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ON A NONLINEAR SUBDIVISION SCHEME AVOIDING GIBBS
OSCILLATIONS AND CONVERGING TOWARDS C*
FUNCTIONS WITH s> 1

S. AMAT, K. DADOURIAN, AND J. LIANDRAT

ABSTRACT. This paper presents a new nonlinear dyadic subdivision scheme
eliminating the Gibbs oscillations close to discontinuities. Its convergence, sta-
bility and order of approximation are analyzed. It is proved that this scheme
converges towards limit functions Holder continuous with exponent larger than
1.299. Numerical estimates provide a Holder exponent of 2.438. This sub-
division scheme is the first one that simultaneously achieves the control of
the Gibbs phenomenon and has limit functions with Holder exponent larger
than 1.

1. INTRODUCTION

Subdivision schemes are useful tools for generating smooth curves and surfaces.
For convergent schemes, starting from discrete sets of control points and using
basic rules of low complexity, curves or surfaces can be obtained as limits (called
limit functions) of sequences of points generated by recursive application of the
subdivision scheme.

A simple example of a subdivision scheme is the family of interpolatory subdi-
vision schemes, based on local Lagrange interpolation that has been derived and
analyzed in [IT]. Another example is the family of spline subdivision schemes re-
lated to spline spaces [§].

The four-point interpolatory scheme [16], [I5], is a convergent linear scheme of
the first family, involving four-point stencils at each subdivision, for which the limit
functions are at least in the space C2~ (see Definitions [ and B in Section [B]). The
Chaikin algorithm [7] is an example of a spline subdivision scheme, with lower
complexity than the previous example and converging towards C?~ functions.

For applications, for instance, to computer-aided geometric design or image pro-
cessing, complexity and convergence/regularity are not the only quality criteria.
On the one hand, the order of approximation, which characterizes the precision
of the scheme, is crucial. On the other hand, oscillations that could occur in the
limit functions in the vicinity of strongly varying data (coming from the sampling
of discontinuous functions), called Gibbs oscillations, are undesirable.
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In the last decade, various attempts to improve the properties of linear subdi-
vision schemes have lead to nonlinear subdivision schemes. For such schemes, the
subdivision rules become data dependant; in addition to the previously defined cri-
teria, a stability property should be added to ensure that the nonlinear scheme is
linearly affected by perturbations of the data (for linear schemes, the stability is a
direct consequence of the convergence).

For nonlinear subdivision schemes, few general results of convergence or stability
are available; see for instance [5], [9], [12], [22], [10], [I9] and [I7].

A large family of nonlinear subdivision schemes comprising, e.g., ENO, WENO
or PPH schemes [9], [E], is built from schemes constructed as a perturbation of
the four-point linear interpolatory C'?~ Lagrange scheme based on centered degree
3 polynomial interpolation. These schemes are interpolatory subdivision schemes
and are constructed to avoid the Gibbs oscillations occurring classically for linear
interpolatory schemes (see Figure [I] in Section [6]). The schemes of this family are,
unfortunately, characterized by a low regularity of the limit functions, typically
C'~. Moreover, the ENO scheme is unstable.

In [I4], a new linear and noninterpolatory four-point subdivision scheme has
been presented. Its refinement rule is based on local cubic interpolation followed
by a shift of 1/4 or, in other words, an evaluation at positions 1/4 and 3/4 rather
than the standard evaluation at 1/2 that leads to the interpolatory scheme. This
new scheme has been shown to be convergent towards a C? curve.

The aim of this paper is to analyze a new scheme formulated using the same
trick (shift of 1/4) for the PPH-type schemes [4] which are derived by modifying
the classical four-point interpolatory subdivision scheme substituting the arithmetic
mean with the harmonic mean (see formula () in Section 2]). After the definition
of the scheme in Section [2] we successively analyze its convergence (Section B)), its
stability (Section M) and its order of approximation (in Section [l). Its behavior in
the presence of strongly varying data (Gibbs oscillations) is analyzed in Section [6
The last section is devoted to concluding remarks.

