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POSITIVE TRIGONOMETRIC QUADRATURE FORMULAS

AND QUADRATURE ON THE UNIT CIRCLE

FRANZ PEHERSTORFER

Abstract. We give several descriptions of positive quadrature formulas which
are exact for trigonometric-, respectively, Laurent polynomials of degree less
or equal to n − 1 − m, 0 ≤ m ≤ n − 1. A complete and simple description
is obtained with the help of orthogonal polynomials on the unit circle. In
particular it is shown that the nodes polynomial can be generated by a simple
recurrence relation. As a byproduct interlacing properties of zeros of para-
orthogonal polynomials are obtained. Finally, asymptotics for the quadrature
weights are presented.

1. Introduction

Let l ∈ N0 := N ∪ {0}, γ ∈ {0, 1/2}, and let Tl,γ = {
∑l

k=0 ak cos(k + γ)ϕ +
bk sin(k + γ)ϕ : ak, bk ∈ R}. By Tl := Tl,0 we denote the set of trigonometric
polynomials of degree less or equal to l. Further let σ be a positive measure on

[0, 2π] normalized by 1
2π

∫ 2π

0
dσ = 1. We call a quadrature formula (qf) of the form

(1)
1

2π

∫ 2π

0

t(ϕ)dσ(ϕ) =
n∑

s=1

μst(ϕs) +Rn(t)

with 0 ≤ ϕ1 < ϕ2 < · · · < ϕn < 2π, μ1, ..., μn ∈ R, a trigonometric (n−1−m,n, dσ)
qf if Rn(t) = 0 for t ∈ Tn−1−m; n− 1−m is the so-called degree of exactness. Note
that for n ∈ N, n = 2(ñ+ γ), γ ∈ {0, 1/2}, the trigonometric nodes polynomial

n∏
s=1

sin(
ϕ− ϕs

2
) = e

−i(nϕ+
n∑

s=1
ϕs)/2

n∏
s=1

(eiϕ − eiϕs)/2i

is from Tñ,γ .
Obviously, (1) is a (n− 1−m,n, dσ) qf if and only if

(2)
1

2π

2π∫
0

e−ikϕdσ(ϕ) =
n∑

s=1

μse
−ikϕs k = 0, . . . ,±(n− 1−m),
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which is a qf on the unit circle exactly for Laurent polynomials
∑n−1−m

−(n−1−m) dkz
k,

dk ∈ C of degree ≤ n −m− 1, which we call (n− 1−m,n, dσ) a Laurent qf also.
In other words, we are looking for a characterization of quadrature formulas which
integrate exactly the first n− 1−m moments c1, . . . , cn−1−m of the Caratheodory
function

(3) F (z) =
1

2π

2π∫
0

eiϕ + z

eiϕ − z
dσ(ϕ) = 1 + 2

∞∑
k=1

ckz
k.

Due to convergence and stability it is of utmost interest to have positive (n −
1 − m,n, dσ) qf, i.e., that all quadrature weights μs are positive. Such qf will be
studied in this paper. So far it is known that qf with the highest possible degree
of exactness, that is, (n − 1, n, dσ) qf have positive weights. These (n − 1, n, dσ)
qf can be considered as the counterparts of the Gauss qf for algebraic polynomials
and nowadays are called Szegő qf. The Szegő qf can be described as follows (see
[8, pp. 14-16], in particular (10.10), but also [1, 13, 22, 26]): ϕ1, . . . , ϕn, 0 ≤
ϕ1 < · · · < ϕn < 2π, generate a (n − 1, n, dσ) Laurent qf if and only if there is
η ∈ T := {z ∈ C : |z| = 1} such that

(4) zΦn−1(z) + ηΦ∗
n−1(z) =

n∏
s=1

(z − eiϕs).

Here and in what follows Φn(z) = zn + . . . always denotes the monic polynomial of
degree n orthogonal with respect to the normalized measure dσ, i.e.,

(5)

2π∫
0

e−ikϕΦn(e
iϕ)dσ(ϕ) = 0 k = 0, . . . , n− 1.

It is well known that the Φn’s satisfy a recurrence relation of the form

(6) Φn(z) = zΦn−1(z)− an−1Φ
∗
n−1(z),

with |aj | < 1 for j = 0, 1, 2, . . . and where Φ∗
n−1(z) = zn−1Φn−1(

1
z ); hence

(7) Φ∗
n(z) = Φ∗

n−1(z)− an−1zΦn−1(z).

Furthermore, let us recall that for any κ ∈ T,

(8) zΦn−1 + κΦ∗
n−1 =

n∏
s=1

(z − eiψs)

where 0 ≤ ψ1 < · · · < ψn < 2π, , since Φn−1 has all zeros in D = {|z| < 1}.
Following [13] a polynomial of the form (8) is called a para-orthogonal polynomial.

The Szegő quadrature weights are given by, zs = eiψs ,

(9) μs =
1

2zs

(zΨn−1 − ηΨ∗
n−1)(zs)

(zΦn−1 + ηΦ∗
n−1)

′(zs)
> 0

where Ψn is the so-called polynomial of the second kind, i.e.,

(10) Ψn(z) =
1

2π

2π∫
0

z + eiϕ

z − eiϕ
(Φn(z)− Φn(e

iϕ))dσ(ϕ)

which satisfies the recurrence relation

(11) Ψn(z) = zΨn−1(z) + an−1Ψ
∗
n−1(z).
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Note that an−1 in (6) is just replaced by −an−1. Recently, Szegő quadrature for-
mulas have been studied and applied by several authors [4, 6, 11, 10, 14]. For
para-orthogonal polynomials see [5, 24, 27].

