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QUASI-OPTIMAL AND ROBUST A POSTERIORI ERROR

ESTIMATES IN L∞(L2) FOR THE APPROXIMATION

OF ALLEN-CAHN EQUATIONS PAST SINGULARITIES

SÖREN BARTELS AND RÜDIGER MÜLLER

Abstract. Quasi-optimal a posteriori error estimates in L∞(0, T ;L2(Ω)) are
derived for the finite element approximation of Allen-Cahn equations. The
estimates depend on the inverse of a small parameter only in a low order poly-
nomial and are valid past topological changes of the evolving interface. The

error analysis employs an elliptic reconstruction of the approximate solution
and applies to a large class of conforming, nonconforming, mixed, and discon-
tinuous Galerkin methods. Numerical experiments illustrate the theoretical
results.

1. Introduction

In this paper, we derive quasi-optimal a posteriori error estimates in
L∞(0, T ;L2(Ω)) for the finite element approximation of the Allen-Cahn problem

∂tu−Δu+ ε−2f(u) = 0 in (0, T )× Ω,

∂nu = 0 on (0, T )× ∂Ω,

u(0, ·) = u0,

(1)

with T > 0, Ω ⊆ R
d, d = 2, 3, u0 ∈ L2(Ω), f(u) = u3 − u, and 0 < ε � 1. Our

ultimate goal is to prove estimates that are robust in the small parameter ε past
generic singularities in the evolution described by (1).

The mathematical model (1) is the simplest version of a phase field model and
was introduced in [AC79] to model the motion of phase boundaries by surface
tension. The interface Γt := {x ∈ Ω : u(x, t) = 0} separates regions in which
u(t, ·) ≈ +1 from those in which u(t, ·) ≈ −1. As ε → 0, the evolution of the inter-
face approaches the motion of a hypersurface governed by Brakke’s mean curvature
flow [Bra78, Ilm93]. An important feature of the diffuse interface model (1) is that
topological changes in Γt are captured whereas sharp interface models typically
require artificial adaptations to model such effects.

A straightforward error analysis for the numerical approximation of (1) leads to
an exponential dependence of error estimates on ε−1. The first successful attempt
to establish robust a priori error estimates, i.e., error estimates that depend on
ε−1 only in a polynomial, for the approximation of Allen-Cahn equations is due
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to [FP03]. Those results are based on uniform bounds for the principal eigenvalue
of the linearized Allen-Cahn operator about the exact solution, i.e., for the quantity

−λAC(t) := inf
v∈H1(Ω)\{0}

‖∇v‖2 + (f ′(u(t))v, v)

‖v‖2 ,

where (·, ·) and ‖ · ‖ denote the inner product and the norm in L2(Ω), respectively.
Such bounds are available as long as (1) describes the smooth evolution of a devel-
oped interface Γt; cf. [AF93, Che94, dMS95]. The ideas of [FP03] have been carried
over to an a posteriori error analysis in [KNS04, FW05] employing a continuation
argument. Instead of using a priori bounds for λAC(t) to derive a posteriori error
estimates, it has been proposed in [Bar05] to extract the relevant information about
the stability of the evolution from the approximate solution U by considering the
principal eigenvalue of the linearized Allen-Cahn operator about U(t), i.e.,

−ΛAC(t) := inf
v∈H1(Ω)\{0}

‖∇v‖2 + (f ′(U(t))v, v)

‖v‖2 .

This still allows to rigorously derive a posteriori error estimates and establishes
a mechanism to detect critical times at which uniform bounds for λAC and its
approximation ΛAC break down. In the recent paper [BMO09b] it has been shown
that the weaker bound ∫ T

0

Λ+
AC(t) dt ≤ C0 + log(ε−κ)

is sufficient for a robust a posteriori error analysis and that this bound is realistic for
generic topological changes of Allen-Cahn evolutions. Specifically, the computable
left-hand side of the estimate enters the error estimates of [BMO09b] exponentially
and hence no bounds are required a priori.

The estimates of [BMO09b] hold provided that the computable upper bound
ηL2(H1) for the error in L2(0, T ;H1(Ω)) satisfies

ηL2(H1) ≤ Cε4+3κ

which imposes restrictive conditions on discretizations since we only expect ηL2(H1)

∼ ε−5/2(τ + h) for an implicit scheme with temporal and spatial step sizes τ and
h, respectively. The quantity ηL2(H1) also controls the error in the weaker norm of

L∞(0, T ;L2(Ω)), but this bound is suboptimal since the optimal convergence rate is
τ+h2 for the error measured in this norm. By establishing quasi-optimal estimates
for the error in L∞(0, T ;L2(Ω)) we expect to obtain a posteriori error estimates
that are valid under less restrictive conditions on the corresponding computable
estimator ηL∞(L2).

Quasi-optimal a posteriori error estimates in L∞(0, T ;L2(Ω)) for parabolic prob-
lems have been derived under certain conditions on triangulations in [EJ95a, EJ95b]
using duality arguments. A different approach to the derivation of such estimates
by energy techniques has been proposed and analyzed for semidiscrete schemes
in [MN03] and investigated for fully discrete schemes in [LM06, GL08]. The ap-
proach consists in constructing at each time-step tj a function wj such that the
approximate solution U j of the linear parabolic problem at time tj is the Galerkin
approximation to an elliptic problem whose exact solution is wj . This concept is
called elliptic reconstruction and allows us to derive a posteriori error estimates for
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parabolic problems by reducing a large part of the analysis to known a posteri-
ori error estimates for elliptic problems. Elliptic reconstruction may be regarded
as the a posteriori analogue of elliptic projection which has been used to derive
quasi-optimal a priori error estimates in L∞(0, T ;L2(Ω)) for parabolic equations
in [Whe73].