2. A NEW NONLINEAR SUBDIVISION SCHEME

As mentioned above, the starting point of our work is the construction of N. Dyn,
M.S. Floater and K. Hormann in [I4]. There, a new linear and noninterpolatory
four-point dyadic subdivision scheme that generates C? curves is presented. Its
refinement rule is based on the local cubic Lagrange interpolation based on the
values {fn—_1, fn, fnt1, frntr2} at the positions {—1,0, 1, 2} followed by an evaluation
at positions 1/4 and 3/4. For all f € [°°(Z), the scheme is then given by

7 105
(Sf)2n* fnfl"_@

(1) 1
5 35 105 7
(Sons1 = —ﬁfnﬂ + mfn + ﬁfvﬂrl - ﬁfn+2‘

5

35
fot @fnﬂ - EanJrQa

Following [4] where a nonlinear scheme is derived by modifying the classical four-
point interpolatory subdivision scheme substituting the harmonic mean for the
arithmetic mean, we first obtain two new formulations of the scheme ().
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1:
(Sf)on = gfn + é_ifn-‘rl + éfmrz - éW7
(Sfansr = gfn + %fn-‘rl - éfmrz - %W7
2:
(Sf)an = —éfn_l + gfn + gfm _ %w,
(Wmﬂzzéﬁ4+gh+gmﬂ—é@ﬁ%ﬁ@1

where (d?f), the second order difference, is defined by d?f,, = fni1 — 2fn + fa_1-
The two formulations differ essentially in the points fy,n —1 < k < n 42
contributing to the first three components of the right-hand side of 1 and 2.
Using the same strategy as in [4], we define the new nonlinear subdivision scheme
Sppua associated to () by

If |d* fn| > |d° gz

(Semnflon = gadn+ agfors + gpfnse = aPPH(E o, fusa),
(S = galt g fut = gifra = ggPPH@ fu P ),
and if |d?f,| < |d®fni1l:

(Seenfhon = —gpfnor b o fu o fugr = PP o),
(Sunlonsr = ifut b agbt o fsn = PP s d? ),

where PPH stands for the harmonic mean defined by
Y
sgn(xy) + 1),
g8 (zy) +1)
with sgn(z) =1 if > 0 and sgn(z) = -1 if z < 0.
The motivation for the substitution of the arithmetic mean by the harmonic

mean is the elimination of oscillations near strongly varying data due to the fact
that

(2) (z,y) € R* = PPH(z,y) :=

(3) [PPH(2, )| < 2min(|z|, [y])

replaces

r+y
2

< max(|z|, [y]).

Before making a detailed analysis of the properties of the new scheme Sppy, we
summarize the most important properties of the harmonic mean in the following
proposition (properties 1 to 9 are proved in [5] and property 10 is straightforward).

Proposition 1 (Properties of the harmonic mean). For all (z,y) € R2, the har-
monic mean PPH(xz,y) salisfies:

1. PPH(z,y) = PPH(y, ).

2. PPH(z,y) =0 if zy < 0.

3. PPH(—z, —y) = —PPH(z,y).
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. PPH(x,y) = Wmin(m, ly]) [1 + |5 ] .

[PPH(2,y)| < max ([z], |y]).

[PPH(2, y)| < 2min (|z], |y|)-

For z,y > 0, min(z,y) < PPH(z,y) < xTer

Ifz=0(1), y=0(1), |y — x| = O(h) and zy > 0, then
5

9. [PPH(z1,y1) — PPH(22,y2)| < 2max(|z1 — 22|, [y1 — y2]).
10. For all (c1,c2) € R?,

®© NSO e

Y ppH(z,y)| = O(h?).

|crr — coPPH(z, y)| max (|e1], |e2]) max (||, ly|) if cice > 0,

<
lerx — coPPH(z,y)| < (Jer| + |ce|) max (||, ly|) if c1ca < 0.

3. CONVERGENCE AND REGULARITY
We recall the following definitions.

Definition 1 (Convergence of a subdivision scheme). A dyadic subdivision scheme
S is said to be uniformly convergent if

Vf el1>®(z), 387 f € C°R) s.t. lim sup|(S7f), — S f(n277)| =0.
neL

li
j—+oo

Definition 2 (C*~ convergence of a subdivision scheme). A convergent subdivision
scheme S is said to be C®~ convergent if for all f € [*°(Z), S f € C*~ where for
0<a<l,

C*™ = {f continuous, bounded and verifying Vo < «, 3C' > 0, s.t. Va,y € R,
[f(z) = f(y) < Clz —y[**},
and for o > 1, writing a =p+r >0 withp e Nand 0 <r < 1,
Co~ = {f with f® e Ccm}.

