|+
1

nN1/s

)
.

Let κ =
∏s

j=1

(
max1≤i≤s |δ(j)i − δi|+ 1

nN1/s

)
. Then

|h| ≥ n1/(s+1)N1/(s(s+1))

κ1/(s+1)

and, therefore, for g(n) = (g1(n), . . . , gs(n)) we have

(8) ρ(g(n)) ≥ n1/(s+1)N1/(s(s+1))

κ1/(s+1)
.

Using the fact that 1 ≤ n ≤ N , the last inequality implies that

ρ(g(n)) ≥ n1/s

κ1/(s+1)
.

If, we take, for example, δj = 2j/(s+1), 1 ≤ j ≤ s, then max1≤i≤s |δ(j)i − δi| ≤ 4
for all j, i.e., κ ≤ 5s. Hence,

ρ(g(n)) ≥ n1/s

5
.
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Note that the generating vectors g = g(n) can easily be computed. By calculat-
ing g = g(n) for n = 1, 2, . . . and calculating ρ(g(n)) to check the figure of merit,
one must find infinitely many “good” generating vectors for which

ρ(g(n))

n1/s
≥ κ−1/(s+1).

Indeed, inequality (8) is effective in obtaining an upper bound on the number of
points needed to increase the figure of merit by one in the following way: Assume
that for some n∗ > 1 we found a generating vector g∗ = g(n∗) with figure of merit
ρ∗ = ρ(g∗) such that ρ(g(n)) < ρ∗ for all 1 ≤ n < n∗. Then, from (8), we know
that there exists an n with n∗ < n ≤ N∗ and a vector g(n) with figure of merit
ρ(g(n)) = ρ∗ + 1, where

N∗ =

⌊(
κ(ρ∗)s+1

n∗ + 1

)s⌋
+ 1.

Thus, N∗−n∗ is the maximum waiting period till the next increase of the figure of
merit must occur. In particular, this shows that there exists a sequence of integers
n1, n2, . . . with 1 ≤ n1 < n2 < n3 < · · · , ρ(g(n1)) < ρ(g(n2)) < ρ(g(n3)) < · · · ,
and ρ(g(nk)) ≥ n

1/s
k κ−1/(s+1) for k = 1, 2, 3, . . ..

This search method may also be interesting in the context of finding lattice rules
with a moderately large trigonometric degree for parameters s and n, where an (or
nearly) exhaustive computer search for good lattice rules cannot be undertaken. �

Combining Lemmas 1, 2 and 3, we obtain the following theorem.

Theorem 2. Let en,s(g) denote the worst-case error of the lattice rule with gen-
erator g and with n points in dimension s.

• For a prime number n, there exists a generator g ∈ {0, 1, . . . , n− 1}s such
that

e2n,s(g) ≤ ω2−1(s!n)1/s
(

4 e

ω − ω2

)s

n.

• For any n ∈ N and any g ∈ {0, 1, . . . , n− 1}s we have

e2n,s(g) ≥ ω(s!n)1/s .

Proof. From Lemma 1 we have

e2n,s(g) ≤ ωρ(g)2s(1− ω)−s

(
ρ(g) + s− 1

s− 1

)

≤ ωρ(g)2s(1− ω)−s (ρ(g) + s− 1)s−1

(s− 1)!
.(9)

From Lemma 2 we know that there exists a generator g ∈ {0, 1, . . . , n− 1}s with

ρ(g) ≥ 2−1(s!n)1/s − s,
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and from Lemma 3 we know that ρ(g) ≤ (s!n)1/s. Inserting these estimates into
(9), we have

e2n,s(g) ≤ ω2−1(s!n)1/s−s 2s(1− ω)−s ((s!n)
1/s + s− 1)s−1

(s− 1)!

≤ ω2−1(s!n)1/s 2s(ω − ω2)−s s
s−1(n1/s + 1)s−1

(s− 1)!

≤ ω2−1(s!n)1/s(2 e)s(ω − ω2)−s(n1/s + 1)s−1

≤ ω2−1(s!n)1/s(4 e)s(ω − ω2)−sn.

This proves the first estimate.
The second estimate easily follows from Lemmas 1 and 3. �

It is natural to ask how good are the error bounds presented in Theorem 2 for
lattice rules. First of all, it is easy to see that the upper bound on en,s(g) converges
faster than any power of n as n goes to infinity. That is, for arbitrarily large r we
have

lim
n prime, n→∞

en,s(g)

nr
= 0 for all s ∈ N.

Indeed, en,s(g)/n
r ≤ xn, where

2 ln xn = 1
2 (s!n)

1/s ln ω + s ln(4 e /(ω − ω2)) + ln n − r ln n → −∞,

so that xn goes to zero, as claimed.
Does it mean that we have exponential convergence? Assume for a moment that

the dimension s cannot go to infinity, say, s ∈ [1, s∗] for an arbitrary integer s∗.
Then there exists a positive C such that

en,s(g) ≤ C ωn1/(1+s∗)

for all primes n and s ∈ [1, s∗].

