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DISCONTINUOUS FINITE ELEMENT METHODS

FOR A BI-WAVE EQUATION MODELING

d-WAVE SUPERCONDUCTORS

XIAOBING FENG AND MICHAEL NEILAN

Abstract. This paper concerns discontinuous finite element approximations
of a fourth-order bi-wave equation arising as a simplified Ginzburg-Landau-
type model for d-wave superconductors in the absence of an applied magnetic
field. In the first half of the paper, we construct a variant of the Morley finite
element method, which was originally developed for approximating the fourth-
order biharmonic equation, for the bi-wave equation. It is proved that, unlike
the biharmonic equation, it is necessary to impose a mesh constraint and to
include certain penalty terms in the method to guarantee convergence. Nearly
optimal order (off by a factor |lnh|) error estimates in the energy norm and
in the H1-norm are established for the proposed Morley-type nonconforming
method. In the second half of the paper, we develop a symmetric interior
penalty discontinuous Galerkin method for the bi-wave equation using general

meshes and prove optimal order error estimates in the energy norm. Finally,
numerical experiments are provided to gauge the efficiency of the proposed
methods and to validate the theoretical error bounds.

1. Introduction

This paper is the second in a series (cf. [13]) which concerns finite element
approximations of the following fourth-order problem:

δ�2u− Δu = f in Ω,(1.1)

u = ∂n̄u = 0 on ∂Ω,(1.2)

where

0 < δ � 1, �u := ∂xxu− ∂yyu,

�2u := �(�u), n := (n1,−n2).

Here, Ω ⊂ R2 is an open and bounded domain, n := (n1, n2) is the outward unit
normal to ∂Ω, and ∂n̄u := ∇u · n. As the d’Alembertian � is the two-dimensional
wave operator, we shall henceforth call �2 the bi-wave operator throughout the
paper.

Equation (1.1) is obtained from the Ginzburg-Landau-type d-wave model consid-
ered in [8] (also see [24, 18]) in the absence of an applied magnetic field by neglecting
the zeroth order nonlinear terms but retaining the leading terms. In the equation, u
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denotes the d-wave order parameter. We note that the original order parameter in
the Ginzburg-Landau-type model [24, 8] is a complex-valued scalar function whose
magnitude represents the density of superconducting charge carriers. However, to
reduce the technicalities and to present our ideas, we assume that u is a real-valued
scalar function in this paper and remark that the finite element methods developed
in this paper can be easily extended to the complex case. We also note that the
parameter δ appears in the full model as δ = − 1

β , where β is proportional to the

ratio ln(Ts0/T )
ln(Td0/T ) , with Ts0 and Td0 being the critical temperatures of the s-wave and

d-wave components. Clearly, β < 0 (or δ > 0) when Ts0 < T < Td0 and β → −∞
(or δ → 0) as T → Td0. Hence, δ is expected to be small for d-wave like super-
conductors. We refer the reader to [8, 18, 24, 11] and the references therein for a
detailed exposition on modeling and analysis of d-wave superconductors.

In [13], the authors developed two conforming finite element methods for (1.1)–
(1.2), and showed that unless special meshes are used, conforming finite elements are
necessarily C1 elements. Consequently, conforming plate elements such as Argyris,
Bell, Hsieh-Clough-Tocher, Bogner-Fox-Schmit elements (cf. [7]) must be used in
the case of general meshes. Since these finite elements require either the use of fifth
or higher order polynomials or the use of exotic and complicated elements, it would
be expensive and less efficient to solve the bi-wave equation (1.1) in such a fashion.
This is the main motivation to construct low-order nonconforming finite element
and discontinuous Galerkin methods.

The primary goal of this paper is to develop nonconforming and discontinuous
Galerkin methods for problem (1.1)–(1.2). One may readily verify that

�2u =
∂4u

∂x4
− 2

∂4u

∂x2∂y2
+

∂4u

∂y4
.

As a comparison, the biharmonic operator Δ2 is defined as

Δ2u :=
∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+

∂4u

∂y4
.

Although the difference between the bi-wave and biharmonic operator is subtle, they
are fundamentally different operators, as �2 is a hyperbolic operator, while Δ2 is
an elliptic operator. However, it does seem possible to use various finite element
methods for the biharmonic problem as a guide to construct numerical methods
for the bi-wave problem. This is exactly the approach we take. The first half of
this paper is devoted to the study of a nonconforming finite element method for
equation (1.1), where we construct a variant of the Morley element (which is used
for the biharmonic equation) that is naturally associated with the bi-wave problem.
We then define the finite element method based on this new element, which unlike
the biharmonic equation, requires additional jump terms to guarantee convergence.
The second half of the paper is devoted to the construction and analysis of a
family of symmetric interior penalty discontinuous Galerkin methods for problem
(1.1)–(1.2), which is closely related to the method in [3] (also see [12]) for the
biharmonic problem. The discontinuous Galerkin methods we develop are natural
extensions of the Morley-type nonconforming method, as penalty terms must be
used in the method for convergence. As expected, the proposed discontinuous
Galerkin methods are very flexible, in particular, they do not impose any constraint
on the mesh for stability and convergence. Furthermore, they allow the use of low
order polynomial (quadratic or higher to be specific) trial and test functions.
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The remainder of the paper is organized as follows. In Section 2, we state prelim-
inary results concerning the well-posedness of the bi-wave problem and regularity
estimates of the weak solution established in [13]. Section 3 is devoted to the con-
struction of the new Morley-type finite element and the finite element method for
(1.1) using this element. We first construct the new finite element and state certain
properties of the element. We then define the finite element method and prove
nearly optimal order (off by a factor | lnh|) error estimates in the energy norm
and in the H1-norm. In Section 4, we state the discontinuous Galerkin method
and derive optimal order error estimates in the energy norm when the solution to
(1.1)–(1.2) belongs to H4(Ω). We then prove optimal order error estimates when
the solution is only H3(Ω) and quadratic polynomials are used. Finally, in Section
5, we present some numerical experiments to gauge the efficiency of the proposed
finite element methods and to validate our theoretical error bounds.

2. Preliminaries

Standard function space notation is adopted in this paper. We refer the reader
to [6, 7] for their exact definitions. In addition, (·, ·) and 〈·, ·〉∂Ω are used to denote
the L2-inner products on Ω and ∂Ω, respectively, and C will denote a generic δ-
and h-independent constant that may take different values at different appearances.
We also introduce the following additional space notation and norm associated with
problem (1.1)–(1.2):

V := {v ∈ H1(Ω); �v ∈ L2(Ω)}, V0 := {v ∈ V ∩H1
0 (Ω); ∂n̄v

∣∣
∂Ω

= 0},
(v, w)V := δ(�v,�w) + (∇v,∇w), ‖v‖V :=

√
(v, v)V ,

|∇v| := ∇v · ∇v, ∇v := (∂xv,−∂yv).

It is clear that V endowed with the inner product (·, ·) is a Hilbert space, but we
note that this is not the case if the harmonic term Δu is removed in (1.1), since
kernels of the bi-wave operator �2 and the wave operator � may contain nonzero
functions satisfying the homogeneous Dirichlet boundary condition (see [4]).

The variational formulation of (1.1)–(1.2) is defined as seeking u ∈ V0 such that

Aδ(u, v) = 〈f, v〉 ∀v ∈ V0,(2.1)

where

Aδ(u, v) := (u, v)V ,

and 〈·, ·〉 represents the pairing between V and its dual V ∗.
The following theorem concerns the well-posedness of the variational formulation

(2.1). A proof of the theorem can be found in [13].

Theorem 2.1. There exists a unique solution to (2.1). Furthermore,

‖u‖V ≤ ‖f‖V ∗ ,(2.2)

where

‖f‖V ∗ = sup
0�=v∈V

〈f, v〉
‖v‖V

.

Moreover, if the boundary ∂Ω of the domain Ω is sufficiently smooth, there exist
constants Mm > 0 (m ≥ 0) such that the weak solution u of (2.1) satisfies

√
δ|�2u|Hm +

√
δ|∇�u|Hm + |Δu|Hm ≤ Mm|f |Hm if f ∈ Hm(Ω).(2.3)
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We end this section by stating some trace and inverse inequalities [3, 7, 6] which
we will use later in the paper.

Lemma 2.1. Let D ⊂ Rd (d ≥ 2) be a regular and star-like domain, and let
ρ = diam(D). Then there exists a D-independent constant C > 0 such that

(i) ‖v‖L2(∂D) ≤ C
[
‖v‖

1
2

L2(D)‖∇v‖
1
2

L2(D) + ρ−
1
2 ‖v‖L2(D)

]
∀v ∈ H1(D),

(ii) ‖v‖L2(∂D) ≤ C
[
ρ

(p−2)d
4p ‖v‖

1
2

Lp(D)‖∇v‖
1
2

L2(D) + ρ
(q−2)d

2q − 1
2 ‖v‖Lq(D)

]
∀v ∈ H1(D), 2 ≤ p, q ≤ 2d

d− 2
if d ≥ 3; 2 ≤ p, q < ∞ if d = 2,

(iii) ‖v‖L2(∂D) ≤ Cρ−
1
2 ‖v‖L2(D) ∀v ∈ Pr(D),

where Pr(D) denotes the space of polynomials of total degree not exceeding r in D.

Remark 2.1. We note that inequalities (i) and (iii) are very often seen and used
in the literature. However, to the best of the authors’ knowledge, inequality (ii)
is rarely seen in the literature, although it can be proved easily by the standard
scaling argument [7, 6].

3. A Morley-type nonconforming finite element method

3.1. Construction of the nonconforming finite element. In this section, we
define a new nonconforming finite element for problem (1.1)–(1.2). This new ele-
ment has similar properties to that of the Morley element which is a nonconforming
finite element for plate bending problems [22, 17, 20]. First, we introduce the fol-
lowing notation, which will be useful in both this section and the next section.

Let Th be a quasi-uniform triangulation of Ω with mesh size h ∈ (0, 1). For a
given T ∈ Th, let (λT

1 , λ
T
2 , λ

T
3 ) denote the associated barycentric coordinates, and

ai (1 ≤ i ≤ 3) denote the vertices of T . Let ei (1 ≤ i ≤ 3) denote the edge of T of
which ai is not a vertex. Next, we define the following sets of edges:

EI
h : = {e; e ∩ ∂Ω = ∅}, EB

h := {e; e ∩ ∂Ω �= ∅}, Eh := EI
h ∪ EB

h .