Definition 3 (L* stability of the limit function). Let S be a linear uniformly
convergent subdivision scheme and let ¢ be its limit function defined by ¢ = S*°§
with ,, =0 Vn € N\ {0} and 6y = 1. The limit function ¢ is said to be L™ stable
if
JA,B > 0 s.t. Vf € 1°°(Z), Al flloo < 1D fadb(- = 0| < B flloo,
nez
where || f]loc = suppez {[fnl}-

In order to derive the convergence, we rewrite the nonlinear subdivision scheme
Sppua as a perturbation of a classical two-point linear subdivision scheme, Sc, in-
troduced by G. Chaikin in [7] and defined by

@ (Sclan = Sn+ phus

1 3
(Scf)Qn-l—l - an + an-&-l-

The scheme S is known to be convergent with a regularity C?~ (i.e., for any
f€l®(Z),582f € C?>7). Moreover, its limit function is L> stable.
Writing:
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It |d2fn‘ 2 |d2fn+l|:

3 1 1 7
(SPPHAf)Qn = an + anJrl + 6_4d2fn+1 - 6_4PPH(d2fn7d2fn+l)7
1 3 1 5
(Sepaf)ont1 = an + an—i—l - 6—4d2fn+1 - 6—4PPH(d2fmd2fn+1),
and if |d?f,| < |d®foial:
(Somflen = fut +farr = —ed fo — PP 0P fo)
PPHA.J )2n - 4 n 4 n+1 64 n 64 noy n+1),
1 3 1 7
(SPPIIAf)2n+1 = an + anJrl + 6_4d2fn - aPPH(dem d2fn+1)7
we get that Sppya can be expressed as
(5) Seeuaf = Sof + F(de)
Introducing the function
_ | y—rppH(z,y) if [z > |y,
(6) R(z,y) = { —raepu(ny)  if 2] <y,
the expression of F' reads
1 6
(7) F(d?f)an = aR(demCanJrl) - aPPH(dzfmdzan),
1 6
(8) F(df)ans1 = —6—4R(d2fmd2fn+1) - 6—4PPH(d2fmd2fn+1)~

Before analyzing the convergence and the stability of Sppy,, we establish the
following useful properties of the function R:

Proposition 2 (Properties of the function R).

1. For all (x,y) € R?, |R(z,y)| < max(|z|, |y]).
2. For all (z1,y1), (z2,y2) € R,

|R(21,91) — R(w2,y2)| < max(|z1 — z2|, [y1 — y2l)-

Proof. Property 1 is a direct consequence of Proposition [[I-F10. To get property 2

we note that the function R is continuous and we prove that its first-order partial

derivatives R, and R, exist and satisfy ||R;|| + ||Ry|| < 1 almost everywhere.
Indeed, if z -y > 0,

_ 27 -
(9) Ry(z,y) = (r2+g)2 . if |z| > |yl,
SRR ) <y,
_y2+2my712 .
(10) Ry(x,y) _ , 2(m+y)—2 if x| > |yl,
‘ e=en if |z| < yl,
and if z -y <0,
_Jo if |z] > [y,
(11) Ry(z,y) = { 1 if 2] < |y,
_ itz > 1y,
(12) Ry(z,y) = { 0 if || < |yl

Therefore, by direct calculation, ||R.|| + ||Ry|| is bounded almost everywhere by
one that concludes the proof. (I
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To analyze the convergence of Sppus, we use the following result proved in [3]
and [2]:
Let Sy, be a subdivision scheme defined by

(13) Vfel®(Z), YneZ (SNLE)n=(Sf)n + F(0f)n,

where F' is a nonlinear operator defined on [°°(Z), J is a linear and continuous
operator on [*°(Z) and S is a linear and convergent subdivision scheme with an L
stable limit function. Then

Theorem 1. If F, S and § given in (I3) verify:

(14) M >0 st Vfel®(Z) [F(f)lleo < M|flloc
(15) de<l st Vfel™(Z) [[65(f) +0F (1)l < clldf]loo,

then the subdivision scheme Sy is uniformly convergent. Moreover, if S is C*~
convergent, then Sy, is CP~ convergent with 8 = min (o, —logs(c)).

Using Theorem [Tl we will prove the following result:

Theorem 2. The nonlinear subdivision scheme Sppys is CB~ convergent with B >
13
—loga(55) > 1.

Proof. For the perturbation F' defined by () and (8]), it is easy to see using Propo-
sition and Proposition PHI] that for all f € I°°(Z),

7
(16) o < gl e,

i.e. hypothesis (I4).

