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ASYMPTOTIC EXPANSIONS OF LEGENDRE SERIES

COEFFICIENTS FOR FUNCTIONS WITH INTERIOR

AND ENDPOINT SINGULARITIES

AVRAM SIDI

Abstract. Let
∑∞

n=0 en[f ]Pn(x) be the Legendre expansion of a function
f(x) on (−1, 1). In an earlier work [A. Sidi, Asymptot. Anal., 65 (2009), pp.
175–190], we derived asymptotic expansions as n → ∞ for en[f ], assuming that
f ∈ C∞(−1, 1), but may have arbitrary algebraic-logarithmic singularities at
one or both endpoints x = ±1. In the present work, we extend this study
to functions f(x) that are infinitely differentiable on [0, 1], except at finitely
many points x1, . . . , xm in (−1, 1) and possibly at one or both of the endpoints

x0 = 1 and xm+1 = −1, where they may have arbitrary algebraic singularities,
including finite jump discontinuities. Specifically, we assume that, for each r,
f(x) has asymptotic expansions of the form

f(x) ∼
∞∑
s=0

W
(±)
rs |x− xr |δ

(±)
rs as x → xr±,

where W
(±)
rs and δ

(±)
rs are, in general, complex and �δ

(±)
rs > −1. We derive the

full asymptotic expansion of en[f ] as n → ∞ for this very general behavior of

f(x). In the special case where δ
(±)
rs = σ

(±)
r + s, 1 ≤ r ≤ m, and δ

(−)
0s = α+ s

and δ
(+)
m+1,s = β + s, this expansion reduces to

en[f ] ∼
m∑

r=1

{
ein̂θr

[ ∞∑
s=0

a
(+)
rs

n̂σ
(+)
r +s+1/2

+
∞∑
s=0

a
(−)
rs

n̂σ
(−)
r +s+1/2

]

+e−in̂θr

[ ∞∑
s=0

â
(+)
rs

n̂σ
(+)
r +s+1/2

+
∞∑
s=0

â
(−)
rs

n̂σ
(−)
r +s+1/2

]}

+
∞∑
s=0

α�∈Z
+

As

n̂2(α+s+1/2)
+ (−1)n

∞∑
s=0

β �∈Z
+

Bs

n̂2(β+s+1/2)
as n → ∞.

where θr = cos−1 xr, n̂ = n+1/2, Z+ = {0, 1, 2, . . .}, and a
(±)
rs , â

(±)
rs , As, and

Bs are constants independent of n. In the course of this study, we also derive a

full asymptotic expansion as n → ∞ for integrals of the form
∫ d
c f(x)Pn(x) dx

where [c, d] ∈ (−1, 1) and f ∈ C∞[c, d] or f ∈ C∞(c, d) but may have arbitrary
algebraic singularities at x = c and/or x = d.
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1. Introduction

Let
∑∞

n=0 en[f ]Pn(x) be the Legendre series of a function f(x) on (−1, 1). Here
Pn(x) is the nth Legendre polynomial standardized such that Pn(1) = 1, so that

(1.1)

∫ 1

−1

Pm(x)Pn(x) dx =
1

n+ 1/2
δm,n, m, n = 0, 1, . . . ,

and hence

(1.2) en[f ] = (n+ 1/2)

∫ 1

−1

f(x)Pn(x) dx, n = 0, 1, . . . .

In a recent paper [12], we derived asymptotic expansions as n → ∞ for en[f ],
assuming that f ∈ C∞(−1, 1), but may have arbitrary algebraic-logarithmic sin-
gularities at one or both endpoints x = ±1. In the present work, we extend the
results of Sidi [12] to the case in which f(x) may have arbitrary algebraic singu-
larities, including finite jump discontinuities, at finitely many points in (−1, 1), in
addition to possible algebraic singularities at the endpoints x = ±1. To the best
of our knowledge, the expansion we derive in this work has not been given before.
(The case of algebraic-logarithmic singularities seems to be more complex, and we
propose to treat this case in a future publication.) For earlier related work, see the
papers by Jain and Chawla [5] and by Cı̄rulis [4].

The plan of this paper is as follows: In the next section, we describe the func-
tions f(x) we wish to treat in the sequel. In Section 3, we recall three theorems
that are relevant to our problem: (i) a theorem of [12] concerning the asymptotic
expansion of en[f ] when f(x) has only algebraic endpoint singularities, (ii) a theo-
rem concerning the asymptotic expansion of Pn(x) as n → ∞, where −1 < x < 1,
and (iii) a theorem concerning the asymptotic expansion of integrals of the form∫ β

α
h(θ)e±iνθ dθ as ν → ∞, where h(θ) has only algebraic endpoint singularities. In

Section 4, we state the main results of this work, in which we present (i) the full

asymptotic expansion as n → ∞ of integrals of the form
∫ d

c
f(x)Pn(x) dx, where

[c, d] ∈ (−1, 1) and (a) f ∈ C∞[c, d] or (b) f ∈ C∞(c, d) but may have arbitrary
algebraic singularities at x = c and/or x = d, and (ii) the full asymptotic expansion
as n → ∞ of en[f ] when f(x) is as described in Section 2.

One important feature of the asymptotic expansion of en[f ] we derive here is
that it is determined exclusively by the asymptotic expansions of f(x) at its points
of singularity, the behavior of f(x) at its points of regularity being irrelevant. As for

the asymptotic expansion of
∫ d

c
f(x)Pn(x) dx, where [c, d] ∈ (−1, 1), it is determined

only by the behavior of f(x) at x = c and x = d, whether f(x) is singular or regular
at these points.

The results of this work, in addition to being of interest by themselves, can have
applications in asymptotic analyses involving Legendre expansions, such as integral
equations, numerical quadrature, and in series of spherical harmonics.

Now, it is a well known fact that when f(x) has singularities on [−1, 1], its Le-
gendre series

∑∞
n=0 en[f ]Pn(x) converges slowly; the stronger the singularities, the

slower the convergence. The convergence can be accelerated by applying suitable
extrapolation methods to the sequence of partial sums Sn(x) =

∑n
k=0 ek[f ]Pk(x),

n = 0, 1, . . . , of the series. In order to be able to make an educated decision as
to which extrapolation method to use, and how to tune it properly, it is impor-
tant that we have some qualitative information about the asymptotic expansion of
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Sn[f ] as n → ∞. This information can be deduced rigorously from the asymptotic
expansion of en[f ] as n → ∞. It is not necessary to know the exact asymptotic
expansion of en[f ] to make this deduction; knowledge of the form of this asymptotic
expansion suffices. In Section 6, we discuss the consequences of this in relation to
convergence acceleration. For a detailed treatment of this topic with applications,
see Sidi [10], [11, Chapters 6, 12, 13], [13], for example.

2. Assumptions on f(x)

It is known (see Olver [7, p. 129], for example) that the Legendre polynomial
Pn(x) behaves like a trigonometric function for −1 < x < 1, namely, as in

(2.1) Pn(cos θ) =

(
2

πn sin θ

)1/2

sin

(
nθ +

θ

2
+

π

4

)
+O

(
n−3/2

)
as n → ∞.

In addition, there are known results on the asymptotic behavior of Fourier integrals∫ β

α
h(θ) e±iνθ dθ as ν → ∞, where (α, β) is a finite interval and h ∈ C∞(α, β), with

possible singularities at α and/or β. Thus, it seems that one can exploit these facts
in the asymptotic analysis of en[f ] as n → ∞. Indeed, this turns out to be the case,
provided we make the variable transformation x = cos θ in (1.2), and re-express
en[f ] as an integral over θ as follows:

(2.2) en[f ] = (n+ 1/2)

∫ π

0

F (θ)Pn(cos θ) dθ, F (θ) = sin θ f(cos θ).

This representation of en[f ] suggests that we should look at the singularity structure
of F (θ) for 0 ≤ θ ≤ π. Clearly, as sin θ is an entire function, the singularity structure
of F (θ) is determined only by that of f(x).