For any e ∈ EI
h, there exists T1, T2 ∈ Th such that e = T1 ∩ T2. For v ∈

H1(T1) ∩H1(T2), define the jumps and averages of v on e by

[v]
∣∣
e

= vT1
∣∣
e
− vT2

∣∣
e
, {v}

∣∣
e

=
1

2

(
vT1

∣∣
e
+ vT2

∣∣
e

)
,

where vTi = v
∣∣
Ti

. For v ∈ H2(T1) ∩ H2(T2), α ∈ R2, we define the jumps and

averages of ∂αv := ∇v · α on e by

[∂αv]
∣∣
e

= ∂αv
T1
∣∣
e
− ∂αv

T2
∣∣
e
, {∂αv}

∣∣
e

=
1

2

(
∂αv

T1
∣∣
e
+ ∂αv

T2
∣∣
e

)
,

and for v ∈ H3(T1) ∩ H3(T2), α, β ∈ R2, we define the jumps and averages of
∂αβv := D2vα · β (where throughout the paper, D2v denotes the Hessian of v) on
e as follows:

[∂αβv]
∣∣
e

= ∂αβv
T1
∣∣
e
− ∂αβv

T2
∣∣
e
, {∂αβv}

∣∣
e

=
1

2

(
∂αβv

T1
∣∣
e
+ ∂αβv

T2
∣∣
e

)
.

For any e ∈ EB
h , there is a triangle T1 ∈ Th such that e = ∂T1 ∩ ∂Ω. We then

define the jumps and averages of v, ∂αv, and ∂αβv (assuming such quantities are
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Figure 1. Example of a nonuniform mesh (left) and a uniform
mesh (right) of the domain Ω = (0, 1)2 such that every triangle
has no type I edge.

defined) as follows:

[v]
∣∣
e

= vT1
∣∣
e
, {v}

∣∣
e

= vT1
∣∣
e
,

[∂αv]
∣∣
e

= vT1
∣∣
e
, {∂αv}

∣∣
e

= vT1
∣∣
e
,

[∂αβv]
∣∣
e

= ∂αβv
T1
∣∣
e
, {∂αβv}

∣∣
e

= ∂αβv
T1
∣∣
e
.

In the rest of this section, we shall often encounter the following shape charac-
terization of the meshes.

Definition 3.1. For e ∈ Eh, let n and τ denote the outward unit normal and unit
tangent vector of e, respectively. We say that e is a type I edge if

n = τ or n = −τ.(3.1)

Otherwise, e is called a type II edge if condition (3.1) does not hold.

Remark 3.1. (a) We note that if e is a type I edge, then n = (n1,−n2) = ±τ =
±(τ1, τ2) = ±(n2,−n1). Therefore, we conclude

τ =

√
2

2
(±1,±1).

That is, the edge e makes an angle of π
4 in the plane with respect to the x-axis.

Examples of meshes such that every triangle in the partition has no type I edge are
shown in Figure 1.

(b) For T ∈ Th, ei ⊂ ∂T , let n(i), τ (i) denote the outward (from T ) unit normal

and unit tangent vector of ei, respectively. Then using the identity n(i) = − ∇λT
i

‖∇λT
i ‖ ,

ei is a type I edge if and only if

|∇λT
i | = 0.

We now define a new finite element Sh
2 = (T, PT ,ΣT ) as follows:

(i) T is a triangle with no type I edge,
(ii) PT = P2(T ), the space of quadratic polynomials,

(iii) ΣT =

{
v(ai), 1 ≤ i ≤ 3,
∂n̄v(aij), 1 ≤ i < j ≤ 3,
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a
2

a
1

a
3

Figure 2. Element Sh
2 . Solid dots indicate function evaluation

and arrows indicate evaluation of derivatives in the direction n

where aij = 1
2 (ai + aj).

The reason to restrict the element such that T has no type I edge is explained
in the following lemma.

Lemma 3.1. Suppose T ∈ Th has a type I edge in the set Eh. Then ΣT is not
linearly independent, and hence, Sh

2 is not unisolvent on T .

Proof. Let e3 denote the type I edge of T . For v ∈ PT , write

v
∣∣
T

= c1(λ
T
1 )2 + c2(λ

T
2 )2 + c3λ

T
1 λ

T
2 + c4λ

T
1 + c5λ

T
2 + c6.

We then have

v(a3) = c6,

v(a2) = c2 + c5 + v(a3),

v(a1) = c1 + c4 + v(a3),

∂n̄v(a12) = −
(
(c1 + c4)∇λT

1 + (c2 + c5)∇λT
2 +

c3
2

(∇λT
1 + ∇λT

2 )
)
· ∇λT

3

‖∇λT
3 ‖

.

Noting

(∇λT
1 + ∇λT

2 ) · ∇λT
3 = −|∇λT

3 | = 0,

we obtain

∂n̄v(a12) =
(
(v(a3) − v(a1))∇λT

1 + (v(a3) − v(a2))∇λT
2

)
· ∇λT

3

‖∇λT
3 ‖

.

Therefore, the degree of freedom ∂n̄v(a12) is redundant in ΣT . �

Remark 3.2. In contrast, the two finite elements constructed in [13] for problem
(1.1)–(1.2) require that every triangle T ∈ Th have exactly two type I edges, which
can be considered the opposite mesh restriction that is required to use the Morley-
type element Sh

2 .
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Remark 3.3. The basis functions associated with the element Sh
2 = (T, PT ,ΣT ) are

given by

ϕT
j : =

‖∇λT
j ‖

|∇λT
j |

λT
j (λT

j − 1), 1 ≤ j ≤ 3,

ϕT
ij : = 1 − (λT

i + λT
j ) + 2λT

i λ
T
j

−∇λT
i · ∇λT

j

( ϕT
i

‖∇λT
i ‖

+
ϕT
j

‖∇λT
j ‖

)
, 1 ≤ i < j ≤ 3.

We note that if we replace ∇(·) with ∇(·) and |∇(·)| with ‖∇(·)‖2, we obtain the
standard basis functions for the Morley element [17, 22].

3.2. Properties of the new finite element. Let V h be the corresponding finite
element space to the element Sh

2 , and let V h
0 consist of the functions in V h whose

degrees of freedom vanish on ∂Ω, that is,

V h =
{
v
∣∣
T
∈ P2(T ); v is continuous at each degree of freedom in ΣT , ∀T ∈ Th

}
,

V h
0 =

{
v ∈ V h; v vanishes at all degrees of freedom on ∂Ω

}
.

Next, define the following broken Sobolev norms and semi-norms

‖v‖2m,h :=
∑
T∈Th

‖v‖2Hm(T ), |v|2m,h :=
∑
T∈Th

|v|2Hm(T ),

and it is understood that ‖v‖0,h = ‖v‖L2 .
Let ΠT v denote the standard interpolation of v associated with the finite element

Sh
2 , that is,

ΠT v =
∑

1≤i<j≤3,k �=i,j

ϕT
ijv(ak) +

3∑
j=1

ϕT
j ∂n̄v(aj).

We also define Πhv ∈ V h such that Πhv
∣∣
T

= ΠT

(
v
∣∣
T

)
, ∀T ∈ Th. We note that

ΠT v = v ∀v ∈ P2(T ), and therefore, using standard interpolation theory [7] we
have for 0 ≤ m ≤ 3,

|v − ΠT v|Hm(T ) ≤ Ch3−m|v|H3(T ) ∀v ∈ H3(T ), T ∈ Th.

Next, we show that the finite element space V h inherits a form of “weak conti-
nuity” which will play a crucial role in our analysis.

Lemma 3.2. For all α ∈ R2,∫
e

[∂αv]ds = 0 ∀v ∈ V h, e ∈ EI
h,∫

e

∂αvds = 0 ∀v ∈ V h
0 , e ∈ EB

h .

Proof. Given e ∈ Eh, let a1, a2 denote the endpoints of e, a12 the midpoint of e,
and n, τ the normal and tangential direction of e. By hypothesis n �= ±τ . Thus,
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we can write for any constant vector α ∈ R2,∫
e

∂αvds =
1

1 − (τ · n)2

∫
e

(
α ·

(
τ − n(τ · n)

)
∂τv + α ·

(
n− τ (τ · n)

)
∂n̄v

)
ds

=
1

1 − (τ · n)2

(
α ·

(
τ − n(τ · n)

)
(v(a2) − v(a1))

+ α ·
(
n− τ (τ · n)

)
∂n̄v(a12)

)
.

From this identity, the desired result follows. �

From the above “weak continuity” result, we get the following lemmas (see [22]).

Lemma 3.3. Let e ∈ Eh. Then if e = ∂T1 ∩ ∂T2 for some T1, T2 ∈ Th,

‖[v]‖L2(e) + h ‖[∇v]‖L2(e) ≤ Ch
3
2

(
|v|H2(T1) + |v|H2(T2)

)
∀v ∈ V h,

and if e = ∂T1 ∩ ∂Ω for some T1 ∈ Th,

‖[v]‖L2(e) + h ‖[∇v]‖L2(e) ≤ Ch
3
2 |v|H2(T1) ∀v ∈ V h

0 .

Lemma 3.4. For every v ∈ V h
0 , there exist functions vk ∈ H1

0 (Ω) k = 0, 1, 2 with
vk
∣∣
T
∈ P1(T ) such that

|v − v0|m,h ≤ Ch2−m|v|2,h 0 ≤ m ≤ 2,∣∣∂xk
v − vk

∣∣
m,h

≤ Ch1−m|v|2,h 0 ≤ m ≤ 1, k = 1, 2.

Corollary 3.1. | · |m,h and ‖ · ‖m,h are equivalent on V h
0 for m = 0, 1, 2.

Proof. Using the inverse inequality and Poincaré’s inequality, we have

‖v‖L2 ≤ ‖v0‖L2 + ‖v − v0‖L2 ≤ |v0|H1 + Ch2|v|2,h
≤ C|v|1,h + Ch|v|1,h ≤ C|v|1,h ∀v ∈ V h

0 .

Similarly, for k = 1, 2,

‖∂xk
v‖L2 ≤ ‖vk‖L2 + ‖∂xk

v − vk‖L2 ≤ |vk|H1 + Ch|v|2,h ≤ C|v|2,h.

