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FINITE DIFFERENCE/SPECTRAL APPROXIMATIONS FOR

THE FRACTIONAL CABLE EQUATION

YUMIN LIN, XIANJUAN LI, AND CHUANJU XU

Abstract. The Cable equation has been one of the most fundamental equa-
tions for modeling neuronal dynamics. In this paper, we consider the numerical
solution of the fractional Cable equation, which is a generalization of the clas-
sical Cable equation by taking into account the anomalous diffusion in the
movement of the ions in neuronal system. A schema combining a finite dif-
ference approach in the time direction and a spectral method in the space
direction is proposed and analyzed. The main contribution of this work is
threefold: 1) We construct a finite difference/Legendre spectral schema for
discretization of the fractional Cable equation. 2) We give a detailed analysis
of the proposed schema by providing some stability and error estimates. Based
on this analysis, the convergence of the method is rigourously established. We
prove that the overall schema is unconditionally stable, and the numerical so-
lution converges to the exact one with order O(�t2−max{α,β} +�t−1N−m),
where �t, N and m are respectively the time step size, polynomial degree, and
regularity in the space variable of the exact solution. α and β are two different
exponents between 0 and 1 involved in the fractional derivatives. 3) Finally,
some numerical experiments are carried out to support the theoretical claims.

1. Introduction

The key feature in maintaining a voltage difference between a neuron and the
external world is the cell membrane which has the property of selectively allowing
different ions in and out of the cell. The Nernst-Planck equation of electro-diffusion
[16, 18, 29] has been used to describe the movement of ions (e.g. calcium, potas-
sium, sodium, chloride, and magnesium, etc.) in the neuron by taking into account
the flux of ions due to pure diffusion and due to ionic drift. However, numerical
approximations to the Nernst-Planck equation suffer from several difficulties. First,
its numerical solution is expensive due to the multi-dimensionality; Second, it is
nontrivial to specify suitable boundary conditions, which are usually unknown in
practical applications. In order to overcome these drawbacks, the Cable equation
has been introduced to replace the Nernst-Planck equation in some idealized situ-
ation. In fact, as indicated in the works [16, 31], if the geometry of the neuron is
idealized as a cylinder of length L and diameter d where d is small compared to L,
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and if the externally applied potential and concentration of ions across the neuron
membrane are assumed to be axisymmetric, then the Nernst-Planck equation can
be reduced to a one-dimensional Cable equation [15, 18, 30, 31, 35]. The well-
known Cable equation can also be derived by directly applying electrical properties
to the cell membrane. Roughly, the dendrites of a nervous system can be treated as
electrical cables, which consist of continuous pieces of cell membrane. By doing so
the dendrites are regarded as a series of simple RC-circuits coupled with an axial
resistance, leading to the Cable equation. We will give a brief derivation of this
equation in the next section.

Generally speaking, the classical Cable equation is much simpler than the Nernst-
Planck equation, and there exist a number of methods to efficiently compute its
numerical solution. However, in the derivation of this equation, the movement of
the ions and their buffering proteins is assumed to be due to standard diffusion.
In recent years a wide variety of biological systems have shown anomalous diffu-
sion, and its rates cannot be characterized by a single parameter of the diffusion
constant [6]. Anomalous diffusion in these biological systems deviates from the
standard Fichean description of Brownian motion, the main character of which is
that its mean squared displacement is a nonlinear growth with respect to time, such
as 〈x2(t)〉 ∼ tα. As examples, single particle tracking experiments have revealed
subdiffusion (0 < α < 1) of proteins and lipids in a variety of cell membranes
[6, 10, 11, 12, 37]. Anomalous subdiffusion has also been observed in neural cell
adhesion molecures [36]. Indeed, anomalous diffusion occurs in many other physical
situations, such as, transport of fluid in porous media [5], diffusion on liquid sur-
faces [13, 21], turbulent flow [39], chaotic dynamics charge transport in amorphous
semiconductors [33, 34], NMR diffusometry in disordered materials [27], dynamics
of a bead in a polymer network [1], and the propagation of mechanical diffusive
waves in viscoelastic media [24], etc.

Due to its significant deviation from the dynamics of Brownian motion, the
above-mentioned anomalous diffusion in biological systems cannot be adequately
described by the traditional Nernst-Planck equation or its simplification, the Cable
equation. Very recently, a modified Cable equation was introduced for modeling
the anomalous diffusion in spiny neuronal dendrites [14]. The resulting governing
equation, the so-called fractional Cable equation, is similar to the traditional Cable
equation except that the order of derivative with respect to the space and/or time
is fractional.

The goal of this paper is to address such an equation, and to design efficient
numerical schemes for its numerical solution. It has been known that the feature of
the fractional derivatives makes the design of accurate and fast methods difficult.
Unlike the integer derivatives, which are local in the sense that the derivative of a
function at a certain point in space or time depends only on the function in the
vicinity of this point, presence of the integral in the noninteger order derivatives
makes the problem global. This means that the solution at a time tk depends on
the solutions at all previous time levels t < tk. The fact that all previous solutions
have to be saved to compute the solution at the current time level would make the
storage very expensive if low-order methods are employed for spatial discretization.
Thus, it is very desirable to use high-order methods for efficient computations of
the numerical solution of this kind of problem. This motivates us to consider the
spectral method for spatial discretization since, as compared to a low-order method,
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the spectral method needs fewer grid points to produce highly accurate solutions.
In this work, we aim at developing and analyzing a finite difference schema in time
and Legendre spectral methods in space for the fractional Cable equation.

Note that some similar investigations have been made for the time fractional
diffusion equation. For example, Langlands and Henry [20] considered an implicit
numerical schema for a fractional diffusion equation in which the backward Euler
approximation is used to discretize the first order time derivative and the L1 schema
is used to approximate the fractional order time derivative. Lin and Xu [23] pro-
posed a finite difference schema in time and Legendre collocation spectral method
in space for the time fractional diffusion equation. Ervin and Roop [9] introduced
a variational formulation for the stationary fractional advection dispersion equa-
tion. Deng [7] proposed a finite element method for the fractional Fokker-Planck
equation.

This work follows the idea proposed in [23] in an attempt to generalize the mixed
finite difference/Legendre spectral method in [23] to the fractional Cable equation.
The main contribution of this work consists of: (i) constructing a schema based on
a finite difference method in time and Legendre spectral method in space for the
numerical solution of the fractional Cable equation, which is a generalization of the
schema proposed in [23] to the case of multi-fractional derivatives; (ii) carrying out
an analysis of stability and convergence of the proposed method. A convergence
rate of order O(�t2−max{α,β}+�t−1N−m) is rigourously proved, where �t and N
are respectively the time step size and the space resolution, m is the regularity in
the space variable of the exact solution. α and β are exponents of the fractional
derivatives. In particular, an improved technique, as compared to the one used
in [23], for the proof of the time error estimate is provided. This new technique
allows us to obtain a detailed dependence of the constant that appears in front of
�t2−max{α,β}; (iii) a series of numerical tests, which are conducted to support the
theoretical results.

The outline of this paper is as follows. In the next section we first briefly recall
the derivation of the fractional Cable equation. Then in section 2 we construct
our finite difference/spectral method for this equation. A detailed error analysis is
carried out in section 3, to derive the error estimate for the temporal discretization.
In section 4, we present a Legendre spectral method for the spatial discretization
of the fractional Cable equation. The error estimates are provided for the full
discretization problem. Finally, some numerical results are presented in section 5
which support the theoretical statement. Some concluding remarks are given in the
final section.