We now state the main assumptions on the function F (θ) in (2.2):

(1) F (θ) has m points of singularity in the interior of (0, π). We denote these
points by θ1, . . . , θm, and order them as in

(2.3) 0 = θ0 < θ1 < θ2 < · · · < θm < θm+1 = π.

We assume that F (θ) is infinitely differentiable at all other points of (0, π),
hence on each of the intervals (θr, θr+1), r = 0, 1, . . . ,m.

(2) At each of the points θr, F (θ) has asymptotic expansions, from the right
and from the left of θr, that are of the form

(2.4) F (θ) ∼
∞∑
s=0

T (±)
rs |θ − θr|γ

(±)
rs as θ → θr±,

where T
(±)
rs �= 0 and γ

(±)
rs are, in general, complex, and the γ

(±)
rs satisfy

(2.5) −1 < �γ(±)
r0 ≤ �γ(±)

r1 ≤ �γ(±)
r2 ≤ · · · ; lim

s→∞
�γ(±)

rs = +∞.

Here, �z stands for the real part of z. Of course, the asymptotic expansion
from the left is irrelevant at θ0 = 0. Similarly, the asymptotic expansion
from the right is irrelevant at θm+1 = π. Clearly, under (2.4) and (2.5),
F ∈ L1[0, π] and f ∈ L1[−1, 1].

Note also that

(2.6) |θ − θr|γ
(+)
rs = (θ − θr)

γ(+)
rs , |θ − θr|γ

(−)
rs = (θr − θ)γ

(−)
rs .
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For future use, we also state the asymptotic expansions of f(x) at the
endpoints x = −1 and x = 1 [instead of those of F (θ) at θ = θm+1 = π and
θ = θ0 = 0, respectively], separately, as follows:

(2.7) f(x) ∼
∞∑
s=0

A(±)
s |x∓ 1|α(±)

s as x → ±1,

where A
(±)
s are nonzero constants and

(2.8) −1 < �α(±)
0 < �α(±)

1 < �α(±)
2 < · · · ; lim

s→∞
�α(±)

s = 0.

As will be clear from Remark 2 below, the asymptotic expansion of F (θ) as
θ → θm+1 = π and θ → θ0 = 0 given in (2.4) are actually implied by those
of f(x) as x → −1 and x → 1, respectively, given in (2.7), and vice versa.

(3) By (2.4), we mean that, for each p = 0, 1, . . . ,

(2.9) F (θ)−
p−1∑
s=0

T (±)
rs |θ − θr|γ

(±)
rs = O

(
|θ − θr|γ

(±)
rp

)
as θ → θr±.

(4) The asymptotic expansions in (2.4) are termwise differentiable an infinite
number of times. That is, for each k = 1, 2, . . . , the kth derivative of
F (θ) also has asymptotic expansions as θ → θr± that are obtained by
differentiating those in (2.4) term by term.

(5) Following (2.4), we have stated that T
(±)
rs �= 0. This is necessarily the

right statement when the series
∑∞

s=0 T
(±)
rs |θ − θr|γ

(±)
rs contains infinitely

many terms. When it contains finitely many terms, we write T
(±)
rs �= 0 to

mean that the terms in this finite summation are all nonzero. (In any case,

T
(±)
r0 �= 0.) We adopt this convention in the remainder of this work with

other asymptotic expansions, such as those in (2.7), (2.10), (3.1), and (3.9).

Remarks.

(1) The following are consequences of (2.5):

(i) For each r, there are only a finite number of γ
(+)
rs that have the same

real parts. Similarly, for each r, there are only a finite number of γ
(−)
rs

that have the same real parts. Consequently, �γ(+)
rs < �γ(+)

r,s+1 and

�γ(−)
rs′ < �γ(−)

r,s′+1 for infinitely many values of the indices s and s′.

(ii) The sequences {|θ − θr|γ
(±)
rs }∞s=0 are asymptotic scales as θ → θr±, in

the following sense:

lim
θ→θr±

|θ − θr|γ
(±)
r,s+1

|θ − θr|γ
(±)
rs

=

{
0 if �γ(±)

rs < �γ(±)
r,s+1,

1 if �γ(±)
rs = �γ(±)

r,s+1.

These limits are zero an infinite number of times since �γ(+)
rs < �γ(+)

r,s+1

and �γ(−)
rs′ < �γ(−)

r,s′+1 for infinitely many integers s and s′. (For a

discussion of asymptotic scales, see Olver [7, p. 25], for example.)
In view of (2.5) and (2.9), the expansions in (2.4) are thus genuine
asymptotic expansions.
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(2) The singularity structure of F (θ) on [0, π] is actually of the same nature
as that of f(x) on [−1, 1]. To see this, assume that f(x) is singular at
x = c ∈ (−1, 1) with

(2.10) f(x) ∼
∞∑
s=0

W (±)
s |x− c|δ(±)

s as x → c±,

where W
(±)
s are nonzero constants and

(2.11) −1 < �δ(±)
0 ≤ �δ(±)

1 ≤ �δ(±)
2 · · · ; lim

s→∞
�δ(±)

s = ∞.

Then, letting ξ = cos−1 c, and realizing that x → c± if and only if θ → ξ∓,
we have

F (θ) ∼ sin θ

∞∑
s=0

W (±)
s | cos θ − cos ξ|δ(±)

s as θ → ξ∓.

Re-expanding about θ = ξ [by expanding sin θ and (cos θ − cos ξ) about
θ = ξ], we obtain

F (θ) ∼
∞∑
s=0

∞∑
i=0

W̃
(±)
si |θ − ξ|δ(±)

s +i as θ → ξ∓; W̃
(±)
00 = W

(±)
0 (sin ξ)1+δ

(±)
0 .

By ordering the (δ
(±)
s + i) according to the size of their real parts, and

renaming the distinct ones by γ
(∓)
s , we obtain an expansion for F (θ) as

θ → ξ∓ of the form

(2.12) F (θ) ∼
∞∑
s=0

T̂ (±)
s |θ − ξ|γ(±)

s as θ → ξ±,

with

(2.13) T̂
(±)
0 =W̃

(∓)
00 =W

(∓)
0 (sin ξ)1+δ

(∓)
0 and γ

(±)
0 =δ

(∓)
0 when �δ(±)

0 < �δ(±)
1 .

This expansion is exactly of the form given in (2.4) and (2.5).
In view of this and the assumptions we have made about F (θ), we also

see that, to each point of singularity xr of f(x), there corresponds a unique
point of singularity θr of F (θ), and vice versa. Between two consecutive
points of singularity, the two functions are infinitely differentiable simulta-
neously.

As an instructive example, let us consider the case in which f(x) has a
finite jump discontinuity at c ∈ (−1, 1), but is infinitely differentiable in
sufficiently small right and left neighborhoods of c. In this case, we have

f(x) ∼
∞∑
s=0

f (s)(c±)

s!
(x− c)s as x → c±.

Note that these are simply the two Taylor series of f(x) that are valid for
x > c and x < c. Assuming that these Taylor series are full, it is clear that
f(x) satisfies (2.10) and (2.11) with

W (+)
s =

f (s)(c+)

s!
, W (−)

s = (−1)s
f (s)(c−)

s!
, and δ(±)

s = s.
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As a result, F (θ) has asymptotic expansions of the form given in (2.12) and

(2.13), with γ
(±)
s = s for all s. Thus, F (θ) has a finite jump discontinuity

at ξ.
Clearly, this treatment also covers the cases in which c = ±1.

(3) As for the fourth assumption on the termwise differentiability of the asymp-
totic expansions in (2.4), we mention that this assumption is crucial. It is
automatically satisfied if the asymptotic expansions of f(x) at its singular
points can be differentiated termwise; this occurs in many cases of practical
interest. One such example is that for which f(x) has endpoint singularities
and is of the form f(x) = (1− x)α(1 + x)βg(x), where g ∈ C∞[−1, 1]. For
this case, we have

f(x) ∼
∞∑
s=0

(−1)s
g
(s)
− (1)

s!
|x− 1|α+s as x → 1−, g−(x) = (1 + x)βg(x),

f(x) ∼
∞∑
s=0

g
(s)
+ (−1)

s!
|x+ 1|β+s as x → −1+, g+(x) = (1− x)αg(x).