From these two identities, the desired results follow. �

3.3. Formulation and convergence analysis of the Morley-type noncon-
forming method. Based on (2.1), we define our nonconforming finite element
method as seeking uh ∈ V h

0 such that

Aδ
h(uh, v) = (f, v) ∀v ∈ V h

0 ,(3.2)

where

Aδ
h(v, w) =

∑
T∈Th

(
δ(�v,�w)T + (∇v,∇w)T

)

+
∑
e∈Eh

γh| lnh|
(〈

[∂τ̄ τ̄v], [∂τ̄ τ̄w]
〉
e
+ 〈[∂τ̄ n̄v], [∂τ̄ n̄w]〉e

)
.

Recall that τ = (τ1, τ2) and n = (n1, n2) denote the unit tangent and outward unit
normal to e, τ := (τ1,−τ2) = (n2, n1), and he = |e|, the length of e. Also, (·, ·)T
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and 〈·, ·〉e denote the L2 inner product on T and e, respectively. We note that
Aδ

h(·, ·) induces the following energy norm on V h
0 :

‖v‖2M :=
∑
T∈Th

(
δ‖�v‖2L2(T ) + ‖∇v‖2L2(T )

)
(3.3)

+
∑
e∈Eh

γh| lnh|
(
‖[∂τ̄ τ̄v]‖2L2(e) + ‖[∂τ̄ n̄v]‖2L2(e)

)
.

Remark 3.4. In the finite element method (3.2), the jump terms are the so-called
penalty terms. The reason to include penalty terms into the finite element method
is to ensure that ‖ ·‖M is equivalent (independent of h) to the broken Sobolev norm
‖ · ‖2,h on the space V h

0 (see Lemma 3.6). We note that the basis functions ϕT
ij

satisfy (cf. Remark 3.3)

�ϕT
ij = 0 ∀T ∈ Th, 1 ≤ i < j ≤ 3.

Therefore, equivalence of ‖ · ‖M and ‖ · ‖2,h cannot be obtained in the absence of
penalty terms.

For clarity of the presentation, we also introduce the following additional nota-
tion:

ST (v, w) := 〈∂τ̄ τ̄v, ∂nw〉∂T − 〈∂τ̄ n̄v, ∂τw〉∂T ,

QT (v, w) := 2(∂xyv, ∂xyw)T + (∂xxv, ∂yyw)T + (∂yyv, ∂xxw)T ,

S(v, w) :=
∑
T∈Th

ST (v, w),

Q(v, w) :=
∑
T∈Th

QT (v, w).

Before proving the main results of this section, we first establish two technical
lemmas.

Lemma 3.5. For any T ∈ Th and any two smooth functions v and w on T , the
following identity holds:

ST (v, w) = 〈∂xyv, ∂xwn2〉∂T + 〈∂xyv, ∂ywn1〉∂T
+ 〈∂yyv, ∂xwn1〉∂T + 〈∂xxv, ∂ywn2〉∂T .

Proof. By definition, we have

ST (v, w) =
〈
∂τ̄ τ̄v, ∂nw

〉
∂T

−
〈
∂τ̄ n̄v, ∂τw

〉
∂T

=
〈
∂xxv τ̄

2
1 + 2∂xyv τ̄1τ̄2 + ∂yyv τ̄

2
2 , ∂xwn1 + ∂ywn2

〉
∂T

−
〈
∂xxv τ̄1n̄1

+ ∂xyv n̄1τ̄2 + ∂xyv τ̄1n̄2 + ∂yyv τ̄2n̄2, ∂xw τ1 + ∂yw τ2
〉
∂T

.

Since (n̄1, n̄2) = (n1,−n2) and (τ̄1, τ̄2) = (n2, n1),

ST (v, w) =
〈
∂xxv n

2
2 + 2∂xyv n1n2 + ∂yyv n

2
1, ∂xwn1 + ∂ywn2

〉
∂T

−
〈
∂xxv n1n2 + ∂xyv n

2
1 − ∂xyv n

2
2 − ∂yyv n2n1, ∂xwn2 − ∂ywn1

〉
∂T

.
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Finally, expanding the last expression and grouping similar terms, we conclude

ST (v, w) =
〈
∂xw, ∂xxv n

2
2n1 + 2∂xyv n

2
1n2 + ∂yyv n

3
1 − ∂xxv n1n

2
2

〉
∂T

+ 〈∂xw, ∂xyv n3
2 − ∂xyv n

2
1n2 + ∂yyv n1n

2
2〉∂T

+ 〈∂yw, ∂xxv n3
2 + 2∂xyv n1n

2
2 + ∂yyv n

2
1n2 + ∂xxv n

2
1n2〉∂T

+ 〈∂yw, ∂xyv n3
1 − ∂xyv n

2
2n1 − ∂yyv n2n

2
1〉∂T

=
〈
∂xw, ∂xyv n2(n

2
1 + n2

2) + ∂yyv n1(n
2
1 + n2

2)
〉
∂T

+ 〈∂yw, ∂xxv n2(n
2
1 + n2

2) + ∂xyv n1(n
2
1 + n2

2)〉∂T
=

〈
∂xyv, ∂xwn2〉∂T + 〈∂xyv, ∂ywn1

〉
∂T

+ 〈∂xxv, ∂ywn2〉∂T + 〈∂yyv, ∂xwn1〉∂T . �

Corollary 3.2. For any T ∈ Th, v, w ∈ P2(T ), the following identity holds:

QT (v, w) = ST (v, w).

Proof. Since v, w
∣∣
T
∈ P2(T ), integrating by parts and applying Lemma 3.5 gives us

QT (v, w) =
〈
∂xyv, ∂xwn2

〉
∂T

+
〈
∂xyv, ∂ywn1

〉
∂T

+
〈
∂yyv, ∂xwn1

〉
∂T

+
〈
∂xxv, ∂ywn2

〉
∂T

= ST (v, w). �

Lemma 3.6. There exists a γ0 = O(δ) such that for γ ≥ γ0 the following inequality
holds:

‖v‖2M ≥ δC‖v‖22,h ∀v ∈ V h
0 ,(3.4)

where C is a positive constant independent of γ and h.

Proof. We divide the proof into three steps.

Step 1. Integrating by parts and applying Corollary 3.2 yields

‖v‖2M =
∑
T∈Th

(
δ‖�v‖2T + ‖∇v‖2T

)
+

∑
e∈Eh

γh| lnh|
(
‖[∂τ̄ τ̄v]‖2L2(e) + ‖[∂τ̄ n̄v]‖2L2(e)

)

=
∑
T∈Th

(
δ‖D2v‖2L2(T ) + ‖∇v‖2L2(T ) − δQT (v, v)

)

+
∑
e∈Eh

γh| lnh|
(
‖[∂τ̄ τ̄v]‖2L2(e) + ‖[∂τ̄ n̄v]‖2L2(e)

)

=
∑
T∈Th

(
δ‖D2v‖2L2(T ) + ‖∇v‖2L2(T ) − δST (v, v)

)

+
∑
e∈Eh

γh| lnh|
(
‖[∂τ̄ τ̄v]‖2L2(e) + ‖[∂τ̄ n̄v]‖2L2(e)

)
.
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Hence, by Lemma 3.2,

‖v‖2M =
∑
T∈Th

(
δ‖D2v‖2T + ‖∇v‖2L2(T )

)
+

∑
e∈Eh

(
γh| lnh|

(
‖[∂τ̄ τ̄v]‖2L2(e)(3.5)

+ ‖[∂τ̄ n̄v]‖2L2(e)

)
− δ

(〈
[∂τ̄ τ̄v], {∂nv}

〉
+
〈
{∂τ̄ τ̄v}, [∂nv]

〉
e

−
〈
[∂τ̄ n̄v], {∂τv}

〉
e
−
〈
{∂τ̄ n̄v}, [∂τv]

〉
e

))
=

∑
T∈Th

(
δ‖D2v‖2L2(T ) + ‖∇v‖2L2(T )

)
+

∑
e∈Eh

(
γh| lnh|

(
‖[∂τ̄ τ̄v]‖2L2(e)

+ ‖[∂τ̄ n̄v]‖2L2(e)

)
− δ

(〈
[∂τ̄ τ̄v], {∂nv}

〉
e
−
〈
[∂τ̄ n̄v], {∂τv}

〉
e

))
≥

∑
T∈Th

(
δ‖D2v‖2L2(T ) + ‖∇v‖2L2(T )

)
+

∑
e∈Eh

(
γh| lnh|

(
‖[∂τ̄ τ̄v]‖2L2(e)

+ ‖[∂τ̄ n̄v]‖2L2(e)

)
− δ

(∣∣〈[∂τ̄ τ̄v], {∂nv}〉e∣∣ +
∣∣〈[∂τ̄ n̄v], {∂τv}〉e∣∣)

)
.

Step 2. Next, we derive a lower bound for each of the last two terms on the right-
hand side of (3.5). Since v is quadratic, both ∂τ̄ τ̄v and ∂τ̄ n̄v are constants along
each e ∈ Eh. By Lemma 3.2 we have

〈
[∂τ̄ τ̄v], {∂nv}

〉
e

=
〈
[∂τ̄ τ̄v], {∂nv} +

1

2
[∂nv]

〉
e

=
〈
[∂τ̄ τ̄v], ∂nv

〉
e
,

〈
[∂τ̄ n̄v], {∂τv}

〉
e

=
〈
[∂τ̄ n̄v], {∂τv} +

1

2
[∂τv]

〉
e

=
〈
[∂τ̄ n̄v], ∂τv

〉
e
.

Let e1 = (1, 0)T and e2 = (0, 1)T denote the canonical orthogonal basis for R2.
For e ∈ Eh, let T ∈ Th be the element (with larger global labeling) which has e
as its one edge. On noting that [∂τ̄ τ̄v] and [∂τ̄ n̄v] are constants along e, by the
quasi-uniformity of Th we get

∣∣〈[∂τ̄ τ̄v], {∂nv}
〉
e

∣∣≤ Che ‖[∂τ̄ τ̄v]‖L∞(e) ‖∇v‖L∞(T )(3.6)

≤ Che ‖[∂τ̄ τ̄v]‖L∞(e)

(
‖∂e1

v‖L∞(T ) + ‖∂e2
v‖L∞(T )

)
≤ h| lnh|

2ε
‖[∂τ̄ τ̄v]‖2L2(e) + C

ε

| lnh|
(
‖∂e1

v‖2L∞(T ) + ‖∂e2
v‖2L∞(T )

)
,∣∣〈[∂τ̄ n̄v], {∂nv}

〉
e

∣∣≤ Che ‖[∂τ̄ n̄v]‖L∞(e) ‖∇v‖L∞(T )(3.7)

≤ Che ‖[∂τ̄ n̄v]‖L∞(e)

(
‖∂e1

v‖L∞(T ) + ‖∂e2
v‖L∞(T )

)
≤ h| lnh|

2ε
‖[∂τ̄ n̄v]‖2L2(e) + C

ε

| lnh|
(
‖∂e1

v‖2L∞(T ) + ‖∂e2
v‖2L∞(T )

)
,

where ε is a positive number to be chosen later.