We combine the method of elliptic reconstruction of [MN03, LM06] with tech-
niques recently developed in [BMO09b] to derive robust and quasi-optimal a pos-
teriori error estimates in L∞(0, T ;L2(Ω)) for the numerical approximation of the
nonlinear parabolic partial differential equation (1). Let (U j)j=0,1,...,J ⊂ L2(Ω)
denote a sequence of approximations to the exact solution of (1) obtained with the
implicit Euler scheme in time and some finite element method in space, i.e., for
given U j−1 ∈ V

j−1
h the function U j ∈ V

j
h satisfies

(2) τ−1
j (U j − U j−1, V ) + ajh(U

j , V ) = −ε−2(f(U j), V )

for all V ∈ V
j
h. Here, τj is a time-step size, V

j
h an approximation space, and

ajh a bilinear form on V
j
h that approximates the Laplace operator. We let U ∈

H1(0, T ;L2(Ω)) denote the function that is obtained by piecewise affine interpola-
tion of the approximations (U j)j=0,1,...,J subordinate to the partition of the time
interval (0, T ) defined by the time-steps (τj)j=1,2,...,J . Under moderate consis-

tency and compatibility conditions on the bilinear forms ajh (cf. (7) and Assump-
tion (COMP) below) that allow conforming, nonconforming, mixed, and discontin-
uous Galerkin methods, we establish the computable error bound

sup
s∈(0,T )

‖(u− U)(s)‖ ≤ max
j=0,1,...,J

EL2(U j ;Vj
h)

+ 8
{ J∑

j=0

τj

(
τj‖dtΔj

hU
j‖+ τjε

−2Cf ′,Ij‖dtU j‖+ EL2(dtU
j ; V̂j

h)

+ ε−2Cf ′,Ij max
k=j−1,j

EL2(Uk;Vk
h)
)

+ ε−1
( J∑

j=0

τjCC�

(
τ−2
j ‖hj(U

j−1 − P j
hU

j−1)‖2 + ε−4‖hj(f(U
j)− P j

hf(U
j))‖2

))1/2

+ ‖u0 − U0‖+ EL2(U0;V0
h)
}
exp

(
4

J∑
j=0

τj
(
(1− ε2)Λ

j

AC + 1 + ε−2ηjf ′

)+)
,

which holds provided that the terms inside the curly brackets, denoted ηL∞(L2),
and the exponential factor, denoted E, satisfy

(3) ηL∞(L2) ≤
ε4

(4μgCS(1 + T ))2
(4E)−3 ≤ Cε4+3κ.

The symbol dt denotes the backward difference operator, −Δj
h is a discrete version

of the Laplace operator defined by ajh, hj is a positive mesh-size function, P j
h is the

L2 projection onto V
j
h, Cf ′,Ij , η

j
f ′ , and μg are computable quantities related to the

nonlinearity f , and Λ
j

AC stands for a computable upper bound for ΛAC(tj). We
refer the reader to the subsequent sections for further details. It is important to
notice the linear accumulation of error estimators for space and time discretization
residuals in the first sum inside the curly brackets on the right-hand side of our
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error estimate. To evaluate the upper bound it is not necessary to compute Δj
hU

j

explicitly since this term is known from (2). Moreover, the computation of the

nonlocal operator P j
h can be avoided if the scheme (2) and the error estimate

are slightly modified by incorporating appropriate local mesh transfer operators;
cf. Remark 4.4 below. For lowest order conforming methods based on regular
triangulations T j

h of Ω that define the spaces V
j
h the estimator EL2(U j ;Vj

h) is, up
to generic constants, given by

EL2(U j ;Vj
h) =

∥∥h2
j

(
τ−1
j (U j−P j

hU
j−1)+ε−2P j

hf(U
j)
)∥∥+∥∥h3/2

j

[
∇U j ·nFj

h

]∥∥
L2(

⋃
Fj

h)
,

where we use standard notation for the jumps across element sides contained in Fj
h;

cf. Remark 4.1 below. Analogously, the estimator EL2(dtU
j ; V̂j

h) is given by

EL2(dtU
j ; V̂j

h) =
∥∥ĥ2

jdt
(
τ−1
j (U j − P j

hU
j−1) + ε−2P j

hf(U
j)
)∥∥

+
∥∥ĥ3/2

j

[
∇dtU

j · nF̂j
h

]∥∥
L2(

⋃
F̂j

h)
,

where the triangulation T̂ j
h defines V̂

j
h and is the finest common coarsening of T j

h

and T j−1
h . A similar estimator is needed to obtain pointwise control over certain

residuals related to the nonlinearities in the error equation.
We expect that ηL∞(L2) ∼ ε−7/2(τ + h2) and therefore, we obtain a significantly

weaker condition for the validity of the error estimate than the one in [BMO09b].
Although this is a major improvement over earlier results, we could not enforce (3)
in practical simulations. Further, closing the gap between theory and practice is
left for future research. For smooth evolutions of developed interfaces we deduce
E ∼ 1 from [Che94, dMS95] while for evolutions that undergo topological changes
we observe E ∼ ε−κ with a small number κ; cf. [BMO09b]. In particular, E does
not grow exponentially in ε−1.

As a byproduct we obtain an error estimate in the seminorm of L2(0, T ;H1(Ω))
that holds under a significantly weaker condition than the one stated in [BMO09b],
namely, if (3) holds then we have for a lowest order conforming method that

∫ T

0

‖|(u−U)(s)‖|2 ds ≤
J∑

j=0

τj
2

(
E2
H1(U j−1,Vj−1

h )+E2
H1(U j ,Vj

h)
)
+2ε−2η2L∞(L2)E

2,

with ‖| · ‖| = ‖∇ · ‖ and

EH1(U j ;Vj
h) =

∥∥hj

(
τ−1
j (U j−P j

hU
j−1)+ε−2P j

hf(U
j)
)∥∥+∥∥h1/2

j

[
∇U j ·nFj

h

]∥∥
L2(

⋃
Fj

h)
.

In contrast to the result of [BMO09b] we assume H2 regularity of the Laplace op-
erator in Ω and we require one additional order of differentiability of the potential
function f here. A similar result can be derived for nonconforming and discontin-
uous Galerkin finite element methods by choosing an appropriate extension ‖| · ‖|
of the seminorm in H1(Ω). For ease of presentation we do not aim at stating the
most general conditions on discretizations that lead to such estimates and instead
refer the reader to [GL08] for a related, more detailed discussion in the case of the
linear heat equation.

To our knowledge, the estimates provide the first rigorous and robust error es-
timates for the approximation of Allen-Cahn equations with nonstandard finite
element methods.
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Our estimates naturally lead to adaptive algorithms for the efficient approxima-
tion of (1) by local mesh refinement. The contributions to the right-hand sides
of our estimates can be categorized into localizable estimators related to spatial
and temporal discretization errors as well as mesh-change and oscillation residuals
which allows an individual local adjustment of time-step and mesh-sizes. Owing
to the strongly localized features of solutions to (1), adaptivity is of fundamental
importance for the development of efficient approximation schemes and the tech-
niques discussed in this paper directly transfer to other, more sophisticated phase
field models such as Ginzburg-Landau, Cahn-Hilliard, and Cahn-Larché equations;
cf. [BM08, BMO09a]. In particular, the estimates presented in this paper do not
rely on the validity of a maximum principle.