Indeed, since (s!)1/s ≥ s/e, and this inequality is asymptotically sharp due to
Stirling’s formula, we have

sup
n primes, s∈[1,s∗]

en,s(g)

ωn1/(1+s∗)

≤ C :=

(
4 e

ω − ω2

)s∗/2

sup
n∈N, s∈[1,s∗]

√
nωs/(4e)n1/s−n1/(1+s∗)

< ∞.

This means exponential convergence for a restricted range of s. In this case, we
want to find a prime n for which en,s ≤ ε. It is enough to find an integer n that is

not necessarily prime for which Cωn1/(1+s∗) ≤ ε, and then use the fact that we can
find a prime in the interval [n, 2n]. This yields the bound

n(ε, s) ≤ 2

⌈(
ln C + ln ε−1

ln ω−1

)1+s∗
⌉

for all s ∈ [1, s∗], ε ∈ (0, 1).

Hence, we obtain exponential convergence with strong polynomial tractability for
a restricted range of s. However, we stress that the exponent of ln ε−1 is 1 + s∗

and for large s∗ it can be quite harmful.
Consider now the case when s can go to infinity. Then the lower bound on

en,s(g) in Theorem 2 implies that exponential convergence does not hold. Indeed,
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for any q ∈ (0, 1) and p > 0, we estimate (s!)1/s ≤ s, take s > 1/p so that p > 1/s,
and then

lim sup
n→∞

en,s(g)

qnp ≥ lim sup
n→∞

exp
(
− 1

2 sn
1/s lnω−1 + np ln q−1

)
= ∞.

This means that we cannot achieve exponential convergence as long as we use
lattice rules. But maybe it is possible to achieve exponential convergence and at
least weak tractability if we use different algorithms. Unfortunately, it is not the
case as shown in the next theorem.

Theorem 3. Exponential convergence with weak tractability of multivariate inte-
gration for the Korobov space with ωh = ω|h|, where ω ∈ (0, 1), does not hold.

Proof. We use Theorem 1. For all h ∈ As,k,t, we have ωh ≥ ωtk. Furthermore, note
that h−h∗ has at most 2k nonzero components and these nonzero components are
from {−t,−t+ 1, . . . , t}. Therefore,

ωh−h∗ ≥ ω2tk for all h,h∗ ∈ As,k,t.

Hence,

max
h∗∈As,k,t

∑
h∈As,k,t

1

ωh−h∗
≤ |As,k,t|

ω 2 t k
=

(
s

k

)
tk

ω2tk
.

Theorem 1 yields that

e2(n, s) ≥ ω2tk(
s
k

)
tk

for all n <

(
s

k

)
tk.

Suppose that we have exponential convergence and weak tractability. Then

e(n, s) ≤ C(s) qn
p

for all s, n ∈ N,

with lnC(s) = exp(o(s)) as well as q ∈ (0, 1) and p > 0.
Now take t = s and k = �s/2� with

n =

(
s

k

)
tk − 1 = Θ

(
2s s�s/2	

s1/2

)
.

Then for large s, we have n > ss/2 and

1 ≤
(
s

k

)1/2

tk/2 ω−tk C(s) q sp/2.

Taking the logarithms we conclude that

0 ≤ 1
2 (1 + o(1)) s2 ln ω−1 + exp(o(s)) − s sp/2 ln q−1.

For large s, the last inequality is not true since the right-hand side tends to −∞.
This completes the proof. �

In summary, the choice of ωh = ω|h| yields exponential convergence with strong
polynomial tractability for a restricted range of s, and this can be achieved by
using lattice rules. We think it is quite a positive result as long as the range of
s is restricted to [1, s∗] with a relatively small s∗. However, if we allow s to be
arbitrarily large, the choice of ωh = ω|h| does not yield exponential convergence
and weak tractability. We need to consider smaller coefficients ωh to achieve our
goal of exponential convergence and at least weak tractability.
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4.2. Weighted case. In this section we consider the Korobov space for which suc-
cessive variables and groups of variables may play a different role. This is achieved
by introducing three sequences of nonnegative weights

γ = {γs,u}s∈N, u⊆[s], c = {cs,u}s∈N, u⊆[s], β = {βs,u}s∈N, u⊆[s],

where

[s] := {1, 2, . . . , s}.

If s is clear from the context, we will be using the shorthand notation γu = γs,u,
cu = cs,u and βu = βs,u. We always assume that γ∅ = 1 and c∅ = 0 as well as that
βu ≥ 1 and cu ≥ c0 > 0 for all nonempty u ⊆ [s].

