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RIESZ BASES OF WAVELETS AND APPLICATIONS

TO NUMERICAL SOLUTIONS OF ELLIPTIC EQUATIONS

RONG-QING JIA AND WEI ZHAO

Abstract. We investigate Riesz bases of wavelets in Sobolev spaces and their
applications to numerical solutions of the biharmonic equation and general
elliptic equations of fourth-order.

First, we study bicubic splines on the unit square with homogeneous bound-
ary conditions. The approximation properties of these cubic splines are estab-
lished and applied to convergence analysis of the finite element method for
the biharmonic equation. Second, we develop a fairly general theory for Riesz
bases of Hilbert spaces equipped with induced norms. Under the guidance of
the general theory, we are able to construct wavelet bases for Sobolev spaces
on the unit square. The condition numbers of the stiffness matrices associated
with the wavelet bases are relatively small and uniformly bounded. Third, we
provide several numerical examples to show that the numerical schemes based
on our wavelet bases are very efficient. Finally, we extend our study to general
elliptic equations of fourth-order and demonstrate that our numerical schemes
also have superb performance in the general case.

1. Introduction

In this paper, we investigate Riesz bases of wavelets in Sobolev spaces and their
applications to numerical solutions of the biharmonic equation and general elliptic
equations of fourth-order.

We use N, Z, R, and C to denote the set of positive integers, integers, real
numbers, and complex numbers, respectively. For s ∈ N, we use Rs to denote
the s-dimensional Euclidean space with the inner product of x = (x1, . . . , xs) and
y = (y1, . . . , ys) in Rs given by x · y := x1y1 + · · ·+ xsys.

Let N0 := N ∪ {0}. An element of Ns
0 is called a multi-index. The length

of a multi-index μ = (μ1, . . . , μs) ∈ Ns
0 is given by |μ| := μ1 + · · · + μs. For

μ = (μ1, . . . , μs) ∈ N
s
0 and x = (x1, . . . , xs) ∈ R

s, define xμ := xμ1

1 · · ·xμs
s . A

polynomial is a finite sum of the form
∑

μ cμx
μ with cμ being complex numbers.

The degree of a polynomial q =
∑

μ cμx
μ is defined to be deg q := max{|μ| : cμ �= 0}.

By Πk we denote the linear space of all polynomials of degree at most k.
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Let Ω be a (Lebesgue) measurable subset of Rs. Suppose f is a complex-valued
(Lebesgue) measurable function on Ω. For 1 ≤ p < ∞, let

‖f‖p,Ω :=

(∫
Ω

|f(x)|p dx
)1/p

,

and let ‖f‖∞,Ω denote the essential supremum of |f | on Ω. When Ω = Rs, we omit
the reference to Rs. For 1 ≤ p ≤ ∞, by Lp(Ω) we denote the Banach space of
all measurable functions f on Ω such that ‖f‖p,Ω < ∞. Equipped with the norm
‖·‖p,Ω, Lp(Ω) becomes a Banach space. For p = 2, L2(Ω) is a Hilbert space with

the inner product given by 〈f, g〉 :=
∫
Ω
f(x)g(x) dx, f, g ∈ L2(Ω). Let EΩ be the

extension operator that maps each function f on Ω to the function f̃ on Rs given
by f̃(x) := f(x) for x ∈ Ω and f̃(x) := 0 for x ∈ R

s \ Ω. Then EΩ is an embedding
from Lp(Ω) to Lp(R

s). We may identify Lp(Ω) with EΩ(Lp(Ω)). Thus we may view
Lp(Ω) as the subspace of Lp(R

s) consisting of all functions in Lp(R
s) that vanish

outside Ω.
For a vector y = (y1, . . . , ys) ∈ R

s, let Dy denote the differential operator given
by

Dyf(x) := lim
t→0

f(x+ ty)− f(x)

t
, x ∈ R

s.

Moreover, we use ∇y to denote the difference operator given by ∇yf = f−f(·−y).
Let e1, . . . , es be the unit coordinate vectors in Rs. For j = 1, . . . , s, we write Dj

for Dej . For a multi-index μ = (μ1, . . . , μs), we use Dμ to denote the differential
operator Dμ1

1 · · ·Dμs
s .

Suppose Ω is a (nonempty) open subset of Rs. Let C(Ω) be the linear space of all
continuous functions on Ω. By Cc(Ω) we denote the linear space of all continuous
functions on Ω with compact support contained in Ω. For an integer r ≥ 0, we use
Cr(Ω) to denote the linear space of those functions f on Ω for which Dαf ∈ C(Ω)
for all |α| ≤ r. Let C∞(Ω) :=

⋂∞
r=0C

r(Ω) and C∞
c (Ω) := Cc(Ω) ∩ C∞(Ω). For

k ∈ N0 and 1 ≤ p ≤ ∞, the Sobolev spaceW k
p (Ω) consists of all functions f ∈ Lp(Ω)

such that for each multi-index α with |α| ≤ k, Dαf exists in the distributional sense
and belongs to Lp(Ω).

The Fourier transform of a function f ∈ L1(R
s) is defined by

f̂(ξ) :=

∫
Rs

f(x)e−ix·ξ dx, ξ ∈ R
s,

where i denotes the imaginary unit. The Fourier transform can be naturally

extended to functions in L2(R
s). By the Plancherel theorem, we have ‖f̂‖2 =

(2π)s/2‖f‖2.
For μ ≥ 0, we denote by Hμ(Rs) the Sobolev space of all functions f ∈ L2(R

s)
such that the semi-norm

(1.1) |f |Hμ(Rs) :=

(
1

(2π)s

∫
Rs

|f̂(ξ)|2(ξ21 + · · ·+ ξ2s )
μ dξ

)1/2

is finite. The space Hμ(Rs) is a Hilbert space with the inner product given by

〈f, g〉Hμ(Rs) :=
1

(2π)s

∫
Rs

f̂(ξ) ĝ(ξ)
[
1 + (ξ21 + · · ·+ ξ2s )

μ
]
dξ, f, g ∈ Hμ(Rs).
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For μ > 0, the norm in Hμ(Rs) is given by ‖f‖Hμ(Rs) = (〈f, f〉Hμ(Rs))
1/2. For a

(nonempty) open subset Ω of Rs, we use Hμ
0 (Ω) to denote the closure of C∞

c (Ω) in
Hμ(Rs).

If μ = k ∈ N, then Hk(Rs) = W k
2 (R

s). Suppose u ∈ Hk(Rs) for some k ∈ N.
For |α| ≤ k we have Dαu ∈ L2(R

s) and

(Dαu)̂ (ξ) = (iξ)αû(ξ), ξ ∈ R
s.

Let Δ := D2
1 + · · ·+D2

s be the Laplace operator. For u ∈ H2(Rs) we have

(Δu)̂ (ξ) = −(ξ21 + · · ·+ ξ2s )û(ξ), ξ = (ξ1, . . . , ξs) ∈ R
s.

Suppose u ∈ H2
0 (Ω). By the Plancherel theorem we have

‖Δu‖2L2(Ω) = (2π)−s

∫
Rs

(ξ21 + · · ·+ ξ2s )
2|û(ξ)|2 dξ, u ∈ H2

0 (Ω).

This together with (1.1) gives

(1.2) ‖Δu‖L2(Ω) = |u|H2
0 (Ω) ∀u ∈ H2

0 (Ω).