2. Initial boundary value problem of the fractional Cable equation

To model the information flows in the dendrites of a nervous system, the den-
drites are often treated as electrical cables, which consist of continuous pieces of
membrane. Then the dendrites can be regarded as a series of simple RC-circuits
coupled with an axial resistance that is determined by the properties of the axo-
plasm. Figure 1 shows a model of a membrane electrical cable broken into small
parts, from which we obtain the following equations:

C∂tVi = −Vi − E

R
+

Vi+1 − 2Vi + Vi−1

Ra
,(2.1)



1372 Y. M. LIN, X. J. LI, AND C. J. XU

ii-1 i+1

C

Ra

R

E

Figure 1. Membrane electrical cable broken into continuous pieces.

where Vi is the potential of the membrane piece i, E is the equilibrium potential
of the membrane [17], Ra is the axial resistance. In (2.1) the piecewise capacitance
C is proportional to the area of each piece of membrane, i.e., C = πdlCm, with d
the diameter of the cable, l the length of each piece of membrane, Cm a constant
independent of the membrane area. Similarly, the piecewise resistance R can be
expressed by R = Rm

πdl , with Rm a membrane constant. The axial resistance Ra is

measured by Ra = lRA

π(d/2)2 , with RA an axial material constant, associated to the

given cable.
We plug these coefficients into (2.1), let xi = il, define the coordinate along the

cable, then we obtain

Cm∂tV (xi, t) = −V (xi, t)− E

Rm
+

d

4RA

V (xi+1, t)− 2V (xi, t) + V (xi−1, t)

l2
,

Taking the limit of the above equation as l → 0 leads to the continuum Cable
equation:

Cm∂tV (x, t) = −V (x, t)− E

Rm
+

d

4RA
∂2
xV (x, t),

where ∂2
x stands for ∂2

∂x2 .
In order to take into account the anomalous diffusion in the movement of the

ions due to, e.g., the heterogeneous nature of the neuronal tissue, or the trapping
of ions by buffering proteins [8, 19, 25, 32, 38, 40], the standard Cable equation
needs to be modified. As in the derivation of the fractional Fokker-Planck equation
[2, 26], taking into account anomalous transport in an external field leads us to
consider the following fractional Cable equation:

Cm∂tV (x, t) = 0D
β
t

[
−V (x, t)− E

Rm
+

d

4RA
∂2
xV (x, t)

]
,

where 0 < β < 1, 0D
β
t denotes the Riemann-Liouville fractional derivative operator

defined by

0D
β
t v(x, t) =

1

Γ(1− β)
∂t

∫ t

0

v(x, τ )

(t− τ )β
dτ, 0 < β < 1.(2.2)
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On the other side, because the neuronal membrane is composed of a different mate-
rial to the neuron itself [18], we would expect the membrane to have different diffu-
sive properties to the neuron. This consideration leads to introduction of a different
fractional exponent α for the anomalous diffusion across the membrane, resulting
in a more general fractional Cable equation involving two fractional derivatives:

Cm∂tV (x, t) = 0D
α
t

[
−V (x, t)− E

Rm

]
+ 0D

β
t

[
d

4RA
∂2
xV (x, t)

]
,

where 0 < α < 1. The above Cable equation can be rewritten in a compact form:

τm∂tV = 0D
α
t [−V + E] + 0D

β
t

[
ν∂2

xV
]
,

where τm = RmCm and ν = (d/4)Rm/RA are two constants: the former is inde-
pendent of geometry, while the latter depends on the diameter of the cable. The
constant ν determines how quickly the potential decays down the cable.

If we measure the membrane potential with respect to the equilibrium potential,
i.e., let u denote V − E, and rescale the time and space variables by

t∗ =
t

τm
, x∗ =

xτ
1−β
2

m√
ν

,

then we arrive at the following fractional Cable equation:

∂tu = −μ0D
α
t u+ 0D

β
t ∂

2
xu,(2.3)

where μ = τα−1
m , 0 < α, β < 1.

Let Λ = (−1, 1) be the space domain and I = (0, T ] the time domain. We now
consider the initial boundary value problem of the fractional Cable equation (2.3)
in the domain Λ× I, subject to the initial condition:

u(x, 0) = u0(x), ∀x ∈ Λ,(2.4)

and the boundary condition:

u(−1, t) = u(1, t) = 0, ∀t ∈ I.(2.5)

Lemma 2.1. The solution u of the problem (2.3)–(2.5) satisfies the following energy
inequality:

‖u(·, t)‖L2(Λ) ≤ ‖u0‖L2(Λ), ∀t ∈ I.

Proof. By multiplying (2.3) by u, and integrating the resulting equation in Λ×(0, t),
we obtain∫ t

0

d

dτ

∫
Λ

1

2
u2(x, τ )dxdτ = −μ

∫ t

0

∫
Λ

0D
α
τ uudxdτ +

∫ t

0

∫
Λ

0D
β
τ ∂

2
xuudxdτ, ∀t > 0.

In virtue of Lemma 2.3, Lemma 2.4, and Theorem 2.1 of [22], we have

1

2

∫ t

0

d

dτ
‖u(·, τ )‖2L2(Λ)dτ + μ

∫ t

0

∫
Λ

(
0D

α/2
τ

)2
dxdτ +

∫ t

0

∫
Λ

(
0D

β/2
τ ∂xu

)2
dxdτ = 0.

This results in

1

2

∫ t

0

d

dτ
‖u(·, τ )‖2L2(Λ)dτ ≤ 0, ∀t > 0.

The lemma is proved. �
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In order to follow the construction idea used in our previous paper [23], we will
use the Caputo fractional derivative instead of the Riemann definition. To this end,
we recall the following well-known relation; see e.g. [28]. For 0 < γ < 1, if v(t) has
the integrable first order derivative in [0, T ], then

0D
γ
t v(t) = Dγ

∗v(t) +
v(0)t−γ

Γ(1− γ)
,(2.6)

where Dγ
∗ denotes the Caputo fractional derivative of γ-order, defined by

Dγ
∗v(t) =

1

Γ(1− γ)

∫ t

0

∂τv(τ )

(t− τ )γ
dτ.

Then the fractional Cable equation (2.3) can be transformed under the form of
Caputo definition:

(2.7) ∂tu = −μDα
∗ u+Dβ

∗ ∂
2
xu− μ

Γ(1− α)tα
u(x, 0) +

1

Γ(1− β)tβ
∂2
xu(x, 0).

In the next section, we are going to construct and analyze a finite difference schema
for the time discretization of the above equation. For ease of notation, we hereafter
denote by c a generic constant which may not be the same at different occurrences,
but independent of all discretization parameters.

3. Discretization in time: A finite difference schema

3.1. Construction of the schema. First, we introduce a finite difference schema
to discretize the time fractional derivative. For a given integer K > 0, let tk = k�t,
k = 0, 1, . . . ,K, where �t = T

K is the time step. By using the Taylor formula with
the integral remainder,

f(t) = f(s) + ∂tf(s)(t− s) +

∫ t

s

∂2
τf(τ )(t− τ )dτ, ∀t, s ∈ I,

to the function u(·, t) at t = tj and t = tj+1 respectively, we obtain

∂su(x, s) =
u(x, tj+1)− u(x, tj)

Δt

− 1

Δt

∫ tj+1

s

∂2
τu(x, τ )(tj+1 − τ )dτ +

1

Δt

∫ tj

s

∂2
τu(x, τ )(tj − τ )dτ.

Thus for all 0 ≤ k ≤ K − 1, we have

Dα
∗ u(x, tk+1) =

1

Γ(1− α)

k∑
j=0

∫ tj+1

tj

∂su(x, s)
ds

(tk+1 − s)α
(3.1)

=
1

Γ(1− α)

k∑
j=0

u(x, tj+1)− u(x, tj)

Δt

∫ tj+1

tj

ds

(tk+1 − s)α
+ rk+1

α

=
1

Γ(2− α)

k∑
j=0

u(x, tk+1−j)− u(x, tk−j)

�tα
[
(j + 1)1−α − j1−α

]
+ rk+1

α

=
1

Γ(2− α)

k∑
j=0

aj
u(x, tk+1−j)− u(x, tk−j)

�tα
+ rk+1

α ,
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where

aj = (j + 1)1−α − j1−α(3.2)

and

rk+1
α =

1

Γ(1− α)Δt

k∑
j=0

[
−
∫ tj+1

tj

∫ tj+1

s

∂2
τu(x, τ )

(tj+1 − τ )

(tk+1 − s)α
dτds(3.3)

+

∫ tj+1

tj

∫ tj

s

∂2
τu(x, τ )

(tj − τ )

(tk+1 − s)α
dτds

]
.

It will be proved in the Appendix that the following estimate holds:

rk+1
α ≤ c�t2−α,(3.4)

where c depends only on M , a constant measuring ∂2
t u.

