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ASYMPTOTIC DISTRIBUTIONS OF THE ZEROS

OF CERTAIN CLASSES OF HYPERGEOMETRIC FUNCTIONS

AND POLYNOMIALS

H. M. SRIVASTAVA, JIAN-RONG ZHOU, AND ZHI-GANG WANG

Abstract. The main object of this paper is to consider the asymptotic
distribution of the zeros of certain classes of the Clausenian hypergeometric

3F2 functions and polynomials. Some classical analytic methods and tech-
niques are used here to analyze the behavior of the zeros of the Clausenian
hypergeometric polynomials:

3F2(−n, τn+ a, b; τn+ c,−n+ d; z),

where n is a nonnegative integer. Some families of the hypergeometric 3F2

functions, which are connected (by means of a hypergeometric reduction
formula) with the Gauss hypergeometric polynomials of the form

2F1(−n, kn+ l+ 1; kn+ l + 2; z),

are also investigated. Numerical evidence and graphical illustrations of the
clustering of zeros on certain curves are generated by Mathematica (Version
4.0).

1. Introduction

A generalized hypergeometric pFq function with p numerator parameters
α1, · · · , αp and q denominator parameters β1, · · · , βq is defined by (see, for details,
[1] and [17])

(1.1) pFq

⎡⎣ α1, · · · , αp;

β1, · · · , βq;
z

⎤⎦ =

∞∑
k=0

(α1)k · · · (αp)k
(β1)k · · · (βq)k

zk

k!

(
p, q ∈ N0; p � q + 1; p � q and |z| < ∞; p = q + 1 and |z| < 1

)
,

provided that no zeros appear in the denominator. Here, and in what follows,

N0 := {0, 1, 2, · · · } = N ∪ {0} (N := {1, 2, 3, · · · })
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and (λ)ν denotes the Pochhammer symbol (or the shifted factorial, since (1)n = n!
for n ∈ N) defined, in terms of the familiar Gamma functions, by

(1.2) (λ)ν :=
Γ(λ+ ν)

Γ(λ)
=

⎧⎨⎩
1 (ν = 0; λ ∈ C \ {0})

λ(λ+ 1) · · · (λ+ n− 1) (ν = n ∈ N; λ ∈ C),

C being the set of complex numbers.
If one of the numerator parameters α1, · · · , αp is equal to a negative integer or

zero, say

α1 = −n (n ∈ N0),

then the series terminates and reduces to a polynomial of degree n in z. The natural
question that arises in connection with any polynomials is the correlative properties
of its zeros (see, for example, [3, 9, 11, 21]).

The hypergeometric polynomials whose properties are best known and under-
stood, including the location of their zeros and their asymptotic zero distribu-
tion, are those in the 1F1 (Kummer and Whittaker) and 2F1 (Gauss) classes (see,
for details, [20]), mainly because of their connection with orthogonal polynomials
[13]. In particular, in the case of the Gauss hypergeometric 2F1 polynomials, their

connection with the classical Jacobi polynomials P
(α,β)
n (z) given by (see [19, p. 62]

and [18, p. 35])
(1.3)

P (α,β)
n (z) = (−1)n P (β,α)

n (−z) =

(
α+ n

n

)
2F1

⎡⎣ −n, α+ β + n+ 1;

α+ 1;

1− z

2

⎤⎦
has led to a great deal of significant information about their zeros. For the 3F2

polynomials, however, there is no connection (in general) with the classical orthog-
onal polynomials, and the knowledge of the location of their zeros is restricted to
some rather special polynomial classes (see, for example, [4, 5, 7, 8, 15]; see also
[18, pp. 140 and 183] for the Clausenian hypergeometric 3F2 representations of
the Rice polynomials and the Pasternack polynomials, respectively).