If, in addition, Ω is bounded, then we have the Poincaré inequality (see, e.g., [12,
Chap. 5]):

(1.3) ‖u‖H2
0 (Ω) ≤ C|u|H2

0 (Ω) ∀u ∈ H2
0 (Ω),

where C is a constant independent of u. But C depends on Ω.
Now suppose that Ω is a bounded and connected open subset of Rs, and its

boundary ∂Ω is Lipschitz continuous. We are interested in the biharmonic equation
with the homogeneous boundary conditions:

(1.4)

{
Δ2u = f in Ω,
u = ∂u

∂n = 0 on ∂Ω,

where f is a given function in L2(Ω) and ∂u
∂n denotes the derivative of u in the

direction normal to the boundary ∂Ω. For u, v ∈ H2
0 (Ω), it follows from (1.2) and

(1.3) that

〈Δu,Δu〉 = ‖Δu‖2L2(Ω) = |u|2H2
0 (Ω) ≥ ‖u‖2H2

0 (Ω)/C.

Moreover, by (1.2) we have

|〈Δu,Δv〉| ≤ ‖Δu‖L2(Ω)‖Δv‖L2(Ω) = |u|H2
0 (Ω)|v|H2

0 (Ω).

Hence, by the Lax-Milgram theorem, there exists a unique element u ∈ H2
0 (Ω) such

that

(1.5) 〈Δu,Δv〉 = 〈f, v〉 ∀ v ∈ H2
0 (Ω).

This u is the weak solution to the biharmonic equation (1.4).
In order to solve the variational problem (1.5), we use finite dimensional sub-

spaces to approximate H2
0 (Ω). Let V be a subspace of H2

0 (Ω) with {v1, . . . , vm} as
its basis. We look for y1, . . . , ym ∈ C such that u :=

∑m
k=1 ykvk satisfies the system

of equations

〈Δu,Δvj〉 = 〈f, vj〉, j = 1, . . . ,m.

This system of equations can be written as

(1.6)
m∑

k=1

ajkyk = bj , j = 1, . . . ,m,
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where bj := 〈f, vj〉 and ajk := 〈Δvk,Δvj〉, j, k ∈ {1, . . . ,m}. Often v1, . . . , vm
are chosen to be finite elements over a triangulation of Ω with mesh size h >
0. Under suitable conditions, the condition number κ(A) of the stiffness matrix
A := (ajk)1≤j,k≤m is estimated by κ(A) = O(h−4). Consequently, A becomes
ill-conditioned when h is small. Thus, without preconditioning, it would be very
difficult to solve the system of linear equations in (1.6) efficiently.

The above discussion leads us to study Riesz bases in Hilbert spaces. Let H be
a Hilbert space. The inner product of two elements u and v in H is denoted by
〈u, v〉. The norm of an element u in H is given by ‖u‖ :=

√
〈u, u〉. Let J be a

countable index set. A sequence (vj)j∈J in a Hilbert space H is said to be a Bessel
sequence if there exists a constant C such that the inequality

(1.7)

∥∥∥∥∑
j∈J

cjvj

∥∥∥∥ ≤ C

(∑
j∈J

|cj |2
)1/2

holds for every sequence (cj)j∈J with only finitely many nonzero terms. A sequence
(vj)j∈J in H is said to be a Riesz sequence if there exist two positive constants
C1 and C2 such that the inequalities

(1.8) C1

(∑
j∈J

|cj |2
)1/2

≤
∥∥∥∥∑
j∈J

cjvj

∥∥∥∥ ≤ C2

(∑
j∈J

|cj |2
)1/2

hold for every sequence (cj)j∈J with only finitely many nonzero terms. We call
C1 a Riesz lower bound and C2 a Riesz upper bound. If (vj)j∈J is a Riesz
sequence in H and the linear span of (vj)j∈J is dense in H, then (vj)j∈J is said
to be a Riesz basis of H. Let A denote the matrix

(
〈vj , vk〉

)
j,k∈J

. If (1.8) is

valid, then the condition number of the matrix A is no bigger than C2
2/C

2
1 . See [34,

Chap. 4] for details.
Let us consider a model problem of the biharmonic equation (1.4) when

Ω = (0, 1)2 := {(x1, x2) ∈ R
2 : 0 < x1 < 1, 0 < x2 < 1}.

In this case, we first formulate a nested sequence of finite dimensional subspaces
(Vn)n≥3 ofH

2
0 (Ω) such that Vn ⊂ Vn+1 for all n ≥ 3 and

⋃∞
n=3 Vn is dense in H2

0 (Ω).
Then we construct a suitable wavelet space Wn such that Vn+1 is the direct sum
of Vn and Wn for n ≥ 3. Choose a Riesz basis for V3 and, for each n ≥ 3, choose
a Riesz basis for Wn. For n ≥ 3, let Ψn be the union of the Riesz bases of V3,
W3, . . . ,Wn−1. Under certain conditions we can prove that the condition number
of the matrix Bn := (〈Δu,Δv〉)u,v∈Ψn

is uniformly bounded (independent of n).
Therefore, appropriately chosen Riesz bases of wavelets will give rise to efficient
algorithms for numerical solutions of the biharmonic equation (1.4). In fact, more
is true. We will demonstrate that the wavelet bases constructed in this paper are
also good for numerical solutions of general elliptic equations of fourth-order.

Spline wavelets will be used in this paper. In [8] Chui and Wang initiated the
study of semi-orthogonal wavelets generated from cardinal splines. Biorthogonal
spline wavelets were constructed by Dahmen, Kunoth and Urban in [9]. Many appli-
cations require wavelets with very short support. Spline wavelets with short support
were investigated by Jia, Wang, and Zhou in [22], and by Han and Shen in [14].
Using Hermite cubic splines, Jia and Liu in [20] constructed wavelet bases on the in-
terval [0, 1] and applied those wavelets to numerical solutions to the Sturm-Liouville
equation with the Dirichelet boundary condition. Spline wavelets on the interval
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[0, 1] with homogeneous boundary conditions were constructed in [18]. Riesz bases
of multiple wavelets were studied by Han and Jiang in [13], and by Li and Xian in
[25].

For polygonal domains Riesz bases of spline wavelets were constructed by Davy-
dov and Stevenson [10] on quadrangulation, and by Jia and Liu [21] on arbitrary
triangulations. However, numerical schemes based on these wavelet bases have yet
to be implemented.

Here is an outline of the paper. In Section 2, we investigate cubic splines on
the interval [0, 1] and the square [0, 1]2 with homogeneous boundary conditions.
The approximation properties of these cubic splines are established and applied to
convergence analysis of the finite element method for the biharmonic equation in
Section 3. In order to construct wavelet bases from these cubic splines, we discuss
norm equivalence induced by multilevel decompositions in Section 4, and develop
a fairly general theory for Riesz bases of Hilbert spaces equipped with the induced
norms in Section 5. Under the guidance of the general theory, we are able to
construct wavelet bases for Sobolev spaces on the interval (0, 1) and the square
(0, 1)2 in Section 6. In Section 7 we describe the general principle for the wavelet
method and show that the condition numbers of the stiffness matrices associated
with the wavelet bases are relatively small and uniformly bounded. In Sections 8
and 9 we give numerical examples to demonstrate that the algorithms based on
our wavelet bases are very efficient. Finally, in Section 10, we extend our study to
general elliptic equations of fourth-order and indicate that our numerical schemes
also have superb performance in the general case.

2. Approximation by cubic splines

In this section, we investigate cubic splines on the interval [0, 1] and the square
[0, 1]2 with homogeneous boundary conditions.