We now consider hypothesis (IH]) related, in this case, to the contraction of the
second-order differences (d?f). To simplify the notation, we call f' = Sppua(f),
thus

(P = g6 )~ GoP( o o) + PP o, 8 )
“R(d fu 1, d2 f) — SR(d fr, d2 fo 1)),
(d2f1)2n+1 = 6_14(16(d2f)n+1 + GPPH(d2fnu d2fn+1) - 6PPH(d2fn+1> d2fn+2)

+3R(A? fr, d fri1) + R(d* fry1, d* frio)).

Using properties 5 and 10 of Proposition [Tl as well as property 1 of Proposition
we deduce that for all f € [*°(Z),

13
(17) 18 M loo < 351107 Flloo-
Therefore, hypothesis (I3 of Theorem [I] is satisfied and consequently, the con-
vergence of Sppy, is achieved.
For the regularity, we again use Theorem [Il According to the values a = 2 and

c = 33 we get the regularity constant 8 = min (2, — log, (33)) ~ 1.299. O
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Numerical regularity. Following [2I], the regularity of a limit function can be
evaluated numerically. Using S7 and Ss the subdivision schemes for the differences
of order 1 and 2 associated to Sppys (which can be derived due to the specific
definition of Sppus ), the following quantities are estimated for k = 1,2 and different
values of j:

g, (215 s = (Sl
(ST F)nt1 = (Sif)nllo
They provide an estimate for 8, and Py such that the limit functions belong to
C'tPi= and C?*tP2~_ From Table [Il the numerical estimate of the regularity is
C2438= Recalling that the corresponding numerical estimate for the linear scheme
[14] is C2:57~, we observe that the nonlinear perturbation has a very weak influence
on the regularity.

TABLE 1. Numerical estimates of the limit functions regularity
C™P1— and C?1tP2~ for Sppya.

J 5 6 7 8 9 10
B1 || 0.9999 | 0.9999 1 1 1 1
B2 || 0.4395 | 0.7738 | 1.2615 | 0.6541 | 0.4387 | 0.4388

4. STABILITY
We first recall the following definition.

Definition 4 (Stability of a convergent scheme). A convergent subdivision scheme
is stable if

(18) 3C < +oos.t. V0, g% € L=(Z) ||S®f — S¥g||r~ < Ol — ¢°||co-

As for the convergence, to derive the stability of Sppy, we use the following
theorem of [2].

Theorem 3. If F, S and § given in [I3) verify: IM > 0,¢ < 1 such that Vf,g €
1=(2),

(19) IE(f) = F(g)lloo < MI[f = glloo,
(20) 16(SnLf = SNLg)lloe < clld(f = 9)lloo,

then the nonlinear subdivision scheme Sy, is stable.
Using Theorem [B], we will prove the following result:
Theorem 4. The scheme Sppya s stable.

Proof. We check the hypotheses of Theorem [Bl
First, we start with hypothesis (I9) for F.
Using the expressions of F, () and (&), Proposition [[}9 and Proposition 2}2, we
get for all f,g € [°(Z),
1472

) = F@)lle < I = gl

Second, we have to verify the contraction hypothesis (20).
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For any couple (f,g) € (I1°°(Z))?, we study (d?f* — d?g'), for k = 2n + 1 (Case
1) or k = 2n (Case 2). Only Case 1 is considered since the bound expressions are
similar in both cases. Using Proposition [[}9 as well as Proposition 2}2 we get

64/(d® M )any1 — (*g)ansa] < 16[(d® lngr — (d*g)nt1]
+6|PPH(d2fna d2fn+1) - PPH(d2gn7 d2gn+1)|
+6|PPH(d” frg1, d* fry2) — PPH(Agni1, d*gnyo)|
+3|R(d2fn7 dzfn-i—l) - R(ngn, d2gn+1)|
+|R(d2fn+1a d2fn+2 - R(d2gn+1, d29n+2)|
< (164124124 3+ D)]|(d*f) — (d%9)]]oo
= H||(d°f) = (&*9)]|o-

Thus, the hypotheses of Theorem [3] are verified and the stability of Sppys is
established. ]

5. ORDER OF APPROXIMATION

In this section, we consider the reproduction of polynomials and the order of
approximation of Sppy,-
We recall the following definitions.

Definition 5 (Reproduction of polynomials). A dyadic subdivision scheme S is
said to reproduce polynomials of degree k if for any polynomial P of degree k and
for any sequence f such that Vn € Z, f,, = P(n) then:

3P a polynomial of degree k such that (Sf), = P(27'n).