Note that the first expansion is nothing but the product of (1−x)α and the
Taylor series of g−(x) at x = 1, while the second expansion is the product
of (1 + x)β and the Taylor series of g+(x) at x = −1. By the fact that
f (k) ∈ C∞(−1, 1) for all k ≥ 0, it is easy to show for each k = 1, 2, . . . ,
that f (k)(x), just like f(x), has asymptotic expansions as x → 1− and
as x → −1+, and that termwise differentiation k times of the asymptotic
expansions of f(x) results in the same expansions.

It is easy to see that the same arguments apply to interior singularities.

3. Review of necessary background

To derive the asymptotic expansions mentioned in Section 1, we will need three
known theorems, and we state them in this section for future reference and use.
The first concerns the asymptotic expansion as n → ∞ of en[f ] when f(x) has no
singularities in (−1, 1), but may have general algebraic singularities at one or both
endpoints x = ±1. The second concerns the full asymptotic expansion as n → ∞
of Pn(x) for −1 < x < 1. The third concerns the asymptotic expansion as ν → ∞
of Fourier integrals of the form

∫ β

α
h(θ) e±iνθ dθ when h ∈ C∞(α, β), but may have

general algebraic singularities at θ = α and/or θ = β.

3.1. Asymptotic expansion of en[f ] when f(x) has no interior singular-
ities. As mentioned earlier, the case when f(x) has no interior singularities in
(−1, 1) [that is, when m = 0 in (2.3)] is considered in Sidi [12]. For future use
and reference, we summarize the main result of [12] that concerns purely algebraic
endpoint singularities and that is relevant to us here.
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Theorem 3.1. Let f(x) be exactly as described above, with m = 0 [that is, f ∈
C∞(−1, 1), hence has no interior singularities]. Let

f(x) ∼
∞∑
s=0

As(1− x)αs as x → 1−,

f(x) ∼
∞∑
s=0

Bs(1 + x)βs as x → −1+,

(3.1)

where
−1 < �α0 ≤ �α1 ≤ �α2 ≤ · · · ; lim

s→∞
�αs = ∞,

−1 < �β0 ≤ �β1 ≤ �β2 ≤ · · · ; lim
s→∞

�βs = ∞,
(3.2)

and As and Bs are nonzero constants. Assume also that the asymptotic expansions
in (3.1) are termwise differentiable an infinite number of times. Then, with n̂ =
n+ 1/2 and Z

+ = {0, 1, 2, . . .}, en[f ] has the asymptotic expansion

en[f ] ∼
∞∑
s=0

αs �∈Z
+

As

∞∑
k=0

ck(αs)

n̂2(αs+k+1/2)
(3.3)

+ (−1)n
∞∑
s=0

βs �∈Z
+

Bs

∞∑
k=0

ck(βs)

n̂2(βs+k+1/2)
as n → ∞.

Here, ck(ω) are given as in
(3.4)

ck(ω) = 2ω+1Γ(1 + ω)

Γ(−ω)

B
(σ)
2k (σ/2)

(2k)!

Γ(2k + 2ω + 2)

Γ(2ω + 2)
, k = 0, 1, . . . ; σ = −2ω − 1,

and are analytic functions of ω for �ω > −1. B
(σ)
s (u) is the sth generalized

Bernoulli polynomial.1 When ω ∈ Z
+, there holds ck(ω) = 0 for each k = 0, 1, . . . .

Remarks.

(1) An interesting feature of the asymptotic expansion of en[f ] given in (3.3)
is that it can be written down easily by looking only at the asymptotic
expansions of f(x) as x → ±1, which are given in (3.1), nothing else being
needed.

(2) Another feature of this expansion is that the powers (1∓x)s, s ≥ 0 integer,
even when they are present in the asymptotic expansions of f(x) as x → ±1
given in (3.1), do not contribute to the asymptotic expansion of en[f ]. Thus,
if f(x) is a regular function, then αs and βs in (3.1) are all nonnegative
integers; consequently, the summations in (3.3) are both empty, and this
means that en[f ] = O(n−μ) as n → ∞ for every μ > 0.

1 The generalized Bernoulli polynomials B
(σ)
s (u) are defined via (see Andrews, Askey, and Roy

[2, p. 615], for example) (
t

et − 1

)σ

eut =
∞∑
s=0

B
(σ)
s (u)

ts

s!
, |t| < 2π.

They satisfy B
(σ)
s (σ − u) = (−1)sB

(σ)
s (u); hence B

(σ)
s (σ/2) = 0 for s = 1, 3, 5, . . . . B

(σ)
s (0) are

called the generalized Bernoulli numbers and are denotedR by B
(σ)
s . Note that B

(σ)
0 = 1 for all

σ. In addition, B
(σ)
k (u) =

∑k
s=0

(k
s

)
B

(σ)
k−su

s for all k.
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3.2. Asymptotic expansion of Pn(x) when −1 < x < 1. Asymptotic expan-
sions for Pn(x) with −1 < x < 1 come in different forms in the literature. See
Olver [7], for example. There is one particular form that is suitable for us, and this
is given in Szegő [15, p. 196, Theorem 8.21.9]. A slightly modified version of this
theorem, restricted to our problem, is as follows:

Theorem 3.2. There exist analytic functions φk(z) that are regular for |z| = 1,
z �= ±1, such that, with n̂ = n+ 1/2,

(3.5) Pn(cos θ) ∼ �
{
ein̂θ

∞∑
k=0

φk(e
iθ)

n̂k+1/2

}
as n → ∞,

uniformly for ε ≤ θ ≤ π − ε, with ε ∈ (0, π/4) fixed. That is, for each p = 0, 1, . . . ,
and for 0 < θ < π, there holds

(3.6) Pn(cos θ) = �
{
ein̂θ

[ p−1∑
k=0

φk(e
iθ)

n̂k+1/2
+Rp,n(θ)

]}
,

where

(3.7) Rp,n(θ) = O
(
n̂−p−1/2

)
as n → ∞, uniformly for ε ≤ θ ≤ π − ε.

Actually, with Dθ = d/dθ,

(3.8) φk(e
iθ) = (−1)k

2

π1/2

(
−1/2

k

)
ei(θ−π)/2B

(1/2)
k ((i/2)Dθ)

[
(1− ei2θ)−1/2

]
.

Here, B
(σ)
k (y) =

∑k
s=0

(
k
s

)
B

(σ)
k−sy

s is the kth generalized Bernoulli polynomial (see

footnote 1), and, by B
(σ)
k (cDθ)Y (θ), we mean

B
(σ)
k (cDθ)Y (θ) =

k∑
s=0

(
k

s

)
B

(σ)
k−sc

s
[
Ds

θY (θ)
]
=

k∑
s=0

(
k

s

)
B

(σ)
k−sc

sY (s)(θ).

Remark. In Theorem A.1 of the appendix to this work, we derive the full asymptotic
expansions of Pμ

ν (x) and Qμ
ν (x), the associated Legendre functions of the first and

second kinds, respectively, when ν and μ are real and μ < 1/2. Theorem 3.2 follows
from Theorem A.1; it can be obtained by setting μ = 0, ν = n, and ν̂ = n̂ = n+1/2
in Theorem A.1, and recalling that P 0

n(x) = Pn(x). We also note that explicit
expressions for the φk(z) are not given in [15].