We can derive an expression similar to (3.1) for the fractional derivative term of
order β in (2.7):

Dβ
∗∂

2
xu(x, tk+1)(3.5)

=
1

Γ(2− β)

k∑
j=0

bj
�tβ

(
∂2
xu(x, tk+1−j)− ∂2

xu(x, tk−j)
)
+ rk+1

β ,

where

bj = (j + 1)1−β − j1−β , j = 0, 1, 2, . . . , k,(3.6)

rk+1
β is the truncation error term having the following estimate:

rk+1
β ≤ cΔt2−β ,(3.7)

with c a constant dependent only on ∂2
t ∂

2
xu.

For the discretization of the first-order time derivative ∂tu, we use the following
development: for k ≥ 1,

∂tu(x, tk+1) =
3u(x, tk+1)− 4u(x, tk) + u(x, tk−1)

2Δt
+O(Δt2),(3.8)

and, for k = 0,

∂tu(x, t1) =
u(x, t1)− u(x, t0)

Δt
+O(Δt).(3.9)

For a mesh function {fk}Kk=0, we define the fractional difference operators Lα
t by

Lα
t f

k+1 =
1

Γ(2− α)

k∑
j=0

aj
fk+1−j − fk−j

�tα
, k ≥ 0,(3.10)

and Lβ
t by

Lβ
t f

k+1 =
1

Γ(2− β)

k∑
j=0

bj
fk+1−j − fk−j

�tβ
, k ≥ 0.(3.11)
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We also define the difference operator L1
t by

L1
t f

k+1 =

⎧⎪⎪⎨
⎪⎪⎩

3fk+1 − 4fk + fk−1

2Δt
, k ≥ 1,

f1 − f0

Δt
, k = 0.

(3.12)

Then by combining (2.7), (3.1), (3.5), (3.8) and (3.9), we have

L1
tu(x, tk+1)− rk+1

= −μLα
t u(x, tk+1) + Lβ

t ∂
2
xu(x, tk+1)− μrk+1

α + rk+1
β

− μ

Γ(1− α)(k + 1)αΔtα
u(x, 0)

+
1

Γ(1− β)(k + 1)βΔtβ
∂2
xu(x, 0), k ≥ 0,

(3.13)

where, according to (3.8) and (3.9), rk+1 = O(Δt2) for k ≥ 1, and rk+1 = O(Δt)
for k = 0.

The above expression motivates us to propose the following finite difference
schema for the time discretization of (2.7):

L1
tu

k+1 = −μLα
t u

k+1 + Lβ
t ∂

2
xu

k+1

− μ

Γ(1− α)(k + 1)αΔtα
u0

+
1

Γ(1− β)(k + 1)βΔtβ
∂2
xu

0, k ≥ 0.

(3.14)

In (3.14), uk, a simplified notation of uk(x), is an approximation to u(x, tk). For-

mally, (3.14) is a schema with the truncation error rk+1 + rk+1
α + rk+1

β , stemming
from the discretizations of the first-order time derivative and the time fractional
derivatives of orders α and β.

In details, the schema (3.14) reads

3uk+1 − 4uk + uk−1

2Δt
(3.15)

=
−μ

Γ(2− α)Δtα

(
uk+1 −

k−1∑
j=0

(aj − aj+1)u
k−j − aku

0
)

+
1

Γ(2− β)Δtβ

(
∂2
xu

k+1 −
k−1∑
j=0

(bj − bj+1)∂
2
xu

k−j − bk∂
2
xu

0
)

− μ

Γ(1− α)(k + 1)αΔtα
u0 +

1

Γ(1− β)(k + 1)βΔtβ
∂2
xu

0, k ≥ 1.

For the first step, it is

u1 − u0

Δt
=

−μ

Γ(2− α)Δtα
(u1 − u0) +

1

Γ(2− β)Δtβ
(∂2

xu
1 − ∂2

xu
0)(3.16)

− μ

Γ(1− α)Δtα
u0 +

1

Γ(1− β)Δtβ
∂2
xu

0.

The equations (3.15) and (3.16), together with the boundary conditions

uk+1(1) = uk+1(−1) = 0, k ≥ 0,(3.17)
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and the initial condition

u0(x) = u0, x ∈ Λ,(3.18)

form a complete set of the semi-discretized problems.

3.2. Time error analysis. In this subsection, we aim at carrying out a rigorous
error analysis for the time schema (3.15)-(3.16). The error analysis is based on
the weak formulation of the semi-discretized problems. To this end, we need some
functional spaces that will be used hereafter to define the variational formulation:

H1(Λ) = {v ∈ L2(Λ), ∂xv ∈ L2(Λ)},
H1

0 (Λ) = {v ∈ H1(Λ), v|∂Λ = 0},
Hm(Λ) = {v ∈ L2(Λ), ∂k

x ∈ L2(Λ) for all positive integer k ≤ m},

where L2(Λ) is the space of measurable functions whose square is Lebesgue in-
tegrable in Λ. The inner products of L2(Λ) and H1(Λ) are defined respectively
by

(u, v) =

∫
Λ

uv dx, (u, v)1 = (u, v) +
α̃

2
(u, v) +

β̃

2
(∂xu, ∂xv),

where

α̃ =
4μΔt

Γ(2− α)Δtα
, β̃ =

4Δt

Γ(2− β)Δtβ
.(3.19)

The norms of L2(Λ) and H1(Λ) are defined respectively by

‖v‖0 = (v, v)1/2, ‖v‖1 = (v, v)
1/2
1 .(3.20)

Here we have used an H1-norm differing from the standard one. As we will see
later, this H1-norm is more convenient than the standard H1-norm for the error
analysis, although the two norms are equivalent for fixed α̃ and β̃.

We now consider the weak formulation of the equation (3.15) subject to the
boundary condition (3.17): find uk+1 ∈ H1

0 (Λ), such that for all v ∈ H1
0 (Λ),

(
3uk+1 − 4uk + uk−1

2Δt
, v

)(3.21)

= − μ

Γ(2− α)Δtα

[
(uk+1, v)−

k−1∑
j=0

(aj − aj+1)(u
k−j, v)− ak(u

0, v)
]

− 1

Γ(2− β)Δtβ

[
(∂xu

k+1, ∂xv)−
k−1∑
j=0

(bj − bj+1)(∂xu
k−j , ∂xv)−bk(∂xu

0, ∂xv)
]

− μ

Γ(1− α)(k + 1)αΔtα
(u0, v)− 1

Γ(1− β)(k + 1)βΔtβ
(∂xu

0, ∂xv), k ≥ 1.

For the sake of simplification, let’s introduce the following notation:

α̃k+1 =
4μΔt

Γ(1− α)(k + 1)αΔtα
, β̃k+1 =

4Δt

Γ(1− β)(k + 1)βΔtβ
.(3.22)
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By using the notations (3.19) and (3.22), the schema (3.21) becomes

2(3uk+1 − 4uk + uk−1, v)(3.23)

= −α̃
[
(uk+1, v)−

k−1∑
j=0

(aj − aj+1)(u
k−j , v)− ak(u

0, v)
]

− β̃
[
(∂xu

k+1, ∂xv)−
k−1∑
j=0

(bj − bj+1)(∂xu
k−j , ∂xv)− bk(∂xu

0, ∂xv)
]

− α̃k+1(u
0, v)− β̃k+1(∂xu

0, ∂xv), k ≥ 1.

The error estimation will be accomplished with a series of lemmas. We start by
giving some properties of aj and bj , which can be verified directly.

Lemma 3.1. The coefficients aj and bj, defined respectively in (3.2) and (3.6),
satisfy

aj > 0, bj > 0, j = 0, 1, . . . ,

1 = a0 > a1 > · · · > aj , aj → 0 as j → ∞,

1 = b0 > b1 > · · · > bj , bj → 0 as j → ∞. �
Lemma 3.2. For the coefficients α̃, α̃k+1, β̃, and β̃k+1, defined respectively in
(3.19) and (3.22), we have:

α̃ak+1 ≤ α̃k+1 ≤ α̃ak, β̃bk+1 ≤ β̃k+1 ≤ β̃bk, ∀k ≥ 0.

Proof. First we prove that α̃k+1 ≤ α̃ak. By the definition of ak and the mean-value
theorem, we have

ak(k + 1)α = ((k + 1)1−α − k1−α)(k + 1)α

= (1− α)ξ−α(k + 1)α, there exists ξ ∈ (k, k + 1)

≥ 1− α.

Consequently,

α̃ak − α̃k+1 = 4Δtμ

(
ak

Γ(2− α)Δtα
− 1

Γ(1− α)(k + 1)αΔtα

)

= 4Δtμ
1

Γ(2− α)Δtα(k + 1)α
(ak(k + 1)α − (1− α))

≥ 0.

