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LEAST-SQUARES APPROXIMATION BY ELEMENTS

FROM MATRIX ORBITS ACHIEVED BY GRADIENT FLOWS

ON COMPACT LIE GROUPS

CHI-KWONG LI, YIU-TUNG POON, AND THOMAS SCHULTE-HERBRÜGGEN

Abstract. Let S(A) denote the orbit of a complex or real matrix A under
a certain equivalence relation such as unitary similarity, unitary equivalence,
unitary congruences etc. Efficient gradient-flow algorithms are constructed to

determine the best approximation of a given matrix A0 by the sum of ma-
trices in S(A1), . . . , S(AN ) in the sense of finding the Euclidean least-squares
distance

min
{∥∥X1 + · · ·+XN −A0

∥∥ : Xj ∈ S(Aj), j = 1, . . . , N
}
.

Connections of the results to different pure and applied areas are discussed.

1. Introduction

Motivated by problems in pure and applied areas, there has been a great deal of
interest in studying equivalence classes on matrices, say, under compact Lie group
actions. For instance,

(a) the unitary (orthogonal) similarity orbit of a complex (real) square matrix A
is the set of matrices of the form UAU∗ for unitary (or real orthogonal) matrices U,

(b) the unitary (orthogonal) equivalence orbit of a complex (real) rectangular
matrix A is the set of matrices of the form UAV for unitary (orthogonal) matrices
U, V of appropriate sizes,

(c) the unitary t-congruence orbit of a complex square matrix A is the set of
matrices of the form UAU t for unitary matrices U ,

(d) the orthogonal similarity orbit of a complex square matrix A is the set of
matrices of the form QAQt for complex orthogonal matrices Q, i.e., QtQ = In,

(e) the similarity orbit of a square matrix A is the set of matrices of the form
SAS−1 for invertible matrices S.

It is often useful to determine whether a matrix A0 can be written as a sum
of matrices from orbits S(A1), . . . , S(AN). Equivalently, one would like to know
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whether

S(A0) ⊆ S(A1) + · · ·+ S(AN ).

For N = 1, it reduces to the basic problem of checking whether A0 is equivalent
to A1. In some cases, even this is nontrivial. For instance, it is not easy to check
whether two n×n complex matrices are unitarily similar. For N > 1, the problem is
usually more involved. Even if there are theoretical results, it may not be easy to use
them in practice or to check examples of matrices of moderate sizes. For instance,
given 10 × 10 Hermitian matrices A,B,C, to conclude that C = UAU∗ + V BV ∗

for some unitary matrices U and V , one needs to check thousands of inequalities
involving the eigenvalues of A, B, and C; see Ref. [13]. Therefore, one purpose of
this paper is to set up a general framework to develop efficient computer algorithms
and programs to solve such problems. In fact, we will treat the more general
problem of finding the best approximation of a given matrix A0 by the sum of
matrices from matrix orbits S(A1), . . . , S(AN ). In other words, for given matrices
A0, A1, . . . , AN , we determine

min
{
‖X1 + · · ·+XN −A0‖ : (X1, . . . , XN ) ∈ S(A1)× · · · × S(AN )

}
.

The results will be useful in solving numerical problems efficiently, and helpful in
testing conjectures of theoretical development of the topics under consideration.
As we will see in the following discussion, some numerical examples indeed lead to
general theory; see Section 3.

We will consider different matrix orbits in the next few sections. In each case,
we will mention the motivation of the problems and derive the gradient flows for
the respective orbits, which will be used to design the algorithms and computer
programs to solve the optimization problem. Note that we always consider the
orbits of similarity SAS−1 and equivalence SAT , where {S, T} can be elements of
any (semi)simple compact connected matrix Lie group, in particular, the special
unitary group SU(n) and subgroups thereof. Since these matrix Lie groups are
compact, they are themselves smooth Riemannian manifolds M , which in turn
implies they are endowed with a Riemannian metric induced by the non-degenerate
Killing form related to a bi-invariant scalar product 〈·|·〉x on their tangent and
cotangent spaces TxM and T ∗

xM . The metric smoothly varies with x ∈ M and
allows for identifying the Fréchet differential in T ∗

xM with the gradient in TxM .
Moreover, in Riemannian manifolds the existence and convergence of gradient flows
with appropriate discretization schemes are elaborated in detail in Ref. [32]. In the
present context, it is important to note that the subsequent gradient flows on the
unitary congruence orbit and the unitary equivalence orbit are fundamental. The
flows on compact connected subgroups of SU(n) such as SO(n) or SU(2)⊗m (with
2m = n) can readily be derived from the flows on SU(n) [31, 32]. Furthermore,
in each case, we will provide numerical examples to illustrate their efficiency and
accuracy.

The situation in the general linear group GL(N) and its subgroups that are not
in the intersection with the unitary groups is entirely different: those groups are no
longer compact, but only locally compact. For GL(N) orbits we give an outlook
with some analytical results in infima of Euclidean distances. Since locally compact
Lie groups lack bi-invariant metrics on the tangent spaces to their orbit manifolds,
they can only be endowed with left-invariant or right-invariant metrics. Moreover,
the exponential map onto locally compact Lie groups is no longer geodesic as in
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the compact case. Consequently, one will have to devise other approximations to
the respective geodesics than obtained by the (Riemannian) exponential. These
numerics are thus a separate topic of current research and will therefore be pursued
in a follow-up study.

With regard to notation, unless stated otherwise, the norm ||A|| shall always be
read as Frobenius norm ||A||2 :=

√
tr {A∗A}.

2. Unitary similarity orbits

2.1. The Hermitian matrix case. For an n × n Hermitian matrix A, let S(A)
be the set of matrices unitarily similar to A. Then

S(A) + S(B) = {X + Y : (X,Y ) ∈ S(A)× S(B)}

is a union of unitary similarity orbits. Researchers have determined the necessary
and sufficient conditions of S(C) to be a subset of S(A) + S(B) in terms of the
eigenvalues of A,B and C; [7, 8, 11, 13, 17, 19, 35, 36]. In particular, suppose
A,B,C have eigenvalues

a1 ≥ · · · ≥ an, b1 ≥ · · · ≥ bn, and c1 ≥ · · · ≥ cn,

respectively. Then S(C) ⊆ S(A) + S(B) if and only if

(2.1)

n∑
j=1

(aj + bj − cj) = 0

and a collection of inequalities in the form

(2.2)
∑
r∈R

ar +
∑
s∈S

bs ≥
∑
t∈T

ct

for certain m-element subsets R,S, T ⊆ {1, . . . , n} with 1 ≤ m < n determined by
the Littlewood-Richardson rules; see Ref. [11, 13] for details. The study has connec-
tions to many different areas such as representation theory, algebraic geometry, and
algebraic combinatorics, etc. Note that the relation between Horn’s problem and
the Littlewood-Richardson rules has recently also attracted attention in quantum
information [9]. The set of inequalities in (2.2) grows exponentially with n. There-
fore, it is not easy to check the conditions even for a moderate size problem, say,
for 10× 10 Hermitian matrices. As a matter of fact, the theory has been extended
to determine whether S(A0) is a subset of S(A1) + · · · + S(AN) for given n × n
Hermitian matrices A0, . . . , AN , in terms of equality and linear inequalities of the
eigenvalues of the given matrices. Of course, the number of inequalities involved
are more numerous. There seems to be no efficient way of using these results in
practice or testing numerical examples or conjecture in research.