3.3. Asymptotic expansion of
∫ β

α
h(θ)e±iνθ dθ. We also need a result on asymp-

totic expansions of finite-range Fourier integrals of functions with algebraic singu-
larities. The following theorem is actually a special case of one given in Bleistein
and Handelsman [3, Sections 3.4, 6.3, and 6.4]. For a simple proof, see Sidi [14]:

Theorem 3.3. Let α < β, and let h ∈ C∞(α, β) and satisfy

h(θ) ∼
∞∑
s=0

As(θ − α)ρs as θ → α+,

h(θ) ∼
∞∑
s=0

Bs(β − θ)σs as θ → β−,

(3.9)
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such that As and Bs are nonzero constants, and

−1 < �ρ0 ≤ �ρ1 ≤ �ρ2 ≤ · · · ; lim
s→∞

�ρs = ∞,

−1 < �σ0 ≤ �σ1 ≤ �σ2 ≤ · · · ; lim
s→∞

�σs = ∞.
(3.10)

Assume also that the asymptotic expansions in (3.9) are termwise differentiable an
infinite number of times. Then
(3.11)∫ β

α

h(θ)e±iνθ dθ ∼ e±iνα
∞∑
s=0

As
Γ(ρs + 1)

(∓iν)ρs+1
+ e±iνβ

∞∑
s=0

Bs
Γ(σs + 1)

(±iν)σs+1
as ν → ∞.

Remarks.

(1) It is important to note that, once it is established that h(θ) is infin-
itely differentiable in the open interval (α, β), the asymptotic expansion

of
∫ β

α
h(θ)e±iνθ dθ is determined by the asymptotic expansions of h(θ) at

the endpoints of (α, β).
(2) In case f ∈ C∞(α, β) and has a full Taylor series at θ = α and/or at θ = β,

we have As = h(s)(α)/s! and/or Bs = (−1)sh(s)(β)/s!, and ρs = σs = s,
s = 0, 1, . . . .

(3) In addition, if h(θ) is infinitely differentiable at α such that h(i)(α) = 0 for
all i ≥ 0 [or at β such that h(i)(β) = 0 for all i ≥ 0], then the asymptotic
expansion of h(θ) as θ → α (or as θ → β) is empty or, equivalently, it
is zero. In such a case, the endpoint α (or β) has no contribution to the

asymptotic expansion of
∫ β

α
h(θ)e±iνθ dθ as ν → ∞.

(4) In case h(i)(α) = h(i)(β) = 0 for all i ≥ 0, the asymptotic expansion of

I(ν) =
∫ β

α
h(θ)e±iνθ dθ as ν → ∞ is empty, hence zero. Of course, this does

not mean that I(ν) is zero. However, it does mean that I(ν) tends to zero
as ν → ∞ faster than any negative power of ν; that is, I(ν) = O(ν−τ ) as
ν → ∞ for every τ > 0.

(5) Finally, the asymptotic expansions in (3.11) are valid also when �αs ≤
−1 and/or �βs ≤ −1 as long as αs, βs �= −1,−2, . . . . In such cases,

the integrals
∫ β

α
h(θ)e±iνθ dθ diverge in the ordinary sense but do exist as

Hadamard finite parts. For this point, see [14].

4. Main results

4.1. Asymptotic expansion of
∫ d

c
f(x)Pn(x) dx, −1 < c < d < 1.

Theorem 4.1. Let −1 < c < d < 1, and assume that f ∈ C∞(c, d), which implies
that F (θ) = sin θ f(cos θ) is in C∞(α, β), where α = cos−1 d and β = cos−1 c and
0 < α < β < π. Assume that, as x → c and as x → d, f(x) is such that F (θ) has
the asymptotic expansions (cf. Remark 2 in Section 2)

F (θ) ∼
∞∑
s=0

Us(θ − α)ρs as θ → α+; α = cos−1 d > 0,

F (θ) ∼
∞∑
s=0

Vs(β − θ)σs as θ → β−; β = cos−1 c < π,

(4.1)
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where

−1 < �ρ0 ≤ �ρ1 ≤ �ρ2 ≤ · · · ; lim
s→∞

�ρs = ∞,

−1 < �σ0 ≤ �σ1 ≤ �σ2 ≤ · · · ; lim
s→∞

�σs = ∞,
(4.2)

and Us and Vs are nonzero constants. Assume also that these asymptotic expansions
can be differentiated termwise an infinite number of times. With the functions φk(z)
as in Theorem 3.2, for arbitrary θ ∈ [α, β], let

(4.3) φkj(θ) =
1

j!

dj

dθj
φk(e

iθ), j, k = 0, 1, . . . ,

and

G(+)
μ (θ;ω) =

1

2

∑
j,k≥0
j+k=μ

iω+j+1 φkj(θ) Γ(ω + j + 1),

Ĝ(+)
μ (θ;ω) =

1

2

∑
j,k≥0
j+k=μ

(−i)ω+j+1 φkj(θ) Γ(ω + j + 1),

G(−)
μ (θ;ω) =

1

2

∑
j,k≥0
j+k=μ

(−1)j (−i)ω+j+1 φkj(θ) Γ(ω + j + 1),

Ĝ(−)
μ (θ;ω) =

1

2

∑
j,k≥0
j+k=μ

(−1)j iω+j+1 φkj(θ) Γ(ω + j + 1).

(4.4)

Then, as n → ∞,

(4.5)∫ d

c

f(x)Pn(x) dx ∼ ein̂α
∞∑
s=0

Us

∞∑
μ=0

G
(+)
μ (α; ρs)

n̂ρs+μ+3/2
+ e−in̂α

∞∑
s=0

Us

∞∑
μ=0

Ĝ
(+)
μ (α; ρs)

n̂ρs+μ+3/2

+ ein̂β
∞∑
s=0

Vs

∞∑
μ=0

G
(−)
μ (β;σs)

n̂σs+μ+3/2
+ e−in̂β

∞∑
s=0

Vs

∞∑
μ=0

Ĝ
(−)
μ (β;σs)

n̂σs+μ+3/2
.

Remarks.

(1) The case f ∈ C∞[c, d] is actually included in Theorem 4.1. In this case,
F ∈ C∞[α, β] necessarily. Therefore, when F (θ) has full Taylor series at α
and β, (4.1) holds with

Us =
F (s)(α)

s!
, ρs = s and Vs = (−1)s

F (s)(β)

s!
, σs = s, s = 0, 1, . . . .

(2) Note that the only contributions to the asymptotic expansion in (4.5) come
from the endpoints x = c and x = d. In addition, it is quite easy to
write down these contributions; we simply replace (θ − α)ρs and (β − θ)σs

in (4.1) by appropriate asymptotic expansions in terms of the powers
{n̂−(ρs+μ+3/2)}∞μ=0 and {n̂−(σs+μ+3/2)}∞μ=0, respectively, with coefficients
that are independent of the Us and Vs.

(3) It is easy to see that, when ω is real, there holds

(4.6) Ĝ(±)
μ (θ;ω) = G

(±)
μ (θ;ω) .
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Therefore, if the Us, Vs, ρs, and σs are all real, then (4.5) becomes∫ d

c

f(x)Pn(x) dx ∼ 2�
{
ein̂α

∞∑
s=0

Us

∞∑
μ=0

G
(+)
μ (α; ρs)

n̂ρs+μ+3/2
(4.7)

+ein̂β
∞∑
s=0

Vs

∞∑
μ=0

G
(−)
μ (β;σs)

n̂σs+μ+3/2

}
.

4.2. Asymptotic expansion of en[f ].

Theorem 4.2. Let f(x) be such that F (θ) is precisely as described in Section 2
with the notation therein. Then, as n → ∞, en[f ] has the asymptotic expansion

en[f ] ∼
m∑
r=1

{
ein̂θr

[ ∞∑
s=0

T (+)
rs

∞∑
μ=0

G
(+)
μ (θr; γ

(+)
rs )

n̂γ
(+)
rs +μ+1/2

+

∞∑
s=0

T (−)
rs

∞∑
μ=0

G
(−)
μ (θr; γ

(−)
rs )

n̂γ
(−)
rs +μ+1/2

](4.8)

+e−in̂θr

[ ∞∑
s=0

T (+)
rs

∞∑
μ=0

Ĝ
(+)
μ (θr; γ

(+)
rs )

n̂γ
(+)
rs +μ+1/2

+

∞∑
s=0

T (−)
rs

∞∑
μ=0

Ĝ
(−)
μ (θr; γ

(−)
rs )

n̂γ
(−)
rs +μ+1/2

]}

+
∞∑
s=0

α(+)
s �∈Z

+

A(+)
s

∞∑
k=0

ck(α
(+)
s )

n̂2(α
(+)
s +k+1/2)

+ (−1)n
∞∑
s=0

α(−)
s �∈Z

+

A(−)
s

∞∑
k=0

ck(α
(−)
s )

n̂2(α
(−)
s +k+1/2)

.