Next, we prove α̃ak+1 ≤ α̃k+1. Similarly, we have

ak+1(k + 1)α = ((k + 2)1−α − (k + 1)1−α)(k + 1)α

= (1− α)ξ−α(k + 1)α, there exists ξ ∈ (k + 1, k + 2)

≤ 1− α.

Thus

α̃ak+1 − α̃k+1 = 4Δtμ

(
ak+1

Γ(2− α)Δtα
− 1

Γ(1− α)(k + 1)αΔtα

)

= 4Δtμ
1

Γ(2− α)Δtα(k + 1)α
(ak+1(k + 1)α − (1− α))

≤ 0.

Another inequality can be proved in a similar way. �
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Lemma 3.3.

2(3uk+1 − 4uk + uk−1, uk+1)

= ‖uk+1‖20 − ‖uk‖20 + ‖2uk+1 − uk‖20 − ‖2uk − uk−1‖20
+ ‖uk+1 − 2uk + uk−1‖20.

Proof. Direct verification. �

The stability result is given in the following theorem.

Theorem 3.1. The semi-discretized problem (3.23) is unconditionally stable in the
sense that for all �t > 0, it holds that

Ek+1 ≤ Ek, k = 1, . . . ,K − 1,(3.24)

where

Ek = ‖uk‖20 + ‖2uk − uk−1‖20 +
α̃

2

k∑
j=0

aj‖uk−j‖20 +
β̃

2

k∑
j=0

bj‖∂xuk−j‖20, k ≥ 1.

On the other hand, the first step schema (3.16) leads to

‖u1‖20 +
α̃

4

1∑
j=0

aj‖u1−j‖20 +
β̃

4

1∑
j=0

bj
∥∥∂xu1−j

∥∥2
0

(3.25)

≤ ‖u0‖20 +
α̃

4
a0‖u0‖20 +

β̃

4
b0

∥∥∂xu0
∥∥2
0
.

Proof. We start by proving (3.25). From (3.16), we have, for all v ∈ H1
0 (Λ),

(u1 − u0, v) = − α̃

4
(u1 − u0, v)− β̃

4
(∂xu

1 − ∂xu
0, ∂xv)−

α̃1

4
(u0, v)− β̃1

4
(∂xu

0, ∂xv).

Taking v = u1 in the above equality gives

(u1, u1) = (u0, u1)− α̃

4
(u1, u1) +

1

4
(α̃− α̃1)(u

0, u1)

− β̃

4
(∂xu

1, ∂xu
1) +

1

4
(β̃ − β̃1)(∂xu

0, ∂xu
1).

By using the triangle inequality and Lemma 3.2, we obtain

2‖u1‖20 ≤ ‖u0‖20 + ‖u1‖20 −
α̃

2
‖u1‖20 +

1

4
(α̃− α̃a1)‖u0‖20 +

1

4
(α̃− α̃a1)‖u1‖20

− β̃

2

∥∥∂xu1
∥∥2
0
+

1

4
(β̃ − β̃b1)

∥∥∂xu0
∥∥2
0
+

1

4
(β̃ − β̃b1)

∥∥∂xu1
∥∥2
0

≤ ‖u0‖20 + ‖u1‖20 −
α̃

4
(a0‖u1‖20 + a1‖u0‖20)−

β̃

4
(b0

∥∥∂xu1
∥∥2
0
+ b1

∥∥∂xu0
∥∥2
0
)

+
α̃

4
a0‖u0‖20 +

β̃

4
b0

∥∥∂xu0
∥∥2
0
− α̃

4
a1‖u1‖20 −

β̃

4
b1

∥∥∂xu1
∥∥2
0
.

In the last inequality we have used the fact that a0 = b0 = 1. Then a simple
rearrangement yields:
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‖u1‖20 +
α̃

4

1∑
j=0

aj‖u1−j‖20 +
β̃

4

1∑
j=0

bj
∥∥∂xu1−j

∥∥2
0
+

α̃

4
a1‖u1‖20 +

β̃

4
b1

∥∥∂xu1
∥∥2
0

≤ ‖u0‖20 +
α̃

4
a0‖u0‖20 +

β̃

4
b0

∥∥∂xu0
∥∥2
0
.

This proves (3.25) since the last two terms in LHS of the above inequality are
positive.

Now we turn to prove (3.24). Taking v = uk+1 in (3.23), and using the triangle
inequality and Lemmas 3.2 and 3.3, we have

‖uk+1‖20 − ‖uk‖20 + ‖2uk+1 − uk‖20 − ‖2uk − uk−1‖20(3.26)

+ ‖uk+1 − 2uk + uk−1‖20

≤ −α̃‖uk+1‖20 +
α̃

2

k−1∑
j=0

(aj − aj+1)
(
‖uk−j‖20 + ‖uk+1‖20

)

+
1

2
(α̃ak − α̃k+1)(‖u0‖20 + ‖uk+1‖20)

− β̃‖∂xuk+1‖20 +
β̃

2

k−1∑
j=0

(bj − bj+1)
(
‖∂xuk−j‖20 + ‖∂xuk+1‖20

)

+
1

2
(β̃bk − β̃k+1)

(
‖∂xu0‖20 + ‖∂xuk+1‖20

)
≤

[
− α̃+

α̃

2

k−1∑
j=0

(aj − aj+1)
]
‖uk+1‖20 +

α̃

2

k−1∑
j=0

(aj − aj+1)‖uk−j‖20

+
1

2
(α̃ak − α̃ak+1)‖u0‖20 +

1

2
(α̃ak − α̃k+1)‖uk+1‖20

[
− β̃ +

β̃

2

k−1∑
j=0

(bj − bj+1)
]
‖∂xuk+1‖20 +

β̃

2

k−1∑
j=0

(bj − bj+1)‖∂xuk−j‖20

+
1

2
(β̃bk − β̃bk+1)‖∂xu0‖20 +

1

2
(β̃bk − β̃k+1)‖∂xuk+1‖20.

Noting that

k−1∑
j=0

(aj − aj+1) = 1− ak,

k−1∑
j=0

(bj − bj+1) = 1− bk,

then combining all ‖uk+1‖20 terms in RHS of (3.26) gives

[
− α̃+

α̃

2

k−1∑
j=0

(aj − aj+1)
]
‖uk+1‖20 +

α̃

2
ak‖uk+1‖20 = − α̃

2
‖uk+1‖20,

and combining all ‖∂xuk+1‖20 terms gives

[
− β̃ +

β̃

2

k−1∑
j=0

(bj − bj+1)
]
‖∂xuk+1‖20 +

β̃

2
bk‖∂xuk+1‖20 = − β̃

2
‖∂xuk+1‖20.
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Thus (3.26) becomes

‖uk+1‖20 − ‖uk‖20 + ‖2uk+1 − uk‖20 − ‖2uk − uk−1‖20
+ ‖uk+1 − 2uk + uk−1‖20

≤ − α̃

2
‖uk+1‖20 +

α̃

2

k−1∑
j=0

aj‖uk−j‖20 −
α̃

2

k∑
j=1

aj‖uk+1−j‖20

− α̃k+1

2
‖uk+1‖20 +

α̃

2
ak‖u0‖20 −

α̃

2
ak+1‖u0‖20

− β̃

2
‖∂xuk+1‖20 +

β̃

2

k−1∑
j=0

bj‖∂xuk−j‖20 −
β̃

2

k∑
j=1

bj‖∂xuk+1−j‖20

− β̃k+1

2
‖∂xuk+1‖20 +

β̃

2
bk‖∂xu0‖20 −

β̃

2
bk+1‖∂xu0‖20

= − α̃

2

k+1∑
j=0

aj‖uk+1−j‖20 +
α̃

2

k∑
j=0

aj‖uk−j‖20

− β̃

2

k+1∑
j=0

bj‖∂xuk+1−j‖20 +
β̃

2

k∑
j=0

bj‖∂xuk−j‖20

− α̃k+1

2
‖uk+1‖20 −

β̃k+1

2
‖∂xuk+1‖20.

Removing the last term from LHS and the last two terms from RHS of the above
inequality, we finally obtain (3.24). �

We are now in a position to carry out an error estimation for the solution of the
semi-discretized problem. The error estimate is given in the following theorem.