As mentioned already, here we study positive (n−1−m,n, dσ) qf. There are two
possible approaches, one approach is comparable to the algebraic polynomial ap-
proach and the other one via orthogonal polynomials on the unit circle (abbreviated
by OPUC). Each of which has its advantages as we shall see. In the next section
we derive some characterizations without using OPUC’s. In fact, for Theorem 2.2,
we do not even know how to obtain it via OPUC’s and for the other properties as
the orthogonality condition given in Lemma 2.1, they follow in a more natural way
than with the help of OPUC’s; compare Lemma 3.5 and Corollary 3.6. In Section 3
we give a simple complete description of positive trigonometric-, resp., Laurent qf
with the help of OPUC’s. In this problem the power of the approach via the unit
circle turns out nicely. We note that Section 3 and Section 4 can be read without
having studied Section 2.

2. Basic characterization

First let us take a look at the degree of exactness. Similarly, as in the case of
algebraic polynomials, the degree of exactness is connected with the orthogonality
property of the nodes polynomial. For Szegő qf see [3] and for the associated
orthogonal trigonometric polynomials and their five-term recurrence relation see
[12].

Lemma 2.1. Let n ∈ N, n = 2(ñ+ γ), γ ∈ {0, 1/2}. A qf of the form (1) is exact
for t ∈ Tñ+2γ+l, l ∈ N0, if and only if the trigonometric nodes polynomial Tñ,γ(ϕ)
satisfies the orthogonality conditions

(12)

∫ 2π

0

t(ϕ)Tñ,γ(ϕ)dσ(ϕ) = 0 for t ∈ Tl,γ .

Proof. Case 1) n = 2ñ, i.e., γ = 0.
Sufficiency. First let us consider the case l = 0. Let ξ ∈ [0, 2π) be no zero of

Tñ and arbitrary otherwise. Since the Lagrange trigonometric polynomials with
respect to the nodes, ϕ1, ..., ϕ2ñ and ξ are polynomials from Tñ, the interpolation
quadrature formula

(13)

∫ 2π

0

t(ϕ)dσ =

2ñ∑
s=1

μst(ϕs) + μ2ñ+1t(ξ)

holds for every t ∈ Tñ and is unique. Now any q ∈ Tñ can be represented in the
form

(14) q(ϕ) = cTñ(ϕ) + t(ϕ)

where t ∈ Tñ is the unique polynomial satisfying the interpolation conditions t(ξ) =
0 and t(ϕs) = q(ϕs) for s = 1, ..., 2ñ and c = q(ξ)/Tñ(ξ). Hence, applying (13) to q
and taking into consideration the orthogonality property of Tñ, we obtain

1

2π

∫ 2π

0

qdσ =
1

2π

∫ 2π

0

cTñdσ +
1

2π

∫ 2π

0

tdσ =

2ñ∑
s=1

μst(ϕs) =

2ñ∑
s=1

μsq(ϕs).
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In the case of a higher orthogonality property of Tñ we represent q ∈ Tñ+l in the
form

q = vTñ + t

where t is as above and v ∈ Tl and the assertion follow.
The necessity part follows immediately by applying the quadrature formula to

tTñ.
Case 2) n = 2ñ+ 1, i.e., γ = 1/2.
Sufficiency. Any q ∈ Tñ+1+l can be represented in the form

q = vl,1/2Tñ,1/2 + t

where t ∈ Tñ interpolates q at the 2ñ + 1 zeros of Tñ,1/2 and where vl,1/2 ∈ Tl,1/2.
Applying the unique (ñ, 2ñ + 1, dσ) quadrature formula (13) to q and writing ξ =
ϕ2ñ+1, the assertion follows by the orthogonality property.

Necessity is immediate again. �

We note that if l < ñ − 1, then the orthogonality property (12) does not imply
that all zeros of Tñ,γ are simple and in [0, 2π) there may also appear double or
complex zeros.

To find a criterion on the nodes polynomial such that the quadrature weights
are positive is more involved (in contrast to the algebraic polynomial case, where
the corresponding counterpart can be derived in one line; see e.g. [20, (1.3)].

Theorem 2.2. Let n ∈ N \ {1}, n = 2(ñ + γ), γ ∈ {0, 1/2}, and let (1) be a
(ñ + 2γ, 2(ñ + γ), dσ) qf. Denote by T (ϕ) the trigonometric nodes polynomial,
which is from Tñ,γ , and write

(15) S(ψ) =
1

2π

∫ 2π

0

cot

(
ϕ− ψ

2

)
(T (ψ)− T (ϕ))dσ(ϕ).

Then S(ψ) ∈ Tñ,γ and

(16) μs = − S(ϕs)

2T ′(ϕs)
for s = 1, ..., n.

In particular, all quadrature weights μs are positive if and only if S(ϕ) has n simple
zeros θj , 0 ≤ θ1 < θ2 < · · · < θn < 2π, which separate the zeros ϕj of T (ϕ) such
that ϕ1 < θ1 < ϕ2 < · · · if sgn(ST )(0+) > 0, respectively, θ1 < ϕ1 < θ2 < · · · if
sgn(ST )(0+) < 0.

Furthermore, setting

τn(e
iϕ) = ei

n
2 ϕT (ϕ) and ωn(e

iϕ) = iei
n
2 ϕS(ϕ),

the ratio of the polynomials ωn(z) and τn(z) has an expansion of the form

(17) −ωn(z)

τn(z)
=

n∑
s=1

μs
eiϕs + z

eiϕs − z
= 1 + 2

ñ+2γ+l∑
k=1

ckz
k + ...,

where ck =
∫ 2π

0
e−ikϕdσ(ϕ) and ñ+ 2γ + l is the precise degree of exactness of the

qf (1).