To continue, we use a discrete Sobolev-Poincaré inequality for piecewise polyno-
mials, which was proved in [5] (also see [16] for a related inequality for piecewise
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H1 functions), to get

∑
T∈Th

‖∂ei
v‖2L∞(T ) ≤ C | lnh|

[ ∑
T∈Th

‖D2v‖2L2(T )(3.8)

+
∑
e∈Eh

h−1
e ‖Pe

0 [∂ei
v]‖2L2(e)

]
for i = 1, 2,

where C > 0 is an h-independent constant, and Pe
0 denotes the constant projection

of L2(e) onto P0(e).
In view of Lemma 3.2 and the definition of V h

0 , we have

Pe
0 [∂ei

v] = 0 ∀v ∈ V h
0 , ∀e ∈ Eh, i = 1, 2.

Hence, by (3.8) we get∑
T∈Th

‖∂ei
v‖2L∞(T ) ≤ C | lnh|

∑
T∈Th

‖D2v‖2L2(T ) for i = 1, 2.

Now, summing over all edges after adding (3.6) and (3.7), we obtain∑
e∈Eh

(∣∣〈[∂τ̄ τ̄v], {∂nv}〉e∣∣ +
∣∣〈[∂τ̄ n̄v], {∂τv}〉e∣∣)(3.9)

≤ h| lnh|
ε

∑
e∈Eh

(∥∥[∂τ̄ τ̄v]
∥∥2
L2(e)

+
∥∥[∂τ̄ n̄v]

∥∥2
L2(e)

)
+ εC

∑
T∈Th

‖D2v‖2L2(T ).

Step 3. Combining (3.5) and (3.9) gives us

‖v‖2M ≥
∑
T∈Th

(
δ
(
1 − εC)‖D2v‖2L2(T ) + ‖∇v‖2L2(T )

)

+ h| lnh|
(
γ − δ

ε

) ∑
e∈Eh

(
‖[∂τ̄ τ̄v]‖2L2(e) + ‖[∂τ̄ n̄v]‖2L2(e)

)
.

Choosing ε = 1
2C , γ0 = 2δC, for γ ≥ γ0 we obtain

‖v‖2M ≥
∑
T∈Th

(δ
2
‖D2v‖2L2(T ) + ‖∇v‖2L2(T )

)
≥ Cδ‖v‖22,h.

The proof is complete. �

With Lemma 3.6 in hand, we are now able to show the first main result of this
section.

Theorem 3.1. There exists a unique solution uh to (3.2). Furthermore, if u ∈
H3(Ω) and γ ≥ γ0, the following error estimates hold:

‖u− uh‖M ≤ h
(
C1‖f‖L2 + C2‖u‖H3

)
,(3.10)

‖u− uh‖2,h ≤ Ch√
δ

(
C1‖f‖L2 + C2‖u‖H3

)
,(3.11)

where

C1 =
CM0√

δ
, C2 = C

√
δ + h2 + γ| lnh|.
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Proof. Since problem (3.2) is linear and in a finite dimensional setting, it suffices
to show uniqueness. Thus, suppose w ∈ V h

0 satisfies

Aδ
h(w, v) = 0 ∀v ∈ V h

0 .

It follows that w is piecewise constant on each T ∈ Th. By Corollary 3.1, we
conclude 0 = |w|1,h ≥ C‖w‖1,h, and hence w ≡ 0.

To show the error estimate (3.10), we use Strang’s second lemma [7, 6] to get

‖u− uh‖M ≤ inf
v∈V h

0

‖u− v‖M + sup
0�=v∈V h

0

∣∣Aδ
h(u, v) − (f, v)

∣∣
‖v‖M

.(3.12)

Using Lemma 3.4 (v0 is defined there), we obtain

(f, v) = (δ�2u− Δu, v0) + (f, v − v0)

= (−δ∇�u + ∇u,∇v0) + (f, v − v0)

=
∑
T∈Th

(
δ(�u,�v)T + (∇u,∇v)T + (−δ∇�u + ∇u,∇(v0 − v))T

− δ
〈
�u, ∂n̄v

〉
∂T

)
+ (f, v − v0)

=
∑
T∈Th

(
δ(�u,�v)T + (∇u,∇v)T + (−δ∇�u + ∇u,∇(v0 − v))T

)

− δ
∑
e∈Eh

〈
�u, [∂n̄v]

〉
e
+ (f, v − v0)

= Aδ
h(u, v) +

∑
T∈Th

(−δ∇�u + ∇u,∇(v0 − v))T

− δ
∑
e∈Eh

〈
�u, [∂n̄v]

〉
e
+ (f, v − v0).

Next, by Lemma 3.2, we have

δ
∣∣∣∑
e∈Eh

〈
�u, [∂n̄v]

〉
e

∣∣∣ = δ
∣∣∣∑
e∈Eh

〈
�u− Pe

0�u, [∂n̄v] − Pe
0 [∂n̄v]

〉
e

∣∣∣
≤ δCh‖∇�u‖L2‖v‖2,h.

Also, ∣∣∣δ ∑
T∈Th

(
∇�u,∇(v0 − v)

)
T

∣∣∣ =
∣∣∣δ ∑

T∈Th

(
∇�u,∇(v0 − v)

)
T

∣∣∣
≤ δCh‖∇�u‖L2‖v‖2,h,

and by Lemma 3.4 we obtain∣∣∣ ∑
T∈Th

(
∇u,∇(v0 − v)

)
T

+ (f, v − v0)
∣∣∣

=
∣∣∣ ∑
T∈Th

(
Δu, v − v0

)
T
−

∑
e∈Eh

〈∂nu, [v]〉e + (f, v − v0)
∣∣∣

≤ C
(
h

3
2 ‖Δu‖L2 + h2‖f‖L2

)
‖v‖2,h +

∑
e∈Eh

‖∂nu‖L2(e)‖[v]‖L2(e).
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By the Cauchy-Schwarz inequality, the trace/inverse inequality

‖∂nu‖L2(e) ≤ Ch− 1
2 ‖u‖H2(T )

(assuming e is an edge of the element T , see (iii) of Lemma 2.1), and Lemma 3.3
we get∑

e∈Eh

‖∂nu‖L2(e)‖[v]‖L2(e) ≤
(∑
e∈Eh

‖∂nu‖2L2(e)

) 1
2
(∑
e∈Eh

‖[v]‖2L2(e)

) 1
2

≤ C
( ∑
T∈Th

h−1‖u‖2H2(T )

) 1
2
( ∑
T∈Th

h3‖v‖2H2(T )

) 1
2

≤ Ch‖u‖H2 ‖v‖2,h
≤ Ch‖Δu‖L2 ‖v‖2,h.

Using these inequalities, the regularity result (2.3), and Lemma 3.6 it follows
that ∣∣Aδ

h(u, v) − (f, v)
∣∣ ≤ Ch

(
δ‖∇�u‖L2 + ‖Δu‖L2 + h‖f‖L2

)
‖v‖2,h,(3.13)

≤ Ch
(√

δM0 + M0 + h
)
‖f‖L2‖v‖2,h

≤ CM0h‖f‖L2‖v‖2,h

≤ CM0h√
δ

‖f‖L2‖v‖M .

Next, appealing to the inverse and trace inequalities, we have

‖u− Πhu‖2M =
∑
T∈Th

(
δ‖�(u− Πhu)‖2L2(T ) + ‖∇(u− Πhu)‖2L2(T )

)

+
∑
e∈Eh

γh| lnh|
(
‖[∂τ̄ τ̄ (u− Πhu)]‖2L2(e) + ‖[∂τ̄ n̄(u− Πhu)]‖2L2(e)

)

≤ Ch2(δ + h2 + γ| lnh|)‖u‖2H3 .

Thus,

inf
v∈V h

0

‖u− v‖M ≤ Ch
√
δ + h2 + γ| ln h| ‖u‖H3 .(3.14)

Combining (3.12)–(3.14), we obtain

‖u− uh‖M ≤ Ch

(
M0√
δ
‖f‖L2 +

√
δ + h2 + γ| lnh| ‖u‖H3

)

≤ h
(
C1‖f‖L2 + C2‖u‖H3

)
.

To prove (3.11), we use the triangle inequality and Lemma 3.6:

‖u− uh‖2,h ≤ ‖u− Πhu‖2,h + ‖Πhu− uh‖2,h

≤ Ch‖u‖H3 +
C√
δ
‖Πhu− uh‖M

≤ Ch‖u‖H3 +
C√
δ

(
‖u− Πhu‖M + ‖u− uh‖M

)
≤ Ch√

δ

(
C1‖f‖L2 + C2‖u‖H3

)
. �
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The second main theorem of this section, which is stated below, concerns the
H1-norm error estimate for the proposed Morley-type nonconforming method.

Theorem 3.2. In addition to the hypotheses of Theorem 3.1, assume Ω is convex.
Then the following estimate holds:

‖u− uh‖1,h ≤ h2
(
C3‖f‖L2 + C4‖u‖H3

)
,(3.15)

where

C3 = C3(γ, δ, h, CE) = CCE

(
1 + C2

2 +
C2(1 + δ| lnh|)√

δ

)
,

C4 = C4(γ, δ, h, CE) = CCE

(
h + C1C2 +

C1(1 + δ| lnh|)√
δ

)
,

and CE is defined by (3.19).

Proof. The proof is quite technical, so we break it up into four steps.

Step 1 (A duality argument). Let eh = u − uh, ρh = Πheh = Πhu − uh ∈ V h
0 and

ρ0 ∈ H1
0 (Ω) be as defined in Lemma 3.4. First, we state the following stability

estimates:

‖ρh‖2,h ≤ ‖eh‖2,h + ‖u− Πhu‖2,h ≤ C‖eh‖2,h,(3.16)

|ρh|1,h ≤ |ρh − ρ0|1,h + ‖∇ρ0‖L2(3.17)

≤ h‖ρh‖2,h + ‖∇ρ0‖L2 ≤ Ch‖eh‖2,h + ‖∇ρ0‖L2 ,

‖∇ρ0‖L2 ≤ |ρh|1,h + |ρ0 − ρh|1,h(3.18)

≤ |ρh|1,h + Ch|ρh|2,h ≤ C|ρh|1,h.