A spline is a piecewise polynomial. Let us give a definition of B-splines according
to the book [3] of de Boor. Suppose k ∈ N. Let t = (tj)j∈Z be a sequence of real
numbers such that tj < tj+k for all j ∈ Z. The B-splines of order k for t are given
by

Bj,k,t(x) := (tj+k − tj)[tj , . . . , tj+k](· − x)k−1
+ , x ∈ R,

where [tj , . . . , tj+k] denotes the kth order divided difference at the points tj , . . . , tj+k,
and a+ := max(a, 0). It is easily seen that each Bj,k,t is supported on [tj , tj+k] and
agrees with a polynomial of degree at most k− 1 on each interval (tr, tr+1) as long
as tr+1 > tr. Many useful properties of B-splines can be established by using the
local linear functional introduced by de Boor and Fix in [4]. Among other things,
a polynomial p of degree at most k − 1 can be represented as a B-spline series. In
other words, there exist complex numbers cj (j ∈ Z) such that p =

∑
j∈Z

cjBj,k,t.
Moreover, the B-splines Bj,k,t are locally linearly independent. To be more precise,
let (a, b) be a finite interval. Then only finitely many of B-splines Bj,k,t are not
identically zero on (a, b) and these B-splines are linearly independent on (a, b).

Now suppose k = 4, N ≥ 8, and t is given by

tj =

{ j − 1 for j ≤ 1,
j − 2 for 2 ≤ j ≤ N + 2,
j − 3 for j ≥ N + 3.
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Let φj := Bj,4,t, j ∈ Z. It is easily seen that φj(x) = φN−j(N −x) for x ∈ R. Each
φj is a cubic spline. Write φ for φ2. Then φ is supported on [0, 4] and

φ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
6x

3 for 0 ≤ x ≤ 1,

− 1
2x

3 + 2x2 − 2x+ 2
3 for 1 ≤ x ≤ 2,

1
2x

3 − 4x2 + 10x− 22
3 for 2 ≤ x ≤ 3,

− 1
6x

3 + 2x2 − 8x+ 32
3 for 3 ≤ x ≤ 4.

It is easily seen that φ(1) = 1/6, φ(2) = 2/3, φ(3) = 1/6. Moreover,

φ(x) =
1

8

[
φ(2x) + 4φ(2x− 1) + 6φ(2x− 2) + 4φ(2x− 3) + φ(2x− 4)

]
, x ∈ R.

Write φb for φ1. Then φb is given by

φb(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
12 (−11x3 + 18x2) for 0 ≤ x ≤ 1,
1
12 (7x

3 − 36x2 + 54x− 18) for 1 ≤ x ≤ 2,
1
6 (3− x)3 for 2 ≤ x ≤ 3,

0 for x ∈ R \ [0, 3].

It is easily seen that φb(1) = 7/12 and φb(2) = 1/6. Moreover,

φb(x) =
1

4
φb(2x) +

11

16
φ(2x) +

1

2
φ(2x− 1) +

1

8
φ(2x− 2), x ∈ R.

We have φ′′
b ∈ L2(R) and

φ′′
b (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 (−11x+ 6) for 0 < x ≤ 1,
1
2 (7x− 12) for 1 < x ≤ 2,

3− x for 2 < x ≤ 3,

0 for x ∈ R \ [0, 3].

It follows that limx→0− φ′′
b (x) = 0 and limx→0+ φ′′

b (x) = 3. Hence, φ′′′
b = g + 3δ,

where g is a piecewise constant function supported on [0, 3] and δ is the Dirac delta
function. By taking the Fourier transform of both sides of the equation φ′′′

b = g+3δ

we obtain (iξ)3φ̂b(ξ) = ĝ(ξ) + 3 for ξ ∈ R. Consequently, for 0 < μ < 5/2 we have∫
|ξ|>1

|ξ|2μ|φ̂b(ξ)|2 dξ =

∫
|ξ|>1

|ĝ(ξ) + 3|2
|ξ|2(3−μ)

dξ < ∞.

Moreover, ∫
|ξ|≤1

|ξ|2μ|φ̂b(ξ)|2 dξ ≤
∫
|ξ|≤1

|φ̂b(ξ)|2 dξ < ∞.

This shows that φb ∈ Hμ(R) for 0 < μ < 5/2. An analogous argument shows that
φ ∈ Hμ(R) for 0 < μ < 7/2.

We see that φ is supported on [0, 4]. Consequently, φ(·−k) vanishes on (1, 2) for
k ≤ −3 or k ≥ 2. Moreover, the B-splines φ(· − k) (k = −2,−1, 0, 1) are linearly
independent on (1, 2). Hence, there exists a continuous function ϕ̃ supported on
[1, 2] such that

〈ϕ̃, φ(· − k)〉 = δ0k ∀ k ∈ Z,
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where δjk denotes the Kronecker symbol: δjk = 1 for j = k and δjk = 0 for j �= k.
We observe that

φk =

⎧⎪⎨
⎪⎩

φ(· − k + 1) for k ≤ −3,

φ(· − k + 2) for k = 2, . . . , N − 2,

φ(· − k + 3) for k ≥ N + 3.

Accordingly, we define φ̃j for j ∈ Z \ ([−3, 3] ∪ [N − 2, N + 4]) as follows:

φ̃j :=

⎧⎪⎨
⎪⎩

ϕ̃(· − j + 1) for j ≤ −4,

ϕ̃(· − j + 2) for j = 4, . . . , N − 3,

ϕ̃(· − j + 3) for j ≥ N + 5.

It is easily verified that 〈φ̃j , φk〉 = δjk for all j ∈ Z \ ([−3, 3] ∪ [N − 2, N + 4])
and k ∈ Z. Suppose −3 ≤ j ≤ 3. By the local linear independence of the B-
splines φk (k ∈ Z), we can find a continuous function φ̃j supported on [j − 1, j]

such that 〈φ̃j , φk〉 = δjk for all k ∈ Z. Similarly, for N − 2 ≤ j ≤ N + 4 we can

find a continuous function φ̃j supported on [j, j + 1] such that 〈φ̃j , φk〉 = δjk for

all k ∈ Z. We conclude that 〈φ̃j , φk〉 = δjk for all j ∈ Z and k ∈ Z. In light of our

construction, there is a constant M independent of N such that ‖φ̃j‖∞ ≤ M for
all j ∈ Z. Consequently, (φj)j∈Z is a Riesz sequence in L2(R).

Let Q be the linear operator given by

Qu :=
∑
j∈Z

〈u, φ̃j〉φj ,

where u is a locally integrable function on R. In particular, Qu is well defined for
u in L2(R). Since ‖φ̃j‖∞ ≤ M for all j ∈ Z, Q is a bounded operator on L2(R).

Moreover, if u is supported on [0, N ], then 〈u, φ̃j〉 = 0 for j ≤ 0 or j ≥ N . But
φj is supported in [0, N ] for 1 ≤ j ≤ N − 1. Therefore, Qu is supported on [0, N ],
provided u is supported on [0, N ]. We have Qφj = φj for all j ∈ Z. A polynomial
p ∈ Π3 can be represented as p =

∑
j∈Z

cjφj . Hence, Qp = p for all p ∈ Π3.