The outline of this paper is as follows. We state some preliminaries in Section 2,
derive an abstract a posteriori error estimate in Section 3, and discuss the appli-
cation to various finite element methods in Section 4. Numerical experiments that
illustrate the reliability of our method are reported in Section 5.

2. Preliminaries

Let Ω ⊂ R
d, d = 2, 3 be a bounded, polygonal or polyhedral Lipschitz domain.

The outer unit normal on ∂Ω is denoted by n and ∂nv is the normal derivative of
a function v on ∂Ω. For a real number r ≥ 0 we set Br := {x ∈ R

� : |x| < r};
the positive part of a real number is denoted by s+, i.e., s+ = max{s, 0} for all
s ∈ R. Standard notation is used for Sobolev and Lebesgue spaces and we write
‖ · ‖ whenever ‖ · ‖L2(Ω) is meant; (·, ·) is the inner product in L2(Ω;R�), � ∈ N.
For a Banach space X its dual is denoted X∗ and 〈·; ·〉 is the corresponding duality
pairing. We define

V := H1(Ω)

and write ‖ · ‖∗ for the induced norm on V
∗. The bilinear form a : V × V → R is

for v, w ∈ V defined through

(4) a(v, w) := (∇v,∇w).

We assume that 0 < ε ≤ 1 and that the potential function f has the following
properties.

Assumption (POT). (i) There exists a nonnegative function F ∈ C3(R) such
that f = F ′.

(ii) There exists Cf ≥ 0 such that f ′(u) ≥ −Cf for all u ∈ R.
(iii) There exist δ > 0 with δ < 2 if d = 2 and δ ≤ 1 if d = 3 and a nonnegative

function g ∈ C(R) such that for all a, b ∈ R we have(
f(a)− f(b)− f ′(b)(a− b)

)
(a− b) ≥ −g(b)|a− b|2+δ.

For F (u) = (u2 − 1)2/4, u ∈ R, and f = F ′ the estimate f ′(u) = 3u2 − 1 ≥ −1,
u ∈ R, and the Taylor expansion

f(a)− f(b)− f ′(b)(a− b) = 3b(a− b)2 + (a− b)3,

valid for all a, b ∈ R, imply that (POT) holds with Cf = 1, δ = 1, and g(b) = 3|b|,
b ∈ R.

Assumption (POT) implies that there exists a unique function

u ∈ XAC := H1(0, T ;V∗) ∩ L∞(0, T ;V)
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satisfying u(0) = u0 continuously in L2(Ω) and

(5) 〈∂tu(t), v〉+ a(u(t), v) = −ε−2(f(u(t)), v)

for almost every t ∈ (0, T ) and every v ∈ V. The function u is called weak solution
of the Allen-Cahn equation. We suppress the dependence of u upon ε but stress that
all appearing constants do not depend on ε−1. Notice that (5) is the L2 gradient
flow of the energy functional

Eε(u) :=
1

2

∫
Ω

|∇u|2 dx+ ε−2

∫
Ω

F (u) dx.

The following generalization of Gronwall’s lemma, which allows an additional su-
perlinear term that can be controlled as long as the function remains sufficiently
small, is an essential tool for our error analysis. Its proof is adapted from [KNS04,
BMO09b].

Lemma 2.1 (Generalized Gronwall lemma). Suppose that the nonnegative func-
tions y1 ∈ C([0, T ]), y2, y3 ∈ L1(0, T ), α ∈ L∞(0, T ), and the real number A ≥ 0
are such that y1 is monotonically increasing and that

y1(t) +

∫ t

0

y2(s) ds ≤ A+

∫ t

0

α(s)y1(s) ds+

∫ t

0

y3(s) ds

for all t ∈ [0, T ]. Assume that for B ≥ 0, β > 0, and every t ∈ [0, T ] we have∫ t

0

y3(s) ds ≤ Byβ1 (t)

∫ t

0

(y1(s) + y2(s)) ds.

Set E := exp
( ∫ T

0
α(s) ds

)
and assume that 4AE ≤ (4B(1 + T )E)−1/β. We then

have

y1(T ) +

∫ T

0

y2(s) ds ≤ 4A exp
(∫ T

0

α(s) ds
)
.

Proof. Set θ := 4AE if A > 0 and let θ > 0 such that 2B(1+T )θβE ≤ 1 otherwise.
Define

Iθ :=
{
t′ ∈ [0, T ] : Υ(t′) := y1(t

′) +

∫ t′

0

y2(s) ds ≤ θ
}
.

Since y1(0) ≤ A < θ and since Υ is continuous and monotonically increasing we
have Iθ = [0, tm] for some 0 < tm ≤ T . For every t ∈ [0, tm] we have

y1(t) +

∫ t

0

y2(s) ds ≤ A+

∫ t

0

α(s)y1(s) ds+Byβ1 (t)

∫ t

0

(y1(s) + y2(s)) ds

≤ A+

∫ t

0

α(s)y1(s) ds+B(1 + T )θ1+β.

An application of Gronwall’s lemma (cf., e.g., [IT79]) the condition on A, and the
choice of θ yield that for all t ∈ [0, tm] we have

y1(t) +

∫ t

0

y2(s) ds ≤ (A+B(1 + T )θ1+β)E ≤ θ

2
.

This implies Υ(tm) < θ, hence tm = T , and thus proves the lemma if A > 0. If
A = 0 we may choose θ arbitrarily small to deduce the assertion. �
Remark 2.2. The factor 4 on the right-hand side of the estimate of the lemma can
be replaced by any number bigger than 2 or by 2 if α �≡ 0.
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3. Abstract a posteriori error analysis

Given a sequence of positive time-steps (τj)j=0,1,...,J that defines the partition

0 = t0 < t1 < · · · < tJ = T of (0, T ) and subspaces (Vj
h)j=0,1,...,J of L2(Ω), we

assume that (U j)j=0,1,...,J ⊂ L2(Ω) is such that for j = 1, 2, ..., J we have U j ∈ V
j
h

and

τ−1
j (U j − U j−1, V ) + ajh(U

j , V ) = −ε−2(f(U j), V )

for all V ∈ V
j
h. Here, ajh : Vj

h × V
j
h → R is a bilinear form that approximates the

bilinear form a from (4). Equivalently, we have for j = 1, 2, ..., J that

(6) τ−1
j (U j − P j

hU
j−1)−Δj

hU
j = −ε−2P j

hf(U
j),

where P j
h : L2(Ω) → V

j
h denotes the L2 projection onto V

j
h and −Δj

h : Vj
h → V

j
h is,

for V ∈ V
j
h, defined through the identity

(−Δj
hV,W ) = ajh(V,W )

for all W ∈ V
j
h. We assume that for j = 0, 1, ..., J constant functions are included

in V
j
h and ajh vanishes for constant functions, i.e.,

(7) 1 ∈ V
j
h and ajh(V, 1) = 0

for all V ∈ V
j
h. This ensures that the elliptic reconstruction of a function −Δj

hV

for V ∈ V
j
h is well defined.