For h ∈ Z
s we denote uh = {j ∈ [s] : hj �= 0}. We choose the coefficients

ωh = γuh
ω cuh

|h|βuh for all h ∈ Z
s,

where ω ∈ (0, 1). Note that ω0 = 1 and

∑
h∈Zs

ωh ≤ max
u⊆[s]

γu
∑
h∈Zs

ω c0|h| = max
u⊆[s]

γu

(
1 +

2

1− ωc0

)s

< ∞,

as needed in (1).
This corresponds to the reproducing kernel given by

K(x,y) =
∑
u⊆[s]

γu
∑

hu∈(Z\{0})|u|

ωcu|hu|βu

exp(2πi(hu,0) · (x− y))

for all x,y ∈ [0, 1]s. Here, for hu ∈ (Z \ {0})|u|, the jth component of the vector
(hu,0) ∈ Z

s is hj if j ∈ u and 0 if j /∈ u.
The worst-case error en,s(g) of the lattice rule with generator g ∈ {0, 1, . . . , n−

1}s is now

e2n,s(g) =
∑

∅�=u⊆[s]

γu
∑

hu∈Lu,g

ωcu|hu|βu

,

where the dual lattice is given by

Lu,g = {hu ∈ (Z \ {0})|u| : (hu,0) · g ≡ 0 (mod n)}.

We define a suitable figure of merit by

ρu(g) = min
hu∈Lu,g

|hu|.

Note that ρu(g) ≥ |u|. Furthermore, we set

ρ(g) = min
∅�=u⊆[s]

ρu(g).

Lemma 4. For 0 < ω < 1 and integers ρ ≥ r ≥ 1 and σ ≥ 1, we have

∞∑
k=ρ

(
k − 1

r − 1

)
ωkσ ≤ ωρσ

(
ρ− 1

r − 1

)
(1− ω)−r .
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Proof. We transform
∞∑
k=ρ

(
k − 1

r − 1

)
ωkσ

= ωρσ
∞∑
k=ρ

(
k − 1

r − 1

)
ωkσ−ρσ ≤ ωρσ

∞∑
k=ρ

(
k − 1

r − 1

)
ωk−ρ

= ωρσ−ρ
∞∑
k=ρ

(
k − r + r − 1

r − 1

)
ωk

= ωρσ−ρ+r
∞∑

k=ρ−r

(
k + r − 1

r − 1

)
ωk.

Using (6) we conclude
∞∑
k=ρ

(
k − 1

r − 1

)
ωkσ ≤ ωρσ−ρ+rωρ−r

(
ρ− 1

r − 1

)
(1− ω)−r. �

We bound the worst-case error using the figure of merit in the following lemma.

Lemma 5. The worst-case error en,s(g) of the lattice rule with generator g and
with n points in dimension s is bounded by

∑
∅�=u⊆[s]

γuω
cuρu(g)

βu ≤ e2n,s(g) ≤
∑

∅�=u⊆[s]

ωcuρu(g)
βu γu2

|u|

(1− ωcu)|u|

(
ρu(g)− 1

|u| − 1

)
.

Proof. We have

e2n,s(g) =
∑

∅�=u⊆[s]

γu
∑

hu∈Lu,g

ωcu|hu|βu

=
∑

∅�=u⊆[s]

γu

∞∑
k=ρu(g)

∑
hu∈Lu,g

|hu|=k

ωcu|hu|βu

=
∑

∅�=u⊆[s]

γu

∞∑
k=ρu(g)

ωcuk
βu

∑
hu∈Lu,g

|hu|=k

1(10)

≤
∑

∅�=u⊆[s]

γu

∞∑
k=ρu(g)

ωcuk
βu

2|u|
(
k − 1

|u| − 1

)

≤
∑

∅�=u⊆[s]

ωcuρu(g)
βu γu2

|u|

(1− ωcu)|u|

(
ρu(g)− 1

|u| − 1

)
,

which is the upper bound. To prove the lower bound, we use (10)

en,s(g) =
∑

∅�=u⊆[s]

γu

∞∑
k=ρu(g)

ωcuk
βu

∑
hu∈Lu,g

|hu|=k

1 ≥
∑

∅�=u⊆[s]

γuω
cuρu(g)

βu

. �

Next we prove an existence result for generators g with a large figure of merit.

Lemma 6. For a prime number n and arbitrary positive real numbers du with∑
∅�=u⊆[s]

du ≤ 1,



920 J. DICK, G. LARCHER, F. PILLICHSHAMMER, AND H. WOŹNIAKOWSKI

there exists a generator g ∈ {0, 1, . . . , n− 1}s such that

ρu(g) ≥
⌈
2−1 (|u|! du n)1/|u|

⌉
− 1 for all nonempty u ⊆ [s].