It is interesting to note that by the saturation conjecture (theorem) (see Ref. [4]
and its references), there exist Hermitian matrices with nonnegative integral eigen-
values a1 ≥ · · · ≥ an, and b1 ≥ · · · ≥ bn such that A + B has nonnegative inte-
gral eigenvalues c1 ≥ · · · ≥ cn if and only if the Young diagram corresponding to
(c1, . . . , cn) can be obtained from those of (a1, . . . , an) and (b1, . . . , bn).
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2.2. The general complex matrix case. Likewise, we study the problem

min
{∥∥∥

N∑
j=1

UjAjU
∗
j −A0

∥∥∥ : U1, . . . , UN ∈ SU(n) unitary
}

for general complex matrices A0, . . . , AN . Even for N = 1, the result is highly
nontrivial. In theory, it is related to the problem of determining whether A0 and
A1 are unitarily similar; see Ref. [33]. Also, to determine

min
{
‖UAU∗ − C∗‖ : U unitary

}
for A,C ∈ Mn leads to the study of the C-numerical range and the C-numerical
radius of A defined by

W (C,A) = {tr (CUAU∗) : U ∈ SU(n)}
and

r(C,A) = max {|μ| : μ ∈ W (C, a)} .
The C-numerical radius is important in the study of unitary similarity invariant
norms on Mn, i.e., norms ν satisfy ν(UXU∗) = ν(X) for all X,U ∈ Mn such that
U is unitary. For instance, it is known that for every unitary similarity invariant
norm ν there is a compact subset S of Mn such that

ν(X) = max {r(C,X) : C ∈ S} .
So, the C-numerical radii can be viewed as the building blocks of unitary similarity
invariant norms. We refer readers to the survey [24] for further results on the C-
numerical range and C-numerical radius. For applications of C-numerical ranges
in quantum dynamics, see also Ref. [31]

For two matrices, one may study whether C = UAU∗ + V BV ∗ for a Hermitian
A and a skew-Hermitian B. In other words, we want to study whether a matrix
can be written as the sum of a Hermitian matrix and a skew-Hermitian matrix with
prescribed eigenvalues.

2.3. Sum of Hermitian and Skew-Hermitian matrices. For C = UAU∗ +
V BV ∗ with A = A∗ and B = −B∗, there are many known inequalities relating
the eigenvalues of A and B to the eigenvalues and singular values of C; see Ref. [5]
and the references therein. However, given A = A∗ and B = −B∗ with prescribed
eigenvalues, there has been no known necessary and sufficient condition for the
existence of C with prescribed singular values satisfying C = UAU∗ + V BV ∗.
Nevertheless, it is easy to solve the approximation problem

min
{
‖U∗AU + V ∗BV − C‖ : U, V unitary

}
.

The following result actually holds for any unitarily invariant norm on n×nmatrices
using the same proof; see Ref. [26]. Furthermore, we can use this result to verify
that our algorithm indeed yields an optimal solution; see Example 2 in Section 2.5.

Theorem 2.1. Let ‖ ·‖ be the Frobenius norm on Mn. Let A,B,C ∈ Mn with A =
A∗ and B = −B∗. Moreover, let ai (and bi) denote the eigenvalues of A (respec-
tively, −iB). Suppose U, V ∈ Mn are unitary matrices such that U 1

2 (C +C∗)U∗ =

diag (f1, . . . , fn) with f1 ≥ · · · ≥ fn, and V 1
2 (C − C∗)V ∗ = i diag (g1, . . . , gn) with

g1 ≥ · · · ≥ gn. Suppose A is unitarily similar to a diagonal matrix A1 (respectively,
A2) with diagonal entries arranged in descending (respectively, ascending) order.
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Suppose −iB is unitarily similar to a diagonal matrix −iB1 (respectively, −iB2)
with diagonal entries arranged in descending (respectively, ascending) order. Then

‖U∗A1U + V ∗B1V − C‖2 =

n∑
j=1

(|fj − aj |2 + |gj − bj |2),

‖U∗A2U + V ∗B2V − C‖2 =
n∑

j=1

(|fj − an−j+1|2 + |gj − bn−j+1|2),

and for any unitary X,Y ∈ Mn,

‖U∗A1U + V ∗B1V − C‖ ≤ ‖X∗AX + Y ∗BY − C‖ ≤ ‖U∗A2U + V ∗B2V − C‖.

Proof. Let F = 1
2 (C + C∗) and G = −i

2 (C − C∗). It is well known that

‖F − U∗A1U‖ ≤ ‖F −X∗AX‖ ≤ ‖F − U∗A2U‖

and

‖G− V ∗B1V ‖ ≤ ‖G− Y ∗BY ‖ ≤ ‖G− V ∗B2V ‖
for any unitary X,Y ∈ Mn; see Ref. [26]. Since ‖H + iK‖2 = ‖H‖2+ ‖K‖2 for any
Hermitian H,K ∈ Mn, the results follow. �

2.4. Deriving gradient flows on unitary similarity orbits. To begin with, we
focus on the problem of approximating a given matrix C using matrices from two
unitary similarity orbits, i.e., finding

min
{
‖UAU∗ + V BV ∗ − C‖ : U, V ∈ SU(n) unitary

}
.

For simplicity, here we describe the steepest descent method to search for unitary
matrices U0, V0 attaining the optimum. Refined approaches like conjugate gradi-
ents, Jacobi-type or Newton-type methods may be implemented likewise; see for
instance [32]. As will be shown below, more than two unitary similarity orbits can
be treated similarly. The basic idea is to improve the current unitary pair (Uk, Vk)
to (Uk+1, Vk+1) so that

‖Uk+1AU∗
k+1 + Vk+1BV ∗

k+1 − C‖ < ‖UkAU∗
k + VkBV ∗

k − C‖

until the successive iterations differ only by a small tolerance, or the gradient (vide
infra) vanishes. Further, to avoid pitfalls by local minima whenever the Euclidean
distance cannot be made zero, we use a sufficiently large multitude of different ran-
dom starting points (U0, V0) for our algorithm. Needless to say, a positive matching
result is constructive, while a negative result may be due to local minima. It is
therefore important to use a sufficiently large set of initial conditions for confident
conclusions in the negative case.