Now choose N = 2n for some n ≥ 3. For j ∈ Z, let φn,j(x) := 2n/2φj(2
nx) and

φ̃n,j(x) := 2n/2φ̃j(2
nx), x ∈ R. Then 〈φ̃n,j , φn,k〉 = δjk for all j, k ∈ Z. Let Qn be

the linear operator given by

(2.1) Qnu =
∑
j∈Z

〈u, φ̃n,j〉φn,j ,

where u is a locally integrable function on R. Clearly, Qnφn,j = φn,j for all j ∈ Z.
By ‖Qn‖ we denote the norm of Qn as an operator on L2(R). Then ‖Qn‖ = ‖Q‖
for all n ≥ 3. Since Qnp = p for all p ∈ Π3, for 0 ≤ m ≤ 3 we have (see [16] and
[19])

(2.2) ‖Qnu− u‖Hm(R) ≤ C(1/2n)4−m|u|H4(R), u ∈ H4(R),

where C is a constant independent of n and u.
For n ≥ 3 and j = 1, . . . , 2n−1, φn,j and φ̃n,j are supported in the interval [0, 1].

Let Vn(0, 1) be the linear span of {φn,j : j = 1, . . . , 2n − 1}. Since φn,j ∈ Hμ(R)
for 0 < μ < 5/2, Vn(0, 1) is a closed subspace of Hμ

0 (0, 1) for 0 < μ < 5/2 and its
dimension is 2n−1. Moreover, Vn(0, 1) ⊂ Vn+1(0, 1) for n ≥ 3. Recall that L2(0, 1)
is regarded as the subspace of L2(R) consisting of all functions in L2(R) that vanish
outside (0, 1). It is easily seen that {φn,j : j = 1, . . . , 2n − 1} is a Riesz sequence in
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L2(0, 1) with Riesz bounds independent of n. If u ∈ L2(0, 1), then 〈u, φ̃n,j〉 = 0 for
j /∈ {1, . . . , 2n − 1}. Hence, for n ≥ 3, Qn maps L2(0, 1) onto Vn(0, 1).

For n ≥ 3 and j = (j1, j2) ∈ Z
2, let

φn,j(x) = φn,j1(x1)φn,j2(x2) and φ̃n,j(x) = φ̃n,j1(x1)φ̃n,j2(x2),

x = (x1, x2) ∈ R
2.

Then 〈φ̃n,j , φn,k〉 = δjk for all j, k ∈ Z
2. Let Qn be the linear operator given by

(2.3) Qnu =
∑
j∈Z2

〈u, φ̃n,j〉φn,j ,

where u is a locally integrable function on R
2. Clearly, Qnφn,j = φn,j for all j ∈ Z

2.
Consequently, Qnp = p for every bivariate polynomial p of degree at most 3. Hence,
for 0 ≤ m ≤ 3, there exists a constant C independent of n and u such that

(2.4) ‖u−Qnu‖Hm(R2) ≤ C(1/2n)4−m|u|H4(R2), u ∈ H4(R2).

Suppose v1, v2 ∈ Hμ(R) for some μ > 0. Let v be the function on R2 given
by v(x1, x2) := v1(x1)v2(x2), (x1, x2) ∈ R2. Then v̂(ξ1, ξ2) = v̂1(ξ1)v̂2(ξ2) for
(ξ1, ξ2) ∈ R

2. Consequently,∫
R2

|ξ1|2μ|v̂(ξ1, ξ2)|2 dξ1 dξ2 =

∫
R

|ξ1|2μ|v̂1(ξ1)|2 dξ1
∫
R

|v̂2(ξ2)|2 dξ2 < ∞

and ∫
R2

|ξ2|2μ|v̂(ξ1, ξ2)|2 dξ1 dξ2 =

∫
R

|v̂1(ξ1)|2 dξ1
∫
R

|ξ2|2μ|v̂2(ξ2)|2 dξ2 < ∞.

This shows v ∈ Hμ(R2). For j = (j1, j2) ∈ Z2, we have φn,j1 ∈ Hμ(R) and
φn,j2 ∈ Hμ(R) for 0 < μ < 5/2. Hence, φn,j ∈ Hμ(R2) for 0 < μ < 5/2.

Let Jn := {(j1, j2) ∈ Z2 : 1 ≤ j1, j2 ≤ 2n − 1}. For n ≥ 3 and j ∈ Jn, φn,j

and φ̃n,j are supported in the square [0, 1]2. Let Vn((0, 1)
2) be the linear span of

{φn,j : j ∈ Jn}. Then Vn((0, 1)
2) is a closed subspace of Hμ

0 ((0, 1)
2) for 0 < μ < 5/2

and its dimension is (2n − 1)2. Moreover, Vn((0, 1)
2) ⊂ Vn+1((0, 1)

2). Recall that
L2((0, 1)

2) is regarded as the subspace of L2(R
2) consisting of all functions in

L2(R
2) that vanish outside (0, 1)2. It is easily seen that {φn,j : j ∈ Jn} is a Riesz

sequence in L2((0, 1)
2) with Riesz bounds independent of n. If u ∈ L2((0, 1)

2), then

〈u, φ̃n,j〉 = 0 for n ≥ 3 and j /∈ Jn. Hence, for n ≥ 3, Qn maps L2((0, 1)
2) onto

Vn((0, 1)
2).

3. Convergence rates

Throughout this section we assume that Ω is the unit square (0, 1)2. We also
write Vn for Vn((0, 1)

2). Given f ∈ L2(Ω), let u ∈ H2
0 (Ω) be the unique solution

to the equation (1.5). Since the inner angle at each corner of the square is π/2,
we have u ∈ H4(Ω), by [2, Theorem 7]. Moreover, |u|H4(Ω) ≤ C‖f‖L2(Ω) for some
constant C independent of f . For n ≥ 3, let un be the unique solution in Vn to the
following equation:

(3.1) 〈Δun,Δv〉 = 〈f, v〉 ∀ v ∈ Vn.

In this section we will prove that

(3.2) ‖un − u‖Hm(Ω) ≤ C(1/2n)4−m‖f‖L2(Ω) ∀n ≥ 3,
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where m = 0, 1, 2 and C is a constant independent of f and n. For relevant results
of finite element methods, the reader is referred to the book [31] of Strang and Fix,
and the book [5] of Brenner and Scott.

The function u ∈ H4(Ω) is a weak solution to the biharmonic equation (1.4).
By changing its values on a set of measure zero if necessary, u becomes a function
in C2(Ω), in light of the Sobolev embedding theorem (see [12, Chap. 5]). Since
u ∈ H2

0 (Ω), there exists a sequence (gn)n=1,2,... in C∞
c (Ω) such that limn→∞ ‖gn −

u‖H2(Ω) = 0. By the embedding theorem, ‖gn−u‖C(Ω) ≤ C‖gn−u‖H2(Ω), where C

is a constant independent of n. Hence, limn→∞ ‖gn−u‖C(Ω) = 0. But gn(x) = 0 for

all n ∈ N and x ∈ ∂Ω. Consequently, u(x) = 0 for all x ∈ ∂Ω. Let y be a nonzero
vector in R

2. Then limn→∞ ‖Dygn−Dyu‖H1(Ω) = 0. Let γ be a line segment ⊂ ∂Ω
that does not contain any of the four corners of Ω. By the trace theorem (see [12,
p. 258]), we have

‖Dygn −Dyu‖L2(γ) ≤ C‖Dygn −Dyu‖H1(Ω),

where C is a constant independent of n. It follows that limn→∞ ‖Dygn−Dyu‖L2(γ)

= 0. But Dygn = 0 on γ for every n ∈ N. Therefore, ‖Dyu‖L2(γ) = 0. Note that
Dyu is continuous on ∂Ω. This shows that Dyu(x) = 0 for all x ∈ γ. Consequently,
Dyu(x) = 0 for all x ∈ ∂Ω. In particular, D1u(x) = D2u(x) = 0 for all x ∈ ∂Ω.