Next, let ϕ ∈ H3(Ω)∩H2
0 (Ω) be the solution to the following auxiliary problem:

δΔ2ϕ− Δϕ = −Δρ0 in Ω,

ϕ = ∂nϕ = 0 on ∂Ω.

Since ρ0 ∈ H1
0 (Ω) and Ω is convex, it follows from standard elliptic theory [9] that

‖ϕ‖H3 ≤ CE‖∇ρ0‖L2 .(3.19)

Integrating by parts, we obtain

‖∇ρ0‖2L2 = (−δ∇Δϕ + ∇ϕ,∇ρ0)

=
∑
T∈Th

(
(−δ∇Δϕ + ∇ϕ,∇ρh)T + (−δ∇Δϕ + ∇ϕ,∇(ρ0 − ρh))T

)

=
∑
T∈Th

(
δ(D2ϕ,D2ρh)T + (∇ϕ,∇ρh)T + (−δ∇Δϕ + ∇ϕ,∇(ρ0 − ρh))T

)

− δ
∑
e∈Eh

(
〈Δϕ− ∂ττϕ, [∂nρh]〉e + 〈∂nτϕ, [∂τρh]〉e

)
.

Applying Corollary 3.2 yields

(D2ϕ,D2ρh)T = (�ϕ,�ρh)T + QT (Πhϕ, ρh) + QT (ϕ− Πhϕ, ρh)

= (�ϕ,�ρh)T + ST (ϕ, ρh) + ST (Πhϕ− ϕ, ρh) + QT (ϕ− Πhϕ, ρh),
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and hence, we obtain the following identity:

‖∇ρ0‖2L2 = Aδ
h(ϕ, ρh) +

∑
T∈Th

(−δ∇Δϕ + ∇ϕ,∇(ρ0 − ρh))T(3.20)

− δ
∑
e∈Eh

(
〈Δϕ− ∂ττϕ, [∂nρh]〉e + 〈∂nτϕ, [∂τρh]〉e

)

+ δ
(
S(ϕ, ρh) + S(Πhϕ− ϕ, ρh) + Q(ϕ− Πhϕ, ρh)

)
.

Step 2 (Bounding the last six terms in (3.20)). First, using standard interpolation
results and (3.16) we get

Q(ϕ− Πhϕ, ρh) ≤ C|ϕ− Πhϕ|2,h|ρh|2,h ≤ Ch‖ϕ‖H3‖eh‖2,h.(3.21)

Next, using the trace inequality we have for any T ∈ Th,

ST (Πhϕ− ϕ, ρh) =
〈
∂τ̄ τ̄ (Πhϕ− ϕ), ∂nρh

〉
∂T

−
〈
∂τ̄ n̄(Πhϕ− ϕ), ∂τρh

〉
∂T

≤ ‖∂τ̄ τ̄ (Πhϕ− ϕ)‖L2(∂T )‖∂nρh‖L2(∂T )

+ ‖∂τ̄ n̄(Πhϕ− ϕ)‖L2(∂T )‖∂τρh‖L2(∂T )

≤ Ch
1
2 ‖ϕ‖H3(T )‖∇ρh‖L2(∂T )

≤ Ch‖ϕ‖H3(T )‖∇ρh‖L∞(T ).

Therefore, using (3.17) and a similar technique as that found in Step 2 of the
proof of Lemma 3.6, we have

S(Πhϕ− ϕ, ρh) =
∑
T∈Th

ST (Πhϕ− ϕ, ρh)(3.22)

≤ Ch| lnh|‖ϕ‖H3‖ρh‖2,h
≤ Ch| lnh|‖ϕ‖H3‖eh‖2,h.

Next, using Lemma 3.2 and (3.16)

S(ϕ, ρh) =
∑
e∈Eh

(
〈∂τ̄ τ̄ϕ, [∂nρh]〉e − 〈∂τ̄ n̄ϕ, [∂τρh]〉e

)
(3.23)

=
∑
e∈Eh

(
〈∂τ̄ τ̄ϕ− Pe

0 (∂τ̄ τ̄ϕ) , [∂nρh] − Pe
0 ([∂nρh])〉e

− 〈∂τ̄ n̄ϕ− Pe
0 (∂τ̄ n̄ϕ) , [∂τρh] − Pe

0 ([∂τρh])〉e
)

≤ Ch‖ϕ‖H3‖ρh‖2,h
≤ Ch‖ϕ‖H3‖eh‖2,h,

Similarly, we conclude∑
e∈Eh

(
〈Δϕ− ∂ττϕ, [∂nρh]〉e + 〈∂nτϕ, [∂τρh]〉e

)
≤ Ch‖ϕ‖H3‖eh‖2,h,(3.24)

and using Lemma 3.4, we obtain∑
T∈Th

(−δ∇Δϕ + ∇ϕ,∇(ρ0 − ρh))T ≤ C‖ϕ‖H3‖ρ0 − ρh‖1,h(3.25)

≤ Ch‖ϕ‖H3‖eh‖2,h.
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Applying bounds (3.21)–(3.25) to (3.20), we have

‖∇ρ0‖2L2 ≤ Aδ
h(ϕ, ρh) + Ch(1 + δ| lnh|)‖eh‖2,h‖ϕ‖H3 .(3.26)

Step 3 (Bounding Aδ
h(ϕ, ρh)). To bound Aδ

h(ϕ, ρh), we write

Aδ
h(ϕ, ρh) = Aδ

h(eh, ϕ− Πhϕ) + Aδ
h(eh,Πhϕ) + Aδ

h(ϕ,Πhu− u).(3.27)

Bounding the third term in (3.27) we get

Aδ
h(ϕ,Πhu− u) =

∑
T∈Th

(
δ(�ϕ,�(Πhu− u))T + (∇ϕ,∇(Πhu− u))T

)

=
∑
T∈Th

(
−δ

(
∇�ϕ,∇(Πhu− u)

)
T

+
(
∇ϕ,∇(Πhu− u)

)
T

)
(3.28)

+
∑
e∈Eh

δ
〈
�ϕ− Pe

0 (�ϕ) , [∂n̄(Πhu− u)] − Pe
0 ([∂n̄(Πhu− u)])

〉
e

≤ Ch2‖ϕ‖H3‖u‖H3 .

To bound the second term in (3.27), we have

Aδ
h(eh,Πhϕ) = Aδ

h(u,Πhϕ) − (f, ϕ) − (f,Πhϕ− ϕ)

=
∑
T∈Th

(−δ∇�u + ∇u,∇(Πhϕ− ϕ))T − (f,Πhϕ− ϕ)(3.29)

+ δ
∑
e∈Eh

〈
�u− Pe

0(�u), [∂n̄(Πhϕ− ϕ)] − Pe
0 [∂n̄(Πhϕ− ϕ)]

〉
e

≤ Ch2(‖u‖H3 + h‖f‖L2)‖ϕ‖H3 .

We bound the first term in (3.27) as follows:

Aδ
h(eh, ϕ− Πhϕ) ≤ ‖eh‖M‖ϕ− Πhϕ‖M(3.30)

≤ CC2h‖ϕ‖H3‖eh‖M .

Combining (3.27)–(3.30), we obtain

Aδ
h(ϕ, ρh) ≤ Ch

(
h‖u‖H3 + h2‖f‖L2 + C2‖eh‖M

)
‖ϕ‖H3 .(3.31)

Step 4 (Finishing up). Using bounds (3.26) and (3.31), and the regularity result
(3.19), we conclude

‖∇ρ0‖L2 ≤ CCE

(
h2‖u‖H3 + h3‖f‖L2 + C2h‖eh‖M + h(1 + δ| lnh|)‖eh‖2,h

)
≤ CCEh

2

[(
1 + C2

2 +
C2(1 + δ| lnh|)√

δ

)
‖u‖H3

+

(
h + C1C2 +

C1(1 + δ| lnh|)√
δ

)
‖f‖L2

]
.
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Finally, using the stability result (3.18), we have

|u− uh|1,h ≤ |u− Πhu|1,h + |ρh|1,h

≤ CCEh
2

[(
1 + C2

2 +
C2(1 + δ| lnh|)√

δ

)
‖u‖H3

+

(
h + C1C2 +

C1(1 + δ| lnh|)√
δ

)
‖f‖L2

]

≤ h2
(
C3‖f‖L2 + C4‖u‖H3

)
.

The proof is complete. �

We conclude this section by remarking that all results of this section are still valid
if the Morley-type nonconforming element Sh

2 is replaced by the original Morley
element (cf. [17, 20]) but making no change to the formulation of the method.

4. Interior penalty discontinuous Galerkin methods

In the previous section we constructed and analyzed a quadratic Morley-type
nonconforming finite element method for problem (1.1)–(1.2). As in the case of
conforming finite elements [13], the construction of the Morley-type element is only
possible on some special meshes (it is interesting to note that the mesh constraints
for the conforming elements and for the nonconforming finite element are “orthogo-
nal” to each other). Moreover, in order to ensure the convergence of the Morley-type
nonconforming finite element method, two (super)penalized jump terms must be
introduced in the mesh-dependent bilinear form Aδ

h(·, ·). These jump terms are
not only critically used in the convergence proof but also certified by numerical
experiments (see Section 5) to be indispensable for the convergence of the method.

To avoid the mesh constraints imposed by both conforming and nonconforming
finite element methods, and also considering the fact that interior penalty terms
must be used in the nonconforming method, it is natural to go one step further and
develop interior penalty discontinuous Galerkin (DG) methods (cf. [10, 3, 23, 1]).
This indeed is the main goal of this section.

In this section, we develop a family of interior penalty DG methods for problem
(1.1)–(1.2). Our methods are closely related to the DG methods introduced by
Baker [3] (also see [12]) for the biharmonic problem. As it is now well known (cf.
[2, 19] and the references therein), DG methods use trial and test spaces consisting
of totally discontinuous polynomials, and as a result, the weak formulation naturally
include jump and average terms across element edges/faces, and penalty terms are
introduced to control the discontinuity between adjacent elements. DG methods
enjoy a number of advantages over (conforming and nonconforming) finite element
methods. This is especially true for fourth-order problems such as (1.1)–(1.2) and
the biharmonic problem, which are difficult and delicate to solve by finite element
methods.