Proof. Let R(ϕ) ∈ Tñ,γ be the polynomial such that, z = eiϕ,

(18)
iei

n
2 ϕR(ϕ)

ei
n
2 ϕT (ϕ)

=

n∑
s=1

μs
z + eiϕs

z − eiϕs
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Putting ωn(e
iϕ) = iei

n
2 ϕR(ϕ) and τn(e

iϕ) = ei
n
2 ϕT (ϕ) we may rewrite equation

(18) in the form

(19)
ωn(z)

τn(z)
− 1 = −2

n∑
s=1

μs

1− e−iϕsz

where we have used the fact that

n∑
s=1

μs =
1

2π

∫
dσ = 1

since the qf is exact for constants and σ is normalized. Note that ωn(0) = −τn(0)
or, in other words, that

(20) T (ϕ) = an cos
n

2
ϕ+ bn sin

n

2
ϕ+ ... and R(ϕ) = −bn cos

n

2
ϕ+an sin

n

2
ϕ+ ....

Furthermore, it follows from (19) that

ωn(e
iϕs)

dτn
dz (eiϕs)

= 2μse
iϕs

which yields that

(21)
iR(ϕs)
dT
dϕ (ϕs)

=
e−in

2 ϕsωn(e
iϕs)

d
dϕ (e

−in
2 ϕsτn(eiϕ))ϕ=ϕs

=
ωn(e

iϕs)
d
dϕ (τn(e

iϕ))ϕ=ϕs

=
2μs

i
.

The goal is to show that

(22) S ≡ R.

Let us prove (22) when n is even.
Using the facts that

cot

(
ϕ− ψ

2

)
(cosψ − cosϕ) = sinψ + sinϕ

and that

(23)
cos kψ − cos kϕ

cosψ − cosϕ
= 2 cos(k − 1)ψ + . . .

is a cosine polynomial of degree k − 1 in ψ with leading coefficient 2, it follows by
straightforward calculation that for k ∈ N,∫ 2π

0

cot

(
ϕ− ψ

2

)
(cos kψ − cos kϕ) dσ(ϕ)

=

∫ 2π

0

cot

(
ϕ− ψ

2

)
(cosψ − cosϕ)

(
cos kψ − cos kϕ

cosψ − cosϕ

)
dσ(ϕ)

= (

∫ 2π

0

dσ) sin kψ + t(ψ),

(24)
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where t ∈ Tk−1. Furthermore,∫ 2π

0

cot

(
ϕ− ψ

2

)
(sin kψ − sin kϕ)dσ(ϕ)

= sinψ

∫ 2π

0

cot

(
ϕ− ψ

2

)(
sin kψ

sinψ
− sin kϕ

sinϕ

)
dσ(ϕ)

+

∫ 2π

0

cot

(
ϕ− ψ

2

)
(sinψ − sinϕ)

sin kϕ

sinϕ
dσ(ϕ)

= −(

∫ 2π

0

dσ) cos kψ + t(ψ)

(25)

where t ∈ Tk−1, and where in the last equality we used the facts that sin kx/ sin x =
2 cos(k − 1)x + ... is a cosine polynomial of degree k − 1 in x and thus (24) can
be applied to the first integral and that the second integral is from T1. Thus
S(ψ) ∈ Tñ and by (20) it follows that S and R have the same leading coefficients,
i.e., R−S ∈ Tñ−1. Writing T (ϕ) in terms of sin

(
ϕ−ϕs

2

)
it follows that the integrand

from (15) at ψ = ϕs is from Tñ and thus we may apply the quadrature formula to
the integrand and obtain

(26) S(ϕs) = −μs2T
′
(ϕs) = R(ϕs), s = 1, ..., 2ñ,

where the last equality follows by (21). Hence, S ≡ R and the assertion is proved
for n even.

For odd n we consider

S̃(ψ) =
1

2π

∫ 2π

0

cot

(
ϕ− ψ

2

)
((qT )(ψ)− (qT )(ϕ))dσ(ϕ)

where q is any polynomial from T0,1/2 with q(ϕ) > 0 on [0, 2π). Since qT ∈ Tñ+1 it

follows by (24) and (25) that S̃ ∈ Tñ+1. Furthermore, we may apply the quadrature
formula and obtain that

(27) S̃(ϕs) = −μs2q(ϕs)T
′
(ϕs) = q(ϕs)R(ϕs) for s = 1, . . . , 2ñ+ 1.

Next we claim that

(28) S̃(ψ) = q(ψ)S(ψ).

To prove (28) it suffices to show that∫ 2π

0

cot

(
ϕ− ψ

2

)
(q(ψ)− q(ϕ))T (ϕ)dσ(ϕ) = 0

which follows immediately by q(ψ)− q(ϕ) = const sin
(

ϕ−ψ
2

)
and the orthogonality

property of T with respect to T0,1/2.
Therefore, by (28) and (27), if we are able to show that the leading coefficients

of S̃(ϕ) and (qR)(ϕ) coincide, i.e., S̃ − qR ∈ Tñ, representation (15) follows for n
is odd also.

Because of (20) we know the leading coefficients of (qT )(ϕ) and (qR)(ϕ). By
applying (24) and (25) to (qT )(ψ)− (qT )(ϕ) it follows that the leading coefficients

of S̃ are equal to those of qR. Hence, S̃ = qR and the theorem is proved.
The statement on the positivity of the μs follows immediately by (26).
The last equality in (17) follows by partial fraction expansion and (2). �
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Theorem 2.2 (which turns out to be crucial in the Szegő-Kronrod quadrature
[21] for instance) does not show how to obtain a constructive description of positive
trigonometric qf. Such a description will be obtained by OPUC’s in the next section.