In the present paper, we propose to derive the asymptotic results for the zeros of
the following general family of hypergeometric 3F2 polynomials (see also Section
2 and [6] for some of the various known or new special cases):

3F2(−n, τn+ a, b; τn+ c,−n+ d; z)

(b ∈ C \ Z−
0 ; d ∈ C \ N0; τ �= 0; τn+ a �= 0,−1, · · · ,−n; τn+ c �= 0,−1, · · · ,−n),

where

Z
−
0 = {0,−1,−2, · · · } = Z

− ∪ {0}.
We also consider the asymptotic behavior of the zeros of the following Clausenian
hypergeometric function:

3F2

⎡⎣ (
k + 1

2

)
n+ l + 1

2 ,
(
k + 1

2

)
n+ l + 1, kn+ l;

(2k + 1)n+ 2l + 1, kn+ l + 1;
1− z2

⎤⎦ .

Numerical evidence and graphical illustrations of the clustering of the zeros on
certain curves are generated by Mathematica (Version 4.0).
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2. A set of main results

For notational simplicity, we write

(2.1) 3F2

⎡⎣ −n, τn+ a, b;

τn+ c,−n+ d;
z

⎤⎦ =:

n∑
k=0

an,kz
k (an,0 := 1).

Lemma 1. Let

b ∈ C\Z−
0 , d ∈ C\N0, τ �= 0, τn+a �= 0,−1, · · · ,−n and τn+c �= 0,−1, · · · ,−n.

Then each of the following inequalities holds true:

(2.2) |an,k| � M0 · (k + 1)|d|+2|a−c|+|1−b| (0 � k � n; n, k ∈ N0),

where the constant M0 > 0 depends on the parameters a, b, c and d, but not on n
and k ;

(2.3)

∣∣∣∣an,n−k

an,n

∣∣∣∣ � M̃0 · (k + 2)|d|+2|c−a|+|1−b| (0 � k � n; n, k ∈ N0),

where the constant M̃0 > 0 depends on the parameters a, b, c and d, but not on n
and k.

Proof. We first consider the case when 0 < k < n (n, k ∈ N). Then, according to
the following identity for the Pochhammer symbol (λ)n defined by (1.2):

(2.4) (−n)j =:

⎧⎪⎪⎨⎪⎪⎩
(−1)jn!

(n− j)!
(0 � j � n; n, j ∈ N0)

0 (j � n+ 1; n ∈ N0; j ∈ N),

we have

(2.5)
an,k+1

an,k
=

(n− k)(τn+ a+ k)(b+ k)

(n− d− k)(τn+ c+ k)(k + 1)
.

We also observe that

n− k

n− d− k
= 1 +

d

n− d− k
,

τn+ a+ k

τn+ c+ k
= 1 +

a− c

τn+ c+ k

and
b+ k

k + 1
= 1 +

b− 1

k + 1
,

so that

ln

(
n− k

|n− d− k|

)
� |d|

|n− d− k| ,

ln

(
|τn+ a+ k|
|τn+ c+ k|

)
� |a− c|

|τn+ c+ k|
and

ln

(
|b+ k|
k + 1

)
� |b− 1|

k + 1
,
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respectively. Hence, we have

ln |an,k| = ln

(
k−1∏
l=0

|an,l+1|
|an,l|

)
=

k−1∑
l=0

ln
|an,l+1|
|an,l|

�
k−1∑
l=0

(
|d|

|n− d− l| +
|a− c|

|τn+ c+ l| +
|b− 1|
l + 1

)

�
k−1∑
l=0

(
|d|

|n− d− k + l + 1| +
2|a− c|
l + 1

+
|b− 1|
l + 1

)
(n sufficiently large)

�
[|d|]∑
l=0

|d|
|n− d− k + 1 + l| +

k−1∑
l=0

|d|+ 2|a− c|+ |b− 1|
l + 1

� M+ (|d|+ 2|a− c|+ |b− 1|)[ln(k + 1) + γ],(2.6)

where M > 0 is a constant and γ is the Euler-Mascheroni constant given by

(2.7) γ := lim
n→∞

(
n∑

k=1

1

k
− ln n

)
∼= 0.57721 56649 01532 8606 06512 · · · .

It follows from (2.6) that

|an,k| � M0 · (k + 1)|d|+2|a−c|+|1−b| (0 < k < n; n, k ∈ N),

where the constant M0 > 0 depends on the parameters a, b, c and d, but not on
n and k. The cases of the assertion (2.2) of Lemma 1 when k = 0 and k = n are
trivial.

