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CIRCUMSCRIBED ELLIPSOID ALGORITHM

FOR FIXED-POINT PROBLEMS

C. BOONYASIRIWAT, K. SIKORSKI, AND C. TSAY

We dedicate this paper to the memory of Leonid Khachiyan, collaborator and friend,
who introduced the circumscribed ellipsoid algorithm as the first way of solving

linear programming problems in polynomial time.

Abstract. We present a new implementation of the almost optimal Circum-
scribed Ellipsoid (CE) Algorithm for approximating fixed points of nonexpand-
ing functions, as well as of functions that may be globally expanding, however,
are nonexpanding/contracting in the direction of fixed points. Our algorithm
is based only on function values, i.e., it does not require computing derivatives
of any order. We utilize the absolute and residual termination criteria with
respect to the second norm. The numerical results confirm that the CE algo-
rithm is much more efficient than the simple iteration algorithm whenever the
Lipschitz constant is close to 1. We also compare it with the Newton-Raphson
method. In some tests the Newton-Raphson method is more efficient than
the CE method, especially when the problem size is large. However, the CE
algorithm is an excellent method for low dimensional functions with discon-
tinuities and/or low regularity. Our implementation can be downloaded from
http://www.cs.utah.edu/∼sikorski/cea.

1. Introduction

Given a domain Q ⊆ E, where E is a complete metric space, and a function
f : Q → Q, the fixed-point problem consists in finding, if it exists, a point x∗ ∈ Q
such that x∗ = f(x∗). Many problems can be formulated as fixed-point problems.
For example, a root-finding problem for nonlinear equations f(x∗) = 0 can be
rearranged as g(x∗) = f(x∗) + x∗ = x∗, which is a fixed-point problem. The
applications of fixed-point problems include economic equilibria [9, 35], game theory
[9, 18, 34, 35, 55], boundary value problems [2, 4, 24, 54], and chaos and dynamical
systems [13, 45]. In our paper we deal with finite-dimensional problems, with
domains of the functions being closed Euclidean balls.

A number of fixed-point theorems have been derived in the last century. Each
theorem is focused on a specific class of functions defined on a specific domain.
Banach’s fixed-point theorem [5] states that any contractive function of �n into
itself has a unique fixed point. Banach demonstrated that the simple iteration (SI)
algorithm, xi+1 = f(xi), generates a Cauchy sequence that converges to the fixed
point of any such function. More general fixed-point theorems focused on contin-
uous functions only. Brouwer demonstrated in [11] that any continuous function
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from a nonempty, convex and compact subset of �n into itself has at least one fixed
point. However, Brouwer’s proof using topological arguments was nonconstructive.
In 1967, Scarf [33] developed a simplicial algorithm for approximating fixed points
for Brouwer’s maps from a simplex into itself. This was the first constructive proof
of Brouwer’s fixed-point theorem. Since then, fixed-point computation has become
an intensive research area and many new algorithms have been proposed including
restart methods [27, 28], homotopy methods [3, 16, 17, 52] and ellipsoid algorithms
[25, 26, 23, 42, 47]. As we mentioned earlier, a fixed-point problem x∗ = f(x∗) can
be transformed into a root-finding problem g(x∗) = f(x∗) − x∗ = 0. Therefore,
effective root-finding algorithms such as Newton type methods can also be used to
solve fixed-point problems (see Allgower and Georg [3]).

Algorithms dealing with nonlinear fixed-point computation are iterative meth-
ods. We consider algorithms that are based on function evaluations, and assume
that at least one function evaluation is required at each iteration. Most CPU time
is usually consumed by function evaluations. Therefore, we can define the worst
case cost of an algorithm, for a class of functions F , as the maximum number of
function evaluations required to achieve prescribed precision for all functions in F .
The problem complexity is defined as the minimal cost among all possible algo-
rithms for the class F . An algorithm is almost optimal if and only if its cost is
almost minimal. The complexity depends on the class of functions and the selected
error criterion, as shown in [8, 21, 40, 41, 43]. We consider contractive functions
with contraction factor ρ close to 1, nonexpanding functions (ρ = 1), and then a
larger class of functions that are contractive/nonexpanding only in the direction
of fixed points (but may be globally expanding); see Boonyasiriwat et al. [8] and
Vassin and Eremin [50]. The contraction/nonexpansion property is defined with
respect to the Euclidean norm. The ε-approximations of fixed points are obtained
by using the absolute or residual error criteria.

In this paper we present a new implementation of the Circumscribed Ellipsoid
(CE) algorithm that does not require the dimensional deflation procedure of Tsay
[47], and as a consequence has the cost lower by a factor of n. Our CE algorithm
enjoys almost optimal cost O(2n2 ln 1

ε ) for obtaining residual solutions x : ||f(x)−
x||2 ≤ ε of nonexpanding and directionally nonexpanding functions, and exhibits
the cost O(2n2(ln 1

ε + ln 1
1−ρ )) for obtaining absolute solutions x : ||x − x∗||2 ≤ ε

for contractive and directionally contractive functions with factor ρ < 1 [8, 23]. We
outline several numerical tests and compare the CE algorithm with simple iteration
and Newton-type methods. The implementation of Newton-type methods called
TENSOLVE [10] was utilized in this work. We do not directly compare our software
with HOMPACK [52] or MINPACK [29] since they require differentiable functions
and analytic formulas for Jacobians. Moreover, the test functions specified in those
collections do not belong to our class, since in their fixed-point reformulations they
are expanding in the direction of fixed points.

We remark that the ellipsoid algorithms are not applicable for the infinity-norm
case. In [36] we developed a Bisection Envelope Fixed-point algorithm (BEFix), and
in [37] we developed a Bisection Envelope Deep-cut Fixed-point algorithm (BED-
Fix) for computing fixed points of two-dimensional nonexpanding functions. Those
algorithms exhibit the optimal complexity of 2�ln2(1/ε)�+ 1. We also developed a
recursive fixed-point algorithm (PFix) for computing fixed points of n-dimensional
nonexpanding functions with respect to the infinity norm (see Shellman and Sikorski
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[38, 39]). We note that the complexity of finding ε-residual solutions for globally
expanding functions with ρ > 1 is exponential O((ρ/ε)(n−1)), as ε → 0, [14, 21].

2. Problem formulation

Given the domain Bn = {x ∈ �n| ||x|| ≤ 1}, the n-dimensional Euclidean unit
ball, we consider the class of Lipschitz continuous functions

(2.1) Bn
ρ≤1 ≡ {f : Bn → Bn : ||f(x)− f(y)|| ≤ ρ||x− y||, ∀x,y ∈ Bn},

where n ≥ 2, || · || = || · ||2, and 0 < ρ ≤ 1. In the case when 0 < ρ < 1, the class of
functions is denoted by Bn

ρ<1. The existence of fixed points of functions in Bn
ρ≤1 is

assured by the Brouwer’s theorem.
In this article, we present the circumscribed ellipsoid (CE) algorithm that, for

every f ∈ Bn
ρ<1, computes an absolute ε-approximation x to x∗, ||x− x∗|| ≤ ε, and

for every f ∈ Bn
ρ≤1, computes a residual ε-approximation x, ||f(x)− x|| ≤ ε.