3. The characterization theorem

First let us recall that the monic polynomials Φn(z) of degree n, n ∈ N0, are the

polynomials orthogonal with respect to dσ, where 1
2π

∫ 2π

0
dσ = 1, and that the aj ’s

are their recurrence coefficients; see (6).

Theorem 3.1. The following four statements are equivalent:

a)

(29)
1

2π

2π∫
0

e−ikϕdσ(ϕ) =
n∑

s=1

μse
−ikϕs for k = 0, . . . ,±(n−m− 1)

where 0 ≤ ϕ1 < ϕ2 < · · · < ϕn < 2π and μ1, . . . , μn ∈ R+.
b) There exists a polynomial Φ̃n−1(z) = zn−1+ . . . generated by the recurrence

relation

(30) Φ̃j(z) = zΦ̃j−1(z)− ãj−1Φ̃
∗
j−1(z),

where

(31) |ãj | < 1 for j = 0, . . . , n− 2 and ãj = aj for j = 0, . . . , n−m− 2,

and a η ∈ T such that

(32) zΦ̃n−1 + ηΦ̃∗
n−1 =

n∏
s=1

(z − eiϕs).

c) There exists a polynomial qm(z) = zm+ . . . which has all its zeros in D and
η ∈ T such that

(33) zqmΦn−m−1 + ηq∗mΦ∗
n−m−1 =

n∏
s=1

(z − eiϕs).

d) There exists a polynomial pn−1(z) = zn−1 + . . . which has all its zeros in D

and η ∈ T such that

(34) zpn−1 + ηp∗n−1 =

n∏
s=1

(z − eiϕs)

and

(35)
ηp∗n−1 − zpn−1

ηp∗n−1 + zpn−1
= 1 + 2

n−m−1∑
k=1

ckz
k +O(zn−m)

where ck = 1
2π

2π∫
0

e−ikϕdσ(ϕ).

Proof. a) ⇒ b) Since μ1, . . . , μn > 0 it follows that the sequence

(36) c̃k =

n∑
s=1

μse
−ikϕs k = 0, . . . , n− 1
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is positive definite; see [1]. Thus the polynomials Φ̃j , j = 0, . . . , n − 1, orthogo-
nal with respect to the positive definite sequence c̃0, . . . , c̃n−1 satisfy a recurrence
relation of the form (30) with |ãj | < 1 for j = 0, . . . , n− 2. Since by assumption

(37) c̃k =
1

2π

∫
e−ikϕdσ(ϕ) k = 0, . . . , n−m− 1

it follows that (see e.g. [8, (3.2)])

(38) ãk = ak for k = 0, . . . , n−m− 2.

Finally, we know [8, Thm. 6.1] that for any an−1 with |an−1| = 1,

−
zΨ̃n−1 − an−1Ψ̃

∗
n−1

zΦ̃n−1 + an−1Φ̃∗
n−1

= 1 + 2
n−1∑
k=1

c̃kz
k +O(zn)

(39)

= −
n∑

s=1

μs
z + eiϕs

z − eiϕs
+O(zn).

Putting an−1 = −eiϕ1Φ̃n−1(e
iϕ1)/Φ̃∗

n−1(e
iϕ1), that is, the denominator in (39)

vanishes at eiϕ1 , it follows that (see [8, (9.5)])

(40) zΦ̃n−1 + an−1Φ̃
∗
n−1 =

n∏
s=1

(z − eiϕs).

b) ⇒ a) By (30) and the first condition of (31), Φ̃n−1(z), is orthogonal with
respect to some positive measure σ̃. Thus (32) holds for any η with |η| = 1 and

(41)
1

2π

+π∫
−π

e−ikϕdσ̃(ϕ) =

n∑
s=1

μse
−ikϕs for k = 0, . . . , n− 1

where μ1, . . . , μn ∈ R
+. Since ãj = aj for j = 0, . . . , n − m − 2 it follows that

Φ̃j = Φj and Ψ̃j = Ψj for j = 0, . . . , n−m−1 and thus the first n−m−1 moments
of σ and σ̃ coincide, that is,

(42)

∫
e−ikϕdσ̃(ϕ) =

∫
e−ikϕdσ(ϕ) k = 0, . . . , n−m− 1

which gives by (41) the assertion.
b) ⇒ c) Let

(43) qj(z) = zqj−1(z)− ηãn−1−jq
∗
j−1(z) j = 1, 2, . . . ,m

with q0(z) = 1. Then it follows by induction arguments using (6) and (7) that

(44) zΦ̃n−1 + ηΦ̃∗
n−1 = zqjΦ̃n−j + ηq∗j Φ̃

∗
n−j .

In view of (43) qj has all zeros in D; see e.g. [22].
We note that it follows analogously by induction arguments that

(45) zΨ̃n−1 − ηΨ̃∗
n−1 = zqjΨn−j − ηq∗jΨ

∗
n−j .

c) ⇒ b) Since qm(z) has all zeros in D, qm can be generated by a recurrence
relation of the form

(46) qj(z) = zqj−1(z)− ηbj−1qj−1(z) j = 1, . . . ,m
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where |bj | < 1 for j = 0, . . . ,m − 1 and q0(z) = 1. Hence, defining the polyno-

mial Φ̃n−1 by the recurrence relation (6) with recurrence coefficients for OPUC’s
a0, . . . , an−m−1, bm−1, . . . , b0 it follows as above that (32) holds, which implies b).

c) ⇒ d) We put

zqmΦn−m−1 + ηq∗mΦ∗
n−m−1 = zpn−1 + ηp∗n−1,

(47)
zqmΨn−m−1 − ηq∗mΨ∗

n−m−1 = zpn−1 − ηp∗n−1;

that is,

2zpn−1 = zqm(Φn−m−1 +Ψn−m−1) + ηq∗m(Φ∗
n−m−1 −Ψ∗

n−m−1),
(48)

2ηp∗n−1 = zqm(Φn−m−1 −Ψn−m−1) + ηq∗m(Φ∗
n−m−1 +Ψ∗

n−m−1).