Definition 3.1 (Elliptic reconstruction). For j = 0, 1, ..., J define

ξjh := −Δj
hU

j

and let wj ∈ V be such that

(∇wj ,∇v) = (ξjh, v) and

∫
Ω

wj dx =

∫
Ω

U j dx

for all v ∈ V. Let w,U ∈ H1(0, T ;L2(Ω)) be defined for j = 1, 2, ..., J and t ∈
[tj−1, tj ] through

w(t) := �j−1(t)w
j−1 + �j(t)w

j ,

U(t) := �j−1(t)U
j−1 + �j(t)U

j ,

where �j(t) = (t− tj−1)/τj and �j−1(t) = 1− �j(t) for t ∈ [tj−1, tj ].

Notice that for j = 0, 1, ..., J we have

−Δwj = ξjh in Ω, ∂nw
j = 0 on ∂Ω.

Moreover, owing to the definition of −Δj
h, we have that U

j ∈ V
j
h is for j = 0, 1, ..., J

the Galerkin approximation of the Poisson problem with homogeneous Neumann
boundary conditions and on right-hand side ξjh = −Δj

hU
j , i.e., we have

a(wj , v) = (ξjh, v), ajh(U
j , V ) = (ξjh, V )

for all v ∈ V and all V ∈ V
j
h.
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Lemma 3.2 (Perturbed parabolic evolution). For j = 1, 2, ..., J and t ∈ (tj−1, tj)
define Γ(w,U ; t) ∈ V

∗ through

Γ(w,U ; t) := ∂t(w−U)−Δ(w−wj)−τ−1
j (U j−1−P j

hU
j−1)+ε−2(f(w)−P j

hf(U
j)).

Then we have for almost every t ∈ (0, T ) that

(8) ∂tw −Δw = −ε−2f(w) + Γ(w,U ; t).

Proof. The identity follows from (6) upon noting that

∂tU − τ−1
j (U j − P j

hU
j−1) = −τ−1

j (U j−1 − P j
hU

j−1)

and 〈Δwj −Δj
hU

j , v〉 = 0 for all v ∈ V. �

The motivation for the following theorem is that the quantity exp
( ∫ T

0
λ+
AC(s) ds

)
is bounded by some power of ε−1 and that computable bounds are available for the
difference w − U in various norms which can be made arbitrarily small by local
mesh refinement.

Theorem 3.3 (General a posteriori estimate). Let δ, Cf , and g be as in (POT).

Suppose that ΛAC ∈ L1(0, T ) is such that for almost every t ∈ (0, T ) we have

−ΛAC(t) ≤ −ΛAC(t) := inf
v∈V\{0}

‖∇v‖2 + ε−2(f ′(U(t))v, v)

‖v‖2

and assume that ηΓ,0, ηΓ,1, ηf ′ : (0, T ) → R and μg ∈ R are such that

〈Γ(w,U ; t), v〉 ≤ ηΓ,0(t)‖v‖+ ηΓ,1(t)‖∇v‖
‖f ′(w(t))− f ′(U(t))‖L∞(Ω) ≤ ηf ′(t),

sup
s∈(0,T )

‖g(w(s))‖L∞(Ω) ≤ μg

for almost every t ∈ (0, T ) and all v ∈ V and set μΛ(t) := 8
(
(1− ε2)ΛAC(t) +Cf +

ε−2ηf ′(t)
)+

. If

η2 := 16
(∫ T

0

ηΓ,0 ds
)2

+ 4ε−2

∫ T

0

η2Γ,1 ds+ 4‖u0 − w0‖2

≤ ε8/δ

(8μgCS(1 + T ))2/δ

(
4 exp

( ∫ T

0

μΛ ds
))−1−2/δ

,

then

sup
s∈(0,T )

‖(u− U)(s)‖ ≤ sup
s∈(0,T )

‖(U − w)(s)‖+ 2η exp
(1
2

∫ T

0

μΛ ds
)

and, for any seminorm ‖| · ‖| defined on the span of V ∪
⋃J

j=0 V
j
h such that ‖|v‖| =

‖∇v‖ for all v ∈ V,

(∫ T

0

‖|(u− U)(s)‖|2 ds
)1/2

≤
(∫ T

0

‖|(U − w)(s)‖|2 ds
)1/2

+ ε−1
√
2η exp

(1
2

∫ T

0

μΛ ds
)
.
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Proof. We abbreviate � := u−w and omit the argument t in the following. Subtract-
ing (8) from (5) and testing the resulting equation by � we have, incorporating (iii)
of (POT),

1

2

d

dt
‖�‖2 + ‖∇�‖2 = −ε−2(f(u)− f(w), �)− 〈Γ(w,U), �〉

≤ −ε−2(f ′(w)�, �) + ε−2‖g(w)‖L∞(Ω)‖�‖2+δ
L2+δ(Ω)

+ ηΓ,0‖�‖+ ηΓ,1‖∇�‖

≤ −ε−2(f ′(U)�, �) + ε−2ηf ′‖�‖2 + ε−2μg‖�‖2+δ
L2+δ(Ω)

+ ηΓ,0‖�‖+ ηΓ,1‖∇�‖.

Hölder’s and Young’s inequalities, item (ii) of (POT), and straightforward manip-
ulations lead to

1

2

d

dt
‖�‖2 + ‖∇�‖2 ≤ −(1− ε2)ε−2(f ′(U)�, �) + Cf‖�‖2 + ε−2ηf ′‖�‖2

+ ε−2μg‖�‖2+δ
L2+δ(Ω)

+ ηΓ,0‖�‖+
1

2ε2
η2Γ,1 +

ε2

2
‖∇�‖2.

The assumed property of ΛAC implies that we have

−ε−2(f ′(U)�, �) ≤ ΛAC‖�‖2 + ‖∇�‖2.
This yields that

d

dt
‖�‖2 + ε2‖∇�‖2 ≤ 2ηΓ,0‖�‖+ ε−2η2Γ,1

+ 2
(
(1− ε2)ΛAC + Cf + ε−2ηf ′

)+‖�‖2 + 2ε−2μg‖�‖2+δ
L2+δ(Ω)

.