Next, by replacing k by n− k in (2.5), we have

an,n−k

an,n−k+1
=

[(τ + 1)n+ c− k](k − d)(n− k + 1)

[(τ + 1)n+ a− k]k(b + n− k)
.

Since

k − d

k
= 1− d

k
,

(τ + 1)n+ c− k

(τ + 1)n+ a− k
= 1 +

c− a

(τ + 1)n+ a− k

and
n− k + 1

b+ n− k
= 1 +

1− b

b+ n− k
,

it follows that

ln

(
|k − d|

k

)
� |d|

k
,

ln

(
|(τ + 1)n+ c− k|
|(τ + 1)n+ a− k|

)
� |c− a|

|(τ + 1)n+ a− k|

and

ln

(
1 + n− k

|b+ n− k|

)
� |1− b|

|b+ n− k| ,
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respectively. Therefore, we obtain

ln

(
|an,n−k|
|an,n|

)
= ln

(
k∏

l=1

|an,n−l|
|an,n−l+1|

)
=

k∑
l=1

ln
|an,n−l|

|an,n−l+1|

�
k∑

l=1

(
|d|
l

+
|c− a|

|(τ + 1)n+ a− l| +
|1− b|

|b+ n− l|

)

�
k∑

l=1

(
|d|+ 2|c− a|

l
+

|1− b|
|b+ n− k − 1 + l|

)
(n sufficiently large)

�
[|b|]+1∑
l=1

|1− b|
|b+ n− k − 1 + l| +

k∑
l=1

|d|+ 2|c− a|+ |1− b|
l

� N+ (|d|+ 2|c− a|+ |1− b|)[ln(k + 2) + γ],(2.8)

where N > 0 is a constant and γ is the Euler-Mascheroni constant given by (2.7).
Consequently, it follows from (2.8) that

|an,n−k|
|an,n|

� M̃0 · (k + 2)|d|+2|c−a|+|1−b|,

where the constant M̃0 > 0 depends on the parameters a, b, c and d, but not on n
and k.

Finally, since the cases of the assertion (2.3) of Lemma 1 when k = 0 and k = n
are immediate, our proof of Lemma 1 is completed. �

Theorem 1. For fixed parameters a, b, c, d and τ constrained by

b ∈ C\Z−
0 , d ∈ C\N0, τ �= 0, τn+a �= 0,−1, · · · ,−n and τn+c �= 0,−1, · · · ,−n,

the zeros of the Clausenian hypergeometric polynomials :

3F2

⎡⎣ −n, τn+ a, b;

τn+ c,−n+ d;
z

⎤⎦
approach the unit circle as n → ∞.

Proof. From the assertion (2.2) of Lemma 1, it immediately follows that the
following sequence of polynomials:

n∑
k=0

an,kz
k

is uniformly bounded on the disk Ω given by

Ω = {z : z ∈ C and |z| < ρ (0 < ρ < 1)}.
Furthermore, since (for fixed k)

an,k =
(−n)k(τn+ a)k(b)k

(τn+ c)k(−n+ d)k(1)k
→ (b)k

(1)k
(n → ∞),

the following sequence of functions:{
n∑

k=0

an,kz
k

}
n∈N0
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converges pointwise and, therefore, also uniformly, by Vitali’s theorem [12, p. 252],
to

∞∑
k=0

(b)k
(1)k

zk = 2F1

⎡⎣ b, 1;

1;
z

⎤⎦ = (1− z)−b.

Since the function (1 − z)−b does not have any zeros inside the unit disk, by
Hurwitz’s theorem [12, p. 205], there exists an index N0 such that

n∑
k=0

an,kz
k

does not have zeros on Ω for n > N0. Hence there exist numbers ρn constrained by

0 < ρn < 1 so that ρn → 1,

and we can ensure that

ρn � ρ (n > N0; 0 < ρ < 1).