Let us demonstrate that p∗n−1 has no zero in D. It is known (see (1.3.82), (3.2.62)

and (3.2.63)) from [22] that Φ∗
n−m−1 +Ψ∗

n−m−1 has no zeros in D. We claim that

(49) |z(Φn−m−1 −Ψn−m−1)

Φ∗
n−m−1 +Ψ∗

n−m−1

| < 1 for |z| ≤ 1.

By the maximum principle it suffices to show (49) for |z| = 1. Since on |z| = 1,

(50) |z(Φn−m−1 −Ψn−m−1)

Φ∗
n−m−1 +Ψ∗

n−m−1

| = |
Φ∗

n−m−1 −Ψ∗
n−m−1

Φ∗
n−m−1 +Ψ∗

n−m−1

|

and since by [8, (10.3)],

(51) Re
Ψ∗

n−m−1(e
iϕ)

Φ∗
n−m−1(e

iϕ)
> 0,

it follows that the last expression in (50) is less than 1 and thus (49) is proved.
Since qm has all zeros in D there holds |qm(z)/q∗m(z)| < 1 on D, which implies by
(49) and (48) that p∗n−1 has no zero in D. Finally, relation (35) follows with the
help of the relations (see [22, Prop. 3.2.9])

(52) Φn−m−1(z)F (z) + Ψn−m−1(z) = O(zn−m−1)

and

(53) Φ∗
n−m−1(z)F (z)−Ψ∗

n−m−1(z) = O(zn−m)

and (47).
d) ⇒ c) The proof runs as in [17, p. 939]. To make the paper self-contained we

sketch it. According to [8, Theorem 18.2] there exists a function h : C → C which
is analytic in D and satisfies the inequality |h(z)| < 1 for z ∈ D, such that

(54)
ηp∗n−1(z)− zpn−1(z)

ηp∗n−1(z) + zpn−1(z)
= −

zΨn−1−m(z)h(z)−Ψ∗
n−m−1(z)

zΦn−1−m(z)h(z) + Φ∗
n−m−1(z)

.

Isolating h from this equality we find that h can be represented by

(55) h(z) =
ql(z)

q∗l (z)
, where ql(z) =

l∏
i=1

(z − zi), zi ∈ D,

ql has real coefficients, and l ≥ m.
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Let us assume that l > m. Then it follows from (54) that −zΨn−1−mh+Ψ∗
n−m−1

and zΦn−1−mh + Φ∗
n−m−1 have (l − m) common zeros on |z| = 1, which implies

that

(56)
Φn−m−1

Φ∗
n−m−1

+
Ψn−m−1

Ψ∗
n−m−1

has (l −m) zeros on |z| = 1. But this is impossible, since (see [8, p. 4])

(57) Ωn−m−1Ψ
∗
n−m−1 +Ψn−m−1Φ

∗
n−m−1 = Kzn−1−m,

where K ∈ R+.
a) ⇒ d) Let

(58) ck =
1

2π

2π∫
0

e−ikϕdσ(ϕ) =
n∑

s=1

μse
−ikϕs for k = 0, . . . , n−m− 1.

Hence, by expansion at z = 0,

(59) −
n∑

s=1

μs
z + eiϕs

z − eiϕs
= 1 + 2

n−1−m∑
k=1

ckz
k +O(zn−m).

Now the left-hand side is a rational function with real part zero on |z| = 1 whose
numerator and denominator is a polynomial of degree n. Thus it may be written
as

(60)
ηp∗n(z)− pn(z)

ηp∗n(z) + pn(z)
= −

n∑
s=1

μs
z + eiϕs

z − eiϕs
= 1 + . . . ,

hence

(61) pn(z) = zpn−1(z).

Moreover, by (60), partial fraction expansion and the suppositions on μs, and using
z d
dz f(z) = −i d

dϕf(e
iϕ), we obtain that

(62) μs =
(ηp∗n − pn)(e

iϕs)

2i d
dϕ (pn + ηp∗n)(e

iϕ)ϕ=ϕs

> 0.

Thus the trigonometric polynomials

Im{η−1/2e−in
2 ϕpn(e

iϕ)} and Re{η−1/2e−in
2 ϕpn(e

iϕ)}

have strictly interlacing zeros, which implies by the argument principle that pn has
all zeros in D. By (59) and (60) the implication is proved.

d) ⇒ a) Since pn := zpn−1 has all zeros in D it follows that ηp∗n±pn has all zeros
in ∂D and that the zeros of ηp∗n − pn and ηp∗n + pn strictly interlace. Hence, (62)
and thus (60) holds with μs > 0 for s = 1, . . . , n. Expanding the second expression
from (60) in a series at z = 0 part a) follows. �

Obviously, Theorem 3.1 could be proved in a shorter way, that is, by showing the
implications a)⇒b)⇒ · · · ⇒d)⇒a) only. But by proving all equivalences separately
we get additional insights, for instance:
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Remark 3.2. In the proof of Theorem 3.1, c)⇒b) we have shown that Φ̃n−1 is
generated by the recurrence coefficients a0, . . . , an−m−1, bm−1, . . . , b0 when qm is
generated by

(63) qj(z) = zqj−1(z)− ηb̄j−1q
∗
j−1(z) j = 1, . . . ,m

q0(z) = 1, with |bj | < 1, j = 0, . . . ,m − 1. Note that every polynomial qm which
has all zeros in D can be generated by a recurrence relation of the form (6); see [8,
Thm. 9.2].