We integrate this estimate over (0, t) and employ Hölder’s and Young’s inequalities
to verify that

‖�(t)‖2 + ε2
∫ t

0

‖∇�‖2 ds ≤ ‖�(0)‖2 + 1

4
sup

s∈(0,t)

‖�‖2 + 4
(∫ t

0

ηΓ,0 ds
)2

+ ε−2

∫ t

0

η2Γ,1 ds+
1

4

∫ t

0

μΛ sup
r∈(0,s)

‖�‖2 ds+ 2ε−2μg

∫ t

0

‖�‖2+δ
L2+δ(Ω)

ds.

Using that sups∈(0,t) a(s) + b(t) ≤ 2c(t) if a(t′) + b(t′) ≤ c(t′) for all t′ ∈ (0, t) leads
to

(9)
1

2
sup

s∈(0,t)

‖�‖2 + ε2

2

∫ t

0

‖∇�‖2 ds ≤ ‖�(0)‖2 + 1

4
sup

s∈(0,t)

‖�‖2 + 4
(∫ t

0

ηΓ,0 ds
)2

+ ε−2

∫ t

0

η2Γ,1 ds+
1

4

∫ t

0

μΛ sup
r∈(0,s)

‖�‖2 ds+ 2ε−2μg

∫ t

0

‖�‖2+δ
L2+δ(Ω)

ds.

The conditions on δ in (iii) of (POT) together with Hölder’s inequality and a Sobolev
estimate permit us to derive the bound∫ t

0

‖�‖2+δ
L2+δ(Ω)

ds ≤
∫ t

0

‖�‖δ‖�‖2L4/(2−δ)(Ω) ds

≤ CS

(
sup

s∈(0,t)

‖�‖2
)δ/2 ∫ t

0

(‖�‖2 + ‖∇�‖2) ds.
(10)

Setting

y1(t) := sup
s∈(0,t)

‖�(s)‖2, y2(t) := 2ε2‖∇�(t)‖2, y3(t) := 8ε−2μg‖�(t)‖2+δ
L2+δ(Ω)
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for almost every t ∈ (0, T ), the estimates (9) and (10) show that we are in the

situation of Lemma 2.1 with A = η2, B = 8ε−4μgCS , E = exp
( ∫ T

0
μΛ(s) ds

)
, and

β = δ/2. Hence, the assumption on η implies that

sup
s∈(0,T )

‖�(s)‖2 + 2ε2
∫ T

0

‖∇�(s)‖2 ds ≤ 4η2 exp
(∫ T

0

μΛ ds
)
.

Applications of the triangle inequality yield the asserted estimates. �

4. Application to finite element methods

We next discuss how Theorem 3.3 can be specified for various spatial discretiza-
tions of (1). Owing to the employed elliptic reconstruction, this reduces to a poste-
riori error estimates for elliptic equations and we assume that we are given a poste-
riori error estimators for the approximation error of the Poisson problem in various
norms. For the discussion of the construction of a computable function ΛAC that
fulfills the requirements of Theorem 3.3 we refer the reader to [BMO09b].

Assumption (ESTLp). The subspace Vh and the bilinear form ah : Vh ×Vh → R

satisfy assumption (ESTLp) if for all ξ ∈ L2(Ω) with
∫
Ω
ξ dx = 0 the following

holds: If w ∈ V and W ∈ Vh are such that
∫
Ω
W dx =

∫
Ω
w dx and

a(w, v) = (ξ, v) and ah(W,V ) = (ξ, V )

for all v ∈ V and all V ∈ V̂h for some nontrivial subspace V̂h ⊆ Vh, then for p = 2
and p = ∞ we have

‖w −W‖Lp(Ω) ≤ ELp(W, ξ; V̂h)

for a computable quantity ELp(W, ξ; V̂h).

Remark 4.1. For lowest order conforming methods Assumption (ESTLp) is well
established provided that the Laplace operator is H2 regular in Ω; cf., e.g., [Noc95,
Ver96, DDP00, NSSV06]. In particular, we may choose

EL2(W, ξ; V̂h) = C2

(
‖h2

T̂h
(ΔT̂h

W + ξ)‖+ ‖h3/2

T̂h
[∇W · nF̂h

]‖L2(
⋃

F̂h)

)
,

EL∞(W, ξ; V̂h) = C∞ log(hT̂h
)4/3

(
‖h2

T̂h
(ΔT̂h

W + ξ)‖L∞(Ω)

+ ‖hT̂h
[∇W · nF̂h

]‖L∞(
⋃

F̂h)

)
,

if V̂h is the lowest order conforming finite element space related to the regular

triangulation T̂h with mesh-size function hT̂h
whose minimum is hT̂h

and with in-

terelement sides contained in F̂h; ΔT̂h
denotes the elementwise application of the

Laplace operator on T̂h. It is expected that similar results can be proved for non-
conforming, mixed, and discontinuous Galerkin methods; cf. [CBJ02, LM08, RW03]
for related L2 estimates. The estimator EL∞ only enters our error estimates in the
definition of constants so that the logarithmic factor does not violate optimal con-
vergence rates in L∞(0, T ;L2(Ω)). It suffices that EL∞ is a coarse upper bound
which converges to zero as the maximal mesh-size decreases; cf. Proposition 4.3.

Another assumption is needed that guarantees compatibility of successive dis-
cretizations of the Laplace operator.
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Assumption (COMP). For j = 1, 2, ..., J there exists a subspace V
j−1/2
h ⊆ V

j−1
h ∩

V
j
h and a bilinear form

a
j−1/2
h :

(
V

j−1
h + V

j
h

)
× V

j−1/2
h → R

such that the pair (V
j−1/2
h , a

j−1/2
h ) satisfies Assumption (ESTLp) and

a
j−1/2
h (W1 +W2, V ) = aj−1

h (W1, V ) + ajh(W2, V )

for all W1 ∈ V
j−1
h , W2 ∈ V

j
h, and V ∈ V

j−1/2
h .

Remarks 4.2. (i) Requiring that the pair (V
j−1/2
h , a

j−1/2
h ) satisfies Assumption

(ESTLp) avoids that Assumption (COMP) is trivially satisfied with the choice

V
j−1/2
h = {0}.
(ii) Assumption (COMP) is trivially satisfied if the same spatial discretization

that fulfills (ESTLp) is used in each time-step.
(iii) For lowest order conforming methods Assumption (COMP) is satisfied pro-

vided that there exists a common coarsening T̂h of the triangulations T j−1
h and T j

h

that define the spaces Vj−1
h and V

j
h, respectively. In this case an efficient choice for

V
j−1/2
h is the finite element space defined through the finest common coarsening of

T j
h and T j−1

h ; cf. [LM06].