Theorem 3.2. Let u be the solution of the continuous problem (2.3)–(2.5), {uk}Kk=0

be the time-discrete solution of (3.14) with the initial condition u0(x) = u(x, 0).
Then

‖u(x, tk)− uk‖1 ≤ cT
1+α
2 Δtmin(2−α,2−β), k ≥ 1,(3.27)

where c is independent of T and �t.

Proof. From (3.13), {u(x, tk)}Kk=0 satisfies

L1
tu(x, tk+1)(3.28)

= −μLα
t u(x, tk+1) + Lβ

t ∂
2
xu(x, tk+1)−

μu(x, 0)

Γ(1− α)(k + 1)αΔtα

+
1

Γ(1− β)(k + 1)βΔtβ
∂2
xu(x, 0) +Rk+1, k ≥ 0,

where Rk+1 = rk+1 − μrk+1
α + rk+1

β .
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Let ek(x) = u(x, tk)− uk(x), k ≥ 0, then substituting (3.28) from (3.14) yields

L1
t e

k+1(3.29)

= −μLα
t e

k+1 + Lβ
t ∂

2
xe

k+1 − μ

Γ(1− α)(k + 1)αΔtα
e0

+
1

Γ(1− β)(k + 1)βΔtβ
∂2
xe

0 +Rk+1, k ≥ 0.

Similar to the proof of Theorem 3.1, we have, from (3.29),

(e1, e1) = (e0, e1)− α̃

4
(e1, e1) +

1

4
(α̃− α̃1)(e

0, e1)

− β̃

4
(∂xe

1, ∂xe
1) +

1

4
(β̃ − β̃1)(∂xe

0, ∂xe
1) +�t(R1, e1).

Following the method in Theorem 3.1, we obtain

‖e1‖20 +
α̃

4

1∑
j=0

aj‖e1−j‖20 +
β̃

4

1∑
j=0

bj
∥∥∂xe1−j

∥∥2
0
+

α̃

4
a1‖e1‖20 +

β̃

4
b1

∥∥∂xe1∥∥20
≤ ‖e0‖20 +

α̃

4
a0‖e0‖20 +

β̃

4
b0

∥∥∂xe0∥∥20 + 2�t‖R1‖0‖e1‖0.

By using the fact that e0 = 0, we get

‖e1‖20 +
α̃

4

1∑
j=0

aj‖e1−j‖20 +
β̃

4

1∑
j=0

bj
∥∥∂xe1−j

∥∥2
0
≤ 2�t‖R1‖0‖e1‖0.

Then applying Young’s inequality to the last term in RHS results in

1

2
‖e1‖20 +

α̃

4

1∑
j=0

aj‖e1−j‖20 +
β̃

4

1∑
j=0

bj
∥∥∂xe1−j

∥∥2
0
≤ 2�t2‖R1‖20.(3.30)

Note again that a0 = b0 = 1 and R1 = O(�t) +O(�t2−α) +O(�t2−β), gives us

‖e1‖1 ≤ 2�t‖R1‖0 ≤ c�t2.

Thus (3.27) holds for k = 1. Now we turn to prove (3.27) for k ≥ 2. By (3.10),
(3.11), and (3.12), we get

2(3ek+1 − 4ek + ek−1, v)

= −α̃
[
(ek+1, v)−

k−1∑
j=0

(aj − aj+1)(e
k−j, v)− ak(e

0, v)
]

− β̃
[
(∂xe

k+1, ∂xv)−
k−1∑
j=0

(bj − bj+1)(∂xe
k−j , ∂xv)− bk(∂xe

0, ∂xv)
]

− α̃k+1(e
0, v)− β̃k+1(∂xe

0, ∂xv) + 4Δt(Rk+1, v), k ≥ 1, ∀v ∈ H1
0 (Λ).
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Taking v = ek+1 and following a similar procedure as in Theorem 3.1, we have

‖ek+1‖20 + ‖2ek+1 − ek‖20 − ‖ek‖20 − ‖2ek − ek−1‖20 + ‖ek+1 − 2ek + ek−1‖20

≤ − α̃

2

k+1∑
j=0

aj‖ek+1−j‖20 +
α̃

2

k∑
j=0

aj‖ek−j‖20

− β̃

2

k+1∑
j=0

bj‖∂xek+1−j‖20 +
β̃

2

k∑
j=0

bj‖∂xek−j‖20

− α̃k+1

2
‖ek+1‖20 −

β̃k+1

2
‖∂xek+1‖20 + 4Δt|(Rk+1, ek+1)|.

Let

εk := ‖ek‖20 + ‖2ek − ek−1‖20 +
α̃

2

k∑
j=0

aj‖ek−j‖20 +
β̃

2

k∑
j=0

bj‖∂xek−j‖20,

then

εk+1≤ εk − α̃k+1

2
‖ek+1‖20 −

β̃k+1

2
‖∂xek+1‖20 + 4Δt|(Rk+1, ek+1)|

≤ εk − α̃k+1

2
‖ek+1‖20 −

β̃k+1

2
‖∂xek+1‖20 +

8Δt2

α̃k+1
‖Rk+1‖20 +

α̃k+1

2
‖ek+1‖20

≤ εk +
8Δt2

α̃k+1
‖Rk+1‖20.

(3.31)

Recalling the definition (3.22) of α̃k+1, we have

8Δt2

α̃k+1
=

2Γ(1− α)(k + 1)αΔtα

μ
Δt =

2Γ(1− α)tαk+1

μ
Δt.

Consequently,

εk+1 ≤ εk +
2Γ(1− α)tαk+1

μ
Δt‖Rk+1‖20

≤ ε1 +
k∑

j=1

2Γ(1− α)tαj+1

μ
Δt‖Rj+1‖20

≤ ε1 +
2Γ(1− α)t1+α

k+1

μ
max

2≤j≤k+1
‖Rj‖20.

Taking into account (3.30) and the fact that ‖Rj‖0 = O(�t2) + O(�t2−α) +
O(�t2−β), j ≥ 2, we obtain

εk ≤ c1�t4 + c2T
1+α(�t2−α +�t2−β)2, ∀k = 1, 2, . . . ,K,(3.32)

where c2 depends on μ. Thus

‖ek‖1 ≤ cT
1+α
2 (�t2−α +�t2−β), ∀k = 1, 2, . . . ,K,

where c is independent of T and �t. The proof is completed. �
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Remark 3.1. In the case that μ is small, it may be more interesting to derive an
alternative estimate of (3.32). In fact, by using the Poincaré inequality, we have
for (3.31):

εk+1≤ εk − α̃k+1

2
‖ek+1‖20 −

β̃k+1

2
‖∂xek+1‖20 + 4Δt|(Rk+1, ek+1)|

≤ εk − β̃k+1

2
‖∂xek+1‖20 + 4Δt‖Rk+1‖0‖ek+1‖0

≤ εk − β̃k+1

2
‖∂xek+1‖20 + 4cΛΔt‖Rk+1‖0‖∂xek+1‖0, with cΛPoincaré constant

≤ εk − β̃k+1

2
‖∂xek+1‖20 +

8c2ΛΔt2

β̃k+1

‖Rk+1‖20 +
β̃k+1

2
‖∂xek+1‖20

≤ εk +
8c2ΛΔt2

β̃k+1

‖Rk+1‖20.

Then by using the definition of β̃k+1, i.e. (3.22), we have

8Δt2

β̃k+1

= 2Γ(1− β)(k + 1)βΔtβΔt = 2Γ(1− β)tβk+1Δt.

Following in this way, we will obtain a similar estimate as (3.32), but with c2
independent of μ.

4. A spectral method in space

In this section we present a Galerkin spectral method for the space discretization
of the fractional Cable equation. The use of the spectral method is motivated by
the memory feature of the fractional Cable equation. In the discrete version, this
means that all previous solutions have to be saved to compute the solution at
the current time level. In order to reduce the storage requirement, it is highly
recommended to use the high-order method, such as the spectral method, for the
space discretization, since higher-order methods require less degrees of freedom to
achieve desired accuracy.

The Galerkin spectral discretization proceeds by approximating the solution by
the polynomials of high degree. For spectral approximations in space of the prob-
lems (3.23), we define PN (Λ) as the polynomials space of degree less than or equal
to N with respect to x. Let

P
0
N (Λ) = H1

0 (Λ) ∩ PN (Λ).