The ideas of proof for Theorem 3.1c) and d) go back essentially to the author’s
papers [16, 17] where positive qf on [−1, 1] have been characterized by transforming
the problem to the unit circle. For the connection with qf on [−1, 1] see Section 5
below.

Finally, we point out that recurrence relation (30), under condition (31), offers
a simple, constructive way to generate positive trigonometric (n− 1−m,n, dσ) qf.

With the help of Theorem 3.1 we get easily some information on the location of
the nodes of positive qf on the unit circle.

Corollary 3.3. Let l,m ∈ N0,m ≤ l, and let zΦn−1−l + κΦ∗
n−1−l =

∏n−1−l
ν=1 (z −

eiψν ), κ ∈ T, be a Szegő polynomial. Suppose that Tn(z) =
∏n

s=1(z−eiϕs) generates
a positive (n − 1 − m,n, dσ) qf. Then in every interval (ψν , ψν+1), ν = 0, . . . , l,
there is at least one ϕs.

Furthermore, every common zero of Tn and zΦn−1−l + κΦ∗
n−1−l is a zero of

κql(z) − ηq∗l (z), where ql and η is given by the representation Tn = zqlΦn−1−l +
ηq∗l Φ

∗
n−1−l.

Proof. By Theorem 3.1 and the obvious fact that every (n − 1 −m,n, dσ) qf is a
(n− 1− l, n, dσ) qf for l ≥ m, Tn has a representation of the form

(64) Tn = zqlΦn−1−l + ηq∗l Φ
∗
n−1−l

where ql has all zeros in D. Hence, Tn(e
iϕs) = 0 if and only if for some k ∈ Z,

(65) arg η + (2k+ 1)π = arg
zqlΦn−1−l

q∗l Φ
∗
n−1−l

(eiϕs) = arg
ql
q∗l

(eiϕs) + arg
zΦn−1−l

Φ∗
n−1−l

(eiϕs)

and the condition for a zero of the Szegő polynomial looks similar. Now recall that
the argument of a Blaschke product is strictly increasing on |z| = 1 with respect to

ϕ. Thus on [ψν , ψν+1], arg
zΦn−1−l

Φ∗
n−1−l

increases by 2π and, taking a look at the RHS

of (65), arg zqlΦn−1−l

q∗l Φ
∗
n−1−l

increases by more than 2π on [ψν , ψν+1], that is, Tn has at

least one zero in (ψν , ψν+1) and the assertion is proved. �
For the special case that Tn = zΦn−1 + ηΦ∗

n−1 the zero property given in the
above corollary was proved by Simon [24, Theorem 2.3] by a completely different
approach. For related statements in the real case see [2, 18, 19, 25].

For the convenience of the reader let us reformulate parts of Theorem 3.1 in
terms of trigonometric polynomials.

Corollary 3.4. ϕ1, ..., ϕn, 0 ≤ ϕ1 < ϕ2, ..., ϕn < 2π, are the nodes of a positive
trigonometric (n − 1 − m,n, dσ) quadrature formula if and only if there exists a

polynomial Φ̃n−1(z) satisfying (30) and (31) and η ∈ T such that, z = eiϕ,

(66) η−1/2z−n/2
n∏

s=1

(z − eiϕs) = 2Re{z−n
2 η1/2Φ̃∗

n−1(z)}.
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Proof. The statement follows immediately by Theorem 3.1 a) and b) and the obvi-
ous relations, z = eiϕ,

η−1/2z−
n
2

[
zΦ̃n−1(z) + ηΦ̃∗

n−1(z)
]
= 2Re{z−n

2 +1η−1/2Φ̃n−1(z)}(67)

= 2Re{z−n
2 η1/2Φ̃∗

n−1(z)}. �

We need the following lemma which can be extracted easily from [26] or [9, pp.
144-145].

Lemma 3.5. Let μ be a positive measure on [0, 2π], let ñ ∈ N, γ ∈ {0, 1/2} and
n = 2(ñ+ γ). Let Pn−1(z) = zn−1 + ... be such that

(68)

∫ 2π

0

e−ikϕPn−1(e
iϕ)dμ(ϕ) = 0 for k = 0, ..., n− 2.

Then for any η ∈ T,

(69)

∫ 2π

0

t(ϕ)Re{η1/2e−in
2 ϕP ∗

n−1(e
iϕ)}dμ(ϕ) = 0 for t ∈ Tñ−1,γ .

Proof. Relation (69) is equivalent to∫ 2π

0

e−i(n
2 −1∓(k+γ))ϕPn−1(e

iϕ)dμ(ϕ)

+η

∫ 2π

0

e−i(n
2 ∓(k+γ))ϕP ∗

n−1(e
iϕ)dμ(ϕ) = 0 for k = 0, ..., ñ− 1.

(70)

Now the first integral is zero by (68) and thus the second integral also by taking
the complex conjugate of it. �

With the help of the above lemma we get an explicit weight function depending
on n with respect to which the trigonometric nodes polynomial has maximal or-
thogonality. Furthermore, we obtain the orthogonality property (12) of the nodes
polynomial (66) by an approach via OPUC’s.

Corollary 3.6. Let n = 2(ñ + γ), where ñ ∈ N and γ ∈ {0, 1/2}. If ϕ1, ..., ϕn,
0 ≤ ϕ1 < ϕ2, ..., ϕn < 2π, are the nodes of a positive trigonometric (n−1−m,n, dσ)
qf, then there exists a polynomial qm(z) which has all zeros in |z| < 1 and η ∈ T

such that Re{η1/2z−n
2 (q∗mΦ∗

n−1−m)(z)}, z = eiϕ, is the nodes polynomial and∫ 2π

0

t(ϕ)Re{η1/2e−in
2 ϕ(q∗mΦ∗

n−1−m)(eiϕ)} dϕ

|(q∗mΦ∗
n−1−m)(eiϕ)|2

= 0 for t ∈ Tñ−1,γ .