We also extend the applicability of the CE algorithm to larger classes of functions
considered by Vassin and Eremin [50]. We stress that the complexity bounds for the
CE algorithm do not change in this case. Those larger classes were investigated for
problems defined by differential and integral equations originating in geophysics, at-
mospheric research, material science, and image deblurring [1, 31, 48, 49, 51]. These
problems were effectively solved by Feyer-type iterative methods and/or some gen-
eral optimization techniques; however, no formal complexity bounds were derived.
These classes are defined by

(2.2) Bα
ρ≤1 ≡ {f : Bn → Bn : the set of fixed points of f, S(f) �= ∅,

and ∀x ∈ Bn, and ∀α ∈ S(f), we have ||f(x)− f(α)|| ≤ ρ||x− α||},
where n ≥ 2, || · || = || · ||2, and ρ ≤ 1. We note that the functions in Bα

ρ≤1 may be
expanding globally, and therefore the class Bn

ρ≤1 is a proper subclass of Bα
ρ≤1.

3. Preliminary results

The following lemma is the basis of the circumscribed ellipsoid algorithm [7, 40,
41, 42, 47]. The proof of this lemma can be found in [41, 42]; see also [30].

Lemma 3.1. Let f ∈ Bn
ρ<1. Suppose that A ⊆ Bn contains the fixed-point x∗.

Then, for every x ∈ A,x∗ ∈ A ∩Bn(c, γ), where Bn(c, γ) is the ball with center

c = x+
1

1− ρ2
(f(x)− x)

and radius

γ =
ρ

1− ρ2
||f(x)− x||.

We stress that this lemma holds for the Euclidean norm.
The above lemma yields

Corollary 3.2. Let f ∈ Bn
ρ<1. If

(3.1) ||f(x)− x|| ≤ 1− ρ2

ρ
ε,

then x+ (f(x)− x)/(1− ρ2) is an absolute ε-approximation to the fixed-point x∗.
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The idea of CE algorithm is to construct a sequence of ellipsoids decreasing in
volume, and converging to a fixed point. More precisely, we let A = Ei be the i-th
ellipsoid in that sequence. We let x = xi be the center of Ei. Then we define the
half-space H by

(3.2) H = {y ∈ �n : 〈f(x)− b,y − b〉 ≥ 0} ,
where b = (f(x)+ρx)/(1+ρ). We observe that the boundary ofH is the supporting
hyperplane for Bn(c, γ) at point b. Then an immediate conclusion from Lemma 3.1
with A = Ei is

Corollary 3.3. If the assumptions of Lemma 3.1 hold, then

(3.3) x∗ ∈ H ∩ Ei.

In the next step of the CE algorithm we construct a new ellipsoid Ei+1 of smallest
volume containing the set H ∩Ei.

The following lemma exhibits upper bounds on the number of iterations of the
CE algorithm. The proof of this lemma can be found in [8, 23].

Lemma 3.4. For any δ ∈ (0, 1), f ∈ Bn
ρ≤1 with ρ ≤ 1, the CE algorithm requires

at most i =
⌈
2n(n+ 1) · ln

(
2+δ
δ

)⌉
iterations to compute an iterate xi ∈ �n such

that ||f(xi)− xi|| ≤ δ, as δ → 0.

We remark that the same bounds hold for the larger class of directionally-
nonexpanding functions [8]. We also remark that the bound obtained in the above
lemma is better by a factor of n than the bound obtained in [47].

As a direct corollary from this lemma we get:

Corollary 3.5. If ρ < 1, the CE algorithm finds an ε-approximation xi of the fixed
point x∗ in the absolute sense, ||xi−x∗||2 ≤ ε, within i = O(2n2(ln(1/ε)+ln(1/(1−
ρ))) iterations, as ε → 0.

We finally note that the number of iterations of the simple iteration algorithm
to compute an absolute ε-approximation to the fixed point is �ln(1/ε)/ ln(1/ρ)� for
contractive functions with ρ < 1.

4. Implementation

Each iteration of the CE algorithm requires constructing a minimum-volume
ellipsoid that encloses the set containing a fixed point of function f . This set is an
intersection of the previous ellipsoid and a half-space H from equation (3.2). This
computation is equivalent to computing an eigensystem that defines the ellipsoid.
However, directly constructing the updated ellipsoids as in Figure 1 is numerically
unstable [6]. Tsay [47] overcame this problem by using a rank-one modification
of the symmetric eigensystem presented in [12]. The method is as follows. Each
ellipsoid Ei is represented by a symmetric positive definite matrix Ai and the center
xi. The formula for updating ellipsoids is given by

(4.1) Ai+1 = β2(Ai − (1− (α/β)2)zzT ),

where α, β, and z are defined in Figure 1. Suppose the eigendecomposition Ai =
QiDiQ

T
i is known. Let b = QT

i z and τ = (1− (α/β)2). Then, (4.1) can be written
as

Ai+1 = β2Qi(Di − τbbT )QT
i .
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By finding the eigendecomposition

Di − τbbT = Q̂D̂Q̂T ,

we obtain Ai+1 = Qi+1Di+1Q
T
i+1, where Di+1 = β2D̂ and Qi+1 = QiQ̂. To apply

this method, Ai is represented by Qi and Di. Initially, A0 = In×n, so we assign
Q0 = In×n and D0 = In×n. The CE algorithm iteratively updates minimal-volume
ellipsoids and eigensystems at the same time. Figure 2 presents the numerically
stable implementation of the CE algorithm from Figure 1.

input
{
ρ≤1; ε>0; imax (maximum number of iterations); function f ∈Bα

ρ≤1;
}

i := 0; x0 := 0; A0 := In×n;
while i ≤ imax do begin

if
√
d1(Ai)≤ε then (1) (d1 is the largest eigenvalue of Ai)
return xi as an absolute ε-approximation;

a := xi − f(xi);
if ||a|| ≤ (1− ρ2)ε/ρ then (2)

return xi − a/(1− ρ2) as an absolute ε-approximation;
if ||a|| ≤ ε then (3)

return xi as a residual ε-approximation;

ξ := aTa/((1 + ρ)
√
aTAia);

α := n(1− ξ)/(n+ 1);

β :=
√

n2

n2−1 (1− ξ2);

γ := (nξ + 1)/(n+ 1);

z := Aia/
√
aTAia;

xi+1 := xi − γz;
Ai+1 := β2(Ai − (1− α2/β2)zzT );
i := i+ 1;

end
if i = imax then

return failed to compute ε-approximation in imax iterations

Figure 1. The circumscribed ellipsoid algorithm

Our current implementation can be downloaded from http://www.cs.utah.edu/∼
sikorski/cea. The numerical stability of our implementation is the result of numer-
ically stable updating of eigensystems as described below.