We now consider the Galerkin spectral discretization to (3.23) as follows: find

uk+1
N ∈ P

0
N (Λ), such that for all vN ∈ P

0
N (Λ)

2(3uk+1
N − 4uk

N + uk−1
N , vN )

= −α̃
[
(uk+1

N , vN )−
k−1∑
j=0

(aj − aj+1)(u
k−j
N , vN )− ak(u

0
N , vN )

]

− β̃
[
(∂xu

k+1
N , ∂xvN )−

k−1∑
j=0

(bj − bj+1)(∂xu
k−j
N , ∂xvN )− bk(∂xu

0
N , ∂xvN )

]

− α̃k+1(u
0
N , vN )− β̃k+1(∂xu

0
N , ∂xvN ), k ≥ 1.
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Then a simple rearrangement gives

2(3uk+1
N − 4uk

N + uk−1
N , vN ) + α̃(uk+1

N , vN ) + β̃
(
∂xu

k+1
N , ∂xvN

)
(4.1)

= α̃
k−1∑
j=0

(aj − aj+1)(u
k−j
N , vN ) + (α̃ak − α̃k+1)(u

0
N , vN )

+ β̃

k−1∑
j=0

(bj − bj+1)
(
∂xu

k−j
N , ∂xvN

)
+ (β̃bk − β̃k+1)

(
∂xu

0
N , ∂xvN

)
, k ≥ 1.

To analyze the error of the space discretization, we define the H1-orthogonal pro-
jection operator π1

N as follows: For all ψ ∈ H1
0 (Λ), let π

1
Nψ ∈ P

0
N (Λ), such that

6(π1
Nψ, vN ) + α̃(π1

Nψ, vN ) + β̃
(
∂xπ

1
Nψ, ∂xvN

)
(4.2)

= 6(ψ, vN ) + α̃(ψ, vN ) + β̃ (∂xψ, ∂xvN ) , ∀vN ∈ P
0
N (Λ).

Then the following projection estimate holds:

‖ψ − π1
Nψ‖1 ≤ cN1−m‖ψ‖m , if ψ ∈ Hm(Λ) ∩H1

0 (Λ),m ≥ 1,(4.3)

where ‖ ·‖1 is the modified H1-norm defined in (3.20). This estimate can be proved
by taking into account the standard projection error (see e.g. [3, 4]), and the norm
equivalence.

To start the time iteration of (4.1), an initial condition will be needed for u0
N .

Here we take u0
N = π1

Nu0.

Theorem 4.1. Let {uk}Kk=1 be the solution of the semi-discrete problem (3.23) and
{uk

N}Kk=1 the solution of the full-discrete problem (4.1) with the initial condition
u0
N = π1

Nu0. If uk ∈ Hm(Λ), k ≥ 0,m > 1, then the following error estimate holds

‖uk − uk
N‖1 ≤ cTΔt−1N1−m max

0≤j≤k
‖uj‖m, k = 0, 1, . . . ,K.(4.4)

Proof. Let ekN = uk − uk
N , ẽkN = π1

Nuk − uk
N , ēkN = uk − π1

Nuk, k ≥ 0.
Similar to (4.1), we first rewrite the semi-discrete problem (3.23) under the form:

2(3uk+1 − 4uk + uk−1, v) + α̃(uk+1, v) + β̃
(
∂xu

k+1, ∂xv
)

(4.5)

= α̃

k−1∑
j=0

(aj − aj+1)(u
k−j, v) + (α̃ak − α̃k+1)(u

0, v)

+ β̃

k−1∑
j=0

(bj − bj+1)
(
∂xu

k−j , ∂xv
)
+ (β̃bk − β̃k+1)

(
∂xu

0, ∂xv
)
, ∀v ∈ H1

0 (Λ).

Applying the projection operator π1
N to the above equation,and using (4.2) yields
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2(π1
N (3uk+1 − 4uk + uk−1), vN )(4.6)

+ α̃(π1
Nuk+1, vN + β̃

(
∂xπ

1
Nuk+1, ∂xvN

)
= α̃

k−1∑
j=0

(aj − aj+1)(π
1
Nuk−j , vN ) + (α̃ak − α̃k+1)(π

1
Nu0, vN )

+ β̃
k−1∑
j=0

(bj − bj+1)
(
∂xπ

1
Nuk−j , ∂xvN

)
+ (β̃bk − β̃k+1)

(
∂xπ

1
Nu0, ∂xvN

)
+ eπ(vN ), ∀vN ∈ P

0
N (Λ),

where eπ(vN ) is associated to the projection error, defined by: ∀vN ∈ P
0
N (Λ),

eπ(vN ) = (8ēkN − 2ēk−1
N , vN ) + α̃

k−1∑
j=0

(aj − aj+1)(ē
k−j
N , vN ) + (α̃ak − α̃k+1)(ē

0
N , vN )

+ β̃

k−1∑
j=0

(bj − bj+1)
(
∂xē

k−j
N , ∂xvN

)
+ (β̃bk − β̃k+1)

(
∂xē

0
N , ∂xvN

)
.

By subtracting (4.1) from (4.6), then taking vN = ẽk+1
N , we obtain

2(3ẽk+1
N − 4ẽkN + ẽk−1

N , ẽk+1
N ) + α̃(ẽk+1

N , ẽk+1
N ) + β̃

(
∂xẽ

k+1
N , ∂xẽ

k+1
N

)
(4.7)

= α̃
k−1∑
j=0

(aj − aj+1)(ẽ
k−j
N , ẽk+1

N ) + (α̃ak − α̃k+1)(ẽ
0
N , ẽk+1

N )

+ β̃
k−1∑
j=0

(bj − bj+1)
(
∂xẽ

k−j
N , ∂xẽ

k+1
N

)
+ (β̃bk − β̃k+1)

(
∂xẽ

0
N , ∂xẽ

k+1
N

)
+ eπ(ẽ

k+1
N ).

Employing a similar technique as in the Theorem 3.2, we arrive at

‖ẽk+1
N ‖20 + ‖2ẽk+1

N − ẽkN‖20 − ‖ẽkN‖20 − ‖2ẽkN − ẽk−1
N ‖20(4.8)

+ ‖ẽk+1
N − 2ẽkN + ẽk−1

N ‖20

≤ − α̃

2

k+1∑
j=0

aj‖ẽk+1−j
N ‖20 +

α̃

2

k∑
j=0

aj‖ẽk−j
N ‖20 −

β̃

2

k+1∑
j=0

bj‖∂xẽk+1−j
N ‖20

+
β̃

2

k∑
j=0

bj‖∂xẽk−j
N ‖20 −

α̃k+1

2
‖ẽk+1

N ‖20 −
β̃k+1

2
‖∂xẽk+1

N ‖20 +
∣∣eπ(ẽk+1

N )
∣∣.
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We are now led to estimate the term |eπ(ẽk+1
N

)
|. First, by using Young’s inequality

to the first part of this term, we have

∣∣(8ēkN − 2ēk−1
N + α̃

k−1∑
j=0

(aj − aj+1)ē
k−j
N + (α̃ak − α̃k+1)ē

0
N , ẽk+1

N

)∣∣

≤ 1

2α̃k+1

∥∥8ēkN − 2ēk−1
N + α̃

k−1∑
j=0

(aj − aj+1)ē
k−j
N + (α̃ak − α̃k+1)ē

0
N

∥∥2
0

+
α̃k+1

2
‖ẽk+1

N ‖20

≤ 1

2α̃k+1

[
c+ α̃2

k−1∑
j=0

(aj − aj+1)
2 + (α̃ak − α̃k+1)

2
]
max
0≤j≤k

‖ējN‖20 +
α̃k+1

2
‖ẽk+1

N ‖20

≤ c

α̃k+1

[
1 + α̃2(1− αk+1)

2
]
max
0≤j≤k

‖ējN‖20 +
α̃k+1

2
‖ẽk+1

N ‖20 (by Lemma 3.2)

≤ c

α̃k+1
(1 + α̃2) max

0≤j≤k
‖ējN‖20 +

α̃k+1

2
‖ẽk+1

N ‖20.