For a start, consider the least-squares minimization task

(2.3) min
U,V ∈SU(n)

‖UAU∗ + V BV ∗ − C‖22 ,

which can be rewritten as

||UAU∗ + V BV ∗ − C||22
= ||UAU∗ + V BV ∗||22 + ||C||22 − 2Re tr {C∗(UAU∗ + V BV ∗)}
= ||A||22 + ||B||22 + ||C||22 − 2Re tr {C∗(UAU∗ + V BV ∗)− UAU∗ V B∗V ∗}
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and thus is equivalent to the maximization task

(2.4) max
U,V ∈SU(n)

Re tr {C∗(UAU∗ + V BV ∗)− UAU∗ V B∗V ∗} .

Therefore, we set

(2.5) f(U, V ) := tr {(UAU∗ + V BV ∗)C∗ − UAU∗ V B∗V ∗}
and F (U, V ) := Re f(U, V ). Then its Fréchet derivative DUf(U) : TUU → Tf(U)U
can be seen as a tangent map, where the elements of the tangent space TUU to the
Lie group of unitaries U = SU(n) or U(n) at the point U take the form ΩU with
Ω = −Ω∗ being itself an element of the Lie algebra. The differential thus reads

DUf(U, V )(ΩU) = tr {((ΩU)AU∗ + UA(ΩU)∗)(C∗ − V B∗V ∗)}
= tr {((ΩU)AU∗ − UAU∗(ΩU)U∗)(C∗ − V B∗V ∗)}
= tr {(AU∗(C∗ − V B∗V ∗)− U∗(C∗ − V B∗V ∗)UAU∗)(ΩU)}

where we used the invariance of the trace under cyclic permutations as well as
(ΩU)∗ = −U∗(ΩU)U∗. Moreover, by identifying

(2.6) DUf(U, V ) · (ΩU) = 〈gradU f(U, V )|ΩU〉 = tr {(gradU f(U, V ))∗ΩU}
one finds

gradU f(U, V ) = (C − V BV ∗)UA∗ − UA∗U∗(C − V BV ∗)U

=
[
(C − V BV ∗), UA∗U∗]U.

With [X∗, Y ]s :=
1
2 ([X

∗, Y ]−[X∗, Y ]∗)= 1
2 ([X

∗, Y ]+[X,Y ∗]) as the skew-Hermitian
part of the commutator one obtains for F (U, V ) := Re f(U, V ),

(2.7) gradU F (U, V ) =
[
(C∗ − V B∗V ∗), UAU∗]

s
U.

Taking the respective Riemannian exponentials expU (gradU F (U, V )) as well as
expV (gradV F (U, V )) thus gives the recursive gradient flows

Uk+1 = exp {−αk[UkAU∗
k , (C

∗ − VkB
∗V ∗

k )]s} Uk,

Vk+1 = exp {−βk[VkBV ∗
k , (C

∗ − UkA
∗U∗

k )]s} Vk,

as discretized solutions of the coupled gradient system

(2.8) U̇ = gradU F (U, V ) and V̇ = gradV F (U, V ) .

Conditions for convergence are described in detail in [16]. For appropriate step
sizes αk, βk see also Ref. [15].

Generalizing the findings from a sum of two orbits to higher sums of unitary
orbits is straightforward: the problem

(2.9) min
{∥∥∥

N∑
j=1

UjAjU
∗
j − A0

∥∥∥ : U1, . . . , UN ∈ SU(n) unitary
}

can be addressed by the system of coupled gradient flows (j = 1, 2, . . . , N)

(2.10) U
(j)
k+1 = exp

{
−α

(j)
k [A

(j)
k , A∗

0jk]s

}
U

(j)
k

where for short we set A
(j)
k := U

(j)
k AjU

(j)
k

∗
and A0jk := A0 −

∑N
ν=1
ν �=j

A
(ν)
k .

These gradient flows follow the extension of the original idea on the orthogonal
group [3, 16] to the unitary group [14], where now we have introduced a larger
system of coupled flows.
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Figure 1. Coupled flows minimizing ||
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j=1 UjAjU
∗
j − A

(N)
0 ||22

with (a) N = 2 and (b) N = 10 for Example 1 below.

2.5. Numerical examples. Here we demonstrate gradient flows for minimizing

‖
∑N

j=1 UjAjU
∗
j − A0‖ over the unitaries U1, . . . , UN for given Hermitian matrices

A0, . . . , AN .

Example 1. As a test case, consider the following examples for finding respec-

tive Uj ∈ C10×10. For j = 1, 2, . . . , N choose a set of random unitaries U
(r)
j ∈

C10×10 distributed according to the Haar measure as recently described in [29]

and define the diagonal matrices Aj := diag (1, 3, 5, . . . , 19) + j−1
10 1l10 and A

(N)
0 :=

diag (a1, ..., a10) where a1, a2, . . . , a10 are the eigenvalues of

A′
0,N :=

N∑
j=1

U
(r)
j AjU

(r)
j

∗

(and 1l10 is the 10× 10 identity matrix).

As shown in Figure 1, the gradient flow of (2.10) minimizes ||
∑N

j=1 UjAjU
∗
j −

A
(N)
0 ||22 by driving it practically to zero. Note that in Figure 1(b) the combined

flow on N = 10 unitaries converges even faster than in Figure 1(a), where N = 2
and the flow is more sensitive to saddle points as may be inferred from the jumps
in trace (a).

Example 2. Let A,B be Hermitian and C arbitrary, e.g., A =
(

2 5 11
5 8 15
11 15 16

)
, B =(

6 8 9
8 12 10
9 10 0

)
, and C =

(
1 11 3
6 9 3
8 9 2

)
. Thus a := eig(A) = (−5.6674;−0.4830; 32.1504),

b := eig(B) = (−7.4816; 0.7123; 24.7693) and f := eig 1
2 (C + C∗) = (−4.9555;
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−1.3888; 18.3443), while g := eig −i
2 (C − C∗) = (−4.6368; 0; 4.6368). By Theo-

rem 2.1 one gets

Δ : = min
U,V ∈SU(3)

‖UAU∗ + iV BV ∗ − C‖22

= (a− f)∗(a− f) + (b− g)∗(b− g)

= 605.8521 . . . .

(2.11)

More precisely, Δ = 605.852131091′3004, while 100 runs of the flow with indepen-
dent random initial conditions give a mean ± rmsd of Δ̄ = 605.852131091′3570 ±
1.13 · 10−10.