In the implementation the diagonal matrix D = Di is stored as a vector
[d1, d2, . . . , dn] and we assume that d1 ≥ d2 ≥ · · · ≥ dn. The rank1 subroutine is the
implementation of the rank-one modification of the symmetric eigensystem. The
input parameters for this subroutine include n, τ,b, D, and Q = Qi and the outputs
are the eigenvalues D̂ and eigenvectors Q̂ of the matrix D − τbbT . This rank-one
modification problem is well studied in numerical linear algebra [12, 15, 19, 20, 44].

Before the rank-one updating of the eigensystem is accomplished, a deflation
process proceeds to avoid unnecessary computation. We implemented the deflation
algorithm presented by Dongarra and Sorensen [15]. We utilized the LAPACK
routines DLAED4, DLAED5 and DLAED6, that are the latest implementation of
the algorithm for computing updated eigenvalues. These routines were first imple-
mented by Rutter [32] and then modified by Tisseur and Dongarra [46]. Then the
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input
{
ρ≤ 1; ε > 0; imax (maximum number of iterations); function f ∈Bα

ρ≤1

}
;

i := 0; c := 0; Q := In×n D := In×n;
while i ≤ imax do begin

if
√
d1 ≤ ε then (1)
return c as an absolute ε-approximation;

a := c− f(c);
if ||a|| ≤ (1− ρ2)ε/ρ then (2)

return c− a/(1− ρ2) as an absolute ε-approximation;
if ||a|| ≤ ε then (3)

return xi as a residual ε-approximation;
u := QTa;

ω :=
√
uTDu;

ξ := aTa/((1 + ρ)ω);
α := n(1− ξ)/(n+ 1);

β :=
√

n2

n2−1 (1− ξ2);

γ := (nξ + 1)/(n+ 1);
z := QDu/ω;
c := c− γz;
τ := 1− α2/β2;
b := QT z;

[D̂, Q̂] := rank1(n, τ,b, D,Q);

D := β2D̂;

Q := QQ̂;
i := i+ 1;

end
if i = imax then

return failed to compute ε-approximation in imax iterations

Figure 2. Stable implementation of the circumscribed ellipsoid algorithm

updated eigenvalues are used to compute the updated eigenvectors by the numer-
ically stable algorithm presented by Gu and Eisenstat [20]. We shall refer to this
algorithm as the GE/LAPACK algorithm. The updated eigenvalues and eigenvec-
tors are used to update D and Q as shown in Figure2.

In our implementation, we use explicit computation of updated eigenvalues and
eigenvectors for the two-dimensional cases, and use the GE/LAPACK algorithm
for higher dimensions. We note that in the worst case the arithmetic cost of each
iteration of this algorithm is O(n3) that is the result of updating of the eigenvector
matrix. This cost could be lower than O(n2) in the average/best case. This suggests
that in the worst case this algorithm is efficient for relatively small values of n.

The user specified termination parameter ε is modified in our code according to
the following rules. If the function evaluations are carried out in single precision,
then

(4.2) ε = max(ε,Macheps(1)),
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and if in double precision, then

(4.3) ε = max(ε,Macheps(2)),

where Macheps(j), j = 1, 2 are, respectively, machine precision in single and double
floating point representations.

If the absolute termination is to be used (case ρ < 1) the user may request to
modify the ε by

(4.4) ε = max(ε,
Macheps(j)

1− ρ
).

This is justified by the absolute sensitivity of the problem that is characterized by
the condition number equal to 1

1−ρ .

5. Numerical results

In this section we compare the numerical results for several test functions using
the CE, SI, and Newton-Raphson (NR) methods. The NR method is used to solve
corresponding root-finding problems of the form f(x)− x = 0. We stress that the
CE algorithm is designed to converge globally for noncontinuous, nondifferentiable
functions, whenever Newton’s method requires C1 smoothness and starting points
that are sufficiently close to the solution. We include the tests of Newton’s method
for illustrative comparison. We utilize the ACM TOMS implementation of Newton’s
method [10]. In each table for each algorithm (CE, SI, NR) we exhibit the total CPU
time (in seconds), number of iterations and the number of the stopping criterion
that resulted in termination. For the stopping criterion, the numbers 1 and 2
indicate absolute termination and number 3, residual termination (see Figure 2).
In addition for the CE and SI, we exhibit in parentheses the upper bounds on
the number of iterations (see Lemma 3.4, where δ = ε(1 − ρ) for the absolute
termination case). The speedup factors that represent the ratio in CPU time when
using the CE algorithm instead of the SI or NR algorithm are also included. All
tests are carried out on a Redhat Linux operating system on an AMD Athlon 64
Processor 3400+ machine.

In the tests of functions 2 and 3, some initial balls are not the unit balls. In these
cases, the problems are defined on a general ball Bn(c, γ). They can be transformed
to the unit ball Bn(0, 1) as follows.

Let f : Bn(c, γ) → Bn(c, γ) denote the original function defined on a ball
Bn(c, γ). The modified function f : Bn(0, 1) → Bn(0, 1) defined on a unit ball
Bn(0, 1) is

(5.1) f(x) =
1

γ
(f(x · γ + c)− c) .

It turns out that if f ∈ Bn
ρ≤1, then f ∈ Bn

ρ≤1. Indeed, if x1,x2 ∈ Bn(0, 1), then

||f(x1)− f(x2)|| =
1

γ
||f(x1 · γ + c)− f(x2 · γ + c)||

≤ 1

γ
· ρ||γ · (x1 − x2)||

= ρ||x1 − x2||,
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i.e., they satisfy the Lipschitz condition with the same ρ and

||f(x)|| = 1

γ
||f(x · γ + c)− c|| ≤ 1

γ
· γ = 1,

i.e., f : Bn(0, 1) → Bn(0, 1).
In all tables we exhibit the user specified ε. In all cases these ε’s were then

modified according to equations (4.2)-(4.4); however, in only a few cases their values
were changed.

Test 1. This test function is a simple affine mapping f : �n → �n given by

(5.2) T1 : f(x) = ρx+ (1− ρ)s,

where the constant vector s is randomly chosen from Bn(0, 1). Obviously, s is the
unique fixed point of f for ρ < 1. We select this affine function since it is an almost
worst-case test for the SI algorithm, as well as it shows how much faster the CE
method can be than the Newton-Raphson algorithm. For example, Table 2 shows
that for n = 5, 17–19 iterations of the CE method are 3.7–4.6 times faster than
the corresponding 2 iterations of the NR method. Table 1 shows the results when
n = 5 and the Lipschitz constant is varied from 0.9–0.999999 using the SI and NR
methods, while Table 2 shows the results of the CE method.