(4.9)

Similarly, we have

(4.10)

∣∣(β̃ k−1∑
j=0

(bj − bj+1)∂xē
k−j
N + (β̃bk − β̃k+1)∂xē

0
N , ∂xẽ

k+1
N

)∣∣

≤ 1

2β̃k+1

∥∥β̃ k−1∑
j=0

(bj − bj+1)∂xē
k−j
N + (β̃bk − β̃k+1)∂xē

0
N

∥∥2
0

+
β̃k+1

2

∥∥∂xẽk+1
N

∥∥2
0

≤ c

β̃k+1

β̃2 max
0≤j≤k

‖∂xējN‖20 +
β̃k+1

2
‖∂xẽk+1

N ‖20.

Combining (4.8)–(4.10) gives

‖ẽk+1
N ‖20 + ‖2ẽk+1

N − ẽkN‖20 − ‖ẽkN‖20 − ‖2ẽkN − ẽk−1
N ‖20

+ ‖ẽk+1
N − 2ẽkN + ẽk−1

N ‖20

≤ − α̃

2

k+1∑
j=0

aj‖ẽk+1−j
N ‖20 +

α̃

2

k∑
j=0

aj‖ẽk−j
N ‖20 −

β̃

2

k+1∑
j=0

bj‖∂xẽk+1−j
N ‖20

+
β̃

2

k∑
j=0

bj‖∂xẽk−j
N ‖20

+
c

α̃k+1
(1 + α̃2) max

0≤j≤k
‖ējN‖20 +

c

β̃k+1

β̃2 max
0≤j≤k

‖∂xējN‖20.

(4.11)

By virtue of the definitions of α̃k+1 and β̃k+1, i.e., (3.22), we have

1

α̃k+1
≤ cTα�t−1,

1

β̃k+1

≤ cT β�t−1.
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Thus the last two terms in (4.11) can be bounded by

c

α̃k+1
(1 + α̃2) max

0≤j≤k
‖ējN‖20 +

c

β̃k+1

β̃2 max
0≤j≤k

‖∂xējN‖20 ≤ cT�t−1 max
0≤j≤k

‖ējN‖21,

where norm ‖ · ‖1 is defined in (3.20). Now by letting

εkN := ‖ẽkN‖20 + ‖2ẽkN − ẽk−1
N ‖20 +

α̃

2

k∑
j=0

aj‖ẽk−j
N ‖20 +

β̃

2

k∑
j=0

bj‖∂xẽk−j
N ‖20,

we obtain from (4.11),

εk+1
N ≤ εkN + cT�t−1 max

0≤j≤k
‖ējN‖21, ∀k = 0, 1, . . . ,K.

Consequently,

εkN ≤ ε0N + cTk�t−1 max
0≤j≤k

‖ējN‖21 ≤ cT 2�t−2 max
0≤j≤k

‖ējN‖21, ∀k = 0, 1, . . . ,K.

This implies that

‖ẽkN‖21 ≤ cT 2�t−2 max
0≤j≤k

‖ējN‖21, ∀k = 0, 1, . . . ,K.

Finally, by using the triangle inequality, we obtain

‖ekN‖1 = ‖ẽkN + ēkN‖1 ≤ ‖ẽkN‖1 + ‖ēkN‖1 ≤ cT�t−1 max
0≤j≤k

‖ējN‖1, ∀k = 0, 1, . . . ,K.

This, together with (4.3), leads to (4.4). �

Remark 4.1. In Theorem 4.1, the derived error estimate for the spatial approxima-
tion is affected by the inverse of the time step. However, our numerical tests given
in section 5 show that this term is not really present in the numerical solutions.
This disagreement probably means that the theoretical error estimate may be im-
proved. In the actual estimation of the error at a given time level, the spatial errors
at all previous time levels are simply accumulated due to the memory feature. The
estimate could be improved by taking into account the fact that the coefficients
aj and bj are decreasing as j increases; that is, the memory effect is weaker for a
longer time.

For the full-discrete error, we state the following result without giving detailed
proof.

Theorem 4.2. Let u be the solution of the continuous problem (2.3)–(2.5) and let
{uk

N}Kk=1 be the solution of the full-discrete problem (4.1). If u(·, t) ∈ Hm(Λ), ∀t ∈
[0, T ],m > 1, then the following error estimate holds:

‖u(·, tk)− uk
N‖1 ≤ cT

(
Δtmin(2−α,2−β) +Δt−1N1−m

)
, k = 0, 1, . . . ,K,

where c depends on u, but independent of T,�t, and N .
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5. Numerical validation

5.1. Implementation. We start with some implementation details. As usual, in
order to make problem (4.1) practical, all the integrals involved in (4.1) are evalu-
ated by using suitable numerical quadratures. For the reason that the integrands in
(4.1) are polynomials with respect to the space variable, we use the Gauss-Lobatto-
Legendre (GLL) quadrature to compute the integrations.

Let’s denote by LN (x) the Legendre polynomial of degree N . The points of the
GLL quadrature formula, denoted by xi, i = 0, 1, . . . , N , are defined as the zeros of
(1 − x2)L′

N (x). The associated weights, ωi, i = 0, 1, . . . , N , are defined such that
the following quadrature holds:

∫ 1

−1

ϕ(x)dx =
N∑
i=0

ϕ(xi)ωi, ∀ϕ(x) ∈ P2N−1(Λ).

Then we define the discrete inner product as follows:

(φ, ψ)N =

N∑
i=0

φ(xi)ψ(xi)ωi, ∀φ, ψ ∈ C0(Λ̄).

We now consider the discrete problem with numerical quadratures: Find uk+1
N ∈

P
0
N (Λ), such that for all vN ∈ P

0
N (Λ),

6(uk+1
N , vN )N + α̃(uk+1

N , vN )N + β̃
(
∂xu

k+1
N , ∂xvN

)
N

(5.1)

= α̃

k−1∑
j=0

(aj − aj+1)(u
k−j
N , vN )N + (α̃ak − α̃k+1)(u

0
N , vN )N

+ β̃
k−1∑
j=0

(bj − bj+1)
(
∂xu

k−j
N , ∂xvN

)
N
+ (β̃bk − β̃k+1)

(
∂xu

0
N , ∂xvN

)
N

+ 2(4uk
N − uk−1

N , vN )N , k ≥ 1.

For simplification, we will hereafter denote the RHS of (5.1) by F (u0
N , u1

N , . . . ,
uk
N ; vN ).
To derive the linear system to be solved at each time level, we express the solution

uk+1
N in terms of the Lagrangian interpolants based on the points {xi}Ni=0,

uk+1
N (x) =

N∑
j=0

uk+1
j lj(x),(5.2)

where uk+1
j = uk+1

N (xj) are the unknowns of the approximate solution, lj is the
Lagrangian polynomial defined in Λ, i.e.,

lj ∈ PN (Λ), lj(xi) = δij , ∀i, j ∈ {0, 1, . . . , N},

with δij : the Kronecker-delta symbol.
By bringing (5.2) into (5.1), and taking into account the homogeneous boundary

condition (i.e., uk+1
0 = uk+1

N = 0), then choosing the test function vN to be li(x), i =
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1, 2, . . . , N − 1, we obtain

(6 + α̃)
(N−1∑

j=1

uk+1
j lj , li

)
N
+ β̃

(N−1∑
j=1

uk+1
j l′j , l

′
i

)
N

= F (u0
N , u1

N , . . . , uk
N ; li), i = 1, 2, . . . , N − 1.

where l′j(x) = ∂xlj(x). Using the definition of (·, ·)N to the above system gives

(6 + α̃)uk+1
i ωi + β̃

N−1∑
j=1

uk+1
j

N∑
q=0

l′j(xq)l
′
i(xq)ωq

= F (u0
N , u1

N , . . . , uk
N ; li), i = 1, 2, . . . , N − 1,

or, in matrix form,

N−1∑
j=1

Hiju
k+1
j = Fi, i = 1, 2, . . . , N − 1,(5.3)

where Fi = F (u0
N , u1

N , . . . , uk
N ; li), and for all i, j ∈ {0, 1, . . . , N},

Hij = (6 + α̃)Bij + β̃Aij , Bij = ωiδij ,

Aij =

N∑
q=0

DqiDqjωq, Dij = l′j(xi).

It is readily seen that the matrix H is symmetric positive definite, thus we choose
the conjugate gradient method to solve (5.3).

5.2. Numerical results. In this subsection, we present numerical results obtained
by the proposed finite difference/spectral method to support our theoretical state-
ments. The main purpose is to check the convergence behavior of the numerical
solution with respect to the time step �t and polynomial degree N used in the
calculation.