The functions ck(ω) are exactly as described in Theorem 3.1. The functions

G
(±)
μ (θ;ω) and Ĝ

(±)
μ (θ;ω) are as described in Theorem 4.1.

Remarks.

(1) Note that the only contributions to the asymptotic expansion in (4.8) come
from the points of singularity in [0, π]. In addition, it is quite easy to write

down these contributions; we simply replace (θ− θr)
γ(±)
rs in (2.4) by appro-

priate asymptotic expansions in terms of the powers {n̂−(γ(±)
rs +μ+1/2)}∞μ=0,

with coefficients that are independent of the T
(±)
rs .

(2) We have chosen to express the asymptotic expansion of en[f ] in terms of
n̂ = n + 1/2 instead of n. The reason for this is that the contributions to
this asymptotic expansion coming from x = ±1 have half as many terms in
powers of n̂ = n+ 1/2 as there are in terms of powers of n. Of course, we

can re-expand (4.8) in powers of n; in this case, the powers n̂2(α(±)
s +k+1/2)

in (4.8) are replaced by n2α(±)
s +2k+1, while the rest of the asymptotic ex-

pansions retain their forms, with n̂ replaced by n.

(3) If the T
(±)
rs and the γ

(±)
rs are all real, then, by (4.6), the result in (4.8)

becomes

(4.9)

en[f ]∼2�
{ m∑

r=1

ein̂θr
[ ∞∑

s=0

T (+)
rs

∞∑
μ=0

G
(+)
μ (θr; γ

(+)
rs )

n̂γ
(+)
rs +μ+1/2

+

∞∑
s=0

T (−)
rs

∞∑
μ=0

G
(−)
μ (θr; γ

(−)
rs )

n̂γ
(−)
rs +μ+1/2

]}

+
∞∑
s=0

α(+)
s �∈Z

+

A(+)
s

∞∑
k=0

ck(α
(+)
s )

n̂2(α
(+)
s +k+1/2)

+ (−1)n
∞∑
s=0

α(−)
s �∈Z

+

A(−)
s

∞∑
k=0

ck(α
(−)
s )

n̂2(α
(−)
s +k+1/2)

.
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5. Proofs of main results

5.1. Proof of Theorem 4.1. Making the variable transformation x = cos θ, we
first have

(5.1)

∫ d

c

f(x)Pn(x) dx =

∫ β

α

Φn(θ) dθ, Φn(θ) = F (θ)Pn(cos θ).

Following this, we define

(5.2) Hk(θ) = F (θ)φk(e
iθ), H̃k(θ) = F (θ)φk(eiθ), k = 0, 1, . . . ,

and let

(5.3) Ψp,n(θ) =
1

2

p−1∑
k=0

[
ein̂θHk(θ) + e−in̂θH̃k(θ)

]
n̂−k−1/2.

In addition, we let

(5.4) Ψ̂p,n(θ) = F (θ)�
[
ein̂θRp,n(θ)

]
.

With these, we have

(5.5) Φn(θ) = Ψp,n(θ) + Ψ̂p,n(θ)

and

(5.6)

∫ d

c

f(x)Pn(x) dx =

∫ β

α

Ψp,n(θ) dθ +

∫ β

α

Ψ̂p,n(θ) dθ.

We now have to derive asymptotic expansions for the integrals
∫ β

α
Ψp,n(θ) dθ and∫ β

α
Ψ̂p,n(θ) dθ. By (3.7) in Theorem 3.2, it is clear that

(5.7)

∫ β

α

Ψ̂p,n(θ) dθ = O(n̂−p−1/2) as n → ∞.

As for
∫ β

α
Ψp,n(θ) dθ, we need to analyze the asymptotic behavior of the integrals∫ β

α
ein̂θHk(θ) dθ and

∫ β

α
e−in̂θH̃k(θ) dθ carefully. Now, by Theorem 3.2, the func-

tions φk(e
iθ) are analytic for θ ∈ (0, π), hence have convergent Taylor series expan-

sions about arbitrary η ∈ (0, π), and these are given as in

(5.8) φk(e
iθ) =

∞∑
j=0

φkj(η) (θ − η)j .

Being Taylor series, these are also asymptotic expansions as θ → η±. By (4.1) and
(5.8), we have

Hk(θ) ∼
∞∑
s=0

Us

∞∑
j=0

φkj(α) (θ − α)ρs+j as θ → α+,

Hk(θ) ∼
∞∑
s=0

Vs

∞∑
j=0

(−1)j φkj(β) (β − θ)σs+j as θ → β−,

H̃k(θ) ∼
∞∑
s=0

Us

∞∑
j=0

φkj(α) (θ − α)ρs+j as θ → α+,

H̃k(θ) ∼
∞∑
s=0

Vs

∞∑
j=0

(−1)j φkj(β) (β − θ)σs+j as θ → β−.

(5.9)
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Now applying Theorem 3.3, we obtain

(5.10)

∫ β

α

ein̂θHk(θ) dθ ∼ ein̂α
∞∑
s=0

Us

∞∑
j=0

φkj(α)
Γ(ρs + j + 1)

(−in̂)ρs+j+1

+ ein̂β
∞∑
s=0

Vs

∞∑
j=0

(−1)j φkj(β)
Γ(σs + j + 1)

(in̂)σs+j+1
as n → ∞

and

(5.11)

∫ β

α

e−in̂θH̃k(θ) dθ ∼ e−in̂α
∞∑
s=0

Us

∞∑
j=0

φkj(α)
Γ(ρs + j + 1)

(in̂)ρs+j+1

+ e−in̂β
∞∑
s=0

Vs

∞∑
j=0

(−1)j φkj(β)
Γ(σs + j + 1)

(−in̂)σs+j+1
as n → ∞.

Substituting (5.10) and (5.11) in (5.1), rearranging, and invoking (4.4), we obtain

∫ β

α

Ψp,n(θ) dθ ∼ ein̂α
∞∑
s=0

Us

[ p−1∑
μ=0

G
(+)
μ (α; ρs)

n̂ρs+μ+3/2
+O(n̂−ρs−p−3/2)

](5.12)

+ e−in̂α
∞∑
s=0

Us

[ p−1∑
μ=0

Ĝ
(+)
μ (α; ρs)

n̂ρs+μ+3/2
+O(n̂−ρs−p−3/2)

]

+ ein̂β
∞∑
s=0

Vs

[ p−1∑
μ=0

G
(−)
μ (β;σs)

n̂σs+μ+3/2
+O(n̂−σs−p−3/2)

]

+ e−in̂β
∞∑
s=0

Vs

[ p−1∑
μ=0

Ĝ
(−)
μ (β;σs)

n̂σs+μ+3/2
+O(n̂−σs−p−3/2)

]
as n → ∞.

Substituting (5.7) and (5.12) in (5.6), and letting p → ∞, we obtain the result in
(4.5). This is a consequence of the fact that p is arbitrary and that the O terms in
(5.7) and (5.12) all tend to zero simultaneously.

5.2. Proof of Theorem 4.2.

5.2.1. Introduction of neutralizers. We first introduce appropriate neutralizers that
will allow us to break up the problem into two smaller subproblems.

Definition 5.1. Given a < b, a neutralizer Q(x; a, b) is an infinitely differentiable
function on (−∞,∞), such that, either

(5.13) Q(x; a, b) =

{
0 if x ≤ a,

1 if x ≥ b

or

(5.14) Q(x; a, b) =

{
1 if x ≤ a,

0 if x ≥ b.