Table 1. T1: n = 5, ε = 10−6 and x∗ = [0.1, 0.3, 0.4, 0.1, 0.2]T

ρ SI NR

1− 10−1 7.332× 10−6, 119 (132), 2 2.620× 10−5, 2, 2

1− 10−2 7.299× 10−5, 1247 (1375), 2 3.094× 10−5, 3, 2

1− 10−3 7.199× 10−4, 12531 (13809), 2 2.663× 10−5, 2, 2

1− 10−4 7.299× 10−3, 125361 (138149), 2 1.694× 10−5, 2, 2

1− 10−5 7.149× 10−2, 1253671 (1381545), 2 1.647× 10−5, 2, 2

1− 10−6 7.139× 10−1, 12536780 (13815504), 2 1.660× 10−5, 2, 2

Table 2. T1: n = 5, ε = 10−6 and x∗ = [0.1, 0.3, 0.4, 0.1, 0.2]T

ρ CE Speedup wrt SI Speedup wrt NR

1− 10−1 6.479× 10−6, 17 (1009), 2 1.1 4.0

1− 10−2 6.799× 10−6, 18 (1147), 2 10.7 4.6

1− 10−3 7.159× 10−6, 19 (1285), 2 100.6 3.7

1− 10−4 2.803× 10−5, 30 (1424), 2 260.4 0.6

1− 10−5 4.291× 10−4, 123 (1562), 2 166.6 0.04

1− 10−6 7.570× 10−5, 41 (1700), 2 943.1 0.2
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Test 2. This test function is a complex function from [22], given by

(5.3) T2 : f(z) = g(g(z)),

where

(5.4) g(z) =
z2 + c cos2 z

z + sin z cos z
,

z is a complex variable and c is a complex constant. We include this test function
since it comes from a practical electrical engineering application and exhibits slow
convergence of the SI and NR algorithms. This complex test function is considered
as a two-dimensional real function f : �2 → �2, i.e., n = 2, but we evaluate the
function as a one-dimensional complex function. The problem is tested with two
values of the constant c : c = 1.025 and c = π/4 + 1.2 + i(π − 1.17). The fixed
points of this problem are [0, 0.69032769]T and [2.14062,−2.50683]T , respectively.
The results obtained by using the SI and NR method are exhibited in Table 3, while
Table 4 shows the results from the CE method. In the case of ball B1 and ε = 10−6,
the NR method exhibits oscillatory behavior with very slow convergence to the fixed
point. This might be due to numerical instability of this specific implementation
of the NR method for this test case.

Table 3. T2 : B1 = B2([0.0, 0.1]T , 1), B2 = B2([2.2,−2.2]T , 1),
c1 = 1.025, ρ1 = 0.9989885, c2 = π/4 + 1.0 + i(π − 1.17), and
ρ2 = 0.9984

ε ρ c Ball SI NR

10−2 ρ1 c1 B1 2.143× 10−4, 583 (4551), 2 7.120× 10−5, 8, 2

10−3 ρ1 c1 B1 8.513× 10−4, 2313 (6826), 2 7.762× 10−5, 9, 2

10−4 ρ1 c1 B1 1.679× 10−3, 4572 (9102), 2 7.739× 10−5, 9, 2

10−5 ρ1 c1 B1 2.510× 10−3, 6846 (11377), 2 8.356× 10−5, 10, 2

10−6 ρ1 c1 B1 3.345× 10−3, 9122 (13652), 2 3.551× 10−1, 41392, 2

10−2 ρ2 c2 B2 1.379× 10−3, 2877 (2876), 1 3.487× 10−5, 4, 2

10−3 ρ2 c2 B2 2.065× 10−3, 4315 (4314), 1 3.490× 10−5, 4, 2

10−4 ρ2 c2 B2 2.889× 10−3, 5753 (5752), 1 4.124× 10−5, 5, 2

10−5 ρ2 c2 B2 3.601× 10−3, 7191 (7190), 1 4.134× 10−5, 5, 2

10−6 ρ2 c2 B2 4.353× 10−3, 8629 (8628), 1 3.505× 10−5, 4, 2

Test 3. We define T3 as a function transforming the whole �2 into [1− ρ/2, 1]2

as a periodic, parabolic function from [42], given by

(5.5) T3 : f(x1, x2) = [f1(x1, x2), f2(x1, x2)]
T ,

where

(5.6) fi(x1, x2) =
ρ

2
(xi − 2m)2 + 1− ρ

2

for i = 1, 2 whenever xi satisfies 2m − 1 < xi ≤ 2m + 1 for some integer m. As
such, T3 is contractive with the factor ρ (0 < ρ < 1) on the whole �2 and has a
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unique fixed point at [1, 1]T , at which each component of T3 is not continuously
differentiable (since the right and left partial derivatives are −ρ and +ρ). The
results from the SI and NR methods are exhibited in Table 5. The results from the
CE method are exhibited in Table 6. It is worth noting that the CE algorithm can
terminate with absolute error criterion even when ρ = 1; i.e., when the function
becomes nonexpanding.

Table 4. T2 : B1 = B2([0.0, 0.1]T , 1), B2 = B2([2.2,−2.2]T , 1),
c1 = 1.025, ρ1 = 0.9989885, c2 = π/4 + 1.0 + i(π − 1.17), and
ρ2 = 0.9984

ε ρ c Ball CE Speedup wrt SI Speedup wrt NR

10−2 ρ1 c1 B1 2.670× 10−6, 3 (147), 2 80.3 26.7

10−3 ρ1 c1 B1 5.440× 10−6, 7 (174), 2 156.5 14.3

10−4 ρ1 c1 B1 1.034× 10−5, 14 (202), 2 162.4 7.5

10−5 ρ1 c1 B1 1.455× 10−5, 20 (230), 2 172.5 5.7

10−6 ρ1 c1 B1 1.869× 10−5, 26 (257), 2 179.0 1.9× 104

10−2 ρ2 c2 B2 1.517× 10−5, 14 (141), 1 90.9 2.3

10−3 ρ2 c2 B2 2.158× 10−5, 20 (169), 1 95.7 1.6

10−4 ρ2 c2 B2 2.699× 10−5, 25 (197), 1 107.0 1.5

10−5 ρ2 c2 B2 3.350× 10−5, 31 (224), 1 107.5 1.2

10−6 ρ2 c2 B2 3.981× 10−5, 37 (252), 1 109.3 0.9

Table 5. T3 : B1 = B2([0, 0]T , 2), B2 = B2([0.1, 0.2]T , 2), ρ1 =
1− 10−3, ρ2 = 1− 10−5, and ρ3 = 1− 10−15