Proof. For each given h ∈ Z
s \ {0} there are ns−1 choices of g ∈ {0, 1, . . . , n− 1}s

such that g · h ≡ 0 (mod n). For ∅ �= u ⊆ [s] and for 	 ≥ |u|, we have

|{hu ∈ (Z \ {0})|u| : |hu| = 	}| = 2|u|
(

	− 1

|u| − 1

)
.

Take an integer ρu such that ρu ≥ |u|. Then

|{hu ∈ (Z \ {0})|u| : |hu| ≤ ρu}| = 2|u|
ρu∑

�=|u|

(
	− 1

|u| − 1

)
= 2|u|

(
ρu
|u|

)
.

Therefore,

|{g ∈ {0, 1, . . . , n− 1}s : ρu(g) ≤ ρu}| ≤ ns−12|u|
(
ρu
|u|

)
.

Thus, if

(11) ns−12|u|
(
ρu
|u|

)
< dun

s,

where ns is the total number of possible generators, there exist more than (1−du)n
s

generators g ∈ {0, 1, . . . , n− 1}s such that ρu(g) > ρu. We have

2|u|
(
ρu
|u|

)
≤ 2|u|

|u|! ρ
|u|
u .

Thus (11) is satisfied for ρu for which 2|u|(|u|!)−1ρ
|u|
u < dun, that is, for

ρu = �2−1(|u|! dun)1/|u|� − 1.

For ∅ �= u ⊆ [s], let

Au = {g ∈ {0, 1, . . . , n− 1}s : ρu(g) > ρu}
and A =

⋂
∅�=u⊆[s]Au. Let A′ = {0, 1, . . . , n − 1}s \ A, similarly define A′

u. Then

we have

|A′| =
∣∣∣∣

⋃
∅�=u⊆[s]

A′
u

∣∣∣∣ ≤
∑

∅�=u⊆[s]

|A′
u| < ns

∑
∅�=u⊆[s]

du ≤ ns.

Thus, the set A is nonempty, and there exists a g ∈ {0, 1, . . . , n − 1}s such that
ρu(g) > ρu for all ∅ �= u ⊆ [s], as claimed. �
Lemma 7. For ω1 ∈ (ω, 1) and c0 > 0, there exists a positive number C =
C(ω, ω1, c) such that(

x− 1

k − 1

)
ω c xk ≤ C ω c xk

1 for all x, k ∈ N and c ≥ c0.

Proof. Let q := ω/ω1. Clearly, q ∈ (0, 1). Then(
x− 1

k − 1

)
q c xk ≤ (x− 1)k−1 q c xk

< xk q c xk ≤ xk q c0 xk

≤ sup
m∈N

mq c0 m =: C < ∞,

as claimed. �
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Combining Lemmas 5, 6 and 7, we obtain the following theorem.

Theorem 4. Assume that

βu ≥ |u| and cu ≥ c0 > 0 for all nonempty u ⊆ [s].

Let ω1 ∈ (ω, 1). For a prime number n and arbitrary positive real numbers du =
ds,u,

∅ �= u ⊆ [s], with
∑

∅�=u⊆[s]

du ≤ 1,

there exists a generator g ∈ {0, 1, . . . , n− 1}s such that

e2n,s(g) ≤ C1

∑
∅�=u⊆[s]

ω
cu4

−|u||u|! dun
1 γu2

|u|(1− ωcu)−|u|,

where the positive constant C1 depends only on ω, ω1 and c0.

Proof. From Lemma 5, the assumption on the βu’s and Lemma 7 we obtain

e2n,s(g) ≤
∑

∅�=u⊆[s]

ωcuρu(g)
βu

γu2
|u|(1− ωcu)−|u|

(
ρu(g)− 1

|u| − 1

)

≤
∑

∅�=u⊆[s]

ωcuρu(g)
|u|
γu2

|u|(1− ωcu)−|u|
(
ρu(g)− 1

|u| − 1

)

≤ C1

∑
∅�=u⊆[s]

ω
cuρu(g)

|u|

1 γu2
|u|(1− ωcu)−|u|.

Using Lemma 6 and the fact that ρu(g) ≥ |u| ≥ 1 for any nonempty u, there exists
a generator g ∈ {0, 1, . . . , n− 1}s for which

e2n,s(g) ≤ C1

∑
∅�=u⊆[s]

ω
cu(max{�2−1(|u|! dun)

1/|u|�−1,1})|u|

1 γu2
|u|(1− ωcu)−|u|.

If 2−1(|u|! dun)1/|u| > 1, then we have

�2−1(|u|! dun)1/|u|� − 1 ≥ 4−1(|u|! dun)1/|u|.