Next, from the assertion (2.3) of Lemma 1, it also follows that the sequence of
polynomials:

zn

an,n

n∑
k=0

an,k

(
1

z

)k

=
n∑

k=0

an,n−k

an,n
zk

is uniformly bounded on Ω. Moreover, since (for fixed k)

an,n−k

an,n
=

(−1)kΓ(d)Γ(n+ 1)Γ[(τ + 1)n+ a− k]Γ(n+ b− k)Γ(2n+ c)

k!Γ(d− k)Γ(n+ b)Γ[(τ + 1)n+ c− k]Γ(n− k + 1)Γ(2n+ a)

→ (1− d)k
(1)k

(n → ∞),

the following sequence of functions:{
n∑

k=0

an,n−k

an,n
zk

}
n∈N0

converges pointwise, and therefore uniformly, by Vitali’s theorem [12, p. 252], to

∞∑
k=0

(1− d)k
(1)k

zk = 2F1

⎡⎣ 1− d, 1;

1;
z

⎤⎦ = (1− z)d−1.

Since the function (1 − z)d−1 does not have any zeros inside the unit disk, by
Hurwitz’s theorem [12, p. 205], there exists an index N0 such that

zn

an,n

n∑
k=0

an,k

(
1

z

)k

does not have zeros on Ω for n > N0; that is,
n∑

k=0

an,kz
k

does not have zeros |z| > 1
ρ . Hence there exist numbers γn constrained by

γn > 1 so that γn → 1,
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and we can ensure that

γn � 1

ρ
(n > N0; 0 < ρ < 1).

Consequently, all zeros of the polynomial:
n∑

k=0

an,kz
k

lie in the annulus given by

{z : z ∈ C and ρn � |z| � γn},
which completes the proof of Theorem 1. �

Upon setting

a = 1, b =
1

2
, c = t+ 1, d = 1− t and τ = 1

in Theorem 1, we can deduce the following corollary.

Corollary 1 ([6, Theorem 2.2]). For fixed t > 0, the zeros of the following
Clausenian hypergeometric polynomials:

3F2

⎡⎣ −n, n+ 1, 12 ;

n+ t+ 1,−n+ 1− t;
z

⎤⎦
approach the unit circle as n → ∞.

If, on the other hand, we choose

a = −t, b = t, c = 0, d =
1

2
and τ = −2

in Theorem 1, we obtain the following result.

Corollary 2. For fixed t > 0, the zeros of the following Clausenian hypergeometric
polynomials :

3F2

⎡⎣ −n,−2n− t, t;

−2n,−n+ 1
2 ;

z

⎤⎦
approach the unit circle |z| = 1 as n → ∞.

Remark 1. Corollary 2 provides an alternative form of a known result [10,
Proposition 4.4].

Theorem 2. Let

τn+ a �= 0,−1, · · · ,−n and τn+ c �= 0,−1, · · · ,−n.

If the fixed parameters a, b, c, d and τ are constrained by

a � c, 0 < b � 1, d � 0 and τ > 0

or by
a � c, 0 < b � 1, d � 0 and τ < −1,

then the zeros of the following Clausenian hypergeometric polynomials:

3F2

⎡⎣ −n, τn+ a, b;

τn+ c,−n+ d;
z

⎤⎦
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lie outside the unit disk |z| � 1 and approach the unit circle |z| = 1 as n → ∞.

The proof is based on the following classical theorem [14, p. 136].

Lemma 2 (Eneström-Kakeya Theorem [14, p. 136]). If

0 < a0 < a1 < · · · < an,

then all zeros of the polynomial :

p(z) = a0 + a1z + · · ·+ anz
n

lie in the unit disk |z| � 1.

Proof of Theorem 2. According to Theorem 1, we only need to prove that the zeros
of the Clausenian hypergeometric polynomials:

3F2(−n, n+ a, b;n+ c,−n+ d; z)

lie outside the unit circle |z| = 1. We also find from (2.1) that

(2.9) zn 3F2

⎡⎣ −n, τn+ a, b;

τn+ c,−n+ d;

1

z

⎤⎦ =

n∑
k=0

an,kz
n−k =

n∑
k=0

an,n−kz
k.

Thus, under the parametric constraints:

a � c, 0 < b � 1, d � 0 and τ > 0

or
a � c, 0 < b � 1, d � 0 and τ < −1,

which are already mentioned in the hypothesis of Theorem 2, we find from (2.5)
(for sufficiently large n) that
(2.10)
an,n−(k+1)

an,n−k
=

(k + 1− d)[(τ + 1)n+ c− k − 1](n− k)

(k + 1)[(τ + 1)n+ a− k − 1](b+ n− k − 1)
>1 (k = 0, 1, · · · , n− 1),

which implies that the coefficients of the polynomial:

(2.11) F̃ (z) := zn 3F2(−n, τn+ a, b; τn+ c,−n+ d; z−1) =

n∑
k=0

an,n−kz
k

are positive and increasing:

0 < an,n < an,n−1 < · · · < an,0.