In the following, hj ∈ L∞(Ω) denotes for j = 1, 2, ..., J a positive mesh-size

function related to the space V
j
h. In particular, we assume that there exists a

constant CC� > 0 such that for every v ∈ V and j = 1, 2, ..., J we have the Clément
type quasi-interpolation estimate (cf. [Clé75]),

inf
V ∈V

j
h

‖h−1
j (v − V )‖ ≤ CC�‖∇v‖.

Given any sequence (aj)j=0,1,...,J we set

dta
j := τ−1

j (aj − aj−1)

for j = 1, 2, ..., J . If (COMP) is satisfied and all involved bilinear forms ful-
fill (ESTLp), then we immediately obtain bounds for the functional Γ. Recall that

ξjh = −Δj
hU

j and −Δwj = ξjh for j = 0, 1, ..., J .

Proposition 4.3 (Computable bounds). Suppose that the pairs (Vj
h, a

j
h), j =

0, 1, ..., J , satisfy (ESTLp) and that Assumption (COMP) holds. Then,
(a) we have

〈Γ(w,U ; t), v〉 ≤
(
ηtΓ,0(t) + ηsΓ,0(t)

)
‖v‖+ ηcΓ,1(t)‖∇v‖

with ηtΓ,0, η
s
Γ,0 and ηcΓ,1 defined for t ∈ (tj−1, tj ], j = 1, 2, ..., J by

ηtΓ,0(t) := ‖Δj−1
h U j−1 −Δj

hU
j‖+ ε−2Cf ′,Ij‖U j−1 − U j‖,

ηsΓ,0(t) := EL2(dtU
j , dtξ

j
h;V

j−1/2
h ) + ε−2Cf ′,Ij max

k=j−1,j
EL2(Uk, ξkh;V

k
h),

ηcΓ,1(t) := CC�τ
−1
j ‖hj(U

j−1 − P j
hU

j−1)‖+ CC�ε
−2‖hj(f(U

j)− P j
hf(U

j))‖
where for � = 1, 2 we set

(11) Cf(�),Ij := ‖f (�)‖L∞(Bdj
), dj := max

k=j−1,j

(
‖Uk‖L∞(Ω) + EL∞(Uk, ξkh;V

k
h)
)
;
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(b) we have

sup
s∈(0,T )

‖(U − w)(s)‖ ≤ max
j=0,1,...,J

EL2(U j , ξjh;V
j
h)

and
‖u0 − w0‖ ≤ ‖u0 − U0‖+ EL2(U0, ξ0h;V

0
h);

(c) with Cf ′′,Ij from (11) we have for t ∈ [tj−1, tj ], j = 1, 2, ..., J that

‖f ′(w(t))− f ′(U(t))‖L∞(Ω) ≤ Cf ′′,Ij max
k=j−1,j

EL∞(Uk, ξkh;V
k
h);

(d) we have

sup
s∈(0,T )

‖g(w(s))‖L∞(Ω) ≤ max
j=0,1,...,J

(
‖g(U j)‖L∞(Ω) + Cg′,Ij‖U j − U j−1‖L∞(Ω)

+ Cg′,Ij max
k=j−1,j

EL∞(Uk, ξkh;V
k
h)
)
,

where Cg′,Ij is defined as in (11) with f (�) replaced by g′.

Proof. (a) Given t ∈ (tj−1, tj), j = 1, 2, ..., J , we recast the functional Γ as

〈Γ(w,U ; t), v〉 = 〈∂t(w − U), v〉+ (∇(w − wj),∇v)

+ τ−1
j (U j−1 − P j

hU
j−1, v) + ε−2(f(w)− f(U), v)

+ ε−2(f(U)− f(U j), w) + ε−2(f(U j)− P j
hf(U

j), w) =: T1 + T2 + · · ·+ T6

and split the proof of (a) into three parts.
Part 1: Time discretization residuals. Using �j−1(t) = 1 − �j(t) ≤ 1 and the

definitions of wj and wj−1 we have

T2 = (∇[�j−1(t)w
j−1 + �j(t)w

j − wj ],∇v) = �j−1(t)(∇(wj−1 − wj),∇v)

= �j−1(t)(−Δj−1
h U j−1 +Δj

hU
j , v) ≤ ‖Δj−1

h U j−1 −Δj
hU

j‖‖v‖.
Similarly, using the identity

f(U)− f(U j) =
(∫ 1

0

f ′(rU + (1− r)U j−1) dr
)
(U − U j)

we derive the estimate

T5 = ε−2(f(U)− f(U j), v) ≤ ε−2Cf ′,Ij‖U − U j‖‖v‖ ≤ ε−2Cf ′,Ij‖U j−1 − U j‖‖v‖.
Part 2: Coarsening and oscillation residuals. For the contributions T3 and T6

we get for arbitrary V ∈ V
j
h,

T3 + T6 = τ−1
j (U j−1 − P j

hU
j−1, v − V ) + ε−2(f(U j)− P j

hf(U
j), v − V )

≤
(
τ−1
j ‖hj(U

j−1−P j
hU

j−1)‖+ε−2‖hj(f(U
j)−P j

hf(U
j))‖

)
‖h−1

j (v − V )‖.
A minimization over V leads to the contribution ηcΓ,1(t).

Part 3: Space discretization residuals. Noting that

a(dtw
j , v) = (dtξ

j
h, v)

for all v ∈ V and that owing to (COMP),

a
j−1/2
h (dtU

j , V ) = (dtξ
j
h, V )

for all V ∈ V
j−1/2
h we deduce with (ESTLp) that

T1 = (dtw
j − dtU

j , v) ≤ ‖dtwj − dtU
j‖‖v‖ ≤ EL2(dtU

j , dtξ
j
h;V

j−1/2
h )‖v‖.
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Moreover, we have

T4 = ε−2(f(w)− f(U), v) ≤ ε−2Cf ′,Ij‖w − U‖‖v‖
≤ ε−2Cf ′,Ij max

k=j−1,j
‖wk − Uk‖‖v‖ ≤ ε−2Cf ′,Ij max

k=j−1,j
EL2(Uk, ξkh;V

k
h)‖v‖.