If 2−1(|u|! dun)1/|u| ≤ 1, then we have

max{�2−1(|u|! dun)1/|u|� − 1, 1} = 1 ≥ 2−1(|u|! dun)1/|u|.

Hence, in both cases, we have

max{�2−1(|u|! dun)1/|u|� − 1, 1} ≥ 4−1(|u|! dun)1/|u|

and, therefore,

e2n,s(g) ≤ C1

∑
∅�=u⊆[s]

ω
cu4

−|u||u|! dun
1 γu2

|u|(1− ωcu)−|u|,

as claimed. �
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5. Tractability

We present conditions on the weights βs,u, cs,u and γs,u to obtain tractability
and exponential convergence. We recall that these weights define ωs,h by

ωs,h = γs,uh
ωcs,uh

|h|βs,uh for all h ∈ Z
s

with uh = {j ∈ [s] : hj �= 0}.

Theorem 5. Choose βs,u and cs,u such that

βs,u ≥ |u| and cs,u ≥ c0 > 0

for all s ∈ N and all nonempty u ⊆ [s]. Assume that

lim sup
s→∞

∑
∅�=u⊆[s]

4|u|

cs,u|u|!
< ∞.

Let ω1 ∈ (ω, 1). Then for every prime n and any dimension s ∈ N there exists a
generator g ∈ {0, 1, . . . , n− 1}s such that

e2n,s(g) ≤ C1 C(s)ω c n
1 ,

where a positive number C1 depends only on ω, ω1 and c0,

C(s) =
∑

∅�=u⊆[s]

γs,u2
|u|(1− ωcs,u)−|u|

and
1

c
= sup

s∈N

∑
∅�=u⊆[s]

4|u|

cs,u|u|!
< ∞.

In particular,

• if

sup
s∈N

C(s) < ∞,

then we have exponential convergence with strong polynomial tractability,
and

n(ε, s) = O(1 + ln ε−1) for all ε ∈ (0, 1), s ∈ N,

• if there exists a positive τ such that

sup
s∈N

s−τ ln (1 + C(s)) < ∞,

then we have exponential convergence with polynomial tractability, and

n(ε, s) = O(s τ + ln ε−1) for all ε ∈ (0, 1), s ∈ N,

• if

lim
s→∞

ln (1 + ln (1 + C(s)))

s
= 0,

then we have exponential convergence and weak tractability, and

n(ε, s) = O(exp(o(s)) + ln ε−1) for all ε ∈ (0, 1), s ∈ N.

In all three cases, the factor in the big O notation is independent of ε−1 and s.
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Proof. First of all, note that c > 0. Indeed, we assumed that the limit superior of∑
∅�=u⊆[s]

4|u|/(cs,u|u|!)

is finite, and therefore the supremum over s of the same sum is finite. Hence,
1/c < ∞ and c > 0.

For any ∅ �= u ⊆ [s], define

ds,u =
c 4|u|

cs,u|u|!
.

Then
∑

∅�=u⊆[s] ds,u ≤ 1. By Theorem 4 there exists a generator g ∈ {0, 1, . . . , n−
1}s such that

e2n,s(g) ≤ C1

∑
∅�=u⊆[s]

ω
cs,u4

−|u||u|! ds,un
1 γs,u2

|u|(1− ωcs,u)−|u|

= C1ω
c n
1

∑
∅�=u⊆[s]

γs,u2
|u|(1− ωcs,u)−|u|

= C1 C(s)ωcn
1 ,

where C1 > 0 is as in Theorem 4, and hence depends only on ω, ω1 and c0.
This means that we have exponential convergence. The conditions on tractability

in terms of C(s) have already been established in Section 2. This completes the
proof. �

We now show how to find c and c0 for

cs,u = (|u|!)−14|u|
∏
j∈u

jα with α > 1

for all nonempty u ⊆ [s]. Then

∑
∅�=u⊆[s]

4|u|

cs,u|u|!
=

∑
∅�=u⊆[s]

∏
j∈u

j−α

=
s∑

k=1

∑
u⊆N,|u|=k

∏
j∈u

j−α

≤
∞∑
k=1

(k!)−1ζ(α)k = exp(ζ(α))− 1,

where ζ(α) =
∑∞

j=1 j
−α is the Riemann zeta function. Therefore, c ≥ (exp(ζ(α))−

1)−1. Since

cs,u = (|u|!)−14|u|
∏
j∈u

jα ≥ (|u|!)α−14|u| ≥ 4

we can take c0 = 4.
Another choice of cs,u is cs,u = c(s) for some function c. Then we have

∑
∅�=u⊆[s]

4|u|

cs,u|u|!
=

1

c(s)

s∑
k=1

4k

k!

(
s

k

)
≤ 1

c(s)

s∑
k=1

4k sk

k! k!