Consequently, Q(x; a, b) also satisfies

(5.15) Q(i)(a; a, b) = 0, Q(i)(b; a, b) = 0, i = 1, 2, . . . .
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Neutralizers can be constructed in different ways. For example, if we let

p(x) =

{
0 if x ≤ 0,

e−1/x if x > 0,

then we can construct two neutralizers Q+(x; a, b) and Q−(x; a, b) as follows:

Q+(x; a, b) =
p(x− a)

p(x− a) + p(b− x)
, Q−(x; a, b) =

p(b− x)

p(x− a) + p(b− x)
.

Now, Q+(x; a, b) is as in (5.13), while Q−(x; a, b) is as in (5.14). In addition,

Q+(x; a, b) +Q−(x; a, b) = 1.

Going back to our problem, let us choose a, b, c, d such that

(5.16) 0 < a < b < θ1, θm < c < d < π.

With the help of the above, we now construct two functions, R+(θ) and R−(θ), as
follows:

R+(θ) =

⎧⎪⎨⎪⎩
Q+(θ; a, b) if θ < θ1,

1 if θ1 ≤ θ ≤ θm,

Q−(θ; c, d) if θ > θm,

(5.17)

R−(θ) =

⎧⎪⎨⎪⎩
Q−(θ; a, b) if θ < θ1,

0 if θ1 ≤ θ ≤ θm,

Q+(θ; c, d) if θ > θm.

(5.18)

Clearly, R+(θ) and R−(θ) are infinitely differentiable everywhere, and satisfy

R+(θ) =

{
0 if θ < a or θ > d,

1 if b < θ < c,
R−(x) =

{
1 if θ < a or θ > d,

0 if b < θ < c,
(5.19)

R+(θ) +R−(θ) = 1,(5.20)

and

(5.21) R
(i)
+ (a) = 0, R

(i)
− (d) = 0, i = 1, 2, . . . .

See Figures 1 and 2.

a b θ1 c d· · · θm

1

0 π θ

R+(θ)

Figure 1. Graph of the the function R+(θ) in (5.17).
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a b θ1 c d· · · θm

1

0 π θ

R−(θ)

Figure 2. Graph of the the function R−(θ) in (5.18).

5.2.2. Splitting F (θ) and en[f ]. With the functions R±(θ) available, we now split
F (θ) as in

(5.22) F (θ) = F+(θ) + F−(θ); F+(θ) = R+(θ)F (θ), F−(θ) = R−(θ)F (θ).

Clearly,

(5.23)
F+(θ) = 0 if θ < a or θ > d, F+(θ) = F (θ) if b < θ < c,
F−(θ) = F (θ) if θ < a or θ > d, F−(θ) = 0 if b < θ < c.

In addition,

(5.24) F
(i)
± (a) = 0 = F

(i)
± (d), i = 1, 2, . . . .

In view of (5.22) and (1.2),

(5.25) en[f ] = e(+)
n [f ] + e(−)

n [f ], e(±)
n [f ] = n̂

∫ 1

−1

F±(θ)Pn(cos θ) dθ.

Going back to the variable x, it is easy to see that

(5.26) e(±)
n [f ] = n̂

∫ 1

−1

f±(x)Pn(x) dx = en[f±], f±(x) =
F±(θ)

sin θ

∣∣∣∣
θ=cos−1 x

.

To complete the proof, we need the asymptotic expansions for the integrals en[f±],
to which we turn next.

5.2.3. Completion of proof. We begin with en[f−]. Clearly, f−(x) satisfies

(5.27) f−(x) =

{
f(x) if x < cos d or x > cos a,

0 if cos c < x < cos b,

and, therefore, f− ∈ C∞(−1, 1), and its asymptotic expansions as x → ±1 are
precisely those of f(x). This implies that Theorem 3.1 applies to en[f−]. Thus, as
n → ∞, en[f−] has the asymptotic expansion
(5.28)

en[f−] ∼
∞∑
s=0

α(+)
s �∈Z

+

A(+)
s

∞∑
k=0

ck(α
(+)
s )

n̂2(α
(+)
s +k+1/2)

+ (−1)n
∞∑
s=0

α(−)
s �∈Z

+

A(−)
s

∞∑
k=0

ck(α
(−)
s )

n̂2(α
(−)
s +k+1/2)

.
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As for en[f+], we first observe that

(5.29) en[f+] = n̂

m∑
r=0

I(+)
r,n ; I(+)

r,n =

∫ θr+1

θr

F+(θ)Pn(cos θ) dθ, r = 0, 1, . . . ,m.

In addition, by (5.23), we realize that

I
(+)
0,n =

∫ θ1

a

F+(θ)Pn(cos θ) dθ,

I(+)
r,n =

∫ θr+1

θr

F (θ)Pn(cos θ) dθ, r = 1, . . . ,m− 1,

I(+)
m,n =

∫ d

θm

F+(θ)Pn(cos θ) dθ.

(5.30)

It is clear that we can achieve our goal by determining the asymptotic expan-

sion of each of the integrals I
(+)
r,n in (5.30) as n → ∞. Recall that, for each

r ∈ {1, . . . ,m− 1}, the integrand of I
(+)
r,n , is in C∞(θr, θr+1) and is singular both at

θr and θr+1, whereas that for I
(+)
0,n is singular only at θ1 and that for I

(+)
m,n is singular

only at θm. In addition, in all cases, the asymptotic expansions as θ → θr± of the
respective integrands are precisely those of F (θ)Pn(cos θ). Therefore, Theorem 4.1

applies to each I
(+)
r,n .

Thus, for I
(+)
r,n , 1 ≤ r ≤ m− 1, letting r + 1 = r′, we have, as n → ∞,

(5.31)

I(+)
r,n ∼ ein̂θr

∞∑
s=0

T (+)
rs

∞∑
μ=0

G
(+)
μ (θr; γ

(+)
rs )

n̂γ
(+)
rs +μ+3/2

+ e−in̂θr

∞∑
s=0

T (+)
rs

∞∑
μ=0

Ĝ
(+)
μ (θr; γ

(+)
rs )

n̂γ
(+)
rs +μ+3/2

+ ein̂θr′
∞∑
s=0

T
(−)
r′s

∞∑
μ=0

G
(−)
μ (θr′ ; γ

(−)
r′s )

n̂γ
(−)

r′s +μ+3/2
+ e−in̂θr′

∞∑
s=0

T
(−)
r′s

∞∑
μ=0

Ĝ
(−)
μ (θr′ ; γ

(−)
r′s )

n̂γ
(−)

r′s +μ+3/2
.

By (5.24), there is no contribution to I
(+)
0,n from θ = a and no contribution to

I
(+)
m,n from θ = d. Thus, as n → ∞,

I
(+)
0,n ∼ein̂θ1

∞∑
s=0

T
(−)
1s

∞∑
μ=0

G
(−)
μ (θ1; γ

(−)
1s )

n̂γ
(−)
1s +μ+3/2

(5.32)

+ e−in̂θ1

∞∑
s=0

T
(−)
1s

∞∑
μ=0

Ĝ
(−)
μ (θ1; γ

(−)
1s )

n̂γ
(−)
1s +μ+3/2

,

I(+)
m,n ∼ein̂θm

∞∑
s=0

T (+)
ms

∞∑
μ=0

G
(+)
μ (θm; γ

(+)
ms )

n̂γ
(+)
ms +μ+3/2

(5.33)

+ e−in̂θm

∞∑
s=0

T (+)
ms

∞∑
μ=0

Ĝ
(+)
μ (θm; γ

(−)
ms )

n̂γ
(−)
ms +μ+3/2

.

Substituting (5.31)–(5.33) in (5.29), and adding (5.28), we obtain (4.8). This
completes the proof.
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6. Consequences of Theorem 4.2

Theorem 4.2 concerns the general case in which F (θ) has arbitrary algebraic

singularities in [0, π], that is, the γ
(±)
rs in (2.4) and the α

(±)
s in (2.7) are arbitrary.