Definition 6 (Order of approximation). A dyadic subdivision scheme S is said
to have an order k of approximation if for any function ¢ € C* and any h > 0,
f = g(h.) implies that

1Sf—g(27 h)| < OR".
We then have the following result:

Proposition 3 (Reproduction of polynomials). Sppus reproduces the polynomials
of degree 2 with the translation of %.

Proof. We remark that for any P, polynomial of degree 2, and p = (P(n))nez, we
have

dzpn + d2pn+1

5 .

Therefore, for any initial sequence p = (pn)nez, Seeua(p) coincides with the appli-
cation to p of the linear scheme [14]. In particular, the results of N. Dyn, M.S.
Floater and K. Hormann [14] can be applied and the property of Definition [l is
satisfied with P(.) = P(. 4+ 1/4). O

PPH(d?pp, d*pri1) =

Concerning the order of approximation the following result holds.

Proposition 4 (Order of approximation). For any function g € C*([0,1]) and
h >0, if
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then if d? f,d? fi1 > 0 for all n € Z, then
1(Stensf)n — 927 hn) o = O(hY),
otherwise
1(Seensf)n = 927 hn)l[sc = O(R?).
Proof. According to Proposition [ if for all n € N, d?f,,d? f,,+1 > 0, then

d2fn + d2fn+1
2

Therefore, if S stands for the linear scheme defined in [I4], according to the defini-
tion of Sppya,

|PPH(d2fnv d2fn+1) - | = O(h4)

HSPPIIAf - SfHOO = O(h4).

Since (see [14]) the scheme S is of order of approximation 4 we get the result
when d? f,d? f,+1 > 0. Otherwise, the reproduction of polynomials leads to

1(Seeusf)n = 9(27 () |oo = O(R?). U

Remark 1. Following [21] one can also establish, using the stability of Sppys, that
HS}?SHAf - gHoo = O(hg)-

6. ELIMINATION OF THE GIBBS PHENOMENON

In this section, we focus on the behavior of the scheme in the presence of strongly
varying data. The reference framework deals with the sampling of a step function
as shown on Figure [l As can be seen on the left in Figure [[I high-order linear
schemes suffer from an oscillating behavior called Gibbs phenomenon.

According to D. Gottlieb and C.W. Shu [I8], given a punctually discontinuous
function f and its sampling f* defined by f* = f(nh), the Gibbs phenomenon
deals with the convergence of S*°(f") towards f when h goes to 0. It can be
characterized by two features ([18]):

1. Away from the discontinuity the convergence is rather slow and for any
point x,

|f(x) = S (") ()| = O(h).
2. There is an overshoot, close to the discontinuity, that does not diminish
with the reduction of h. Thus,

max | f(x) — S*(f")(2)| does not tend to zero with h.

We will now prove that the nonlinear scheme Sppys does not suffer from the
Gibbs phenomenon oscillations, as can be guessed from Figure [I1
We indeed have the following:

Proposition 5 (Elimination of Gibbs oscillations). Given 0 < & < h, let f be any
function defined by

Vo <€, f(z) = f-(2) with f- € C*(]—o00,£)),
Vo Z f,f($) = er(iL') ’LUZtthr € C4([£7+OOD7
with f-(§) > f+(§)-
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0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

F1GURE 1. Comparison of limit functions for the same initial se-
quence (sampling of function ([23))). Left, the linear scheme (),
right, the nonlinear scheme Sppy,

If h is sufficiently small to ensure that d*fo < 0 and d*f; > 0, we have:

o if [x| = 3h, then|f(z + 3h) = S (") (@) = O(A?),
o if |z| < 3h, there exists ap, = 0(h) such that f—_(0) + ap > S, (fM)(x) >
J+(h) = an.

Proof. For any iteration j , there exists p;, pj' such that, for all n & [2p;, 2pjf] the

evaluation of SZL f)n is performed starting only from regular data. For j = 0,p, =
—1,p¢ = 2 and by induction, p; = —27tt 97 4 2,}9;r =27+l 4 27 — 1. Therefore,
according to Proposition @ for > 3h, |f(z + $h) — Sg5u. (/") ()| = O(h3).

To prove the second part of the proposition, we first consider the initial data
and iterate the scheme.

We recall that, by hypothesis, for alli > 0, f_; = f_ +O(h) and f; = f+ +O(h).
Computing the second differences gives that d?f_; = O(h?),d?fo = O(h?) while
d*fo = f1 — fo+O(h) and d*f; = —(f1 — fo) + O(h). Applying the scheme Sppy;,
provides:

(Swanf)2 = 51+ pho+ 00,

(Swnnf)s = 3h1+2fo+00P),
(Swanflo = Sho+ g+ grlfo— f2) +O(h)
(Sennfli = 3o+ phus = gy (o — 1) + O(h).