(71)

Moreover,

(72)

∫ 2π

0

t(ϕ)Re{η1/2e−in
2 ϕ(q∗mΦ∗

n−1−m)(eiϕ)}dσ(ϕ) = 0 for t ∈ Tñ−1−m,γ .

Proof. By Theorem 3.1 qmΦn−1−m has all zeros in D; hence, see e.g. [8, 25],∫ 2π

0

e−ikϕ(qmΦn−1−m)(eiϕ)
dϕ

|(q∗mΦ∗
n−1−m)(eiϕ)|2 = 0 for k = 0, ..., n− 2.

Applying Lemma 3.5 the orthogonality property (71) follows.



POSITIVE QUADRATURE FORMULAS 1697

Since |q∗m(eiϕ)|2 is from Tm we obtain from (71), by putting t(ϕ) = t̃(ϕ)|q∗m(eiϕ)|2,
t̃ ∈ Tñ−1−m,γ , that (72) holds with respect to the measure dϕ/|Φ∗

n−1−m(eiϕ)|2 in-
stead of dσ; but, see [7, Thm 2.2, p. 198],∫ 2π

0

e±ikϕdσ(ϕ) =

∫ 2π

0

e±ikϕ dϕ

|Φ∗
n−1−m(eiϕ)|2 for k = 0, ..., n− 1−m

and thus relation (72) follows, taking into consideration the fact that the orthogo-
nality property (72) depends on the first n−m−1 = 2ñ+2γ−m−1 trigonometric
moments of dσ only. �

We note that in general Im{z−n
2 η1/2Φ̃∗

n−1(z)}, Φ̃n−1 given by (30) and (31),

does not coincide with Im{z−n
2 η1/2(q∗mΦ∗

n−1−m)(z)}, since
zΦ̃n−1 − ηΦ̃∗

n−1 = zq̃mΦn−1−m − ηq̃∗mΦ∗
n−1−m,

where q̃m is given by q̃j(z) = zq̃j−1(z)+η¯̃an−1−j q̃
∗
j−1(z), j = 1, 2, ...,m with q̃0(z) =

1, which should be compared with (43).

4. Asymptotics of weights

As a consequence of Theorem 3.1 we obtain the following representation of the
quadrature weights needed in what follows. Note that only the Φn’s and qm’s and
no Ψn’s appear in the representation.

Corollary 4.1. The quadrature weights μs from (29) can be represented in the
form

(73) μs =
−ηKn−m−1z

n−1
s |qm(zs)|2

(zΦn−m−1qm − ηΦ∗
n−m−1q

∗
m)(zs)(zΦn−m−1qm + ηΦ∗

n−m−1q
∗
m)′(zs)

where zs = eiϕs and Kn−m−1 = 2
∏n−m−2

j=0 (1− |aj |2).

Proof. By (9), (44) and (45) it follows that

(74) μs =
1

2zs

(zΨn−m−1qm − ηΨ∗
n−m−1q

∗
m)(zs)

(zΦn−m−1qm + ηΦ∗
n−m−1q

∗
m)′(zs)

.

Now, at the zeros of zΦn−m−1qm + ηΦ∗
n−m−1q

∗
m we have

(zΦn−m−1qm − ηΦ∗
n−m−1q

∗
m)(zΨn−m−1qm − ηΨ∗

n−m−1q
∗
m)

= −2ηzqmq∗m(Φn−m−1Ψ
∗
n−m−1 +Ψn−m−1Φ

∗
n−m−1)

= −2ηzqmq∗mKn−m−1z
n−m−1

where in the last equality we used the known fact that [8, (5.6)]

(75) Φn−m−1Ψ
∗
n−m−1 +Ψn−m−1Φ

∗
n−m−1 = Kn−m−1z

n−m−1

which gives by (74) the assertion. �
Theorem 4.2. Let dσ(ϕ) = f(ϕ)dϕ be positive and from Lip γ, 0 < γ ≤ 1 on
[α, β] ⊆ [0, 2π]. Suppose that ϕ1,n, ..., ϕn,n, 0 ≤ ϕ1,n < ϕ2,n < · · · < ϕn,n < 2π
generates a sequence of positive (n − m(n) − 1, n, w) qf with quadrature weights
μs,n. Furthermore, let us assume that the associated qm(n) satisfy uniformly on
[α, β],

lim
n

⎛
⎝1− 2

n
Re{eiϕ

q∗
′

m(n)(e
iϕ)

q∗m(n)(e
iϕ)

}

⎞
⎠ = g(ϕ).
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Then uniformly for ϕs,n ∈ [α+ ε, β − ε], ε > 0,

(76)
1

nμs,n
=

g(ϕs,n)

f(ϕs,n)
+ o(1).