4.1. Formulation of interior penalty DG methods. To formulate interior
penalty DG methods for problem (1.1)–(1.2), we introduce some additional no-
tation. Let Th be a locally quasi-uniform triangulation of Ω with hT = diam(T )
and h = maxT∈Th

hT . The notations EI
h, EB

h , Eh, [v], and {v} are the same as in
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Section 3. We also define

Wh
r =

∏
T∈Th

Pr(T ), W̊h
r = Wh

r ∩H1
0 (Ω), Hs(Th) =

∏
T∈Th

Hs(T ),

where r ≥ 2 which will be assumed in the rest of this section.
For T ∈ Th, it is easy to check that the following Green’s identities hold for the

d’Alembertian � and the bi-wave operator �2:∫
T

�v w dxdy =

∫
∂T

∂n̄v w ds−
∫
T

∇v · ∇w dxdy,∫
T

�2v w dxdy =

∫
∂T

(∂n̄�v)w ds−
∫
∂T

�v ∂n̄w ds +

∫
T

�v�w dxdy.

The second identity together with the elementary algebraic identity,

a+b+ − a−b− = [a]{b} + {a}[b],
motivates us to introduce the following mesh-dependent bilinear form on the prod-
uct space H4(Th) ×H4(Th):

aδh(v, w) : =
∑
T∈Th

(
δ(�v,�w)T + (∇v,∇w)T

)
+

∑
e∈Eh

(
〈δ{∂n̄�v} − {∂nv}, [w]〉e

− δ 〈{�v}, [∂n̄w]〉e + 〈δ{∂n̄�w} − {∂nw}, [v]〉e − δ 〈{�w}, [∂n̄v]〉e
+ γh−1

e 〈[∂n̄v], [∂n̄w]〉e + γh−3
e 〈[v], [w]〉e

)
∀v, w ∈ H4(Th).

As in the previous section, γ is a positive constant independent of h and the terms
involving γ are the so-called penalty terms.

The bilinear form aδh(·, ·) induces the following norm on H4(Th):

‖v‖2E : =
∑
T∈Th

(
δ‖�v‖2L2(T ) + ‖∇v‖2L2(T )

)
(4.1)

+
∑
e∈Eh

(
γh−3

e ‖[v]‖2L2(e) + γh−1
e ‖[∂n̄v]‖2L2(e)

+ δhe ‖{�v}‖2L2(e) + δh3
e ‖{∂n̄�v}‖2L2(e) + he ‖{∂nv}‖2L2(e)

)
.

We also define the following alternative norm which will be used later in the paper:

‖v‖2
Ẽ

: =
∑
T∈Th

(
δ‖�v‖2L2(T ) + ‖∇v‖2L2(T )

)
+

∑
e∈Eh

(
γh−3

e ‖[v]‖2L2(e)(4.2)

+ γh−1
e ‖[∂n̄v]‖2L2(e) + δhe ‖{�v}‖2L2(e) + he ‖{∂nv}‖2L2(e)

)
.

We now define a weak formulation of (1.1)–(1.2) as seeking u ∈ H4(Th)∩V such
that

aγh(u, v) = (f, v) ∀v ∈ H4(Th) ∩ V.(4.3)

Remark 4.1. One may easily verify that the formulation (4.3) is consistent. That
is, if u ∈ H4(Ω)∩V is the solution to (1.1)–(1.2), then u satisfies (4.3). Conversely,
if u ∈ H4(Ω) ∩ V0 solves (4.3), then u is the unique solution to (1.1)–(1.2).

Based on (4.3), we then define our interior penalty discontinuous Galerkin meth-
ods as to find uh ∈ Wh

r such that

aγh(uh, v) = (f, v) ∀v ∈ Wh
r ,(4.4)
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We end this subsection by stating a lemma which concerns the approximation
properties of the finite element spaces Wh

r . We omit the proof to save space and
refer the reader to [3] for the proof of similar results.

Lemma 4.1. For any v ∈ Hs(Ω) (s ≥ 4), there exists ṽ ∈ Wh
r such that

‖v − ṽ‖E ≤ C

( ∑
T∈Th

h2
−4
T (δ + γ + h2

T )‖v‖2H�(T )

) 1
2

≤ Ch
−2(
√
γ + δ + h)‖v‖H� , r ≥ 3,

‖v − ṽ‖E ≤ C

( ∑
T∈Th

h2
T (δ + γ + h2

T )‖v‖2H4(T )

) 1
2

≤ Ch(
√
γ + δ + h)‖v‖H4 , r = 2.

Moreover, if v ∈ Hs(Ω) (s ≥ 3), there exists ṽ ∈ Wh
r such that

‖v − ṽ‖Ẽ ≤ C

( ∑
T∈Th

h2
−4
T (δ + γ + h2

T )‖v‖2H�(T )

) 1
2

≤ Ch
−2(
√
γ + δ + h)‖v‖H� , r ≥ 2.

Where  = min{s, r + 1}.
4.2. Convergence analysis of interior penalty DG methods. The following
lemma ensures that the bilinear form aγh(·, ·) is continuous and coercive on the finite

element space Wh
r .

Lemma 4.2. The following inequality holds:

|aδh(v, w)| ≤ 2‖v‖E‖w‖E ∀v, w ∈ H4(Th).(4.5)

Furthermore, there exists a positive constant γ0 = O(δ + h2) such that for γ ≥ γ0,
we get

aδh(v, v) ≥ C‖v‖2E ∀v ∈ Wh
r .(4.6)

Proof. The proof is similar to the one found in [3, Propositions 5.1 and 5.2] (also
see [19]). Clearly (4.5) is a direct consequence of the Cauchy-Schwarz inequality,
so we only give a detailed proof of (4.6).

First, for v ∈ Wh
r we have using the Cauchy-Schwarz and inverse inequalities

‖v‖2E ≤ C
∑
T∈Th

(
δ‖�v‖2L2(T ) + ‖∇v‖2L2(T )

)
(4.7)

+ C
∑
e∈Eh

(
γh−3

e ‖[v]‖2L2(e) + γh−1
e ‖[∂n̄v]‖2L2(e)

)
.

Next, by definition we have

aγh(v, v) ≥
∑
T∈Th

(
δ‖�v‖2L2(T ) + ‖∇v‖2L2(T )

)
(4.8)

+
∑
e∈Eh

(
γh−3

e ‖[v]‖2L2(e) + γh−1
e ‖[∂n̄v]‖2L2(e)

− 2
∣∣〈δ{∂n̄�v} − {∂nv}, [v]

〉
e

∣∣− 2δ
∣∣〈{�v}, [∂n̄v]

〉
e

∣∣).
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Using the trace and inverse inequalities yields for e = T1 ∩ T2 ∈ EI
h,∣∣〈{∂n̄�v}, [v]

〉
e

∣∣ ≤ C
(
‖�v‖L2(T1) + ‖�v‖L2(T2)

)
h
− 3

2
e ‖[v]‖L2(e) ,∣∣〈{�v}, [∂n̄v]

〉
e

∣∣ ≤ C
(
‖�v‖L2(T1) + ‖�v‖L2(T2)

)
h
− 1

2
e ‖[∂n̄v]‖L2(e) ,∣∣〈{∂nv}, [v]〉e∣∣ ≤ C

(
‖∇v‖L2(T1) + ‖∇v‖L2(T2)

)
h
− 1

2
e ‖[v]‖L2(e) .

Similar inequalities hold on e ∈ EB
h . Thus,

∑
e∈Eh

δ
∣∣〈{∂n̄�v}, [v]

〉
e

∣∣ ≤ δC

( ∑
T∈Th

‖�v‖2L2(T )

) 1
2
(∑

e∈Eh

h−3
e ‖[v]‖2L2(e)

) 1
2

≤ δ

8

∑
T∈Th

‖�v‖2L2(T ) + δC
∑
e∈Eh

h−3
e ‖[v]‖2L2(e) ,

∑
e∈Eh

δ
∣∣〈{�v}, [∂n̄v]

〉
e

∣∣ ≤ δC

( ∑
T∈Th

‖�v‖2L2(T )

) 1
2
(∑

e∈Eh

h−1
e ‖[∂n̄v]‖2L2(e)

) 1
2

,

≤ δ

8

∑
T∈Th

‖�v‖2L2(T ) + δC
∑
e∈Eh

h−1
e ‖[∂n̄v]‖2L2(e) ,

∑
e∈Eh

∣∣〈{∂nv}, [vh]
〉
e

∣∣ ≤ C

( ∑
T∈Th

‖∇v‖2L2(T )

) 1
2
(∑

e∈Eh

h−1
e ‖[v]‖2L2(e)

) 1
2

≤ 1

4

∑
T∈Th

‖∇v‖2L2(T ) + C
∑
e∈Eh

h−1
e ‖[v]‖2L2(e) .

Combining these estimates with (4.8) we obtain

aδh(v, v) ≥ 1

2

∑
T∈Th

(
δ‖�v‖2L2(T ) + ‖∇v‖2L2(T )

)

+
∑
e∈Eh

(
h−3
e

(
γ − C(δ + h2

e)
)
‖[v]‖2L2(e)

+ h−1
e

(
γ − δC

)
‖[∂n̄v]‖2L2(e)

)
.

Choosing γ0 = C(δ + h2) and using (4.7), we have for γ ≥ γ0,

aδh(v, v) ≥ C‖v‖2E . �
An immediate consequence of the above lemma is the following existence and

uniqueness theorem.

Theorem 4.1. The discrete problem (4.4) has a unique solution for γ ≥ γ0.

We now are ready to state and prove one of the main theorems of this section.

Theorem 4.2. Let γ ≥ γ0 and suppose u ∈ Hs(Ω) (s ≥ 4) solves (1.1)–(1.2). Then
the following error estimates hold:

‖u− uh‖E ≤ Ch
−2(
√
γ + δ + h)‖u‖H� , r ≥ 3,(4.9)

‖u− uh‖E ≤ Ch(
√
γ + δ + h)‖u‖H4 , r = 2.(4.10)

where  = min{r + 1, s}, and C is independent of h, γ, and δ.
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Proof. Using the consistency, coercivity, and continuity of the bilinear form aδh, we
have for γ ≥ γ0 and v ∈ Wh

r ,

C‖uh − v‖2E ≤ aδh(uh − v, uh − v) = aδh(u− v, uh − v)

≤ 2‖u− v‖E‖uh − v‖E ,

and therefore

‖u− uh‖E ≤ ‖u− v‖E + ‖uh − v‖E ≤ C‖u− v‖E .