≤ 1

c(s)
max
k∈N

4k

k!
exp(s) =

32 exp(s)

3 c(s)
.
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Hence, the last sum is uniformly bounded in s, for instance, if we take c(s) = exp(s).
For such c(s) we have c0 = e and c ≥ 3/32.

We now illustrate Theorem 5 for product weights. That is, γs,∅ = 1 and

γs,u =
∏
j∈u

γs,j

for all nonempty u ⊆ [s]. Here, {γs,j}s∈N,j=1,2,...,s is a given sequence of nonnegative
numbers. From Theorem 5 we easily obtain the following corollary.

Corollary 1. Consider product weights γs,u with βs,u and cs,u satisfying the as-
sumptions of Theorem 5. Then

• if

lim sup
s→∞

s∑
j=1

γs,j < ∞,

then we have exponential convergence with strong polynomial tractability,
and

n(ε, s) = O(1 + ln ε−1) for all ε ∈ (0, 1), s ∈ N,

• if there exists a positive τ such that

lim sup
s→∞

s−τ
s∑

j=1

γs,j < ∞,

then we have exponential convergence with polynomial tractability, and for
any positive δ we have

n(ε, s) = O(s τ+δ + ln ε−1) for all ε ∈ (0, 1), s ∈ N,

• if

lim
s→∞

ln
∑s

j=1 γs,j

s
= 0,

then we have exponential convergence with weak tractability, and

n(ε, s) = O(exp(o(s)) + ln ε−1) for all ε ∈ (0, 1), s ∈ N.

In all three cases, the factor in the big O notation is independent of ε−1 and s.

Proof. We have

C(s) =
∑

∅�=u⊆[s]

γs,u2
|u|(1− ωcs,u)−|u|.

Since cs,u ≥ c0 > 0 for all nonempty u ⊆ [s], we obtain

C(s) ≤
∑

∅�=u⊆[s]

∏
j∈u

γs,j
2

1− ω c0
=

s∏
j=1

(
1 + γs,j

2

1− ω c0

)
− 1

≤ exp

⎛
⎝ln

⎛
⎝ s∏

j=1

(
1 + γs,j

2

1− ω c0

)⎞
⎠
⎞
⎠

= exp

⎛
⎝ s∑

j=1

ln

(
1 + γs,j

2

1− ω c0

)⎞
⎠ ≤ exp

⎛
⎝ 2

1− ω c0

s∑
j=1

γs,j

⎞
⎠ .(12)
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Hence

ln(1 + C(s)) = O

⎛
⎝1 +

s∑
j=1

γs,j

⎞
⎠ .

The rest easily follows from Theorem 5 and the assumptions on
∑s

j=1 γs,j . �

Note that for γs,j = 1 the condition on strong polynomial tractability is not sat-
isfied, but we have polynomial tractability with τ = 1. For γs,j = sk, polynomial

tractability still holds, however, now τ = k + 1. Finally, for γs,j = js
a

, the con-
dition on polynomial tractability does not hold for any positive a, however, weak
tractability holds for any a < 1.

Remark 2. We now discuss the role of the weights βs,u. They are more important
than the weights γs,u and cs,u since they determine the powers of |h| in the expo-
nents of ω. In Theorem 5 we assumed that βs,u ≥ |u|. Obviously, it is possible
to modify Theorem 5 with the assumption βs,u ≥ β0|u| for some positive β0. We
choose β0 = 1 to simplify the notation. However, the choice βs,u = o(|u|) with the
same assumptions on γs,u and cs,u contradicts exponential convergence with weak
tractability as we will now show. From this point of view the choice βs,u = Ω(|u|)
is best possible.

For simplicity, take γs,u = 1 and cs,u = exp(s). We know that this and βs,u ≥ |u|
yield exponential convergence with polynomial tractability.

We now assume that βs,u = β(|u|) = o(|u|) for some monotonically increasing
function β such that β(|u|) ≥ 1. We show that exponential convergence with weak
tractability no longer holds. To prove this we use Theorem 1 and proceed similarly
as in Theorem 3. By the conditions on the weights, for all h,h∗ ∈ As,k,t we have

ωh−h∗ ≥ ωexp(s) (2tk)β(2k)

.

Hence,

e2(n, s) ≥ ωexp(s) (2tk)β(2k)

(
s
k

)
tk

for all n <
(
s
k

)
tk.

Without loss of generality, we assume that s is even and take t = s, k = s/2 and

n =
(
s
k

)
tk − 1 = Θ

(
2sss/2

s1/2

)
.

Suppose that exponential convergence with weak tractability holds. Then there
exist a positive p and q ∈ (0, 1) such that

e(n, s) ≤ exp(exp(o(s)))qn
p

for all s, n ∈ N.