ε ρ Ball SI NR

10−3 ρ1 B1 6.060× 10−5, 1120 (7598), 2 2.361× 10−5, 3, 2

10−3 ρ2 B1 6.389× 10−4, 11874 (760087), 2 6.337× 10−5, 7, 2

10−4 ρ1 B2 1.500× 10−4, 2768 (9899), 2 4.017× 10−5, 5, 2

10−4 ρ2 B2 2.020× 10−3, 37376 (990344), 2 7.131× 10−5, 7, 2

10−6 ρ2 B2 1.500× 10−2, 277744 (1450859), 2 7.131× 10−5, 7, 2

10−6∗ ρ3 B2 5.893× 100, 1.1× 108 (1.2× 1016), 2 2.954× 10−5, 3, 2

10−6∗ 1 B2 9.274× 10−5, 1673, 3 2.977× 10−5, 3, 2
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Table 6. T3 : B1 = B2([0, 0]T , 2), B2 = B2([0.1, 0.2]T , 2), ρ1 =
1− 10−3, ρ2 = 1− 10−5, and ρ3 = 1− 10−15

ε ρ Ball CE Speedup wrt SI Speedup wrt NR

10−3 ρ1 B1 2.240× 10−5, 34 (183), 2 2.7 1.1

10−3 ρ2 B1 3.030× 10−5, 45 (238), 1 21.1 2.9

10−4 ρ1 B2 3.160× 10−5, 47 (211), 2 4.7 1.3

10−4 ρ2 B2 3.590× 10−5, 54 (266), 2 56.3 2.0

10−6 ρ2 B2 5.260× 10−5, 79 (321), 2 285.2 1.4

10−6∗ ρ3 B2 5.780× 10−5, 87 (597), 1 1.02× 105 0.5

10−6∗ 1 B2 5.830× 10−5, 87 (∞), 1 1.6 ** 0.5

∗ In these tests we removed the modification of ε according to equation (4.4), to test the limits
of numerical precision of our algorithm. We note that the algorithm computed correct results
even in the case ρ = 1.

∗∗ Residual termination for SI and absolute termination for CE.

Test 4. This fixed-point test function is a saw-like, periodical function from
[42], given by

(5.7) T4 : f(x1, x2) =

( √
3/2 −1/2

1/2
√
3/2

)(
f1(x1, x2)
f2(x1, x2)

)

where

(5.8) fi(x1, x2) = min
j=1,99

(ρ|xi −m− 10−2j|+ i/3)

for i = 1, 2 and m ≤ xi ≤ m + 1 and m is an arbitrary integer. This function
has a unique fixed point at [−0.01946, 0.75933]T . We select this function since it
is nondifferentiable at many points. The results obtained by using the SI and NR
methods are exhibited in Table 7. It is worth noting that the speedup factor is
increased by 4 orders of magnitude when ρ is closer to 1. Table 8 shows the results
from the CE method. It is also worth noting that for this test function the CE
method is in all cases superior to the Newton-Raphson method.

Table 7. T4 : ε = 10−6, x∗ = [−0.04, 0.74]T , B1 = B2([0, 0]T , 1),
B2 = B2([0, 0]T , 2), and B3 = B2([0.1, 0.2]T , 2)

ρ Ball SI NR

1− 10−2 B1 1.124× 10−3, 1109 (1375), 2 4.484× 10−4, 20, 2

1− 10−2 B2 1.126× 10−3, 1109 (1375), 2 4.486× 10−4, 20, 2

1− 10−2 B3 1.152× 10−3, 1141 (1375), 2 2.587× 10−4, 14, 2

1− 10−6 B1 1.395× 101, 13815504 (13815504), 1 2.121× 10−4, 13, 3

1− 10−6 B2 1.394× 101, 13815504 (13815504), 1 2.127× 10−4, 13, 3

1− 10−6 B3 1.396× 101, 13815504 (13815504), 1 2.847× 10−4, 16, 3
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Table 8. T4 : ε = 10−6, x∗ = [−0.04, 0.74]T , B1 = B2([0, 0]T , 1),
B2 = B2([0, 0]T , 2), and B3 = B2([0.1, 0.2]T , 2)

ρ Ball CE Speedup wrt SI Speedup wrt NR

1− 10−2 B1 6.159× 10−5, 36 (230), 1 18.3 7.3

1− 10−2 B2 6.949× 10−5, 40 (238), 1 16.2 6.5

1− 10−2 B3 7.039× 10−5, 41 (238), 1 16.4 3.7

1− 10−6 B1 6.069× 10−5, 36 (340), 1 2.299× 105 3.5

1− 10−6 B2 7.049× 10−5, 41 (349), 1 1.978× 105 3.0

1− 10−6 B3 7.069× 10−5, 41 (349), 1 1.975× 105 4.0

Test 5. This fixed-point test function is a nine-dimensional function from [53],
given by

(5.9) T5 : f(x) = x− tF (x)

where

F (x) = Ax+G(x)− ,
¯

(5.10)

A =

⎡
⎣ B −I 0

−I B −I
0 −I B

⎤
⎦ ,(5.11)

B =

⎡
⎣ 4 −1 0

−1 4 −1
0 −1 4

⎤
⎦ ,(5.12)

G(x) =
1

8

[
g

(
1

4
,
1

4
, x1

)
, g

(
2

4
,
2

4
, x2

)
, . . . , g

(
3

4
,
3

4
, x9

)]T
,(5.13)

and

b =
[
φ
(
0, 1

4

)
+ φ

(
1
4 , 0

)
, φ

(
2
4 , 0

)
, φ

(
3
4 , 0

)
+ φ

(
1, 1

4

)
, φ

(
0, 2

4

)
, 0, φ

(
1, 2

4

)
,

φ
(
0, 3

4

)
+ φ

(
1
4 , 1

)
, φ

(
2
4 , 1

)
, φ

(
3
4 , 1

)
+ φ

(
1, 3

4

)]T
,

with

g(s, t, u) =
t

s
+ |u− 1|3, φ(s, t) = sin(0.5πst).