It follows from Lemma 2 that the zeros of the polynomial F̃ (z) defined by (2.11)
lie in the unit disk |z| � 1. Hence the zeros of

3F2(−n, τn+ a, b; τn+ c,−n+ d; z)

lie outside the unit disk |z| � 1. This completes our proof of Theorem 2. �

Theorem 3. Let

τn+ a �= 0,−1, · · · ,−n and τn+ c �= 0,−1,−2, · · · ,−n.

If the fixed parameters a, b, c, d and τ are constrained by

a � c, b � 1, 0 � d < 1 and τ > 0

or by
a � c, b � 1, 0 � d < 1 and τ < −1,
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then the zeros of the following Clausenian hypergeometric polynomials :

3F2

⎡⎣ −n, τn+ a, b;

τn+ c,−n+ d;
z

⎤⎦
lie inside the unit disk |z| � 1 and approach the unit circle as n → ∞.

Proof. By appealing appropriately to Theorem 1, we only need to prove that the
zeros of

3F2(−n, n+ a, b;n+ c,−n+ d; z)

lie inside the unit disk |z| � 1. Thus, under the parametric constraints:

a � c, b � 1, 0 � d < 1 and τ > 0

or

a � c, b � 1, 0 � d < 1 and τ < −1,

which are already mentioned in the hypothesis of Theorem 2, we find from (2.5)
(for sufficiently large n) that

(2.12)
an,k+1

an,k
=

(n− k)(τn+ a+ k)(b+ k)

(n− d− k)(τn+ c+ k)(1 + k)
> 1 (k = 0, 1, · · · , n− 1),

which implies that the coefficients of

3F2(−n, τn+ a, b; τn+ c,−n+ d, z)

are positive and increasing:

0 < an,0 < an,1 < · · · < an,n.

According to Lemma 2, we can see that the zeros of

3F2(−n, τn+ a, b; τn+ c,−n+ d, z)

lie inside the unit disk |z| � 1. This completes the proof of Theorem 3. �

We shall next use the following lemma, which we state here for the convenience
of the interested reader.

Lemma 3 ([2, Theorem 2]). For arbitrary real numbers k > 0 and l � 0, the zeros
of the following Gauss hypergeometric polynomials :

2F1

⎡⎣ −n, kn+ l + 1;

kn+ l + 2;
z

⎤⎦
cluster on the loop of the lemniscate given by

|zk(z − 1)| = kk

(k + 1)k+1

(
R(z) >

k

k + 1

)
as n → ∞.

Theorem 4. For arbitrary real numbers k > 0 and l � 0, the zeros of the following
Clausenian hypergeometric function:

3F2

⎡⎣ (k + 1
2 )n+ l + 1

2 , (k + 1
2 )n+ l + 1, kn+ l;

(2k + 1)n+ 2l + 1, kn+ l + 1;
1− z2

⎤⎦
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cluster on the loop given by

|z − 1|k
|z + 1|k+1

=
kk

2(k + 1)k+1

(
R

(
z − 1

z + 1

)
>

k

k + 1

)
as n → ∞.

Proof. By setting

a =

(
k +

1

2

)
n+ l +

1

2
, b = kn+ l and μ = 1− z2

in the following hypergeometric reduction formula [16, p. 498, Equation (12)]:

3F2

⎡⎣ a, a+ 1
2 , b;

2a, b+ 1;
μ

⎤⎦

=

[
2

μ

(
1−

√
1− μ

)]2b
2F1

⎡⎣ b, 1 + 2b− 2a;

b+ 1;
1− 2

μ
(1−

√
1− μ)

⎤⎦ ,

(2.13)

we have

3F2

⎡⎣ (k + 1
2 )n+ l + 1

2 , (k + 1
2 )n+ l + 1, kn+ l;

(2k + 1)n+ 2l + 1, kn+ l + 1;
1− z2

⎤⎦

=

(
2

1 + z

)2nk+2l

2F1

⎡⎣ −n, kn+ l + 1;

kn+ l + 2;

z − 1

z + 1

⎤⎦ .