3. Unitary equivalence

In this section, we study

min
{∥∥∥

N∑
j=1

UjAjVj−A0

∥∥∥ : U1, . . . , UN ∈ U(n) and V1, . . . , VN ∈ U(m) unitary
}

for rectangular matrices A0, . . . , AN . By the result of O’Shea and Sjamaar [34],

min
∥∥∥

N∑
j=1

UjAjVj −A0

∥∥∥ = 0

if and only if

min
∥∥∥

N∑
j=1

W ∗
j ÃjWj − Ã0

∥∥∥ = 0

where

Ãj =

(
0 Aj

A∗
j 0

)
for j = 0, 1, . . . , N.

Thus, by the results concerning unitary similarity orbits (see Section 2),

(3.1) min
{∥∥∥A0 −

N∑
j=1

UjAjVj

∥∥∥ : U1, . . . , UN ; V1, . . . , VN unitary
}
= 0

if and only if the singular values of A0, A1, . . . , AN satisfy a certain set of linear
inequalities. Clearly, min {‖A− UBV ‖ : U, V unitary} = 0 if and only if A and B
have the same singular values. In general, it is interesting to check whether

√
2min

∥∥∥
N∑
j=1

UjAjVj −A0

∥∥∥ = min
∥∥∥

N∑
j=1

W ∗
j ÃjWj − Ã0

∥∥∥ = 0.

In computer experiments (see Example 6 in Section 3), we observe that (3.1) always
holds if A0, A1, . . . , AN are randomly generated matrices generated by matlab. We
explain this phenomenon in the following. We begin with a simple observation.

Lemma 3.1. Suppose a0, a1, . . . , aN ∈ (0,∞). The following are equivalent.

(a) There are complex units eit1 , . . . , eitN such that a0 −
∑N

j=1 aje
itj = 0.

(b) There is an N + 1 side convex polygon whose sides have lengths a0, . . . , aN .

(c)
∑N

j=0 aj − 2ak ≥ 0 for all k = 0, 1, . . . , N .
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From this observation, one easily gets the following condition related to the
equality (3.1).

Proposition 3.2. Let Aj = diag (a1j , . . . , anj) be nonnegative diagonal matrices
for j = 0, 1, . . . , N , and let vj = (a1j , . . . , anj)

t. Then there exist permutation
matrices P1, . . . , PN and diagonal unitary matrices D1, . . . , DN such that

A0 =
N∑
j=1

DjPjAjP
t
j

if and only if the entries of each row of the matrix

[v0|P1v1| · · · |PNvN ]

correspond to the sides of an N + 1 side convex polygon.

If one examines the singular values of an n × n “random matrix” generated by
matlab, we see that there is always a dominant singular value of size about n/2,
and the other singular values range from 0 to 1.5n in a rather systematic pattern.
So, it is often possible to apply Proposition 3.2 to get equality (3.1) if A0, . . . , AN

are “random matrices” generated by matlab for N ≥ 2 as will be made more
precise in Example 6 (vide infra).

In contrast, for general matrices, it is easy to construct A0, A1, . . . , AN such that
(3.1) fails.

Example 3. Let A0 = diag (N2, N + 1)⊕ On−2 and Aj = diag (N, 1)⊕ On−2 for
j = 1, . . . , N . Then clearly (3.1) does not apply, because

n∑
j=1

sj(A0) >
N∑
i=1

n∑
j=1

sj(Aj).

Recall that the Ky Fan k-norm of a matrix A ∈ Mn is defined as ‖A‖k =∑k
j=1 sj(A), and a norm ‖ · ‖ on Mn is unitarily invariant if ‖A‖ = ‖UAV ‖ for all

A ∈ Mn and unitary U, V ∈ Mn. By the Ky Fan dominance theorem, two matrices
A,B ∈ Mn satisfy ‖A‖k ≤ ‖B‖k for k = 1, . . . , n if and only if ‖A‖ ≤ ‖B‖ for
all unitarily invariant norms ‖ · ‖. In view of this example, we have the following
result.

Proposition 3.3. Suppose A0, A1, . . . , AN ∈ Mn satisfy (3.1). Then for all uni-
tarily invariant norms,

2‖Ai‖ ≤
N∑
j=0

‖Aj‖, i = 0, 1, . . . , N,

and equivalently, for k = 1, . . . , n,

(3.2) 2‖Ai‖k ≤
N∑
j=0

‖Aj‖k, i = 0, 1, . . . , N.

Moreover, if there is k such that equality (3.2) holds, then (3.1) holds if and only
if Aj is unitarily similar to Bj ⊕ Cj with Bj ∈ Mk for j = 0, . . . , N such that

min
{∥∥∥B0 −

N∑
j=1

UjBjVj

∥∥∥ : U1, . . . , UN , V1, . . . , VN ∈ Mk are unitary
}
= 0
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and

min
{∥∥∥C0 −

N∑
j=1

XjCjYj

∥∥∥ : X1, . . . , XN , Y1, . . . , YN ∈ Mn−k are unitary
}
= 0.

It would be nice if one can get (3.1) by checking the relatively easy condition
(3.2). Unfortunately, the following example shows that it is not true.

Example 4. Let A0 = diag (14, 2), A1 = diag (8, 0), A2 = diag (7, 4). Then (3.2)
is satisfied for all k ≥ 1 but by the result in [25],

diag (U1A1V1 + U2A2V2) = (14, 2)

for all unitaries Ui, Vj .

3.1. Deriving gradient flows on unitary equivalence orbits. For minimizing
||UAV − C||22 one has to maximize

F (U, V ) := Re tr {UAV C∗} = 1
2 tr {UAV C∗ + (UAV C∗)∗} .

By the same arguments as before, from its Fréchet differential

DUF (U, V )(ΩU) = 1
2 tr {(ΩU)AV C∗ − CV ∗A∗U∗(ΩU)U∗}

= 1
2 tr {(AV C∗ − U∗CV ∗A∗U∗)(ΩU)}

one obtains the gradient—where henceforth we keep writing (·)s for the skew-
Hermitian part

gradU F (U, V ) = 1
2 (AV C∗ − U∗CV ∗A∗U∗)∗ = −(UAV C∗)s U .

An analogous result follows for gradV F (U, V ). Taking again the respective Rie-
mannian exponentials leads to the recursive scheme

Uk+1 = exp {−αk(UkAVkC
∗)s} Uk

Vk+1 = exp {−βk(VkC
∗UkA)s} Vk ,

which also can be used, e.g., for a singular-value decomposition of A by choosing
C real diagonal.