The error estimates (4.9)–(4.10) then follow directly from Lemma 4.1. �

Next, we derive error estimates when the solution only belongs to H3(Ω). To
conclude, we need the following technical lemma which is concerned with how well
a function in Wh

r can be approximated by continuous functions. A proof of the
lemma can be found in [15].

Lemma 4.3. For any v ∈ Wh
r , there exists Ehv ∈ W̊h

r such that

‖v − Ehv‖2L2 ≤ C
∑
e∈EI

h

he ‖[v]‖2L2(e) +
∑
e∈EB

h

he‖v‖2L2(e),(4.11)

|v − Ehv|21,h ≤ C
∑
e∈EI

h

h−1
e ‖[v]‖2L2(e) +

∑
e∈EB

h

h−1
e ‖v‖2L2(e).(4.12)

Theorem 4.3. Suppose u ∈ H3(Ω) is the unique solution to (1.1)–(1.2). Then for
γ ≥ γ0, r = 2, the following error estimate holds:

‖u− uh‖Ẽ ≤ Ch
{
(
√
γ + δ + h)‖u‖H3 + M0(

√
δ + h)‖f‖L2

}
.(4.13)

Proof. We note that in the case r = 2, uh satisfies

ãδh(uh, v) = (f, v) ∀v ∈ Wh
2 ,

where

ãδh(v, w) : =
∑
T∈Th

(
δ(�v,�w)T + (∇v,∇w)T

)
−

∑
e∈Eh

(
〈{∂nv}, [w]〉e

+ δ 〈{�v}, [∂n̄w]〉e + 〈{∂nw}, [v]〉e + δ 〈{�w}, [∂n̄v]〉e
− γh−1

e 〈[∂n̄v], [∂n̄w]〉e − γh−3
e 〈[v], [w]〉e

)
.

We also have for γ ≥ γ0,

ãδh(v, v) = aδh(v, v) ≥ 1

2
‖v‖E =

1

2
‖v‖Ẽ ∀v ∈ Wh

2 .

Since the bilinear form ãδh(·, ·) is no longer consistent, we employ Strang’s Second
Lemma to conclude

‖u− uh‖Ẽ ≤ C
(

inf
v∈Wh

2

‖u− v‖Ẽ + sup
0�=v∈Wh

2

|ãδh(u, v) − (f, v)|
‖v‖Ẽ

)
.(4.14)
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To bound the last term in (4.14), we write

(f, v) = −δ(∇�u,∇Ehv) − (Δu, v) + (f + Δu, v − Ehv)

=
∑
T∈Th

(
δ(�u,�v)T + (∇u,∇v)T − δ 〈�u, ∂n̄v〉∂T − 〈∂nu, v〉∂T

− δ(∇�u,∇(Ehv − v))T

)
+ (f + Δu, v − Ehv)

= ãδh(u, v) − δ
∑
T∈Th

(∇�u,∇(Ehv − v))T + (f + Δu, v − Ehv).

Bounding the last two terms in the expression above, we use Lemma 4.3:

δ
∣∣∣ ∑
T∈Th

(∇�u,∇(Ehv − v))T

∣∣∣ ≤ δC‖∇�u‖L2

(∑
e∈Eh

h−1
e ‖[v]‖2L2(e)

) 1
2

≤ δCh‖∇�u‖L2‖v‖Ẽ ,∣∣∣(f + Δu, v − Ehv)
∣∣∣ ≤ C(‖f‖L2 + ‖Δu‖L2)

(∑
e∈Eh

he ‖[v]‖2L2(e)

) 1
2

≤ Ch2(‖f‖L2 + ‖Δu‖L2)‖v‖Ẽ .

Thus by (2.3),

sup
v∈Wh

2

∣∣ãδh(u, v) − (f, v)
∣∣

‖v‖Ẽ
≤ Ch

(
δ‖∇�u‖L2 + h

(
‖Δu‖L2 + ‖f‖L2

))
(4.15)

≤ CM0h
(√

δ + h
)
‖f‖L2 .

Next, it is clear from the proof of Lemma 4.1 that

inf
v∈Wh

r

‖u− v‖Ẽ ≤ Ch
(√

γ + δ + h
)
‖u‖H3 .(4.16)

Combining (4.14)–(4.16), we obtain

‖u− uh‖Ẽ ≤ Ch
{
(
√
γ + δ + h)‖u‖H3 + M0(

√
δ + h)‖f‖L2

}
. �

Remark 4.2. Using a standard duality argument ([3, 13]) and the regularity es-
timates (2.3), it is also possible to show the following L2-error estimates when
u ∈ H4(Ω):

‖u− uh‖L2 ≤ Ch
−1(
√
γ + δ + h)‖u‖H� , r ≥ 3,

‖u− uh‖L2 ≤ Ch2(
√
γ + δ + h)‖u‖H4 , r = 2.

5. Numerical Experiments

In this section, we provide numerical experiments to gauge the efficiency of the
finite element methods developed in the previous sections. We calculate the rate of
convergence of ‖u − uh‖ for fixed δ in various norms and compare each computed
rate with its theoretical estimate.
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Test 1. For this test, we solve (3.2) using the Morley-type nonconforming element
Sh
2 defined in Section 3 with Ω = (0, 1)2 and γ = δ. We use the following data:

f = −8π4δ
(
cos2(πx) − sin2(πy)

)
− 2π2

{
sin2(πy)

(
cos2(πx) − sin2(πx)

)
+ sin2(πx)

(
cos2(πy) − sin2(πy)

)}
,

so that the exact solution is

u = sin2(πx) sin2(πy).

We list the errors along with their estimated rates of convergence in Table 1 for
δ-values 10, 1, 10−2, 10−3, and 10−4 and plot the errors in Figures 3 and 4. The
table indicates the following rates of convergence:

‖u− uh‖M = O(h), ‖u− uh‖2,h = O(h),

‖u− uh‖1,h = O(h2), ‖u− uh‖L2 = O(h2).

Ignoring the insignificant | lnh| terms in (3.10)–(3.11), (3.15), these are the same
rates of convergence established in Theorems 3.1 and 3.2. We also observe that as
δ → 0+, the error increases in the L2, H1, and H2 norms which is expected by the
definition of the constants in the error estimates (3.11) and (3.15).

Finally, we solve (3.2) but with γ ≡ 0 and δ = 1. Table 2 clearly shows that
the method does not converge, this then indicates that the penalty terms in the
method are essential.

Test 2. In this test, we compute the solution of the discontinuous Galerkin method
(4.4) with r = 2 and γ = 100δ. We use the same domain and test functions as in
Test 1. We list the errors in Table 3 and plot the computed errors in Figures 5 and
6 for δ−values 10, 1, 10−2, and 10−4. As expected, the rates of convergence depend
on both the parameters h and δ. In fact, Theorem 4.2 and Remark 4.2 tell us that
for

√
δ >> h, γ ≈ δ,

‖u− uh‖Ẽ ≤ Ch(
√
δ + h)

(
‖u‖H3 + ‖f‖L2

)
≤ Ch

(
‖u‖H3 + ‖f‖L2

)
,

‖u− uh‖1,h ≤ Ch(
√
δ + h)

(
‖u‖H3 + ‖f‖L2

)
≤ Ch

(
‖u‖H3 + ‖f‖L2

)
,

‖u− uh‖L2 ≤ Ch2(
√
δ + h)‖u‖H4 ≤ Ch2‖u‖H4 ,

where, as for
√
δ ≤ h, γ ≈ δ,

‖u− uh‖Ẽ ≤ Ch(
√
δ + h)

(
‖u‖H3 + ‖f‖L2

)
≤ Ch2

(
‖u‖H3 + ‖f‖L2

)
,

‖u− uh‖1,h ≤ Ch(
√
δ + h)

(
‖u‖H3 + ‖f‖L2

)
≤ Ch2

(
‖u‖H3 + ‖f‖L2

)
,

‖u− uh‖L2 ≤ Ch2(
√
δ + h)‖u‖H4 ≤ Ch3‖u‖H4 .

As seen from Figure 5, the computed error bounds agree with these theoretical
error bounds. Finally, we note that ‖u− uh‖2,h appears not to converge unlike the
previous test. However, additional numerical experiments (not listed here) indicate
that ‖u− uh‖2,h converges with order O(h2) if cubic polynomials are used.
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Figure 3. Test 1. L2 norm (top) and H1 norm (bottom) errors
w.r.t. h with δ = 10, 1, 10−2, 10−3, and 10−4.
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Figure 4. Test 1. Energy norm (top) and H2 norm (bottom)
errors w.r.t. h with δ = 10, 1, 10−2, 10−3 and 10−4.
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Figure 5. Test 2. L2-norm (top) and H1-norm (bottom), errors
w.r.t. h with δ = 10, 1, 10−2 and 10−4.
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Test 2
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Figure 6. Test 2. Energy norm (top) and H2-norm (bottom),
errors w.r.t. h with δ = 10, 1, 10−2 and 10−4.
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Table 1. Test 1. Errors with estimated rates of convergence (γ = δ).