This leads to

exp(exp(o(s)))qn
p ≥ ω

1
2 exp(s) s2β(s)

/Θ

(
2s/2ss/4

s1/4

)
,

and taking the logarithms we obtain

exp(o(s)) + Θ

(
2spssp/2

sp/2

)
log q − exp(s)s2 o(s) log ω

2

+Θ

(
s log 2

2
+

(s− 1) log s

4

)
≥ 0.
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For large s, this reduces to

exp(s) s o(s) ≥ Θ
(
2sps(s−1)p/2

)

which is a contradiction.

Remark 3. We stress that we can obtain strong polynomial tractability with weaker
assumptions on the weights if we only demand a polynomial convergence instead of
the exponential one. In this case, we can even choose βs,u = cs,u = 1. Then

ωs,uh
= γs,uh

ω|h| for all h ∈ Z
s.

By the usual averaging argument using Jensen’s inequality (see for example [18]),
we obtain that for any s ∈ N and any prime n there exists a g ∈ {0, 1, . . . , n− 1}s
such that

e2n,s(g) ≤
1

(n− 1)α

⎛
⎝ ∑

∅�=u⊆[s]

γ
1/α
s,u

(
2ω1/α

1− ω1/α

)|u|
⎞
⎠

α

,

for positive α that can be arbitrarily large. If

(13) Cα := sup
s∈N

∑
∅�=u⊆[s]

γ
1/α
s,u

(
2ω1/α

1− ω1/α

)|u|

< ∞,

then we have

n(ε, s) ≤
⌈
Cαε

−2/α
⌉
,

which means strong polynomial tractability. If the weights γs,u are of product form
independent of s, i.e.,

γs,u =
∏
j∈u

γj

where {γj}j∈N is a sequence of nonnegative reals, then condition (13) is satisfied iff

∞∑
j=1

γ
1/α
j < ∞.

6. Constructive approach

We present a constructive result, now in the weighted setting. The “pseudo-
constructive” point set of Remark 1 no longer works. However, it seems natural to
use sample points from regular grids with different mesh-sizes that depend on the
weights. In the following we assume that we are given an increasing sequence

1 ≤ β(1) ≤ β(2) ≤ . . .

of positive reals such that β∗ :=
∑∞

i=1 1/β(i) < ∞.
For s,m ∈ N, let the point set Ps be given by

(14)

({
k1
m1

}
, . . . ,

{
ks
ms

})

for ki = 0, 1, . . . ,mi − 1 and i = 1, 2, . . . , s, where mi :=
⌊
m1/(β∗·β(i))⌋.

The cardinality of the point set Ps is

n =

s∏
i=1

⌊
m1/(β∗·β(i))

⌋
≤ m

1
β∗

∑s
i=1 β(i)−1

≤ m.
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The point set Ps is a grid with the mesh-size 1/mi that does not decrease with
the coordinate direction i. The mesh-size is small for the important directions that
correspond to small weight β(i), and becomes larger and larger for less important
directions corresponding to large weights β(i). In particular, since β∗ ·β(i) ≥ i and
goes to infinity with i, we have mi = 1 for large i.

Theorem 6. Choose the following weights:

• γs,u = 1 for all s ∈ N and u ⊆ [s],
• βs,u = β (maxj∈u j) for all s ∈ N and nonempty u ⊆ [s], where β : N → N

is some function such that

1 ≤ β(1) ≤ β(2) ≤ . . . and β∗ :=

∞∑
i=1

1/β(i) < ∞.

• cs,u = 2βs,u for all s ∈ N and nonempty u ⊆ [s].

Then for any s ∈ N for the point set Ps defined by (14) with n = |Ps|, we have

e2n,s(Ps) ≤ c s ω n1/β∗

,

for some c ≥ 1.
That is, we have exponential convergence with polynomial tractability, and

n(ε, s) = O
((

s+ ln ε−1
)β∗)

with the factor in the big O notation independent of ε−1 and s.

Proof. The worst-case error for integration using a quasi-Monte Carlo rule with
quadrature points Ps and n = |Ps|, is given by

e2n,s(Ps) = −1 +
1

n2

∑
x,y∈Ps

K(x,y).

Then we have

e2n,s(Ps)

= −1 +
1

n2

m1−1∑
k1,l1=0

. . .

ms−1∑
ks,ls=0

∑
u⊆[s]

∑
hu∈(Z\{0})|u|

ωcu|hu|βu

exp

⎛
⎝2πi

∑
j∈u

hj(kj − lj)

m

⎞
⎠

= −1 +
∑
u⊆[s]

∑
hu∈(Z\{0})|u|

ωcu|hu|βu

∏
j �∈u

m2
j∏s

i=1 m
2
i

×
∏
j∈u

mj−1∑
kj ,lj=0

exp(2πihj(kj − lj)/mj)

= −1 +
∑
u⊆[s]

∑
hu∈(Z\{0})|u|

ωcu|hu|βu

∏
j �∈u

m2
j∏s

i=1 m
2
i

×
∏
j∈u

∣∣∣∣∣∣
mj−1∑
kj=0

exp(2πihjkj/mj)

∣∣∣∣∣∣
2

.
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For any m ∈ N and h ∈ Z we have

m−1∑
k=0

exp(2πihk/m) =

{
m if h ≡ 0 (modm),
0 if h �≡ 0 (modm).