We know from Lemma 3 that the zeros of the Gauss hypergeometric polynomials:

(2.14) 2F1

⎡⎣ −n, kn+ l + 1;

kn+ l + 2;

z − 1

z + 1

⎤⎦
will cluster on the curve given by

(2.15)
|z − 1|k

|z + 1|k+1
=

kk

2(k + 1)k+1

(
R

(
z − 1

z + 1

)
>

k

k + 1

)
as n → ∞. This completes our proof of Theorem 4. �

3. Numerical evidence and graphical illustrations

In this section, we make use of Mathematica (Version 4.0) in order to present
numerical evidence and graphical illustrations for each of our results proved in the
preceding section.

Figure 1 illustrates Theorem 1. It shows the location of the zeros of

3F2 (−n, τn+ a, b; τn+ c,−n+ d; z)

for

a =
1

2
, b =

1

2
, c = 1, d =

3

4
and τ = 1

and various values of n, together with their asymptotic curve |z| = 1.
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Figures 2 and 3 illustrate Theorem 2 by showing the zeros of the following
Clausenian hypergeometric polynomials:

3F2

(
−n,

3

2
n+

1

3
,
1

4
;
3

2
n+

2

3
,−n− 1

2
; z

)
and

3F2

(
−n,−3

2
n+

3

4
,
1

2
;−3

2
n+

1

2
,−n− 1

3
; z

)
,

respectively, for various values of n, together with the unit circle (where they cluster
as n → ∞).

Figures 4 and 5 illustrate Theorem 3 by showing the zeros of the following
Clausenian hypergeometric polynomials:

3F2

(
−n,

1

2
n+

2

3
,
3

2
;
1

2
n+

1

3
,−n+

1

2
; z

)
and

3F2

(
−n,−3

2
n+

1

3
,
3

2
;−3

2
n+

3

4
,−n+

1

2
; z

)
,

respectively, for various values of n, together with their asymptotic curve |z| = 1.
Figure 6 displays the zeros of the following Clausenian hypergeometric

polynomials:

3F2

[(
k +

1

2

)
n+ l +

1

2
,

(
k +

1

2

)
n+ l + 1, kn+ l;

(2k + 1)n+ 2l + 1, kn+ l + 1; 1− z2
]

and the curve given by

2(k + 1)k+1|z − 1|k = kk|z + 1|k+1 for k =
1

2

and various values of n and l. It provides an illustration of Theorem 4.

            

n
n=45 n=60 n=80

Figure 1. Zeros of 3F2

(
−n, n+ 1

2 ,
1
2 ;n+ 1,−n+ 3

4 ; z
)
and the

unit disk.
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n=30 n=40 n=50

Figure 2. Zeros of 3F2

(
−n, 3

2n+ 1
3 ,

1
4 ;

3
2n+ 2

3 ,−n− 1
2 ; z

)
and

the unit disk.

         

n=40n=30n=20

Figure 3. Zeros of 3F2

(
−n,− 3

2n+ 3
4 ,

1
2 ;−

3
2n+ 1

2 ,−n− 1
3 ; z

)
and the unit disk.

          

n=50n=36n=20

Figure 4. Zeros of 3F2

(
−n, 1

2n+ 2
3 ,

3
2 ;

1
2n+ 1

3 ,−n+ 1
2 ; z

)
and

the unit disk.

        

n=56n=38n=20

Figure 5. Zeros of 3F2

(
−n,− 3

2n+ 1
3 ,

3
2 ;−

3
2n+ 3

4 ,−n+ 1
2 ; z

)
and the unit disk.
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n=36n=30n=20

Figure 6. Zeros of 3F2[(k + 1
2 )n+ l+ 1

2 , (k + 1
2 )n+ l + 1, kn+ l;

(2k + 1)n + 2l + 1, kn + l + 1; 1 − z2] for k = 1
2 and the curve

|z + 1|3 = 27|z − 1|.