We choose the value of t =
√
L2(1− ρ2)/L2 with L = 0.8234 and select the Lip-

schitz constant ρ close to 1. This function has a unique fixed point at [8.89 ×
10−4, 6.61× 10−2, 0.184, 6.61× 10−2, 0.209, 0.415, 0.184, 0.415, 0.690]T . This choice
implies that f is contractive [47, 53]. We include this function since it has a higher
dimension than the other test functions and also comes from an application of
numerical solutions of partial differential equations. The numerical results are ex-
hibited in Table 9 and Table 10. It turns out that the SI algorithm is faster than the
CE algorithm when ρ is not too close to 1. This is because the cost of each iteration
of the CE algorithm increases with the dimension as O(n3). However, when ρ is
close to 1, the CE algorithm is much faster than the SI algorithm although it is
much slower than the NR algorithm.
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Table 9. T5: ε = 10−6 and ρ is varied from 1− 10−2 to 1− 10−15

ρ SI NR

1− 10−2 2.476× 10−5, 70 (1375), 2 1.333× 10−4, 5, 2

1− 10−3 8.549× 10−5, 256 (13809), 2 1.134× 10−4, 4, 3

1− 10−4 2.780× 10−4, 883 (138149), 2 1.613× 10−4, 6, 2

1− 10−5 1.046× 10−3, 2990 (1381545), 2 1.585× 10−4, 6, 2

1− 10−6 3.290× 10−3, 10041 (13815504), 2 1.566× 10−4, 6, 2

1− 10−7 1.140× 10−2, 33571 (138155099), 2 1.298× 10−4, 6, 2

1− 10−8 3.852× 10−2, 111858 (1.4× 109), 2 1.460× 10−4, 6, 2

1− 10−9 1.156× 10−1, 371639 (1.4× 1010), 2 1.242× 10−4, 5, 2

1− 10−10 3.806× 10−1, 1229543 (1.4× 1011), 2 1.205× 10−4, 5, 2

1− 10−11 1.321× 100, 4024132 (1.4× 1012), 2 1.192× 10−4, 5, 2

1− 10−12 3.815× 100, 12391327 (1.4× 1013), 2 1.397× 10−4, 6, 2

1− 10−13 1.193× 101, 38756581 (1.4× 1014), 2 1.446× 10−4, 6, 2

1− 10−14 3.654× 101, 118682979 (1.4× 1015), 2 1.795× 10−4, 7, 2

1− 10−15 1.101× 102, 357331990 (1.4× 1016), 2 1.954× 10−4, 8, 2

∗ In these tests we removed the modification of ε according to equation (4.4), to test the limits
of numerical precision of our algorithm.

Table 10. T5: ε = 10−6 and ρ is varied from 1− 10−2 to 1− 10−15

ρ CE Speedup wrt SI Speedup wrt NR

1− 10−2 2.151× 10−2, 1534 (3441), 2 1.151× 10−3 6.197× 10−3

1− 10−3 2.922× 10−2, 2102 (3855), 2 2.926× 10−3 3.881× 10−3

1− 10−4 3.115× 10−2, 2258 (4270), 1 8.925× 10−3 5.178× 10−3

1− 10−5 3.224× 10−2, 2311 (4684), 1 0.03 4.916× 10−3

1− 10−6 3.234× 10−2, 2325 (5099), 1 0.1 4.842× 10−3

1− 10−7 3.245× 10−2, 2330 (5513), 1 0.4 4.000× 10−3

1− 10−8 3.245× 10−2, 2327 (5928), 1 1.2 4.499× 10−3

1− 10−9 3.226× 10−2, 2326 (6342), 1 3.6 3.850× 10−3

1− 10−10 3.247× 10−2, 2342 (6757), 1 11.7 3.711× 10−3

1− 10−11 3.167× 10−2, 2337 (7171), 1 41.7 3.764× 10−3

1− 10−12 3.229× 10−2, 2320 (7586), 1 118.1 4.326× 10−3

1− 10−13 3.137× 10−2, 2338 (8000), 1 380.3 4.609× 10−3

1− 10−14 3.024× 10−2, 2331 (8415), 1 1208.0 5.936× 10−3

1− 10−15 3.089× 10−2, 2337 (8829), 1 3564.0 6.326× 10−3

∗ In these tests we removed the modification of ε according to equation (4.4), to test the limits
of numerical precision of our algorithm.
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Table 11. T6 : x∗ = [0.5, 0.5]T , B1 = B2([0, 0.1]T , 1)

ε SI NR

10−2 2× 10−6, 8, 3 3.7× 10−5, 2, 3

10−3 3× 10−6, 33, 3 3.6× 10−5, 2, 3

10−4 6× 10−6, 113, 3 5.1× 10−5, 4, 3

10−5 1.7× 10−5, 369, 3 5.0× 10−5, 4, 3

10−6 4.9× 10−5, 1181, 3 5.1× 10−5, 4, 3

10−7 0.000166, 3751, 3 5.1× 10−5, 4, 3

10−8 0.000494, 11881, 3 6.8× 10−5, 6, 3

10−9 0.001750, 37594, 3 9.1× 10−5, 8, 3

10−10 0.004969, 118908, 3 Failed

10−11 0.016410, 376045, 3 Failed

10−12 0.050150, 1189162, 3 Failed

10−13 0.162500, 3761413, 3 Failed

10−14 0.490700, 11898141, 3 Failed

10−15 1.625000, 37578817, 3 Failed

Test 6. This fixed-point test function is given by

(5.14) T6 : fi(x) = gi(x)
2 +

1

4

where

(5.15) gi(x) =
1

4
+

xi − 1
4

4||x− [ 14 ,
1
4 ]||∞

.

for i = 1, 2. This function has a unique fixed point at [0.5, 0.5]T and it is nondiffer-
entiable at the fixed point. The results obtained by using the SI and NR methods
are exhibited in Table 11. This test function has the Lipschitz constant ρ = 1.
Therefore, we set up parameters so that both methods terminate with the residual
error criterion. Table 12 shows the results from the CE method. It is worth not-
ing that in this test function the CE method is up to 7 times faster than the NR
method. In addition, the NR method fails when ε is equal to and less than 10−10.
We also observe that e.g. when ε = 10−7 each iteration of the NR method is about
12 times more expensive than each CE iteration.

We select “rotational-type” functions 7 and 8 from the larger class of directionally
nonexpanding functions. They have discontinuities on the boundary and/or inside
the domain.

Test 7. This test function is in the larger class Bn
ρ≤1, so it is nonexpanding

(ρ = 1) in the direction of the unique fixed point [0.5, 0.5]T . This is why for this
test we utilize the residual stopping criterion. We observe that this function is
discontinuous, and it is a rotation by angle θ = 10 degrees around [0.5, 0.5]T of
all points in the disk D = {(x1, x2) : r ≤ R}, is a projection of any boundary

point x,x �= [1/
√
2, 1/

√
2]T of the unit circle C onto the point [1/

√
2, 1/

√
2]T , and

is a clockwise rotation around [0.5, 0.5]T of any interior point of C − D onto the
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Table 12. T6 : x∗ = [0.5, 0.5]T , B1 = B2([0, 0.1]T , 1)