We now consider the special case in which γ
(±)
rs = γ

(±)
r + s, and α

(±)
s = α(±) + s,

s = 0, 1, . . . . Then γ
(±)
rs + μ + 1/2 = γ

(±)
r + s + μ + 1/2 and α

(±)
s + k + 1/2 =

α(±)+s+k+1/2 in (4.8). Realizing now that s+μ and s+k take on only the values
0, 1, 2, . . . , and re-expanding in negative powers of n instead of n̂, and rearranging,
we can rewrite (4.8) in the simpler form

en[f ] ∼
m∑
r=1

{
einθr

[ ∞∑
s=0

L
(+)
rs

nγ
(+)
r +s+1/2

+
∞∑
s=0

L
(−)
rs

nγ
(−)
r +s+1/2

]
(6.1)

+e−inθr

[ ∞∑
s=0

L̂
(+)
rs

nγ
(+)
r +s+1/2

+
∞∑
s=0

L̂
(−)
rs

nγ
(−)
r +s+1/2

]}

+

∞∑
s=0

M
(+)
s

n2α(+)+s+1
+ (−1)n

∞∑
s=0

M
(−)
s

n2α(−)+s+1
,

where M (±)
s = 0 when α(±) ∈ Z

+.

A further simplification takes place when γ
(+)
r − γ

(−)
r are all integers. Letting

γr = min{γ(+)
r , γ

(−)
r }, (6.1) can be rewritten as in

en[f ] ∼
m∑
r=1

{
einθr

∞∑
s=0

Lrs

nγr+s+1/2
+ e−inθr

∞∑
s=0

L̂rs

nγr+s+1/2

}
(6.2)

+

∞∑
s=0

M
(+)
s

n2α(+)+s+1
+ (−1)n

∞∑
s=0

M
(−)
s

n2α(−)+s+1
,

where M (±)
s = 0 when α(±) ∈ Z

+.

This is the case when, for example, (i) f(x) = (1−x)α
(+)

(1+x)α
(−)

g(x), g(x) being
infinitely differentiable at x = ±1 and g(±1) �= 0, and (ii) f(x) has finite jump
discontinuities at m interior points x1, . . . , xm of (−1, 1), with f (k)(xr±) defined

for all k = 0, 1, . . . ; in such a case, we will generally have γ
(+)
r = γ

(−)
r = 1, and

hence γr = 1, for all r.
We now consider the problem of summing the infinite series

∑∞
n=0 en[f ]Pn(x)

that represents f(x) for x ∈ [−1, 1]. Multiplying the asymptotic expansion in (6.2)
with that in (3.5) of Theorem 3.2, and rearranging, we realize that en[f ]Pn(cos θ)
has an asymptotic expansion of the form

(6.3) en[f ]Pn(cos θ) ∼
M∑
k=1

ζnk

∞∑
i=0

βkin
δk−i as n → ∞.

where M = 4m + 4 and the ζk (with corresponding δk) are e±i(θ+θr), e±i(θ−θr),
(with δk = −γr − 1), r = 1, . . . ,m, and e±iθ (with δk = −2α(+) − 3/2), e±i(θ−π)

(with δk = −2α(−) − 3/2). (Note that the ζk here are distinct and ζk �= 1.) This
being the case the sequence {en[f ]Pn(cos θ)}∞n=0 belongs to the set of sequences

denoted b(M). See Sidi [11, Chapter 6, p. 123, Definition 6.1.2].
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Since |ζk| = 1 for all k in (6.3), the series
∑∞

n=0 en[f ]Pn(x) converges very
slowly for −1 < x < 1, especially when f(x) has strong singularities on [−1, 1].
To overcome this problem, we can apply suitable convergence acceleration meth-
ods to the sequence of partial sums of this series. The fact that the sequence
{en[f ]Pn(x)}∞n=0 is in the class b(M) suggests that the convergence of the infinite
series

∑∞
n=0 en[f ]Pn(x) can be accelerated very effectively by the d(M) transfor-

mation of Levin and Sidi [6]. See also [11, Chapter 6, p. 130, Definition 6.2.1].
Convergence acceleration can be achieved in this case also by the transformation
of Shanks [8]. See also [11, Chapter 16]. As a matter of fact, these two methods
seem to be the only nonlinear methods that can achieve convergence acceleration
on the series

∑∞
n=0 en[f ]Pn(x) when en[f ] is as in (6.2). To apply these methods,

we do not need to know the ζk and δk in (6.3). Mere knowledge of the existence
of an asymptotic expansion of the form given in (6.3) is sufficient for deciding that
these two transformations are suitable. Finally, these methods can be applied in
a much more economical way by introducing the Qn(x), the Legendre functions of
the second kind, as has been shown in Sidi [10]. See also [11, Chapter 13].

So far, we do not have any theoretical results on the performance of these meth-
ods on such series with M > 1. We do, however, have rigorous results on the con-
vergence and stability of the generalized Richardson extraplation process (GREP)
of the author [9] on such problems (assuming that the ζk and δk are available), and
these appear in the recent paper Sidi [13].

Appendix: Asymptotic expansion of associated Legendre functions of

the first and second kinds

In the sequel, Pμ
ν (x) and Qμ

ν (x) denote the associated Legendre functions of
degree ν and order μ, of the first and second kinds, respectively. See, Abramowitz
and Stegun [1, Chapter 8], for example.

Theorem A.1. Let μ and ν be real and μ < 1/2. There exist analytic functions
φk(z) that are regular for |z| = 1, z �= ±1, such that
(A.1)

Zμ
ν (cos θ)≡Pμ

ν (cos θ)−i
2

π
Qμ

ν (cos θ) ∼ eiν̂θ
∞∑
k=0

φk(e
iθ)

ν̂k−μ+1/2
as ν → ∞, ν̂ = ν+1/2,

uniformly for ε ≤ θ ≤ π − ε, with ε ∈ (0, π/4) fixed. That is, for each p = 0, 1, . . . ,
and for 0 < θ < π, there holds

(A.2) Zμ
ν (cos θ) = eiν̂θ

[ p−1∑
k=0

φk(e
iθ)

ν̂k−μ+1/2
+Rp,ν(θ)

]
,

where

(A.3) Rp,ν(θ) = O
(
ν̂−p+μ−1/2

)
as ν → ∞, uniformly for ε ≤ θ ≤ π − ε.

Actually, with Dθ = d
dθ ,

φk(e
iθ) = (−1)k

2μ+1

π1/2

(
μ− 1/2

k

)
(sin θ)μ ei[(μ+1/2)θ−π/2](A.4)

×B
(μ+1/2)
k ((i/2)Dθ)

[
(1− ei2θ)−μ−1/2

]
.
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Here, B
(σ)
k (y) =

∑k
s=0

(
k
s

)
B

(σ)
k−sy

s is the kth generalized Bernoulli polynomial (see

footnote 1), and, by B
(σ)
k (cDθ)Y (θ), we mean

B
(σ)
k (cDθ)Y (θ) =

k∑
s=0

(
k

s

)
B

(σ)
k−sc

s
[
Ds

θY (θ)
]
=

k∑
s=0

(
k

s

)
B

(σ)
k−sc

sY (s)(θ).

Remark. It is clear that, when μ and ν are real,

Pμ
ν (cos θ) = �Zμ

ν (cos θ), Qμ
ν (cos θ) = −π

2
�Zμ

ν (cos θ).

In addition, invoking

φ0(e
iθ) =

2μ+1

π1/2
(sin θ)μ ei[(μ+1/2)θ−π/2](1− ei2θ)−μ−1/2,

in (A.1), namely, in

Zμ
ν (cos θ) = eiν̂θ

[
φ0(e

iθ)ν̂μ−1/2 +O(ν̂μ−3/2
]

as ν → ∞,

after some simple manipulation, we obtain the asymptotic results given in [1, p. 336,
Eqs. 8.10.7, 8.10.8].

Proof. We begin with the Fourier series representation of the associated Legendre
functions Pμ

ν (cos θ) and Qμ
ν (cos θ) given in Abramowitz and Stegun [1, p. 335, Eqs.