In order to prove (3.2), we first establish the following result on approximation
by cubic splines:

(3.3) inf
v∈Vn

‖u− v‖Hm(Ω) ≤ C(1/2n)4−m|u|H4(Ω),

for n ≥ 3 and u ∈ H2
0 (Ω) ∩H4(Ω),

where 0 ≤ m ≤ 3 and C is a constant independent of n and u. If we extend u to R2

by setting u(x) = 0 for x ∈ R
2 \ Ω, then the extended function will be in H2(R2)

but, in general, will not be in H4(R2). Thus, (2.4) cannot be applied directly to
the current situation.

For N ≥ 8, let t := (tj)−1≤j≤N+5 be the knot sequence given by

tj =

{ 0 for −1 ≤ j ≤ 2,
j − 2 for 3 ≤ j ≤ N + 1,
N for N + 2 ≤ j ≤ N + 5.

For j ∈ {−1, 0, N,N + 1}, let φj be the B-spline Bj,4,t. For 1 ≤ j ≤ N − 1, φj is
the same as in §2. By using an argument analogous to that given in §2, we can find
real-valued continuous functions φ̃j (−1 ≤ j ≤ N+1) with the following properties:

(a) 〈φ̃j , φk〉 = δjk for all j, k ∈ {−1, 0, . . . , N,N + 1};
(b) ‖φ̃j‖∞ ≤ M for −1 ≤ j ≤ N +1, where M is a constant independent of N ;

(c) φ̃j is supported on the interval Ej , where Ej := [0, 1] for j = −1, 0, Ej :=
[j − 1, j] for j = 1, . . . , N − 1, and Ej := [N − 1, N ] for j = N,N + 1.

Given n ≥ 3, we choose N := 2n. For j ∈ {−1, 0, . . . , N,N + 1}, let
φn,j(x) = 2n/2φj(2

nx) and φ̃n,j(x) = 2n/2φ̃j(2
nx), x ∈ [0, 1].

For n ≥ 3 and j ∈ J̃n := {(j1, j2) : −1 ≤ j1, j2 ≤ 2n + 1}, let

φn,j(x) = φn,j1(x1)φn,j2(x2) and φ̃n,j(x) = φ̃n,j1(x1)φ̃n,j2(x2),

x = (x1, x2) ∈ [0, 1]2.
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Then 〈φ̃n,j , φn,k〉 = δjk for all j, k ∈ J̃n. Let Q̃n be the linear operator given by

Q̃nu =
∑
j∈J̃n

〈u, φ̃n,j〉φn,j ,

where u is a locally integrable function on [0, 1]2. If p is the restriction of a bi-

variate polynomial of degree at most 3 to [0, 1]2, then Q̃np = p. By the results on
approximation in [23] and [16], we obtain

(3.4) ‖u− Q̃nu‖Hm(Ω) ≤ C(1/2n)4−m|u|H4(Ω), u ∈ H4(Ω),

where 0 ≤ m ≤ 3 and C is a constant independent of n and u.
For n ≥ 3, let Qn be the linear operator given in (2.3). Recall that Jn is the

set {(j1, j2) : 1 ≤ j1, j2 ≤ 2n − 1}. If u is a locally integrable function on [0, 1]2,

then 〈u, φ̃n,j〉 = 0 for j ∈ Z
2 \ Jn. Hence, Qnu ∈ Vn for n ≥ 3. Taking (3.4) into

account, we see that in order to establish (3.3), it suffices to show

(3.5) ‖Q̃nu−Qnu‖Hm(Ω) ≤ C(1/2n)4−m|u|H4(Ω), u ∈ H4(Ω) ∩H2
0 (Ω),

0 ≤ m ≤ 3.

We have

Q̃nu−Qnu =
∑

j∈J̃n\Jn

〈u, φ̃n,j〉φn,j .

It follows that (see [17, §3])

(3.6) ‖Q̃nu−Qnu‖Hm(Ω) ≤ C(2n)m
( ∑

j∈J̃n\Jn

∣∣〈u, φ̃n,j〉
∣∣2)1/2

, 0 ≤ m ≤ 3.

We observe that (j1, j2) ∈ J̃n\Jn if and only if j1 or j2 belongs to {−1, 0, N,N+1}.
Let us consider the case j1 = 0. Other cases can be treated similarly. Set h := 1/2n.

Since φ̃n,0 is supported on [0, h], for j = (j1, j2) with j1 = 0 we have

〈u, φ̃n,j〉 =
∫ 1

0

∫ h

0

u(x1, x2)φ̃n,0(x1)φ̃n,j2(x2) dx1 dx2.

Let p1, p2, p3, p4 be the unique cubic polynomials on R such that⎡
⎢⎢⎣

p1(0) p′1(0) p1(h) p′1(h)
p2(0) p′2(0) p2(h) p′2(h)
p3(0) p′3(0) p3(h) p′3(h)
p4(0) p′4(0) p4(h) p′4(h)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

where p′ denotes the derivative of p. For u ∈ H4(Ω)∩H2
0 (Ω) and x = (x1, x2) ∈ Ω,

let

w(x1, x2) := u(0, x2)p1(x1)+D1u(0, x2)p2(x1)+u(h, x2)p3(x1)+D1u(h, x2)p4(x1).

It is easily seen that w(0, x2) = u(0, x2), D1w(0, x2) = D1u(0, x2), w(h, x2) =
u(h, x2), and D1w(h, x2) = D1u(h, x2). Hence, by Theorem (4.4.4) of [5],

(3.7)

∫ h

0

∣∣u(x1, x2)−w(x1, x2)
∣∣2 dx1 ≤ C1h

8

∫ h

0

∣∣D4
1u(x1, x2)

∣∣2 dx1, 0 ≤ x2 ≤ 1,

where C1 is a constant independent of u, h, and x2. Since u ∈ H2
0 (Ω) ∩H4(Ω), we

have u(0, x2) = 0 and D1u(0, x2) = 0 for 0 ≤ x2 ≤ 1. Moreover, on the interval
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(0, h), p3 and p4 can be expressed as linear combinations of φn,1 and φn,2 (see the

definition of φ1 and φ2 given in §2). But 〈φ̃n,0, φn,k〉 = 0 for k = 1, 2. Hence,∫ h

0

w(x1, x2)φ̃n,0(x1) dx1 = 0, 0 ≤ x2 ≤ 1.

We conclude that

〈u, φ̃n,(0,j2)〉 =
∫ 1

0

∫ h

0

[
u(x1, x2)− w(x1, x2)

]
φ̃n,0(x1)φ̃n,j2(x2) dx1 dx2.

Recall that φ̃n,j2 is supported on the interval Ej2 . Let χj2 denote the characteristic
function of Ej2 . We deduce from the above equality that

〈u, φ̃n,(0,j2)〉 =
∫ 1

0

∫ h

0

[
u(x1, x2)− w(x1, x2)

]
φ̃n,0(x1)φ̃n,j2(x2)χj2(x2) dx1 dx2.

Since ‖φ̃n,0‖L2(0,1) ≤ M and ‖φ̃n,j2‖L2(0,1) ≤ M , by the Schwarz inequality we
obtain

∣∣〈u, φ̃n,(0,j2)〉
∣∣2 ≤ C2

∫ 1

0

∫ h

0

∣∣u(x1, x2)− w(x1, x2)
∣∣2χj2(x2) dx1 dx2.