Likewise, minimizing ||UAV +XBY −C||22 by maximizing the trace expression
Re tr {UAV (C −XBY )∗ +XBY C∗} translates into the same flows when substi-
tuting C �→ (C − XkBYk) with analogous recursions for Xk+1 and Yk+1. Along
these lines, it is straightforward to address the general task
(3.3)

min
{∥∥∥

N∑
j=1

UjAjVj−A0

∥∥∥ : U1, . . . , UN ∈ U(n) and V1, . . . , VN ∈ U(m) unitary
}

with rectangular matrices A0, . . . , AN by a system of 2N coupled gradient flows
(j = 1, 2, . . . , N),

U
(j)
k+1 = exp

{
−α

(j)
k (U

(j)
k AjV

(j)
k A∗

0jk)s

}
U

(j)
k ,(3.4)

V
(j)
k+1 = exp

{
−β

(j)
k (V

(j)
k A∗

0jkU
(j)
k Aj)s

}
V

(j)
k ,(3.5)

where we use the shorthand A0jk := A0 −
∑N

ν=1
ν �=j

U
(ν)
k AνV

(ν)
k .

Clearly, the set of unitaries {Ũj}∪{Ṽj} achieving a global minimum is not unique.
Without loss of generality, assume that for j = 0, 1, 2, . . . , N , the Aj ∈ Cn×m
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(chosen with n ≤ m) are initially given each in their singular-value decomposition
Σj = [Λj |On,(m−n)] ∈ Rn×m (where the diagonal Λj consists of the ordered singular
values of the respective Aj). With the shorthand notation U := (U1, U2, . . . , UN )
(V analogously) the minimum in (3.3) is degenerate and takes the form1

Fmin(U,V) = F (Ũ, Ṽ) =
∥∥∥

N∑
j=1

ŨjΣj Ṽj − Σ0

∥∥∥ =
∥∥∥

N∑
j=1

Ãj − Σ0

∥∥∥.

The {Ũj} are only determined up to their respective right diagonal factors reading

D̃j := diag (eiφ
(j)
1 , eiφ

(j)
2 , . . . , eiφ

(j)
n ) with free independent φ

(j)
� ∈ [0, 2π) for all the

j = 1, 2, . . . , N and � = 1, 2, . . . , n such that ŨjD̃jΣj Ṽ
′
j = Ãj . Given D̃j , the Ṽ ′

j

are also not unique unless rankAj = n = m, in which case Ṽ ′
j = Σ−1

j D̃∗
j Ũ

∗
j Ãj .

As usual, further degrees of freedom emerge for degenerate singular values or for
singular values being zero (see, e.g., Lem. 7.3.1 and Thm. 7.3.5 in [18]).

Another symmetry arises if there exist nontrivial pairs of unitaries (Us, Vs) ∈
U(n) × U(m) stabilizing A0 in the sense that UsA0Vs = A0. Then the {Us} and
{Vs} form subgroups Us ⊆ U(n) and Vs ⊆ U(m). By unitary invariance of the

Frobenius norm, the union of joint left and right cosets Us{Ũj} ∪ {Ṽj}Vs give the

same minimum as {Ũj} ∪ {Ṽj} because for all Us ∈ Us and Vs ∈ Vs,

Fmin(U,V) =
∣∣∣∣∣∣

N∑
j=1

ŨjAjṼj −A0

∣∣∣∣∣∣ =
∣∣∣∣∣∣Us

( N∑
j=1

ŨjAjṼj

)
Vs −A0

∣∣∣∣∣∣,
where again the Vs are uniquely determined by the Us only if rankA0 = n = m. An
analogous argument covers stabilizing orbits of the total sum (as well as potential
invariances of partial sums with j ranging over proper subsets of {1, 2, . . . , N}).

These degeneracies of the minimium Fmin(U,V) with respect to continuous de-

grees of freedom in the critical {Ũj}∪ {Ṽj} may contribute to the favorable conver-
gence properties of our gradient-flow algorithms: envisaged as a landscape, F (U,V)
shows critical valleys rather than isolated minima.

3.2. Numerical examples. Using the flows from Section 3.1, here we study

min
{∥∥∥

N∑
j=1

UjAjVj −A0

∥∥∥ : U1, . . . , UN ∈ U(n) and V1, . . . , VN ∈ U(m) unitary
}

for rectangular matrices A0, . . . , AN .

Example 5. As an example of rectangular Aj ∈ C10×15, consider the analogous
flows. In order to obtain Uj ∈ C10×10 and Vj ∈ C15×15 for j = 1, 2, . . . , N choose

a set of random unitary pairs (U
(r)
j , V

(r)
j ) ∈ C10×10 ×C15×15 and define

Aj := [ diag (1, 3, 5, . . . , 19) + j−1
10 1l10 | O10,5 ] and A

(N)
0 := [ diag (s1, ..., s10) | O10,5 ]

where s1, s2, . . . , s10 are now the singular values of A′
0,N :=

∑N
j=1 U

(r)
j AjV

(r)
j and

O10,5 is the 10× 5 zero-matrix.

1With slight abuse of language, here F (U,V) := ||
∑N

j=1 UjAjVj−A0||, which equals previous

definitions up to a constant.
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Figure 2. Coupled flows minimizing ||
∑N

j=1 UjAjVj − A
(N)
0 ||22

with (a) N = 2 and (b) N = 10 for Example 5. The Aj ∈ C10×15

are rectangular so that Uj ∈ C10×10 and Vj ∈ C15×15.

Figure 2 shows how the coupled gradient flow minimizes ||
∑N

j=1 UjAjVj −A
(N)
0 ||22

by driving it practically to zero. Again the combined flow on N = 10 unitary
pairs (Figure 2(b)) converges faster than the one for N = 2 unitary pairs given in
Figure 2(a).

3.2.1. Observation Concerning Sums of Unitary Equivalence Orbits. Let Aj (j =
0, 1, 2, . . . , N) denote a series of complex n×m matrices each with random entries
of the following types:

(a’) real and imaginary parts of all the a
(j)
ik are independently distributed by the

standard normal Gaussian distribution with zero mean and variance unity
(in matlab: randn(n,m));

(a ) same as (a’), but with final normalization to ||Aj ||2 = 1.

(b’) real and imaginary parts of all the a
(j)
ik are independently uniformly dis-

tributed in the intervals [0, 1] (in matlab: rand(n,m));
(b ) same as (b’), but with final normalization to ||Aj ||2 = 1.