ε CE Speedup wrt SI Speedup wrt NR

10−2 5.0× 10−6, 5 (38), 3 0.667 7.4

10−3 1.4× 10−5, 13 (57), 3 0.750 2.6

10−4 2.4× 10−5, 23 (75), 3 2.000 2.1

10−5 3.2× 10−5, 32 (94), 3 4.250 1.7

10−6 4.0× 10−5, 40 (112), 3 12.25 1.3

10−7 4.8× 10−5, 48 (130), 3 33.20 1.1

10−8 5.9× 10−5, 57 (149), 3 123.5 1.2

10−9 6.5× 10−5, 65 (167), 3 583.3 1.4

10−10 7.5× 10−5, 75 (186), 3 1242 N/A

10−11 8.2× 10−5, 83 (204), 3 5470 N/A

10−12 9.1× 10−5, 92 (223), 3 12538 N/A

10−13 9.9× 10−5, 100 (241), 3 40625 N/A

10−14 1.07× 10−4, 108 (259), 3 163570 N/A

10−15 1.14× 10−4, 117 (278), 3 325000 N/A

boundary of C. It is given by

T7 : f(x1, x2)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
cos θ sin θ
− sin θ cos θ

] [
x1

x2

]
; r ≤ R,[

1/
√
2

1/
√
2

]
; ||x||2 = 1,x �= [1/

√
2, 1/

√
2]T ,[

y

(1− y2)1/2

]
; R < r ≤ 0.5

√
10,[

y
−(1− y2)1/2

]
; 0.5

√
10 < r <

√
1.5 +

√
2,

where

r = ||x− [0.5, 0.5]T ||2, R =

√
1.5−

√
2, C = 1.5− r2, y =

C −
√
2− C2

2
.

Table 13 shows the results from using the SI and NR algorithms, and Table 14
show the results from the CE algorithm. The solutions computed by CE are within
absolute distance = 10−2, ..., 10−15, to the fixed point [0.5, 0.5]T whenever ε =
10−2, ..., 10−15. For this test function the SI algorithm fails to obtain the fixed
point. Although the NR method is mostly faster than the CE algorithm, the
computed approximation is far away from the fixed-point (absolute distance from
the fixed point is approximately equal to 0.707). The NR method converges to
the boundary of the unit circle, in whose neighborhood the function has arbitrarily
small residual value. In addition, the NR method fails to converge when ε ≤ 10−9.
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Table 13. T7 : x∗ = [0.5, 0.5]T , B1 = B2([0, 0]T , 1.5)

ε SI NR

10−2 Failed 2.6× 10−5, 2, 3

10−3 Failed 2.6× 10−5, 2, 3

10−4 Failed 3.2× 10−5, 3, 3

10−5 Failed 3.3× 10−5, 3, 3

10−6 Failed 3.3× 10−5, 3, 3

10−7 Failed 4.1× 10−5, 4, 3

10−8 Failed 4.1× 10−5, 4, 3

10−9 Failed Failed

10−10 Failed Failed

10−11 Failed Failed

10−12 Failed Failed

10−13 Failed Failed

10−14 Failed Failed

10−15 Failed Failed

Table 14. T7 : x∗ = [0.5, 0.5]T , B1 = B2([0, 0]T , 1.5)

ε CE Speedup wrt SI Speedup wrt NR

10−2 2.5× 10−5, 9 (38), 3 N/A 1.04

10−3 4.1× 10−5, 27 (57), 3 N/A 0.63

10−4 5.5× 10−5, 40 (75), 3 N/A 0.58

10−5 6.7× 10−5, 53 (94), 3 N/A 0.49

10−6 7.8× 10−5, 66 (112), 3 N/A 0.42

10−7 9.4× 10−5, 81 (130), 3 N/A 0.44

10−8 1.2× 10−4, 94 (149), 3 N/A 0.34

10−9 1.1× 10−4, 107 (167), 3 N/A N/A

10−10 1.3× 10−4, 120 (186), 3 N/A N/A

10−11 1.5× 10−4, 134 (204), 3 N/A N/A

10−12 1.7× 10−4, 147 (223), 3 N/A N/A

10−13 1.8× 10−4, 161 (241), 3 N/A N/A

10−14 1.9× 10−4, 174 (259), 3 N/A N/A

10−15 2.1× 10−4, 187 (278), 3 N/A N/A
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Test 8. This test function is similar to T7, directionally nonexpanding function,
and is given by

T8 : f(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y1; r ≤ R,

y2; r > R and ||y2||2 ≤ 1,

y2/||y2||2; ||y2||2 > 1,

where

yi=Rix, Ri=

[
cos θi sin θi
− sin θi cos θi

]
, i=1, 2; r= ||x− [0.5, 0.5]T ||2, R =

√
1.5−

√
2.

The fixed point of this problem is [0.5, 0.5]T . In this test we use θ1 = 0.1 degree
and θ2 = 1 degree. Table 15 shows the results from using the SI and NR algorithms,
and Table 16 shows the results from the CE method. In this case, the NR method
converged to the correct fixed point.

Table 15. T8 : x∗ = [0.5, 0.5]T , B1 = B2([0, 0]T , 1.5)

ε SI NR

10−2 Failed 2.3× 10−5, 1, 3

10−3 Failed 2.3× 10−5, 1, 3

10−4 Failed 3.2× 10−5, 2, 3

10−5 Failed 3.1× 10−5, 2, 3

10−6 Failed 3.8× 10−5, 3, 3

10−7 Failed 3.9× 10−5, 3, 3

10−8 Failed 4.7× 10−5, 4, 3

10−9 Failed 4.6× 10−5, 4, 3

10−10 Failed 4.8× 10−5, 4, 3

10−11 Failed 4.6× 10−5, 4, 3

10−12 Failed 4.7× 10−5, 4, 3

10−13 Failed 4.7× 10−5, 4, 3

10−14 Failed 4.8× 10−5, 4, 3

10−15 Failed 4.8× 10−5, 4, 3

We note that in all our tests the CE algorithm terminated with the absolute
error criterion (1) or (2) much faster than indicated by the upper bounds. We also
note that each iteration of the Newton-Raphson method is about 8–12 times more
expensive than the iteration of the CE algorithm for two-dimensional functions.
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Table 16. T8 : x∗ = [0.5, 0.5]T , B1 = B2([0, 0]T , 1.5)