Here and in what follows, Ci (i ∈ N) denotes a constant independent of u and h.
It follows that

N+1∑
j2=−1

∣∣〈u, φ̃n,(0,j2)〉
∣∣2 ≤ C2

∫ 1

0

∫ h

0

∣∣u(x1, x2)− w(x1, x2)
∣∣2 N+1∑

j2=−1

χj2(x2) dx1 dx2.

But
∑N+1

j2=−1 χj2(x2) ≤ 4 for 0 ≤ x2 ≤ 1. Thus, the above inequality together with

(3.7) gives( N+1∑
j2=−1

∣∣〈u, φ̃n,(0,j2)〉
∣∣2)1/2

≤ C3(2
−n)4|u|H4(Ω), u ∈ H2

0 (Ω) ∩H4(Ω).

By using the same argument as for the case j = (0, j2), we obtain( ∑
j∈J̃n\Jn

∣∣〈u, φ̃n,j〉
∣∣2)1/2

≤ C4(2
−n)4|u|H4(Ω), u ∈ H2

0 (Ω) ∩H4(Ω).

This in connection with (3.6) gives (3.5). Finally, since Qnu ∈ Vn, the desired
estimate (3.3) follows from (3.4) and (3.5).

We are in a position to establish (3.2). Our proof follows the lines in §5.9 of [5].

Theorem 3.1. Given f ∈ L2(Ω), let u be the unique solution in H2
0 (Ω) to the

equation (1.5). For n ≥ 3, let un be the unique solution in Vn to the equation (3.1).
Then the estimate (3.2) holds for m = 0, 1, 2 and a constant C independent of f
and n.

Proof. By (1.5) and (3.1) we have 〈Δ(u − un),Δw〉 = 0 for all w ∈ Vn. Suppose
v ∈ Vn. Then un − v ∈ Vn. Hence,

‖Δ(u− un)‖2L2(Ω) = 〈Δ(u− un),Δ(u− un)〉 = 〈Δ(u− un),Δ(u− v)〉.
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Taking (1.2) into account, we obtain

‖Δ(u− un)‖2L2(Ω) ≤ ‖Δ(u− un)‖L2(Ω)‖Δ(u− v)‖L2(Ω)

= |u− un|H2(Ω)|u− v|H2(Ω) ∀ v ∈ Vn.

Write h := 2−n. By (3.3) we have

(3.8) ‖Δ(u− un)‖L2(Ω) ≤ inf
v∈Vn

|u− v|H2(Ω) ≤ Ch2‖f‖L2(Ω).

Suppose g ∈ L2(Ω). Let w be the unique element in H2
0 (Ω) such that

〈Δw,Δv〉 = 〈g, v〉 ∀ v ∈ H2
0 (Ω).

Then w ∈ H2
0 (Ω) ∩H4(Ω) and Δ2w = g. Hence,

(3.9) 〈u− un, g〉 = 〈u− un,Δ
2w〉 = 〈Δ(u− un),Δw〉.

Let wn be the unique element in Vn such that

〈Δwn,Δv〉 = 〈g, v〉 ∀ v ∈ Vn.

By using the same argument as in the preceding paragraph, we have

(3.10) ‖Δ(w − wn)‖L2(Ω) ≤ Ch2‖g‖L2(Ω).

Moreover, it follows from (3.9) that

〈u− un, g〉 = 〈Δ(u− un),Δw〉 − 〈Δ(u− un),Δwn〉 = 〈Δ(u− un),Δ(w − wn)〉.

Consequently,

〈u− un, g〉 ≤ ‖Δ(u− un)‖L2(Ω)‖Δ(w − wn)‖L2(Ω).

This in connection with (3.8) and (3.10) gives

〈u− un, g〉 ≤ C2h4‖f‖L2(Ω)‖g‖L2(Ω).

The above inequality is valid for all g ∈ L2(Ω). Therefore, by the converse to the
Hölder inequality, we obtain

‖u− un‖L2(Ω) ≤ C2h4‖f‖L2(Ω).

It follows from (3.8) that

|u− un|H2(Ω) = ‖Δ(u− un)‖L2(Ω) ≤ Ch2‖f‖L2(Ω).

Finally, by the interpolation theorem we have

|u− un|H1(Ω) ≤ C1‖u− un‖1/2L2(Ω)|u− un|1/2H2(Ω) ≤ C2h
3‖f‖L2(Ω),

where C1 and C2 are constants independent of f and n. �
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4. Norm equivalence

For the shift-invariant case, norm equivalence based on wavelet decompositions
was investigated in [26, Chap. 6] and [11]. The following discussions on norm
equivalence are pertinent to our purpose.

For y = (y1, . . . , ys) ∈ Rs, let |y| := |y1|+ · · ·+ |ys|. For x, y ∈ Rs, we use [x, y]
to denote the line segment {(1 − t)x + ty : 0 ≤ t ≤ 1}. Given a nonempty open
subset Ω of Rs and y ∈ Rs, we set Ωy := {x ∈ Ω : [x − y, x] ⊂ Ω}. The modulus
of continuity of a function f in Lp(Ω) for 1 ≤ p < ∞, or f ∈ C(Ω) for p = ∞, is
defined by

ω(f, h)p := sup
|y|≤h

∥∥∇yf
∥∥
p,Ωy

, h > 0.

For a positive integer m, the mth modulus of smoothness of f is defined by

ωm(f, h)p := sup
|y|≤h

∥∥∇m
y f

∥∥
p,Ωmy

, h > 0.

For μ > 0 and 1 ≤ p, q ≤ ∞, the Besov space Bμ
p,q(Ω) is the collection of those

functions f ∈ Lp(Ω) for which the following semi-norm is finite:

|f |Bμ
p,q(Ω) :=

⎧⎨
⎩

(∑
k∈Z

[
2kμωm(f, 2−k)p

]q)1/q

, for 1 ≤ q < ∞,

supk∈Z

{
2kμωm(f, 2−k)p

}
, for q = ∞,

where m is the least integer greater than μ. The norm for Bμ
p,q(Ω) is

‖f‖Bμ
p,q(Ω) := ‖f‖Lp(Ω) + |f |Bμ

p,q(Ω).

If p = q = 2, then the Besov space Bμ
2,2(R

s) is the same as the Sobolev space

Hμ(Rs), and the semi-norms | · |Bμ
2,2

and | · |Hμ are equivalent (see [29, Chap. 5]).

A function f in C∞
c (Ω) can be extended to a function in C∞

c (Rs) by setting
f(x) = 0 for x ∈ Rs \ Ω. In this way, C∞

c (Ω) can be regarded as a subspace of
C∞

c (Rs). We use Hμ
0 (Ω) to denote the closure of C∞

c (Ω) in Hμ(Rs).
For n ≥ 3, let Vn(0, 1) be the linear space of splines given in §2. Then Vn(0, 1)

is a closed subspace of Hμ
0 (0, 1) for 0 ≤ μ < 5/2. Let Qn be the operator given in

(2.1). For n ≥ 3, Qn|L2(0,1) is a projection from L2(0, 1) onto Vn(0, 1). We have
the following estimate (see [16] and [19]):

(4.1) ‖f −Qnf‖2 ≤ Cω4(f, 1/2
n)2 ∀ f ∈ L2(0, 1),

where C is a constant independent of n and f .