In order to test the convergence rate of the proposed method, we will need an ex-
act solution to evaluate the accuracy of the numerical solution. For the reason that
the exact solution of the problem (2.3)–(2.5) is generally unavailable, we instead
consider the Cable equation with a forcing term f :

∂tu = −0D
α
t u+ 0D

β
t ∂

2
xu+ f, ∀(x, t) ∈ Λ× I.

Then we consider the following exact solution:

u(x, t) = t2 sin(2πx).

It can be checked that the associated forcing term is

f(x, t) =

(
2t+

Γ(3)

Γ(3− α)
t2−α +

4π2Γ(3)

Γ(3− β)
t2−β

)
sin(2πx).

The corresponding Cable problem with suitable initial and boundary conditions is
solved by the method presented in the previous sections. We compute the errors
‖u(T )−uK

N‖ in two discrete norms: L2 and H1. All the numerical results reported
in the figures below have been evaluated at T = 1.
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Figure 2. Errors as a function of the time step�t for α = 0.1, β =
0.6, and N = 16.
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Figure 3. Errors as a function of the time step�t for α = 0.9, β =
0.1, and N = 16.
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Figure 4. Errors as a function of the polynomial degree for α =
0.5, β = 0.5.

The first computational investigation is concerned with the temporal errors. In
this first test, we fix N = 16, a value large enough such that the space discretization
error is negligible as compared with the time error. In Figures 2 and 3, we plot
the errors in the L2 and H1 semi-norms as a function of the time step sizes for
two different sets of α and β. A logarithmic scale has been used for both �t−axis
and error-axis in these figures. As expected, the finite difference schema yields a
fractional temporal approximation order min{2 − α, 2 − β}, that is, the slopes of
the error curves in these log− log plots are, respectively, 1.4 for α = 0.1, β = 0.6
and 1.1 for α = 0.9, β = 0.1.

Now we investigate the spatial error by letting N vary and fixing the time step
sufficiently small to avoid contamination of the temporal error. In Figure 4 we plot
the errors as functions of N for α = β = 0.5 by using two time step sizes �t = 10−5

and 10−6. A logarithmic scale is now used for the error-axis. As predicted by the
theoretical estimates, the errors show an exponential decay, since in these semi-log
representation one observes that the error variations are essentially linear versus
the degrees of polynomial. This is the so-called spectral accuracy, which can be
expected for smooth solutions. Note that two different small enough time step sizes
give exactly the same results indicating that the factor �t−1 in front of the spatial
error estimate (see Theorems 4.1 and 4.2) is not really present in the numerical
solution. In the future work, we will seek to improve the estimate by removing the
factor �t−1.
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6. Concluding remarks

We have presented a numerical method for the fractional Cable equation. The
proposed method is based on a combination of some finite difference approaches in
the time direction and a spectral method in the space direction. The convergence
rate of the method is proven by providing a priori error estimate, and confirmed by
a series of numerical tests. It is found that the combination of these finite difference
schemes to the time derivatives results in a global min{2−α, 2−β}-order accuracy
in time. This finding of the fractional order convergence rate is a generalization of
the result obtained in [23]. Concerning the spatial discretization, use of the spectral
method leads to an exponential convergence in space. Some numerical experiments
have been carried out to support the theoretical results.

In a future work, we plan to investigate the possibility to construct higher order
schemes in time, as well as apply the present method to more realistic problems.

Appendix

Here we give a rigorous proof of (3.4). From (3.3), we have

rk+1
α =

1

Γ(1− α)Δt

k∑
j=0

[
−
∫ tj+1

tj

∂2
τu(x, τ )(tj+1 − τ )

∫ τ

tj

ds

(tk+1 − s)α
dτ(A.1)

−
∫ tj+1

tj

∂2
τu(x, τ )(tj − τ )

∫ tj+1

τ

ds

(tk+1 − s)α
dτ

]

=
1

Γ(2− α)Δt

k∑
j=0

∫ tj+1

tj

∂2
τu(x, τ )

[
(tk+1 − τ )1−αΔt

− (tj+1 − τ )(tk+1 − tj)
1−α + (tj − τ )(tk+1 − tj+1)

1−α
]
dτ

=
1

Γ(2− α)Δt

k∑
j=0

∫ tj+1

tj

∂2
τu(x, τ )R

k+1
j (τ )dτ.

In the last equality of the above derivation we have used the notation Rk+1
j (τ ) to

denote

Rk+1
j (τ ) := (tk+1 − τ )1−αΔt− (tj+1 − τ )(tk+1 − tj)

1−α + (tj − τ )(tk+1 − tj+1)
1−α.

Now we are going to prove that Rk+1
j (τ ) is nonnegative for all τ ∈ [tj , tj+1].

Let us first remark that

Rk+1
j (tj) = Rk+1

j (tj+1) = 0.

Moreover, a simple calculation shows:

∂2
τR

k+1
j (τ ) = (1− α)(−α)(tk+1 − τ )−1−αΔt ≤ 0, for 0 < α < 1.

As a consequence of a well-known result, we have

Rk+1
j (τ ) ≥ 0, for all τ ∈ [tj , tj+1].

Thus from equation (A.1), we obtain

rk+1
α ≤ M

Γ(2− α)Δt

k∑
j=0

∫ tj+1

tj

Rk+1
j (τ )dτ,
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whereM = max
x∈Λ,τ∈I

∂2
τu(x, τ ). The estimation of the error term rk+1

α is then reduced

to computing the integrals in the right-hand side:

k∑
j=0

∫ tj+1

tj

Rk+1
j (τ )dτ

=

k∑
j=0

∫ tj+1

tj

[(tk+1 − τ )1−αΔt− (tj+1 − τ )(tk+1 − tj)
1−α

+ (tj − τ )(tk+1 − tj+1)
1−α]dτ

=
Δt3−α

2(2− α)

k∑
j=0

{
2(k + 1− j)2−α − 2(k − j)2−α

− (2− α)[(k + 1− j)1−α + (k − j)1−α]
}

=
Δt3−α

2(2− α)

k∑
i=0

{
2(i+ 1)2−α − 2i2−α − (2− α)[(i+ 1)1−α + i1−α]

}

=
Δt3−α

2

k∑
i=0

{
2

2− α
[(i+ 1)2−α − i2−α]− [(i+ 1)1−α + i1−α]

}
.

Let

si :=
2

2− α
[(i+ 1)2−α − i2−α]− [(i+ 1)1−α + i1−α],

then

|si| = i1−α

∣∣∣∣ 2i

2− α

((
1 +

1

i

)2−α − 1
)
−
(
1 +

1

i

)1−α − 1

∣∣∣∣
= i1−α

∣∣∣∣ 2i

2− α

(
−1+1+(2− α)

1

i
+
(2− α)(1− α)

2!

1

i2
+
(2− α)(1− α)(−α)

3!

1

i3

+
(2− α)(1− α)(−α)(−α− 1)

4!

1

i4
+ · · ·

)

− 1− 1− (1− α)
1

i
− (1− α)(−α)

2!

1

i2
− (1− α)(−α)(−α− 1)

3!

1

i3
− · · ·

∣∣∣∣
= i1−α

∣∣∣∣( 1

2!
− 2

3!

)
(1− α)α

1

i2
+
( 1

3!
− 2

4!

)
(1− α)α(−α− 1)

1

i3
+ · · ·

∣∣∣∣
≤ i1−α 1

3!
(1− α)α

1

i2

(
1 +

2(α+ 1)

4

1

i
+

3(α+ 1)(α+ 2)

20

1

i2
+ · · ·

)

≤ 1

3!
(1− α)α

1

i1+α

(
1 +

1

i
+

1

i2
+ · · ·

)

≤ 2

3!
(1− α)α

1

i1+α

≤ 1

i1+α
.
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Therefore, the series
∑∞

i=1 si converges for all α > 0. On the other side, a direct
computation shows si = 0 for α = 0 and α = 1. Consequently, there exists a
positive constant c, which is independent of α and k, such that

k∑
i=0

{
2

2− α

[
(i+ 1)2−α − k2−α

]
−
[
(i+ 1)1−α + i1−α

]}
≤ c.

As a result of the above estimates, we have

rk+1
α ≤ c�t2−α,

where c depends only on M , a constant measuring ∂2
t u.
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