Let OUV (X) := {UXV : U, V independent unitary} denote the unitary equivalence
orbit of X. For each of the above four instances of randomization the following
observation holds: A0 is typically distant from a single equivalence orbit of another
random matrix A1 of the same type since generically A0 and A1 clearly do not share
the same singular values. However, in all of the four instances of randomization,
such an A0 is typically an element of the sum of two or more unitary equivalence
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Figure 3. Typically, as illustrated in Example 6 a complex
matrix A0 ∈ C10×10 taken randomly as in the schemes (a) and (b)
in 3.2.1 is distant from a single (N = 1) equivalence orbit of another
random matrix UA1V (upper traces), yet it is an element of the
sum of N = 2, 3, 4, 5, 10 equivalence orbits of several independent

random matrices as in the lower traces ‖
∑N

j=1 UjAjVj−A0‖22 → 0.

orbits of independent random matrices of the same kind, so2

(3.6) A0 ∈ OU1V1
(A1) while A0 ∈

N∑
j=1

OUjVj
(Aj) for N ≥ 2.

Interestingly, the findings hold independent of the dimensions and include rectan-
gular matrices as well as square matrices. This is illustrated in Figure 3 for the
above randomization scenarios (a) and (b) by numerical examples with 10 × 10
complex matrices thus underscoring Proposition 3.2.

Example 6. For complex matrices Aj ∈ C10×10 with the real and imaginary parts
of each element taken randomly from (a) the standard normal distribution with
zero mean, variance unity and normalized to ||Aj ||2 = 1 or taken randomly from
(b) a uniform distribution over the intervals [0, 1] and again normalized one finds:
such a random A0 is typically an element of the sum of N = 2, 3, 4, 5, 10 equivalence

orbits
∑N

j=1 UjAjVj , while it is typically not an element of a single (N = 1) such

equivalence orbit. This is shown in Figure 3 (a) and (b); qualitatively analogous
results are obtained without the normalization ||Aj ||2 = 1 thus corresponding to
the scenarios (a’) and (b’) in 3.2.1 (not shown).

In contrast, preliminary results indicate that the situation is more subtle for the
respective Hermitian parts of such types of random matrices H(Aj) :=

1
2 (Aj +A∗

j )

2Note that as mentioned earlier in the context of Proposition 3.2, it is easy to construct sets of
matrices violating (3.6), however these sets are not typical with respect to the random distributions
discussed here.
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and their relation to the unitary similarity orbits OUj

(
H(Aj)

)
:= {UjH(Aj)U

∗
j :

Uj unitary}. Explorative findings, again for Aj ∈ C10×10, suggest that typically

(3.7) H(A0) ∈
N∑
j=1

OUj

(
H(Aj)

)
,

unless the real and imaginary parts of the matrix elements in Aj are again taken
randomly from either a uniform distribution over the interval [0, 1] or the standard
normal distribution, where in either case the following normalization conditions
have to be fulfilled as well: normalize to trA0 = 1 as well as to trAj = 1/N for
all the j = 1, 2, . . . , N . Also, the number of similarity orbits in the sum has to be
sufficiently large (here N � 10) in order to violate (3.7) in more than 30% of the
instances. For the context of completely positive maps (a.k.a. quantum channels)
[6, 20], the above normalizations remotely resemble a density operator (here A0)

and, more loosely, a quantum map with Kraus rank N (here
∑N

j=1OUj

(
H(Aj)

)
with identical Aj for all j = 1, 2, . . . , N). Thus these preliminary findings will be
further pursued elsewhere. (Note that in quantum physics for ρ to be a density
operator, ρ also has to be positive semidefinite beyond fulfilling tr ρ = 1.)

4. Unitary t-congruence

In this section, we consider

min
{∥∥∥

N∑
j=1

UjAjU
t
j −A0

∥∥∥ : U1, . . . , UN ∈ U(n) unitary
}

for given matrices A0, A1, . . . , AN . Sometimes, we can focus on special classes of
matrices such as symmetric matrices or skew-symmetric matrices. For symmetric
matrices or skew-symmetric matrices, the minimization problem

min
{∥∥∥UAU t −A0

∥∥∥ : U unitary
}

has an analytic solution; see Ref. [28]. The problem is entirely open even if N = 2.
Therefore, a computer algorithm will be most helpful in the theoretical develop-
ment. One may also consider whether we can have UAU t + V BV t = C for a
symmetric A and a skew-symmetric B. In other words, we want to know whether
one can write C as the sum of symmetric and skew-symmetric matrices with pre-
scribed singular values. Of course, the problem for general matrices A,B and C
is even more challenging, and that is what we pursue by the numerical methods
developed in the next paragraph.

4.1. Gradient flows on unitary t-congruence orbits. Again, the minimization
task

(4.1) min
U,V ∈U(n)

‖UAU t + V BV t − C‖22 ,

translates via

||UAU t + V BV t − C||22
= ||A||22 + ||B||22 + ||C||22 − 2Re tr

{
C∗(UAU t + V BV t)− UAU t V̄ B∗V ∗}

into maximizing the function

(4.2) F (U, V ) := Re f(U, V ) := Re tr
{
(UAU t + V BV t)C∗ − UAU t V̄ B∗V ∗} ,
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where the differential reads (by virtue of the shorthand C̃ := C∗ − V̄ B∗V ∗)

DUf(U, V )(ΩU) = tr
{
((ΩU)AU t + UA(ΩU)t)(C∗ − V̄ B∗V ∗)

}
= tr

{
(ΩU)AU tC̃

}
+ tr

{
(UA(ΩU)tC̃)t

}

= tr
{
(AU tC̃ +AtU tC̃t)(ΩU)

}
.

By identifyingDUf(U, V )·(ΩU) = 〈gradU f(U, V )|ΩU〉 = tr {(gradU f(U, V ))∗ΩU}
one finds

(4.3) gradU f(U, V ) = (UAU tC̃ + UAtU tC̃t)∗U

so as to obtain for F (U, V ) := Re f(U, V ),

(4.4) gradU F (U, V ) = −
(
UAU tC̃ + UAtU tC̃t

)
s
U.

Again, taking the respective Riemannian exponentials expU (gradU F (U, V )) and
expV (gradV F (U, V )) thus gives the slightly lengthy formula
(4.5)

Uk+1 = exp
{
−αk

(
UkAU t

k(C
∗ − V̄kB

∗V ∗
k ) + UkA

tU t
k(C

∗ − V̄kB
∗V ∗

k )
t
)
s

}
Uk,

and an analogous equation for Vk+1 by substituting V for U and B for A,as dis-
cretized solutions of the coupled gradient system

(4.6) U̇ = gradU F (U, V ) and V̇ = gradV F (U, V ) .

Likewise, for higher sums of t-congruence orbits one finds

(4.7) min
{∥∥∥

N∑
j=1

UjAjU
t
j −A0

∥∥∥ : U1, . . . , UN ∈ U(n) unitary
}

to be solved by the coupled system of flows (j = 1, 2, . . . , N)

(4.8) U
(j)
k+1 = exp

{
−α

(j)
k

(
A

(j)
k A∗

0jk + (A∗
0jkA

(j)
k )t

)
s

}
U

(j)
k ,

where for short we set A
(j)
k := U

(j)
k AjU

t (j)
k and A0jk := A0 −

∑N
ν=1
ν �=j

A
(ν)
k .