4. Further remarks and observations

In our present investigation, we have considered several interesting problems con-
cerning the asymptotic distribution of the zeros of various classes of the
Clausenian hypergeometric 3F2 functions and polynomials. In particular, we have
made use of some classical analytic methods and techniques with a view to analyz-
ing the behavior of the zeros of the Clausenian hypergeometric polynomials:

3F2(−n, τn+ a, b; τn+ c,−n+ d; z),

where n is a nonnegative integer. We have also investigated some families of the
hypergeometric 3F2 functions which are connected (by means of a hypergeometric
reduction formula) with the Gauss hypergeometric polynomials of the form:

2F1(−n, kn+ l + 1; kn+ l + 2; z).

Furthermore, numerical evidence and graphical illustrations of the clustering of
zeros on certain curves are generated by Mathematica (Version 4.0).

We conclude this paper by observing below some of the salient features of our
investigation and some further comparisons of our results with those that are
available in the existing literature on the subject.

Remark 2. In Theorem 1 (see also Figure 1), we have considered the problem
involving the asymptotic distribution of the zeros of the following general Clause-
nian hypergeometric polynomials:

3F2

⎡⎣ −n, τn+ a, b;

τn+ c,−n+ d;
z

⎤⎦
(
b ∈ C \ Z−

0 ; d ∈ C \ N0; τ �= 0; τn+ a �= 0,−1, · · · ,−n; τn+ c �= 0,−1, · · · ,−n
)

when n → ∞. Some known special cases and examples include (among others) the

3F2 polynomials:

3F2

(
−n, n+ 1,

1

2
;n+ t+ 1,−n− t+ 1; z

)
,

which were considered by Driver and Jordaan [6], and the 3F2 polynomials:

3F2

(
−n,−2n− t, t;−2n,−n+

1

2
; z

)
,

which were investigated by Driver and Möller [10].



1782 H. M. SRIVASTAVA, JIAN-RONG ZHOU, AND ZHI-GANG WANG

Remark 3. In Theorem 2 (see also Figures 2 and 3) and in Theorem 3 (see also
Figures 4 and 5), we have given two sufficient conditions so that the zeros approach
the unit circle in different directions.

Remark 4. By applying Lemma 3 (see [2]), in Theorem 4 (see also Figure 6) we
have obtained the asymptotic distribution of the zeros of the following Clausenian
hypergeometric function:

3F2

⎡⎣ (k + 1
2 )n+ l + 1

2 , (k + 1
2 )n+ l + 1, kn+ l;

(2k + 1)n+ 2l + 1, kn+ l + 1;
1− z2

⎤⎦ (k > 0; l � 0),

which is capable of yielding several simpler results for different choices for the real
numbers k > 0 and l � 0.

Remark 5. By appropriately specializing the various parameters in each of our
main results (Theorems 1 to 4 above), one can deduce many other (known or new)
potentially useful corollaries and consequences than those we have already indicated
in the preceding sections.

5. Uniform distribution of the zeros

In our paper, the parameters a, b, c, d and τ are independent of the large
parameter n. Moreover, the zeros of the Clausenian hypergeometric polynomials:

3F2(−n, τn+ a, b; τn+ c,−n+ d; z),

are distributed uniformly along the curves (see Figures 1 to 6).
The zeros of the function Hn(b, u), defined by

Hn(b, u) := un
3F2

(
b,−b− 2n,−n;−2n,−n+

1

2
;
1

u

)
= un(1− z)b [ 2F1(−n, b;−2n; z)]2 ,(5.1)

which were investigated in [10], are also distributed uniformly along the unit circle
|u| = 1 (see [10, Proposition 4.4]). However, the figures in [10] actually showed the
distribution of the zeros of 2F1(−n, b;−2n; z), not the distribution of the zeros of
the function Hn(b, u) defined by (5.1).

Since the transformation:

(5.2) (2w − 1)2 − 1 = −u

in (5.1) would lead to two branches of w, the zeros of the Gauss hypergeometric
polynomials:

2F1(−n, b;−2n; z)

are not distributed uniformly along the whole Cassini curve. In fact, the zeros of

2F1(−n, b;−2n; z)

are distributed only along the left branch of the curve (see [10]).
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