One should notice that all of these points belong to an interval of the form
[ft —O(h), f~ + O(h)]. Without loss of generality, we focuss on negative indices.
A direct evaluation of second-order differences gives:

d2SPPHAf0 = (SPPHAf)l - 2(SPPHAf)O + (SPPHAf)—l = é—z(fl - fO) + O(h)7

d2SPPHAf—1 = (SPPHAf)O - Z(SPPHAf)—l + (SPPHAf)—2 = é—Z(fl - fO) + O(h)7
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and another application of the scheme provides:

(SEPHAf)n = (S%f)n + O(h2) ne [2p;7 _3]7
(SBunf) 2 = 7S+ )+ Sho+ (o= 1) +O(),
(Seoraf)-1 = —(—f—1+if1)+ f0+64(f0—f1)+0(h),

(Seouaf)o = fo+ f1 264(fo—f1)+0()
1 13 17

with ¢; = 7 — é—i — 5PPH(gy, g7) and ¢z = 34 é—i - 7PPH(é—i, é—l) (c; <0).
From this stage, we are now able to prove that Gibbs oscillations cannot appear.
Since after two iterations the second-order differences are bounded by é—i( fi—

fo) + O(h), due to (D),
13

7
Vi 2 2,90 € (573, 0 [0S hfal < (551252 o = 1) + O(h).

According to (6] and due to the stability of S¢ we get that the total perturbation
is bounded for all j > 2 by

7 X 137 7 1317

2D @mzl(?ﬁ) 610 = Gilo6

—(fo— f1).

Lower bound: Due to the “corner cutting property” of the scheme S¢, for all
j =2, and all n € [2p;_;, 0], we get that

SE 2 (Steund In € Lfo + 0(h), min{(Sgpa f)nsm € [297, 03],
Adding the total perturbation @I) we obtain finally that for all j and all n €
[2p]‘_71) O]a (SIZPHAf)n Z f+ - O(h)

Upper bound: Taking into account the regularity of f on ] — oo, [ and the data
after two iterations, a direct calculation gives that for n € [pjil, 27 — 1],
(SgPHAf)n = (Sé‘f)n + O(hQ)’
while for n € [27,0],
71317

(22)  (SteuafIn S Ajf1+Bjfi + fo + 6110 64(f0 = J1) +O(h).
Here, Aj11 and Bjy1,j > 2 are prov1ded from a convex combination of A; and
By, therefore, according to their values for j = 2, A;, B; € [16, 4] and A; +B; =
Rewritting the right-hand term of [22)) we get that

(Shounhn < Ai(Fr = Jo) & Byl = o) + o+ gy eris (o= 1) + O(h) < fo.

Therefore, for all n € [p;_,,0], (SpuaS)n < f— + O(R); this concludes the proof.
(I

Before finishing this paper, we return to Figure[Iland to the comparison between
the limit functions obtained with SPPHA and the limit function obtained with linear
subdivision schemes starting from the sampling f" of the discontinuous function:

in(mwz) for x € [0,0.5[,
(23) f) = { S—sin(ﬁx) for x € [0.5,1].
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It appears from Figure [Il that the limit function of the nonlinear scheme Sppya
(right) behaves much better close to the discontinuity than do the limit functions
associated to the linear scheme of comparable complexity (left). Moreover, from
Proposition [ we know that the limit function of the scheme Sppya is, in regular
regions, of higher order than the Chaikin scheme corresponding function.

7. CONCLUSIONS

In this paper, a new nonlinear subdivision scheme has been defined. It has
many desirable properties. It is convergent with a regularity proved to be at least
C1299~ and numerically estimated at C2433~. By construction, it is adapted to
the presence of isolated discontinuities, and the Gibbs phenomenon is eliminated.
The scheme is also stable, a property that, due to nonlinearity is not a consequence
of the convergence. Moreover, its order of convergence is 3. Given that it is con-
structed from a four-point centered stencil, all of these properties make this scheme
an excellent candidate for various applications. An example is given in Figure
devoted to 2D curve generation.

FIGURE 2. Application to 2D curve generation: Initial points (e);

left, linear scheme ([I]), middle, Chaikin scheme (@), right nonlinear
scheme Sppga
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