5. Outlook: Noncompact groups

For orbits S(A) of matrices A under the action of noncompact groups, there are

usually no good results for the supremum or the infimum of ‖X0 −
∑N

j=1 Xj‖ with

Xj ∈ S(Aj) for j = 0, 1, . . . , N and given matrices A0, . . . , AN .
For example, for the invertible congruence orbit of A ∈ Mn,

S(A) =
{
S∗AS : S ∈ Mn is invertible

}
,

we can let S = r1l. Then

‖S∗A0S −
N∑
j=1

S∗AjS‖

converges to 0 or ∞ depending on r → 0 or r → ∞.
Similarly, the same problems occur for the equivalence orbit of A ∈ Mn:

S(A) =
{
SAT : S, T ∈ Mn are invertible

}
.

For the similarity orbits, we have the following.
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Proposition 5.1. Suppose not all the matrices A0, . . . , AN are scalar. Then

sup ‖A0 −
N∑
j=1

S−1
j AjSj‖ = ∞.

Proof. Suppose one of the matrices, say, Ai is nonscalar. Then there is Sj such

that S−1
j AiSj is in lower triangular form with the (2, 1) entry equal to 1, and there

are invertible matrices Sj such that S−1
j AjSj is in upper triangular form for other

j. Let Dr = diag (r, 1, 1, . . . , 1). Then the sequence

(S0Dr)
−1A0(S0Dr)−

N∑
j=1

(SjDr)
−1Aj(SjDr)

has unbounded (2, 1) entry as r → ∞. The conclusion follows. �

Determining

inf ‖A0 −
N∑
j=1

S−1
j AjSj‖

is more challenging. Let us first consider two matrices A,B ∈ Mn. We have the
following.

Proposition 5.2. Let A,B ∈ Mn. Then for any unitary similarity invariant norm
‖ · ‖, ∥∥(trA− trB) 1n1l

∥∥ ≤
∥∥S−1AS − T−1BT

∥∥
for any invertible S and T .

Proof. Given two real vectors x = (x1, . . . , xn), y = (y1, . . . , yn), we say that x is
weakly majorized by y, denoted by x ≺w y if the sum of the k largest entries of x
is not larger than that of y for k = 1, . . . , n. By the Ky Fan dominance theorem,
if X = diag (x1, . . . , xn) and Y = diag (y1, . . . , yn) are nonnegative matrices such
that (x1, . . . , xn) ≺w (y1, . . . , yn), then ‖X‖ ≤ ‖Y ‖ for any unitarily invariant norm
‖ · ‖.

Now, suppose S−1AS − T−1BT has diagonal entries d1, . . . , dn and singular
values s1, . . . , sn. Then

|trA− trB| = |
n∑

j=1

dj | ≤
n∑

j=1

|dj |.

Thus,

|trA− trB|(1, . . . , 1)/n ≺w (|d1|, . . . , |dn|) ≺w (s1, . . . , sn).

It follows that

‖(trA− trB) 1
n1ln ‖ ≤ ‖diag (|d1|, . . . , |dn|)

≤ ‖diag (s1, . . . , sn)‖ = ‖S−1AS − T−1BT‖. �

Can we always find invertible S and T such that∥∥S−1AS − T−1BT
∥∥ =

∥∥(trA− trB) 1n1l
∥∥ ?

The answer is no, and we have the following.
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Proposition 5.3. Let ‖ · ‖ be a unitarily invariant norm on Mn. Suppose A ∈ Mn

has eigenvalues a1, . . . , an, and B = b1l. Then

inf
{
‖S−1AS −B‖ : S ∈ Mn is invertible

}
= ‖diag (a1 − b, . . . , an − b)‖.

Proof. Suppose S−1AS −B has eigenvalues a1 − b, . . . , an − b, and singular values
s1, . . . , sn. Then the product of the k largest entries of the vector (|a1−b|, . . . , |an−
b|) is not larger than (s1, . . . , sn) for k = 1, . . . , n. It follows that

(|a1 − b|, . . . , |an − b|) ≺w (s1, . . . , sn),

and hence

‖diag (|a1 − b|, . . . , |an − b|)‖ ≤ ‖diag (s1, . . . , sn)‖ = ‖S−1AS −B‖.

Note that there is S such that S−1(A−B)S is in upper triangular Jordan form with
diagonal entries a1 − b, . . . , an − b. Let Dr = diag (1, r, . . . , rn−1) for r > 0. Then
(SDr)

−1(A−B)(SDr) → diag (a1− b, . . . , an− b) and ‖(SDr)
−1(A−B)(SDr)‖ →

‖diag (a1 − b, . . . , an − b)‖ as r → 0. Hence, the conclusion about the infimum. �

From the above result and proof, we see that if A has an eigenvalue a with
eigenspace of dimension p and B has an eigenvalue b with eigenspace of dimension
q such that p + q − n = r > 0, then S−1AS − T−1BT has an eigenvalue a − b of
multiplicity at least r. The question is whether we can write A = a1lr ⊕ A1 and
B = b1lr ⊕B1 and show that

inf ‖S−1
1 A1S1 − T−1

1 B1T1‖ = ‖(trA1 − trB1)
1

n−k 1ln−k‖.

It is interesting to note that the following two quantities may be different:

1) inf
{
‖S−1AS − T−1BT‖ : S is invertible

}
.

2) inf
{
‖S−1AS −B‖ : S is invertible

}
.

For example, suppose A = diag (2,−1,−1) and B =
(

0 1 0
0 0 1
0 0 0

)
. Then there are

invertible S and T such that

S−1AS =

⎛
⎝0 1 1
1 0 1
1 1 0

⎞
⎠ and T−1BT =

⎛
⎝0 1 1
0 0 1
0 0 0

⎞
⎠ .

So, C = S−1AS − T−1BT is a rank two nilpotent. Thus for any ε > 0, there is an
invertible Rε such that

R−1
ε CRε =

⎛
⎝0 ε 0
0 0 ε
0 0 0

⎞
⎠ .

As a result,

‖R−1
ε S−1ASRε −R−1

ε T−1BTRε‖ → 0 as ε → 0.

So, the quantity in (1) equals zero. On the other hand, for every invertible S, we
have

‖
(
A− SBS−1

)
(Se1) ‖ = ‖A (Se1) ‖ ≥ ‖Se1‖.