Proof. First let us note that (73) can be written in the form

− 4μs =

Kn−m−1|qm(eiϕs)|2

Im{e−in
2 ϕs(η1/2q∗mΦ∗

n−m−1)(e
iϕs)} d

dϕRe{e−in
2 ϕ(η1/2q∗mΦ∗

n−m−1)(e
iϕ)}ϕ=ϕs

.
(77)

Now

Im{e−in
2 ϕ(η1/2q∗mΦ∗

n−m−1)(e
iϕ)} d

dϕ
Re{e−in

2 ϕ(η1/2q∗mΦ∗
n−m−1)(e

iϕ)}

− Re{e−in
2 ϕ(η1/2q∗mΦ∗

n−m−1)(e
iϕ)} d

dϕ
Im{e−in

2 ϕ(η1/2q∗mΦ∗
n−m−1)(e

iϕ)}

= Im{(e−in
2 ϕ(η1/2q∗mΦ∗

n−m−1)(e
iϕ))

d

dϕ
(e−in

2 ϕ(η1/2q∗mΦ∗
n−m−1)(e

iϕ))}

= Im{−i
n

2
|(q∗mΦ∗

n−m−1)(e
iϕ)|2 + (q∗mΦ∗

n−m−1)(e
iϕ)

d

dϕ

(
(q∗mΦ∗

n−m−1)(e
iϕ)

)
}

(78)

and thus, since the eiϕs are the zeros of Re{e−in
2 ϕ(η1/2q∗mΦ∗

n−m−1)(e
iϕ)}, we may

replace the denominator in (77) by the last expression from (78) which yields

(79) μs|(q∗mΦ∗
n−m−1)(e

iϕs)|2 =
Kn−m−1|q∗m(eiϕs)|2

4Im{in2 − ieiϕs
(q∗mΦ∗

n−m−1)
′(eiϕs )

(q∗mΦ∗
n−m−1)(e

iϕs ) }
.

Now by the assumptions on f it is known (see e.g. [25, 22]) that uniformly on
[α+ ε, β − ε], ε > 0,

(80) lim
n→∞

Kn−m(n)−1

2|Φ∗
n−m(n)−1(e

iϕ)|2 =
1

|D(eiϕ, σ)|2 = f(ϕ)

taking into consideration that

(81) lim
n

Kn−m(n)−1/2 = 1/D(0, σ),

where D(z, σ) is the so-called Szegő function, that is,

(82) D(z) = exp{ 1

2π

2π∫
0

eiϕ + z

eiϕ − z
log f(ϕ)dϕ}.

Next let us prove that (80) and (81) imply that uniformly on [α+ε, β−ε], ε > 0,

(83)
1

n
|
Φ∗′

2n−1−m(eiϕ)

Φ∗
2n−1−m(eiϕ)

| −→
n→∞

0.
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Indeed, by the local version of Bernstein’s inequality

max
ϕ∈[α+ε,β−ε]

| d
dϕ

Φ∗
2n−m−1(e

iϕ)| ≤ const

× ((2n−m− 1) max
ϕ∈[α,β]

|Φ∗
2n−m−1(e

iϕ)− Φ∗
[
√
2n−m−1](e

iϕ)|

+
√
2n−m− 1 max

ϕ∈[α,β]
|Φ∗

[
√
2n−m−1]

(eiϕ)|)

(84)

which gives by (80) and (81), in conjunction with the facts that D(eiϕ) �= 0 on
[α, β] and m(n) ≤ n, relation (83). �

5. Connection to positive qf on [−1, 1]

Remark 5.1. Let m,n ∈ N0, 0 ≤ m ≤ 2n− 1. Obviously, using the symmetry with
respect to π we have

(85)

+1∫
−1

p(x)dψ(x) =
n∑

s=1

λsp(xs) for p ∈ P2n−1−m,

where −1 < xn < · · · < x1 < 1 and λ1, . . . , λn ∈ R
+, if and only if

(86)

+π∫
−π

t(ϕ)dσ(ϕ) =

n∑
s=1

λs(t(ϕs) + t(−ϕs)) for t ∈ T2n−1−m,

where the ϕs = arccosxs satisfy 0 < ϕ1 < ϕ2 < · · · < ϕn < π, and σ is given by

σ(ϕ) =

{
ψ(1)− ψ(cosϕ) for 0 ≤ ϕ ≤ π,

ψ(cosϕ)− ψ(1) for − π ≤ ϕ ≤ 0.

Note that, x = 1
2 (z +

1
z ),

2nzn
n∏

s=1

(x− xs) =
n∏

s=1

(z − eiϕs)(z − e−iϕs).

By this equivalence and Theorem 3.1 we obtain immediately a complete descrip-
tion of positive qf of degree of exactness 2n − 1 −m on [−1, 1]. Indeed, Theorem
3.1c) and d) will lead to characterizations given by the author in [16]. In fact, in
[16] we transformed the problem in the proof to the unit circle and solved it there,
that is, we proved Theorem 3.1c) and d) in the real case and transformed it back.
It can be shown that the characterization by the recurrence relation, that is, by
Theorem 3.1b) yields, using the connection between the recurrence coefficients of
OPUC’s and the recurrence coefficients of polynomials orthogonal on [−1, 1] (see
[23, (13.1.7)] or [8, Thm. 31.1]), the characterization of positive qf on [−1, 1] by
the three-term recurrence relation given in [17, 19] by the author; see also [20].

When we consider Radau or Lobatto qf on [−1, 1] (see [20, Section 4]) that is,
that one or two nodes are the boundary points ±1 the corresponding equivalence
is as follows: Let us consider the Radau case, that is, the boundary point 1 is a
node—analogously the other cases are obtained—then

(87)

∫
p(x)dψ(x) =

n∑
s=1

λsp(xs) + λ0p(+1) for p ∈ P2n−m,
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where −1 < xn < · · · < x1 < 1 and λ0, λ1, . . . , λn ∈ R+, if and only if

(88)

+π∫
−π

t(ϕ)dσ(ϕ) =
λ0

2
t(ϕ0) +

n∑
s=1

λs(t(ϕs) + t(−ϕs)) for t ∈ T2n−m,

where the ϕs = arccosxs satisfy ϕ0 = 0 < ϕ1 < ϕ2 < · · · < ϕn < π and where
λ0, λ1, . . . , λn ∈ R

+.
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