ε CE Speedup wrt SI Speedup wrt NR

10−2 2.5× 10−5, 4 (38), 3 N/A 0.92

10−3 4.1× 10−5, 6 (57), 3 N/A 0.56

10−4 5.5× 10−5, 25 (75), 3 N/A 0.58

10−5 6.7× 10−5, 40 (94), 3 N/A 0.46

10−6 7.8× 10−5, 60 (112), 3 N/A 0.49

10−7 9.4× 10−5, 74 (130), 3 N/A 0.41

10−8 1.2× 10−4, 94 (149), 3 N/A 0.39

10−9 1.1× 10−4, 109 (167), 3 N/A 0.42

10−10 1.3× 10−4, 129 (186), 3 N/A 0.37

10−11 1.5× 10−4, 144 (204), 3 N/A 0.31

10−12 1.7× 10−4, 164 (223), 3 N/A 0.28

10−13 1.8× 10−4, 184 (241), 3 N/A 0.26

10−14 1.9× 10−4, 198 (259), 3 N/A 0.25

10−15 2.1× 10−4, 218 (278), 3 N/A 0.23

6. Conclusion

We developed a numerically stable FORTRAN 77 implementation of the cir-
cumscribed ellipsoid (CE) algorithm for approximating fixed points of directionally
nonexpanding functions. Our implementation of the CE algorithm terminates with
the absolute error criterion (1) or (2) much faster than indicated by the upper
bounds, for all of the tested functions. The implementation of the CE method
is much more efficient than the simple iteration algorithm when n is small and ρ
is close or equal to 1. Our experiments indicate that a hybrid method based on
circumscribed ellipsoid and Newton-Raphson algorithms could be very efficient for
solving our problems and should be developed in future research.
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43. K. Sikorski and H. Woźniakowski, Complexity of fixed points i., J. Complexity (1987), 388–405.
MR919096 (89a:65100)

44. D. C. Sorensen and P. T. P. Tang, On the orthogonality of eigenvectors computed by
divide-and-conquer techniques, SIAM J. Numer. Anal. 28 (1991), 1752–1775. MR1135764
(92h:65065)

45. R. Szrednicki, A generalization of the lefschetz fixed point theorem and detection of chaos,
Proc. Amer. Math. Soc. 128 (2000), 1231–1239. MR1691005 (2000i:55015)

46. F. Tisseur and J. Dongarra, Parallelizing the divide and conquer algorithm for the symmetric
tridiagonal eigenvalue problem on distributed memory architectures, SIAM J. Sci. Comput.
20 (1999), no. 6, 2223–2236. MR1703274 (2000e:65045)

47. C. W. Tsay, Fixed point computation and parallel algorithms for solving wave equations,
Ph.D. thesis, University of Utah, Salt Lake City, UT, 1994.

48. V. Vassin, Ill-posed problems with a priori information: Methods and applications, Institute
of Mathematics and Mechanics, Russian Academy of Sciences, Ural Subdivision, 2005.

49. V. Vassin and A.L. Ageev, Ill-posed problems with a priori information, VSP, Utrecht, The
Netherlands, 1995. MR1374573 (97j:65100)

50. V. Vassin and E. Eremin, Feyer type operators and iterative processes (in Russian), Russian
Academy of Sciences, Ural Subdivision, Ekaterinburg, 2005.

51. V. Vassin and T.I. Sereznikova, Two stage method for approximation of nonsmooth solutions
and reconstruction of noisy images (in Russian), Automatica and Telemechanica (2004),
no. 2.

52. L. T. Watson, A globally convergent algorithm for computing fixed points of c2 maps, Appl.
Math. Comput. 5 (1979), 297–311. MR544868 (81b:55006)

53. Z. B. Xu and X. Z. Shi, A comparision of point and ball iterations in the contractive mapping
case, Computing 49 (1992), 75–85. MR1182443 (93h:65085)

54. N. Yamamoto, A numerical verification method for solutions of boundary value problems with
local uniqueness by banach’s fixed-point theorem, SIAM J. Num. Anal. 35 (1998), 2004–2013.
MR1639986 (99f:65180)

55. Z. Yang, Computing equilibria and fixed points: The solution of nonlinear inequalities, Kluwer
Academic Publishers, Dordrecht, 1999. MR1788059 (2001h:90003)

http://www.ams.org/mathscinet-getitem?mr=694062
http://www.ams.org/mathscinet-getitem?mr=694062
http://www.ams.org/mathscinet-getitem?mr=0242483
http://www.ams.org/mathscinet-getitem?mr=0242483
http://www.ams.org/mathscinet-getitem?mr=0234735
http://www.ams.org/mathscinet-getitem?mr=0234735
http://www.ams.org/mathscinet-getitem?mr=0391909
http://www.ams.org/mathscinet-getitem?mr=0391909
http://www.ams.org/mathscinet-getitem?mr=1919453
http://www.ams.org/mathscinet-getitem?mr=1919453
http://www.ams.org/mathscinet-getitem?mr=2002734
http://www.ams.org/mathscinet-getitem?mr=2002734
http://www.ams.org/mathscinet-getitem?mr=2040430
http://www.ams.org/mathscinet-getitem?mr=2040430
http://www.ams.org/mathscinet-getitem?mr=2272347
http://www.ams.org/mathscinet-getitem?mr=2272347
http://www.ams.org/mathscinet-getitem?mr=1041089
http://www.ams.org/mathscinet-getitem?mr=1041089
http://www.ams.org/mathscinet-getitem?mr=1827804
http://www.ams.org/mathscinet-getitem?mr=1827804
http://www.ams.org/mathscinet-getitem?mr=1213495
http://www.ams.org/mathscinet-getitem?mr=1213495
http://www.ams.org/mathscinet-getitem?mr=919096
http://www.ams.org/mathscinet-getitem?mr=919096
http://www.ams.org/mathscinet-getitem?mr=1135764
http://www.ams.org/mathscinet-getitem?mr=1135764
http://www.ams.org/mathscinet-getitem?mr=1691005
http://www.ams.org/mathscinet-getitem?mr=1691005
http://www.ams.org/mathscinet-getitem?mr=1703274
http://www.ams.org/mathscinet-getitem?mr=1703274
http://www.ams.org/mathscinet-getitem?mr=1374573
http://www.ams.org/mathscinet-getitem?mr=1374573
http://www.ams.org/mathscinet-getitem?mr=544868
http://www.ams.org/mathscinet-getitem?mr=544868
http://www.ams.org/mathscinet-getitem?mr=1182443
http://www.ams.org/mathscinet-getitem?mr=1182443
http://www.ams.org/mathscinet-getitem?mr=1639986
http://www.ams.org/mathscinet-getitem?mr=1639986
http://www.ams.org/mathscinet-getitem?mr=1788059
http://www.ams.org/mathscinet-getitem?mr=1788059


CIRCUMSCRIBED ELLIPSOID ALGORITHM FOR FIXED-POINT PROBLEMS 1723

School of Computing, University of Utah, 50 S. Central Campus Dr., Salt Lake City,

Utah 84112

E-mail address: chaiwoot@yahoo.com

School of Computing, University of Utah, 50 S. Central Campus Dr., Salt Lake City,

Utah 84112

E-mail address: sikorski@cs.utah.edu

Computer Science and Information Management, Providence University 200 Chung-

chi Rd., Shalu Taichung 43301, Taiwan

E-mail address: cwtsay@pu.edu.tw


	1. Introduction
	2. Problem formulation
	3. Preliminary results
	4. Implementation
	5. Numerical results
	6. Conclusion
	Acknowledgments
	References