Therefore, we obtain

e2n,s(Ps) = −1 +
∑
u⊆[s]

∑
hu∈(Z\{0})|u|

hj≡0 ( mod mj) ∀j∈u

ωcu|hu|βu

= −1 +
∑
u⊆[s]

∑
a∈(Z\{0})|u|

ω
cu(|a1mν1

|+···+|aumν|u| |)
βu

=
∑

∅�=u⊆[s]

∑
a∈(Z\{0})|u|

ω
(2(|a1mν1

|+···+|a|u|mν|u| |))
β(ν|u|)

,

where u = {ν1, · · · , ν|u|}, with ν1 ≤ ν2 ≤ · · · ≤ ν|u| and where a = (a1, . . . , a|u|).
Since τ = β(ν|u|) ≥ 1 and ai ≥ 1, we have

|u|∑
i=1

|ai| (2mνi
)τ ≤

|u|∑
i=1

|ai|τ (2mνi
)τ .

By Jensen’s inequality, we have

|u|∑
i=1

|ai|τ (2mνi
)τ ≤

⎛
⎝

|u|∑
i=1

|ai| 2mνi

⎞
⎠

τ

.

Therefore, ⎛
⎝

|u|∑
i=1

|ai| 2mνi

⎞
⎠

τ

≥
|u|∑
i=1

|ai| (2mνi
)τ .

Hence,

ω
(2(|a1mν1

|+···+|a|u|mν|u| |))
β(ν|u|)

≤ ω
(2mν1

)
β(ν|u|)|a1|+···+(2mν|u| )

β(ν|u|)|a|u||

≤ ωm

β(ν|u|)
β·β(ν1) |a1|+···+m

β(ν|u|)
β·β(ν|u|) |a|u||

≤ ω|a1|+···+|a|u|−1|+m1/β |a|u||.

Therefore, we have

∑
a∈(Z\{0})|u|

ω
(2(|a1mν1

|+···+|a|u|mν|u| |))
β(ν|u|)

≤
(
2

∞∑
a=1

ωa

)|u|−1

2
∞∑
a=1

ωam1/β∗

.

Hence, for the worst-case error we get

e2n,s(Ps) ≤
∑

∅�=u⊆[s]

(
2ω

1− ω

)|u|−1
2

1− ω
ωm1/β∗

≤ 1

ω

(
2ω

1− ω
+ 1

)s

ωm1/β∗

,

and the result follows. �
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Remark 4. If we take β as in Theorem 6, and redefine

cs,u =
log 3

logω−1
2βs,u

and γs,u such that ∑
∅�=u⊆[s]

γs,u < ∞,

then following the proof of Theorem 6 it is easy to see that we even obtain the
exponential convergence with strong polynomial tractability.

Remark 5. The (essential) weights βs,u in Theorem 6 are larger than the weights
βs,u in Theorem 5. However, the weights βs,u in Theorem 6 are again, in some
sense, best possible if regular grids with arbitrary mesh-sizes are used. To see
this, again take γs,u = 1 and cs,u = 2βs,u as in Theorem 6, and assume now that
βu = β(maxj∈u j) with a monotonically increasing function β such that

∞∑
i=1

1/β(i) = +∞.

This holds, for instance, for β(i) = i.
Let σ(s) :=

∑s
i=1 1/β(i). Then for given integers m1, . . . ,ms, n = m1 · · ·ms,

take the grid Ps given by ({
k1
m1

}
, . . . ,

{
ks
ms

})

for ki = 0, 1, . . . ,mi − 1 and i = 1, 2, . . . , s.
From the proof of Theorem 6 we have

esn,s(Ps) ≥
∑

∅�=u⊆[s]

∑
a∈(Z\{0})|u|

ω
(2(|a1mν1

|+···+|a|u|mν|u| |))
β(ν|u|)

≥
s∑

ν=1
u={ν}

ω2mβ(ν)
ν ≥ ω2min1≤ν≤s mβ(ν)

ν .

Even for real mν with m1 · · ·ms = n we have

min
1≤ν≤s

mβ(ν)
ν ≤ n1/σ(s).

Hence,

e2n,s(Ps) ≥ ω2n1/σ(s)

,

and since lims→∞ 1/σ(s) = 0 we cannot have exponential convergence.
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