A combination of the estimates implies (a). The proofs of (b), (c), and (d) are
analogous. �

Remark 4.4. The computation of P j
hU

j−1 and P j
hf(U

j) in the evaluation of ηcΓ,1
can be avoided by using a modified scheme which computes for j = 1, 2, ..., J the
function U j ∈ V

j
h such that

τ−1
j (U j − IjhU

j−1, V ) + ajh(U
j , V ) = −ε−2(Ijhf(U

j), V )

for all V ∈ V
j
h. Here, Ijh : C(Ω) → V

j
h is an appropriate mesh-transfer operator,

e.g., the nodal interpolation operator related to V
j
h in the case of a conforming

method. The quantity ηcΓ,1(t) of Proposition 4.3 is then substituted by

ηcΓ,0(t) = τ−1
j ‖U j−1 − IjhU

j−1‖+ ε−2‖f(U j)− Ijhf(U
j)‖

and the third line of the error estimate stated in the introduction is interchanged
with

J∑
j=1

τj
(
τ−1
j ‖U j−1 − IjhU

j−1‖+ ε−2‖f(U j)− Ijhf(U
j)‖

)
.

Remark 4.5. A weaker version of (COMP) can be imposed, i.e., the quantity

EL2(dtU
j , dtξ

j
h;V

j−1/2
h ) appearing in the estimate of Proposition 4.3 can be replaced

by

CL2(τ−1
j U j−1, τ−1

j U j , dtξ
j
h;V

j−1
h ,Vj

h)

if one assumes the following: For ξj−1, ξj∈L2(Ω) satisfying
∫
Ω
ξj−1 dx=

∫
Ω
ξj dx =

0 and W j−1 ∈ V
j−1
h and W j ∈ V

j
h such that

aj−1
h (W j−1, V j−1) = (ξj−1, V j−1) and ajh(W

j , V j) = (ξj, V j)

for all V j−1 ∈ V
j−1
h and V j ∈ V

j
h there holds

‖W j −W j−1‖ ≤ CL2(V j−1, V j , ξj − ξj−1;Vj−1
h ,Vj

h)

with a computable quantity CL2(V j−1, V j , ξj − ξj−1;Vj−1
h ,Vj

h).

Appropriate error estimators are required to bound the approximation error
in an extension of the seminorm of L2(0, T ;H1(Ω)). The following assumption
and the conditions of Proposition 4.7 below hold for a large class of conforming
and nonconforming finite element methods, e.g., with the broken H1 seminorm
‖|vh‖|2 :=

∑
K∈T h

‖∇vh‖2L2(K) on a partition T h of Ω that is a common refinement

of all employed triangulations or partitions that define the spaces Vj
h, j = 0, 1, ..., J .

Assumption (ESTH1). The subspace Vh, the bilinear form ah : Vh × Vh → R,
and the seminorm ‖| · ‖| defined on the span of V ∪ Vh satisfy condition (ESTH1)
if for all ξ ∈ L2(Ω) with

∫
Ω
ξ dx = 0 the following holds: If w ∈ V and W ∈ Vh are

such that
∫
Ω
W dx =

∫
Ω
w dx and

a(w, v) = (ξ, v) and ah(W,V ) = (ξ, V )
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for all v ∈ V and all V ∈ Vh, then we have

‖|w −W‖| ≤ EH1(W, ξ;Vh)

for a computable quantity EH1(W, ξ;Vh).

Remark 4.6. Assumption (ESTH1) is well established for conforming methods (cf.,
e.g., [Ver96]), and also holds for mixed, nonconforming, and discontinuous Galerkin
methods; cf., e.g., [Car97, CBJ02, Ain05] with appropriate choices of extensions of
the H1 seminorm.

Proposition 4.7 (Energy norm estimate). If (ESTH1) is satisfied for all triples

(Vj
h, a

j
h, ‖| · ‖|), j = 0, 1, ..., J , with the same seminorm ‖| · ‖|, then

∫ T

0

‖|(U − w)(s)‖|2 ds ≤
J∑

j=1

τj
2

(
E2
H1(U j−1, ξj−1

h ;Vj−1
h ) + E2

H1(U j , ξjh;V
j
h)
)
.

Proof. For every j = 1, 2, ..., J we deduce with Jensen’s inequality that

‖|(U − w)(s)‖|2 =
(
�j−1(s)‖|U j−1 − wj−1‖|+ (1− �j−1(s))‖|U j − wj‖|

)2
≤ �j−1(s)‖|U j−1 − wj−1‖|2 + (1− �j−1(s))‖|U j − wj‖|2.

Noting
∫ tj
tj−1

�j−1(s) ds = τj/2 and incorporating (ESTH1) implies the assertion. �

5. Numerical experiments

We discuss our error estimate with numerical experiments in the testcase of one
vanishing particle leading to a generic topological change in an evolution process
governed by (1) in two space dimensions. On Ω := (−2, 2)2, we prescribe initial
data that define a circular initial interface: Set r := 1, and define d(x) := |x| − r
for x ∈ Ω. For given ε > 0 and x ∈ Ω let

u0(x) := − tanh
(
d(x)/(

√
2ε)

)
.

We employ the following strategy to simulate Allen-Cahn processes efficiently
with respect to memory usage. From the decomposition of ηL∞(L2) in Proposition
4.3 we include the most relevant refinement indicators to illustrate the dominant
effects in the estimates. We let IT denote the nodal interpolation operator associ-
ated to the lowest order conforming finite element space defined by a triangulation
T .

Algorithm (ADAPT). Given a tolerance σ > 0 iterate for j = 1, 2, ..., J the
following steps:

(a) Coarsen elements in TC ⊆ Tj−1 to obtain a triangulation Tj,0 with

ηc,1Γ,1(tj) := τ−1
j ‖hj(U

j−1 − ITj,k
U j−1)‖ ≤ σ

10
.

Set k := 0.
(b) Compute U j,k ∈ V

j,k
h such that for all V ∈ V

j,k
h we have

τ−1(U j,k − ITj,k
U j−1, V ) + (∇U j,k,∇V ) = −ε−2(ITj,k

f(U j,k), V ).
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Figure 1. Evolving interface and adaptively refined and coars-
ened triangulations for t = 0, 0.31, and 0.48 obtained with Algo-
rithm (ADAPT) with ε = 1/16 and σ = ε/10.

(c) Refine elements K ∈ Tj,k for which

ε−2h2
K‖τ−1

j (U j,k − ITj,k
U j−1) + ε−2ITj,k

f(U j,k)‖

+ h
3/2
K ‖[∇U j,k · nFj,k

]‖L2(K∩(
⋃

Fj,k))

=: ηs,2Γ,0(tj)|K ≥ (1/2) max
K′∈Tj,k

ηs,2Γ,0(tj)|K′ ,

set k := k + 1, and go to (b) if
∑

K∈Tj,k

(
ηs,2Γ,0(tj)|K

)2 ≥ σ2.