8.7.1, 8.7.2], which are valid for real μ and ν and μ < 1/2. It can easily be seen
that we can express Zμ

ν (cos θ) in terms of the Gaussian hypergeometric function as
follows:

Zμ
ν (cos θ) =

2μ+1 Γ(ν + μ+ 1)

π1/2 Γ(ν + 3/2)
(sin θ)μ(A.5)

× ei[(ν+μ+1)θ−π/2] F (μ+ 1
2 , ν + μ+ 1; ν + 3

2 ; ζ), ζ = ei2θ.

Invoking the integral representation of F (a, b; c; z) given in [1, p. 558, Eq. 15.3.1],
we obtain the following integral representation for Zμ

ν (cos θ):

Zμ
ν (cos θ) =

2μ+1(sin θ)μ

π1/2Γ(1/2− μ)

(A.6)

× ei[(ν+μ+1)θ−π/2]

∫ 1

0

tν+μ(1− t)−μ−1/2(1− ζt)−μ−1/2dt, ζ = ei2θ.

Upon making the change of variable t = e−τ , (A.6) becomes

Zμ
ν (cos θ) =

2μ+1(sin θ)μ

π1/2Γ(1/2− μ)
ei[(ν+μ+1)θ−π/2]

∫ ∞

0

e−ν̂τ τ−μ−1/2g(τ ; ζ) dτ,(A.7)

where
(A.8)

g(τ ; ζ) = u(τ )v(τ ; ζ); u(τ ) =

(
τ

eτ − 1

)μ+1/2

, v(τ ; ζ) = (1− ζe−τ )−μ−1/2.

Now, when ε ≤ θ ≤ π − ε, g ∈ C∞[0,∞) as a function of τ and has a (convergent)
Maclaurin series

(A.9) g(τ ; ζ) =
∞∑
k=0

g(k)(0; ζ)
τk

k!
; g(k)(τ ; ζ) =

dk

dτk
g(τ ; ζ).
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[Here and in what follows, w(k)(τ ) = dk

dτkw(τ ).] We can now apply Watson’s lemma
(see, Olver [7], for example) to the integral in (A.7), and obtain the asymptotic
expansion

(A.10)

∫ ∞

0

e−ν̂τ τ−μ−1/2g(τ ; ζ) dτ ∼
∞∑
k=0

g(k)(0; ζ)

k!

Γ(k − μ+ 1/2)

ν̂k−μ+1/2
as ν → ∞.

Upon substituting (A.10) in (A.7), and recalling that ζ = ei2θ, we obtain (A.1),
with

(A.11) φk(e
iθ) =

2μ+1 Γ(k − μ+ 1/2)

π1/2Γ(1/2− μ)
(sin θ)μ ei[(μ+1/2)θ−π/2] g

(k)(0; ei2θ)

k!
.

To obtain a closed-form expression for g(k)(0; ei2θ), we express g(τ ; ζ) as the
Cauchy product of the Maclaurin series of the functions u(τ ) and v(τ ; ζ) in (A.8).
First, we have

(A.12) u(τ ) =

∞∑
k=0

B
(μ+1/2)
k

τk

k!
.

Next, by the fact that τ ≥ 0, for |w| < 1 and arbitrary α, we have

(1− we−τ )α =

∞∑
s=0

(−1)s
(
α

s

)
wse−sτ =

∞∑
s=0

(−1)s
(
α

s

)
ws

∞∑
k=0

(−1)ksk
τk

k!

=

∞∑
k=0

(−1)k
τk

k!

∞∑
s=0

(−1)s
(
α

s

)
skws=

∞∑
k=0

(−1)k
[(

w
d

dw

)k

(1− w)α
]
τk

k!
.

Since (1 − we−τ )α is analytic for all w, w �∈ [1,+∞), the last equality holds also
when |w| = 1, but w �= 1. From this, we have

v(τ ; ζ) =

∞∑
k=0

(−1)k
[(

ζ
d

dζ

)k

(1− ζ)−μ−1/2

]
τk

k!
(A.13)

=

∞∑
k=0

[
dk

dθk
(1− ei2θ)−μ−1/2

]
(iτ/2)k

k!
.

Combining now (A.12) and (A.13) and (A.8), we obtain

1

k!
g(k)(0; ei2θ) =

k∑
s=0

B
(μ+1/2)
k−s

(k − s)!

(i/2)s

s!

[
ds

dθs
(1− ei2θ)−μ−1/2

]
.

=
1

k!
B

(u+1/2)
k ((i/2)Dθ)[(1− ei2θ)−μ−1/2].

(A.14)

The explicit form of φk(e
iθ) given in (A.4) can now be obtained by substituting

(A.14) in (A.11), and by invoking the facts that

Γ(z + k)

Γ(z)
= (z)k and

(z)k
k!

= (−1)k
(
−z

k

)
.

To prove that (A.1) holds uniformly for ε ≤ θ ≤ π − ε, we proceed as follows:
By first expanding u(τ ) in powers of e−τ , and then, by differentiating the resulting
(convergent) expansion with respect to τ , it can be shown that

u(k)(τ ) = O
(
τμ+1/2e−(μ+1/2)τ

)
as τ → ∞, k = 0, 1, . . . .
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By this and by the fact that u(τ ) is infinitely differentiable for τ ≥ 0, we conclude
that uk(τ ) is of exponential order and hence

(A.15)
∣∣u(k)(τ )

∣∣ ≤ Uke
λτ , for τ ≥ 0, k = 0, 1, . . . ,

where Uk are some positive constants and λ > −μ − 1/2. Next, by the fact that
v(τ ; ζ) is infinitely differentiable for τ ≥ 0 and

v(k)(τ ; ζ) =
k∑

i=0

wki(1− ζe−τ )−μ−1/2−i, for some constants wki,

and because

|v(τ ; ζ)| ≤
{
(sin 2ε)−μ−1/2 if μ > −1/2,

2−μ−1/2 if μ ≤ −1/2,
for τ ≥ 0 and ε ≤ θ ≤ π − ε,

we also have that

(A.16)
∣∣v(k)(τ ; ζ)∣∣ ≤ Vk, for τ ≥ 0 and ε ≤ θ ≤ π − ε, k = 0, 1, . . . ,

where Vk are some positive constants. Finally, by (A.15) and (A.16) and by

g(k)(τ ; ζ) =

k∑
s=0

(
k

s

)
u(k−s)(τ )v(s)(τ ; ζ),

we conclude that

(A.17)
∣∣g(k)(τ ; ζ)∣∣ ≤ Gke

λτ , for τ ≥ 0 and ε ≤ θ ≤ π − ε, k = 0, 1, . . . ,

where Gk are some positive constants and λ is as in (A.15).
Let us now replace g(τ ; ζ) in (A.7) by its Maclaurin series with remainder,

namely,

g(τ ; ζ) =

p−1∑
k=0

g(k)(0; ζ)
τk

k!
+ Sp(τ ; ζ)

τp

p!
;

Sp(τ ; ζ) = [�g(p)(τ̂R; ζ) + i�g(p)(τ̂I ; ζ)] for some τ̂R, τ̂I ∈ (0, τ ).

(Note that τ̂R and τ̂I depend on τ and ζ.) It is clear by (A.17) that |Sp(τ ; ζ)| ≤
Cp e

λτ for all τ ∈ [0,∞) and θ ∈ [ε, π−ε], Cp being some positive constant. Carrying
out the individual integrals, and noting that, for all ν > λ,∣∣∣∣ ∫ ∞

0

e−ν̂τ τ−μ−1/2Sp(τ ; ζ)
τp

p!
dτ

∣∣∣∣ ≤ Cp

p!

∫ ∞

0

e−(ν̂−λ)ττp−μ−1/2 dτ

=
Cp

p!

Γ(p− μ+ 1/2)

(ν̂ − λ)p−μ+1/2
,

we see that (A.2) holds with (A.3) and (A.4), uniformly for ε ≤ θ ≤ π − ε. This
completes the proof. �
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