Theorem 4.1. For n = 3, 4, . . ., let Qn be the operator given in (2.1). Then there
exist two positive constants C1 and C2 such that the inequalities

C1|f |Hμ
0 (0,1) ≤

([
23μ‖Q3f‖2

]2
+

∞∑
n=4

[
2nμ‖(Qn −Qn−1)f‖2

]2)1/2

(4.2)

≤ C2|f |Hμ
0 (0,1)

hold for all f ∈ Hμ
0 (0, 1) with 0 < μ < 5/2.

Proof. Given f ∈ L2(0, 1), we write fn := Qnf for n ≥ 3. Let g3 := f3 and
gn := fn − fn−1 for n ≥ 4. Then

f =

∞∑
n=3

gn,
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where the series converges in L2(0, 1). In what follows we use Ci (i ∈ N) to denote
a positive constant independent of f and n.

For the first inequality in (4.2), we express each gn as

(4.3) gn =

2n−1∑
k=1

bn,kφn,k, n = 3, 4, . . . ,

where bn,k ∈ C (k = 1, . . . , 2n − 1). Note that
(
2−nμφn,k

)
n=3,4,...,k=1,...,2n−1

is a

Bessel sequence in Hμ
0 (0, 1) (see Theorem 1.2 of [17]). Accordingly,

|f |Hμ
0 (0,1) =

∣∣∣∣
∞∑

n=3

2n−1∑
k=1

2nμbn,k2
−nμφn,k

∣∣∣∣
Hμ

0 (0,1)

≤ C1

( ∞∑
n=3

2n−1∑
k=1

∣∣2nμbn,k∣∣2
)1/2

.

Since {φn,k : 1 ≤ k ≤ 2n − 1} is a Riesz basis of Vn(0, 1) with Riesz bounds
independent of n, it follows from (4.3) that

2n−1∑
k=1

|bn,k|2 ≤ C2
2‖gn‖22.

Consequently,

|f |Hμ
0 (0,1) ≤ C1C2

( ∞∑
n=3

[
2nμ‖gn‖2

]2)1/2

.

For the second inequality in (4.2), we deduce from (4.1) that

‖gn‖2 = ‖Qnf −Qn−1f‖2 ≤ ‖Qnf − f‖2 + ‖Qn−1f − f‖2 ≤ C3ω4(f, 1/2
n)2.

Consequently,( ∞∑
n=4

[
2nμ‖gn‖2

]2)1/2

≤ C3

( ∞∑
n=4

[
2nμω4(f, 1/2

n)2
]2)1/2

≤ C4|f |Hμ
0 (0,1).

Moreover, for f ∈ Hμ
0 (0, 1), by Poincaré’s inequality we have

‖Q3f‖2 ≤ ‖Q3‖‖f‖2 ≤ C5|f |Hμ
0 (0,1).

This completes the proof of (4.2). �

For n ≥ 3, let Vn((0, 1)
2) be the linear space of splines given in §2. Then

Vn((0, 1)
2) is a closed subspace of Hμ

0 ((0, 1)
2) for 0 ≤ μ < 5/2. Let Qn be the

operator given in (2.3). For n ≥ 3, Qn|L2((0,1)2) is a projection from L2((0, 1)
2)

onto Vn((0, 1)
2). We have the following estimate (see [16] and [19]):

(4.4) ‖f −Qnf‖2 ≤ Cω4(f, 1/2
n)2 ∀ f ∈ L2((0, 1)

2),

where C is a constant independent of n and f . By using the same argument as
in the proof of the above theorem, and taking (4.4) into account, we obtain the
following theorem on norm equivalence for the space Hμ

0 ((0, 1)
2).

Theorem 4.2. For n = 3, 4, . . ., let Qn be the operator given in (2.3). Then there
exist two positive constants C1 and C2 such that the inequalities

C1|f |Hμ
0 ((0,1)2) ≤

([
23μ‖Q3f‖2

]2
+

∞∑
n=4

[
2nμ‖(Qn−Qn−1)f‖2

]2)1/2

≤ C2|f |Hμ
0 ((0,1)2)

hold for all f ∈ Hμ
0 ((0, 1)

2) with 0 < μ < 5/2.
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As a consequence of Theorems 4.1 and 4.2, we see that | · |Hμ
0 (0,1) and | · |Hμ

0 ((0,1)2)

are norms.

5. Wavelet bases in Hilbert spaces

In this section, we investigate Riesz bases of Hilbert spaces equipped with some
induced norms. The reader is referred to [33], [30], and [21] for related work.

Let J be a countable set. For a complex-valued sequence u = (uj)j∈J , let

‖u‖p :=

(∑
j∈J

|uj |p
)1/p

for 1 ≤ p < ∞,

and let ‖u‖∞ denote the supremum of {|uj | : j ∈ J}. For 1 ≤ p ≤ ∞, by p(J) we
denote the Banach space of all sequences u on J such that ‖u‖p < ∞. In particular,
2(J) is a Hilbert space with the inner product given by 〈u, v〉 :=

∑
j∈J ujvj for

u, v ∈ 2(J).
Let A = (ajk)j,k∈J be a square matrix with its entries being complex num-

bers. For a sequence y = (yk)k∈J , Ay is the sequence z = (zj)j∈J given by
zj :=

∑
k∈J ajkyk, j ∈ J , provided the above series converges absolutely for ev-

ery j ∈ J . If A is a bounded operator on p(J) for some p, 1 ≤ p ≤ ∞, then the
norm of A on p(J) is defined by ‖A‖p := sup‖y‖p≤1 ‖Ay‖p. It is easily seen that

(5.1) ‖A‖1 = sup
k∈J

∑
j∈J

|ajk|, ‖A‖∞ = sup
j∈J

∑
k∈J

|ajk| and ‖A‖2 ≤ ‖A‖1/21 ‖A‖1/2∞ .

Let H be a Hilbert space. Suppose that V0 = {0} and (Vn)n=1,2,... is a nested
family of closed subspaces of H: Vn ⊂ Vn+1 for all n ∈ N. Assume that

⋃∞
n=1 Vn is

dense in H. Then every element f ∈ H can be represented as a convergent series∑∞
n=1 fn in H with fn ∈ Vn for each n ∈ N.
Fix μ > 0 and let Hμ be a linear subspace of H. Suppose that Hμ itself is a

normed linear space. We assume that there are two positive constants A1 and A2

such that the following two statements are valid:

(a) If f ∈ Hμ has a decomposition f =
∑∞

n=1 fn with fn ∈ Vn, then

(5.2) ‖f‖Hμ
≤ A1

( ∞∑
n=1

[
2nμ‖fn‖

]2)1/2

.

(b) For each f ∈ Hμ, there exists a decomposition f =
∑∞

n=1 fn with fn ∈ Vn

such that

(5.3)

( ∞∑
n=1

[
2nμ‖fn‖

]2)1/2

≤ A2‖f‖Hμ
.

By Theorems 4.1 and 4.2, for 0 < μ < 5/2, the spaceHμ
0 (0, 1) relative to L2(0, 1),

and the space Hμ
0 ((0, 1)

2) relative to L2((0, 1)
2) satisfy the above conditions.