(d) Update U j := U j,k, set j := j + 1, and go to (a).

The overall efficiency of the algorithm can be further improved by varying the
time-step size adaptively based on the given indicator ηtΓ,0.

Snapshots of the evolution defined by the initial data for ε = 1/16 together with
adaptively generated triangulations are shown in Figure 1. The approximations
were obtained with the uniform time-step size τ = ε3/16 and the parameter σ =
ε/10. We see that the interface Γt undergoes a topological change at t ≈ 0.49
when the particle vanishes. The employed adaptive strategy refines the grid locally
around the interface Γt where large gradients occur and coarsens the triangulations
when the interface has advanced.

5.1. Topological changes and blowup of principal eigenvalue. We ran Algo-
rithm (ADAPT) with ε = 2−�, � = 2, 3, ..., 6, τ = ε3/16 and σ = ε/10. Robustness
of the error estimate in Theorem 3.3 requires a logarithmic bound of the exponent∫ T

0
μΛ(s) ds. Since the implied condition

∫ T

0
ηf ′(s) ds ≤ C∞ε2 log(ε−κ) is uncriti-

cal, as can be seen by a priori arguments, we plotted in Figure 2 the numerically
computed eigenvalue ΛAC(t) (left plot) as a function of t and the integral over (0, t)
of its positive part (right plot), i.e., the functions

t �→ ΛAC(t), t �→
∫ t

0

Λ+
AC(s) ds.

Comparison with simulations on uniformly refined grids showed no relevant influ-
ence of the adaptive scheme on the numerically computed eigenvalue. The results
of the experiment show that a uniform bound for ΛAC(t) breaks down when the
topological change occurs and we observe maxt∈(0,T ) ΛAC(t) ∼ ε−2. In contrast,

the integrated eigenvalue grows logarithmically in ε−1, i.e., we have

(12)

∫ T

0

Λ+
AC(t) dt ∼ C0 + log(ε−κ).
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Therefore, robust a posteriori error estimation in L∞(0, T ;L2(Ω)) is possible past
topological changes in this prototypical example, although, at the present state, we
are not able to satisfy condition (3) in practice.
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Figure 2. Approximated eigenvalue ΛAC(t) as a function of t ∈
[0.42, 0.52] (left) and the integral of its positive part over (0, t) as
a function of t ∈ [0, 0.6] (right). The eigenvalue grows like ε−2 at
the time of the topological change while its temporal integral only
grows logarithmically in ε−1.
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Figure 3. Estimator ηL∞(L2) as function of t ∈ [0, 0.6] (left) and
degrees of freedom of adaptively generated triangulations needed to
reduce spatial discretization residuals below the tolerance σ (right)
for fixed ε = 1/8 and τ = 0.00024.

5.2. Adaptive mesh refinement. For fixed ε = 1/8 and decreasing tolerances
σ = 2−�ε/10, � = 0, 1, 2, 3, we plotted in Figure 3 the error estimator ηL∞(L2)

defined through the approximate solution obtained with Algorithm (ADAPT) as a
function of t ∈ [0, 0.6] and the number of degrees of freedom required to reduce the
spatial discretization residuals below the tolerance σ. Consequently, we observe a
linear relation between ηL∞(L2) and σ. The numbers of degrees of freedom shown
in the right plot of Figure 3 depend inverse proportionally on σ, i.e., twice as many
degrees of freedom are required to decrease the approximation error by a factor
1/2. This relation corresponds to the quadratic scaling ηL∞(L2) ∼ h2 and the fact

that the theoretical mesh-size is h2 = N−1
h for the number of nodes Nh in a two-

dimensional triangulation Th. To illustrate the significant increase in efficiency of
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the proposed adaptive method, we checked that to decrease the error estimator
below the largest tolerance σ = ε/10 using uniform grids, roughly eight times as
many nodes are required as in the case of an adaptive approach. We remark that
in order to guarantee the mesh compatibility condition (COMP) we either refined
or coarsened the mesh in each time-step. Once the particle has disappeared at
t ≈ 0.49, the grid is maximally coarsened.

5.3. Asymptotic scaling of residuals. To verify the expected scaling properties
of the estimators ηL∞(L2) and ηL2(H1) we ran experiments with uniform triangula-
tions in which either ε or h was fixed. The results for fixed ε = 1/8 and decreasing
discretization parameters h = 2−�, � = 5, 6, 7 and τ = h2/32 shown in Figure 4 con-
firm that we have ηL∞(L2) ∼ h2 and ηL2(H1) ∼ h. These experimental convergence
rates can be read from the slopes of the curves shown in the left plot of Figure 6
where we displayed the total estimators at the final time t = 0.6 versus the mesh-
size h of the underlying uniform triangulations with a logarithmic scaling used for
both axes. We also observe in Figure 4 the linear accumulation of contributions to
ηL∞(L2) while the estimator ηL2(H1) grows proportionally to t1/2 in time.
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Figure 4. Estimators ηL∞(L2) and ηL2(H1) as functions of t ∈
[0, 0.6] for h = 1/32, 1/64, 1/128 and τ = h2/32 and fixed ε = 1/8.
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Figure 5. Estimators ηL∞(L2) and ηL2(H1) as functions of t ∈
[0, 0.6] for ε = 1/4, 1/8, 1/16, 1/32 and fixed mesh-size h = 1/64,
τ = 0.00003.

We ran the same experiment with a fixed uniform triangulation of mesh-size
h = 1/64 and fixed time-step size τ = 0.00003 but varying ε = 2−�, � = 2, 3, 4, 5.
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Figure 6. Dependence of ηL∞(L2) and ηL2(H1) on h (left) and ε (right).

The corresponding values for ηL∞(L2) and ηL2(H1) as functions of t ∈ [0, 0.6] are
shown in the left and right plot of Figure 5, respectively. The graphs reveal a
polynomial dependence on ε−1 and the double-logarithmic scaling used in the right
plot of Figure 6 shows that we have ηL∞(L2) ∼ ε−7/2 and ηL2(H1) ∼ ε−5/2 in this
example. This can also be understood directly from the definitions of the estimators
since ‖D2u(t)‖ ≤ ε−3/2 if u(t) represents a developed interface.

Although the proposed estimator ηL∞(L2) has a stronger dependence on ε−1

than ηL2(H1), its quadratic convergence in h makes it superior since a reasonable
resolution of interfaces requires h � ε.
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