δ h ‖ · ‖L2 err. (cnv. rate) ‖ · ‖H1 err.(cnv. rate) ‖ · ‖M err. (cnv. rate) ‖ · ‖2,h err.(cnv. rate)

10 0.333 3.02E-01(—–) 1.58E+00(—–) 4.38E+01(—–) 1.41E+01(—–)
0.200 9.01E-02(2.38) 7.46E-01(1.46) 2.94E+01(0.78) 9.49E+00(0.78)
0.125 3.30E-02(2.14) 3.41E-01(1.67) 2.07E+01(0.75) 6.37E+00(0.85)
0.071 1.08E-02(1.99) 1.36E-01(1.64) 1.31E+01(0.82) 3.92E+00(0.86)
0.042 3.87E-03(1.91) 4.84E-02(1.92) 7.69E+00(0.99) 2.29E+00(1.00)
0.024 1.27E-03(1.99) 1.65E-02(1.92) 4.46E+00(0.97) 1.32E+00(0.98)
0.014 4.21E-04(1.99) 5.48E-03(2.00) 2.56E+00(1.00) 7.55E-01(1.01)
0.008 1.39E-04(2.00) 1.82E-03(1.99) 1.47E+00(1.00) 4.34E-01(1.00)
0.005 4.52E-05(2.00) 5.98E-04(1.99) 8.45E-01(0.99) 2.48E-01(1.00)

1 0.333 3.02E-01(—–) 1.57E+00(—–) 1.39E+00(—–) 1.41E+01(—–)
0.200 9.26E-02(2.32) 7.46E-01(1.46) 9.39E+00(0.77) 9.51E+00(0.77)
0.125 3.44E-02(2.11) 3.41E-01(1.67) 6.60E+00(0.75) 6.40E+00(0.84)
0.071 1.14E-02(1.98) 1.36E-01(1.64) 4.16E+00(0.83) 3.95E+00(0.86)
0.042 4.06E-03(1.91) 4.82E-02(1.92) 2.45E+00(0.99) 2.30E+00(1.00)
0.024 1.33E-03(1.99) 1.64E-02(1.92) 1.42E+00(0.97) 1.33E+00(0.98)
0.014 4.41E-04(2.00) 5.45E-03(2.00) 8.15E-01(1.00) 7.60E-01(1.01)
0.008 1.45E-04(2.00) 1.81E-03(1.99) 4.69E-01(1.00) 4.37E-01(1.00)
0.005 4.74E-05(2.00) 5.95E-04(1.99) 2.69E-01(0.99) 2.50E-01(1.00)

10−2 0.333 3.22E-01(—–) 1.34E+00(—–) 1.96E+00(—–) 1.29E+01(—–)
0.200 1.99E-01(0.95) 9.26E-01(0.73) 1.54E+00(0.47) 1.17E+01(0.19)
0.125 1.05E-01(1.35) 5.47E-01(1.12) 1.17E+00(0.58) 1.01E+01(0.31)
0.071 4.37E-02(1.57) 2.42E-01(1.46) 7.74E-01(0.74) 7.11E+00(0.63)
0.042 1.58E-02(1.89) 9.03E-02(1.83) 4.68E-01(0.94) 4.47E+00(0.86)
0.024 5.40E-03(1.92) 3.10E-02(1.90) 2.74E-01(0.96) 2.63E+00(0.94)
0.014 1.80E-03(1.99) 1.04E-02(1.99) 1.58E-01(1.00) 1.53E+00(0.99)
0.008 5.95E-04(1.99) 3.44E-03(1.99) 9.10E-02(1.00) 8.80E-01(0.99)
0.005 1.96E-04(1.99) 1.13E-03(1.99) 5.22E-02(0.99) 5.04E-01(1.00)

10−3 0.333 3.55E-01(—–) 1.30E+00(—–) 1.40E+00(—–) 1.30E+01(—–)
0.200 2.92E-01(0.38) 1.24E+00(0.09) 1.38E+00(0.02) 1.59E+01(-0.41)
0.125 2.29E-01(0.52) 1.11E+00(0.24) 1.37E+00(0.02) 2.18E+01(-0.66)
0.071 1.45E-01(0.81) 7.84E-01(0.62) 1.15E+00(0.31) 2.44E+01(-0.21)
0.042 7.17E-02(1.31) 4.17E-01(1.17) 8.25E-01(0.62) 2.19E+01(0.21)
0.024 2.88E-02(1.63) 1.74E-01(1.56) 5.26E-01(0.80) 1.55E+01(0.62)
0.014 1.02E-02(1.87) 6.27E-02(1.84) 3.14E-01(0.93) 9.66E+00(0.85)
0.008 3.48E-03(1.95) 2.14E-02(1.94) 1.83E-01(0.97) 5.72E+00(0.95)
0.005 1.15E-03(1.98) 7.11E-03(1.97) 1.06E-01(0.99) 3.31E+00(0.98)

10−4 0.333 3.54E-01(—–) 1.29E+00(—–) 1.33E+00(—–) 1.30E+01(—–)
0.200 3.11E-01(0.25) 1.32E+00(-0.06) 1.40E+00(-0.10) 1.75E+01(-0.59)
0.125 2.77E-01(0.24) 1.31E+00(0.02) 1.50E+00(-0.15) 2.77E+01(-0.98)
0.071 2.02E-01(0.56) 1.04E+00(0.41) 1.35E+00(0.18) 3.53E+01(-0.43)
0.042 1.16E-01(1.04) 6.48E-01(0.89) 1.05E+00(0.48) 3.66E+01(-0.07)
0.024 5.27E-02(1.40) 3.10E-01(1.31) 7.08E-01(0.69) 2.96E+01(0.38)
0.014 2.00E-02(1.75) 1.21E-01(1.71) 4.37E-01(0.88) 1.98E+01(0.73)
0.008 6.99E-03(1.90) 4.26E-02(1.88) 2.58E-01(0.95) 1.21E+01(0.89)
0.005 2.34E-03(1.96) 1.43E-02(1.95) 1.49E-01(0.98) 7.07E+00(0.96)

Table 2. Test 1. Errors with δ = 1 and γ ≡ 0.

δ h ‖ · ‖L2 err. ‖ · ‖H1 err. ‖ · ‖M err. ‖ · ‖2,h err.

1 0.333 1.78e+01 6.46e+01 6.51e+01 4.57e+02
0.250 1.68e+01 6.21e+01 6.24e+01 6.64e+02
0.167 1.65e+01 6.46e+01 6.49e+01 1.12e+03
0.125 1.72e+01 6.74e+01 6.78e+01 1.95e+03
0.091 1.71e+01 6.77e+01 6.81e+01 3.40e+03
0.067 1.73e+01 6.82e+01 6.87e+01 5.93e+03
0.048 1.72e+01 6.82e+01 6.87e+01 1.03e+04
0.034 1.72e+01 6.82e+01 6.87e+01 1.80e+04
0.024 1.73e+01 6.83e+01 6.88e+01 3.14e+04
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Table 3. Test 2. Errors with estimated rates of convergence

δ h ‖ · ‖L2 err. (cnv. rate) ‖ · ‖H1 err.(cnv. rate) ‖ · ‖Ẽ err. (cnv. rate) ‖ · ‖2,h err.(cnv. rate)

10 0.333 4.82e-02(—–) 5.42e-01(—–) 1.55e+01(—–) 9.50e+00(—–)
0.250 2.70e-02(2.01) 3.93e-01(1.12) 8.03e+00(0.95) 8.67e+00(0.31)
0.167 1.20e-02(2.00) 2.55e-01(1.06) 5.41e+00(0.97) 8.00e+00(0.19)
0.125 6.75e-03(1.99) 1.90e-01(1.03) 4.07e+00(0.98) 7.75e+00(0.11)
0.091 3.57e-03(1.99) 1.37e-01(1.01) 2.97e+00(0.99) 7.59e+00(0.06)
0.067 1.92e-03(2.00) 1.00e-01(1.01) 2.18e+00(0.99) 7.51e+00(0.03)
0.048 9.79e-04(2.00) 7.15e-02(1.00) 1.56e+00(0.99) 7.46e+00(0.01)
0.034 5.13e-04(2.00) 5.18e-02(1.00) 1.13e+00(0.99) 7.44e+00(0.01)
0.024 2.55e-04(2.02) 3.66e-02(1.00) 7.98e-01(0.99) 7.43e+00(0.01)

1 0.333 4.79e-02(—–) 5.38e-01(—–) 3.37e+00(—–) 9.43e+00(—–)
0.250 2.68e-02(2.02) 3.89e-01(1.12) 2.57e+00(0.95) 8.57e+00(0.33)
0.167 1.19e-02(2.00) 2.53e-01(1.06) 1.73e+00(0.97) 7.88e+00(0.20)
0.125 6.68e-03(2.00) 1.88e-01(1.03) 1.30e+00(0.98) 7.62e+00(0.11)
0.091 3.53e-03(2.00) 1.36e-01(1.01) 9.47e-01(0.995) 7.46e+00(0.06)
0.067 1.90e-03(2.00) 9.92e-02(1.01) 6.95e-01(0.996) 7.37e+00(0.03)
0.048 9.68e-04(2.00) 7.07e-02(1.00) 4.97e-01(0.998) 7.32e+00(0.02)
0.034 5.07e-04(2.00) 5.12e-02(1.00) 3.60e-01(0.998) 7.29e+00(0.01)

10−2 0.333 3.83e-02(—–) 3.94e-01(—–) 5.54e-01(—–) 8.01e+00(—–)
0.250 1.78e-02(2.66) 2.46e-01(1.63) 3.91e-01(1.21) 6.47e+00(0.74)
0.167 6.68e-03(2.41) 1.38e-01(1.42) 2.49e-01(1.11) 5.01e+00(0.62)
0.125 3.52e-03(2.22) 9.59e-02(1.25) 1.84e-01(1.05) 4.38e+00(0.47)
0.091 1.78e-03(2.13) 6.64e-02(1.15) 1.33e-01(1.02) 3.94e+00(0.33)
0.067 9.38e-04(2.07) 4.74e-02(1.08) 9.68e-02(1.01) 3.69e+00(0.21)
0.048 4.72e-04(2.04) 3.34e-02(1.04) 6.90e-02(1.00) 3.54e+00(0.12)
0.034 2.46e-04(2.01) 2.40e-02(1.02) 4.99e-02(1.00) 3.46e+00(0.06)

10−4 0.333 3.27e-02(—–) 3.38e-01(—–) 3.42e-01(—–) 7.93e+00(—–)
0.250 1.22e-02(3.41) 1.84e-01(2.108) 1.89e-01(2.06) 6.11e+00(0.90)
0.167 2.97e-03(3.49) 7.96e-02(2.070) 8.47e-02(1.98) 4.14e+00(0.96)
0.125 1.10e-03(3.43) 4.44e-02(2.027) 4.95e-02(1.86) 3.12e+00(0.98)
0.091 3.83e-04(3.32) 2.34e-02(2.007) 2.84e-02(1.75) 2.28e+00(0.98)
0.067 1.42e-04(3.20) 1.26e-02(1.994) 1.72e-02(1.60) 1.68e+00(0.99)
0.048 5.03e-05(3.08) 6.48e-03(1.984) 1.06e-02(1.44) 1.20e+00(0.99)
0.034 2.00e-05(2.86) 3.43e-03(1.970) 6.98e-03(1.29) 0.87e+00(0.98)
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