Therefore, inf ‖A−SBS−1‖ ≥ 1. So, we see that the quantities in (1) and (2) may
be different.
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Table 1. Summary of least-squares approximations by matrix
orbits and related gradient flows

type and objective coupled gradient flows

unitary similarity:

min
U∈SU(n)

=
∥∥∥

N∑
j=1

UjAjU
∗
j −A0

∥∥∥ U
(j)
k+1 = exp

{
−α

(j)
k [A

(j)
k , A∗

0jk]s

}
U

(j)
k

where A
(j)
k := U

(j)
k AjU

(j)
k

∗

and A0jk := A0 −
∑N

ν=1
ν �=j

A
(ν)
k

unitary equivalence:

min
U,V ∈SU(n)

∥∥∥
N∑

j=1

UjAjVj − A0

∥∥∥ U
(j)
k+1 = exp

{
−α

(j)
k (U

(j)
k AjV

(j)
k A∗

0jk)s
}

U
(j)
k

V
(j)
k+1 = exp

{
−β

(j)
k (V

(j)
k A∗

0jkU
(j)
k Aj)s

}
V

(j)
k

where A0jk := A0 −
∑N

ν=1
ν �=j

U
(ν)
k AνV

(ν)
k

unitary t-congruence:

min
U∈SU(n)

∥∥∥
N∑

j=1

UjAjU
t
j −A0

∥∥∥ U
(j)
k+1 = exp

{
−α

(j)
k

(
A

(j)
k A∗

0jk + (A∗
0jkA

(j)
k )t

)
s

}
U

(j)
k

where A
(j)
k := U

(j)
k AjU

t (j)
k

and A0jk := A0 −
∑N

ν=1
ν �=j

A
(ν)
k

In connection to the above discussion, it is interesting to study the following
problem:

1. Determine

inf
{
‖S−1AS − TBT−1‖ : S, T are invertible

}
and characterize the matrix pairs (A,B).

2. Determine
inf

{
‖S−1AS −B‖ : S is invertible

}
and characterize the matrix pairs (A,B) attaining the infimum if they exist.

6. Conclusions

We have treated the least-squares approximation problems by elements on the
sum of various matrix orbits including unitary similarity, equivalence and con-
gruence. Special attention has been paid to sums of unitary similarity orbits of a
Hermitian A and a skew-Hermitian B, where theoretical results have been obtained
and shown to be consistent with numerical findings. Furthermore, stimulated by
numerical experiments, new results on unitary equivalence orbits have been estab-
lished.

A general framework based on the gradient flows on matrix orbits arising from
Lie group actions has been developed to study the proposed problems. The gradient
flows devised to this end extend the existing toolbox (see e.g. [2, 10, 32]) by referring
to sums of matrix orbits as summerized in Table 1. This general approach can be
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used to treat many problems in theory and applications. For instance, flows on such
sums of unitary similarity orbits can also be envisaged as flows on unitaries taking
a block-diagonal form, and hence they relate to relative C numerical ranges, where
the group action is restricted to a compact subgroup K � SU(n) of the full unitary
group [31]. Needless to say, the flows presented in this work may be restricted
from sums of group orbits to sums of subgroup orbits by straightforward projection
techniques [32], e.g., in order to address problems in quantum information or in
completely positive maps (quantum channels).

Finally, the first explorative results on matrix orbits under noncompact group
actions invite follow-up studies.

7. Further research

In order to avoid the search in our algorithms is terminating in local extrema,
one has to choose a sufficiently large set of random unitaries distributed according
to the Haar measure. Actually, one knows there are commutation properties at the
critical points. It would be nice to find a more efficient method to choose starting
points for the search, and prove theorems ensuring that the absolute minimum will
be reached from one of these starting points using our algorithms.

Our discussion is focused on orbits of matrices under actions of compact groups.
We can consider other orbits under actions of noncompact groups. To continue the
list from the introductary section, here are some examples for S, T ∈ SL(n,C):

(e) the general similarity orbit of a square matrix A is the set of matrices of the
form SAS−1,

(f) the equivalence orbit of a rectangular matrix A is the set of matrices of the
form SAT ,

(g) the ∗-congruence orbit of a complex square matrix A is the set of matrices
of the form SAS∗,

(h) the t-congruence orbit of a square matrix A is the set of matrices of the form
SASt.
However, the fact that GL(n,C) and SL(n,C) are just locally compact entails that
in either case there is no bi-invariant Riemannian metric on the tangent spaces,
but only left- or right-invariant metrics. Hence, the Hilbert-Schmidt scalar product
〈B|A〉 = tr {B∗A} has to be treated with care, in particular, since we are interested
in the complex domain. Moreover, while in compact Lie groups the exponential map
is surjective and geodesic [1], in locally compact Lie groups, it is generically neither
surjective nor geodesic. It is for these reasons that devising gradient flows in locally
compact Lie groups is the subject of a follow-up study.
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the C-Numerical Range with Applications in NMR Spectroscopy, J. Global Optim. 23 (2002),
283–308. MR1923048 (2003g:90127)

16. U. Helmke and J. B. Moore, Optimisation and Dynamical Systems, Springer, Berlin, 1994.
17. A. Horn, Eigenvalues of Sums of Hermitian Matrices, Pacific J. Math. 12 (1962), 225–241.

MR0140521 (25:3941)
18. R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985.

MR832183 (87e:15001)
19. A.A. Klyachko, Stable Bundles, Representation Theory and Hermitian Operators, Selecta

Math. (N.S.) 4 (1998), 419–445. MR1654578 (2000b:14054)
20. K. Kraus, States, Effects, and Operations, Lecture Notes in Physics, Vol. 190, Springer, Berlin,

1983. MR725167 (86j:81008)
21. A. Knutson and T. Tao, The Honeycomb Model of GLn(C) Tensor Products. I. Proof of the

Saturation Conjecture, J. Amer. Math. Soc. 12 (1999), 1055–1090. MR1671451 (2000c:20066)
22. A. Knutson and T. Tao, Honeycombs and Sums of Hermitian Matrices, Notices Amer. Math.

Soc. 48 (2001), 175–185. MR1811121 (2002g:15020)
23. T.G. Lei, Congruence Numerical Ranges and Their Radii, Lin. Multilin. Alg. 43 (1998),

411–427. MR1616480 (98k:15039)
24. C.K. Li, C-Numerical Ranges and C-Numerical Radii, Lin. Multilin. Alg. 37 (1994), 51–82.

MR1313758 (95k:15039)
25. C. K. Li and Y. T. Poon, Diagonals and Partial Diagonals of Sum of Matrices, Canadian J.

Math. 54 (2002), 571–594. MR1900764 (2003a:15017)
26. C.K. Li and N.K. Tsing, On Unitarily Invariant Norms and Related Results, Lin. Multi-

lin. Alg. 20 (1987), 107–119. MR878289 (88c:15015)
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