Suppose f ∈ Vn. We claim that there exists a decomposition f =
∑n

m=1 gm with
gm ∈ Vm (m = 1, . . . , n) such that

(5.4)

( n∑
m=1

[
2mμ‖gm‖

]2)1/2

≤ A3‖f‖Hμ
,
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where A3 is a constant independent of f and n. Indeed, there exists a decomposition
f =

∑∞
n=1 fn with fn ∈ Vn (n ∈ N) such that (5.3) is valid. Let gm := fm ∈ Vm for

m = 1, . . . , n− 1 and gn := f −
∑n−1

m=1 fm. Clearly, gn ∈ Vn. We have

‖gn‖ =

∥∥∥∥
∞∑

m=n

fm

∥∥∥∥ ≤
∞∑

m=n

‖fm‖ ≤
( ∞∑

m=n

[
2−mμ

]2)1/2( ∞∑
m=n

[
2mμ‖fm‖

]2)1/2

,

where the Schwarz inequality has been used to derive the last inequality. Conse-
quently,

n∑
m=1

[
2mμ‖gm‖

]2
=

n−1∑
m=1

[
2mμ‖gm‖

]2
+
[
2nμ‖gn‖

]2 ≤ 1

1− 2−2μ

∞∑
m=1

[
2mμ‖fm‖

]2
.

This together with (5.3) establishes the desired inequality (5.4) with A3 :=

A2/
√
1− 2−2μ.

For n ∈ N0, let Pn be a linear projection from Vn+1 onto Vn, and let Wn be the
kernel space of Pn. Then Vn+1 is the direct sum of Vn and Wn. Let {ψn,k : k ∈ Kn}
be a Riesz basis of Wn with Riesz bounds independent of n.

Theorem 5.1. For μ > 0, (2−nμψn,k)n∈N0,k∈Kn
is a Bessel sequence in Hμ.

Proof. Suppose f =
∑∞

n=0 gn, where

gn =
∑
k∈Kn

bn,k2
−nμψn,k ∈ Vn+1.

Since {ψn,k : k ∈ Kn} is a Riesz basis of Wn with Riesz bounds independent of n,
there exists a constant C1 independent of n such that∥∥∥∥ ∑

k∈Kn

bn,kψn,k

∥∥∥∥
2

≤ C2
1

∑
k∈Kn

|bn,k|2.

This in connection with (5.2) yields

‖f‖2Hμ
≤A2

1

∞∑
n=0

[
2(n+1)μ‖gn‖

]2
=22μA2

1

∞∑
n=0

∥∥∥∥ ∑
k∈Kn

bn,kψn,k

∥∥∥∥
2

≤C2
2

∞∑
n=0

∑
k∈Kn

|bn,k|2,

where C2 := 2μA1C1. Hence, (2−nμψn,k)n∈N0,k∈Kn
is a Bessel sequence in Hμ. �

Fix n ∈ N for the time being. For each m with 0 ≤ m ≤ n, let Tm be a linear
projection from Vn onto Vm. In particular, T0 = 0, and Tn is the identity operator
on Vn.

Theorem 5.2. Suppose that for j ∈ [m,n] ∩ N0, ‖Tmf‖ ≤ B2ν(j−m)‖f‖ for all
f ∈ Vj, where 0 < ν < μ and B is a constant independent of m, j, and f . Then

(5.5)

( n∑
m=1

[
2μm‖(Tm − Tm−1)f‖

]2)1/2

≤ C‖f‖Hμ
∀ f ∈ Vn,

where C is a constant depending on μ, ν, and B only.

Proof. Let f ∈ Vn. Then there exists a decomposition f =
∑n

m=1 gm with gm ∈ Vm

for each m such that (5.4) is valid. For j < m, we have (Tm − Tm−1)gj = 0, and
hence

(Tm − Tm−1)f =
n∑

j=m

(Tm − Tm−1)gj .
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For m ≤ j ≤ n, we have

‖(Tm − Tm−1)gj‖ ≤ ‖Tmgj‖+ ‖Tm−1gj‖ ≤ B(1 + 2ν)2ν(j−m)‖gj‖.
It follows that

2μm‖(Tm − Tm−1)f‖ ≤ B(1 + 2ν)
n∑

j=m

2−(μ−ν)(j−m)
[
2jμ‖gj‖

]
.

Write ym := 2μm‖(Tm−Tm−1)f‖ for m = 1, . . . , n and zj := B(1+2ν)[2jμ‖gj‖] for
j = 1, . . . , n. Then ym ≤

∑n
j=1 amjzj for m = 1, . . . , n, where amj := 2−(μ−ν)(j−m)

for m ≤ j ≤ n and 0 otherwise. Let A denote the matrix (amj)1≤m,j≤n. It is easily

seen that ‖A‖1 ≤ 1/(1 − 2−(μ−ν)) and ‖A‖∞ ≤ 1/(1 − 2−(μ−ν)). Hence, by (5.1)
we obtain ‖A‖2 ≤ 1/(1− 2−(μ−ν)). Consequently,( n∑

m=1

[
2μm‖(Tm − Tm−1)f‖

]2)1/2

≤ B(1 + 2ν)

1− 2−(μ−ν)

( n∑
j=1

[
2jμ‖gj‖

]2)1/2

.

This in connection with (5.4) yields the desired inequality (5.5). �

Theorem 5.3. Suppose that 0 < ν < μ and there exists a positive constant B such
that

‖Pm · · ·Pn−1‖ ≤ B2ν(n−m)

for all m,n ∈ N with m < n. Then {2−mμψm,k : m ∈ N0, k ∈ Km} is a Riesz basis
of Hμ.

Proof. By Theorem 5.1, {2−mμψm,k : m ∈ N0, k ∈ Km} is a Bessel sequence in Hμ.
In order to prove that it is a Riesz basis of Hμ, let f be an element in Hμ given by

(5.6) f =
n−1∑
j=0

∑
k∈Kj

bj,k2
−jμψj,k.

For m = 0, 1, . . . , n− 1, let Tm := Pm · · ·Pn−1, and let Tn be the identity operator
on Vn. If m < j ≤ n and f ∈ Vj , then ‖Tmf‖ = ‖Pm · · ·Pj−1f‖ ≤ B2ν(j−m)‖f‖,
by the hypothesis of the theorem. Since Tmψj,k = 0 for m ≤ j ≤ n − 1, it follows
from (5.6) that

Tmf =

m−1∑
j=0

∑
k∈Kj

bj,k2
−jμψj,k.

Hence,

Tm+1f − Tmf =
∑

k∈Km

bm,k2
−mμψm,k.

Since {ψm,k : k ∈ Km} is a Riesz basis of Wm with Riesz bounds independent of
m, there exists a positive constant C1 independent of m such that( ∑

k∈Km

∣∣2−mμbm,k

∣∣2)1/2

≤ C1‖(Tm+1 − Tm)f‖.

Consequently, by Theorem 5.2 we obtain(n−1∑
m=0

∑
k∈Km

∣∣bm,k

∣∣2)1/2

≤ C1

(n−1∑
m=0

[
2mμ‖(Tm+1 − Tm)f‖

]2)1/2

≤ C2‖f‖Hμ
,
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where C2 is a constant independent of f . This shows that {2−mμψm,k : m ∈ N0, k ∈
Km} is a Riesz sequence in Hμ.

It remains to show that
⋃∞

n=1 Vn is dense in Hμ. Suppose f ∈ Hμ. Then f
has a decomposition f =

∑∞
n=1 fn with fn ∈ Vn such that (5.3) is valid. Let

gn :=
∑n

m=1 fm for n ∈ N. Clearly, gn ∈ Vn. It follows from (5.2) that

‖f − gn‖Hμ
≤ A1

( ∞∑
m=n+1

[
2mμ‖fm‖

]2)1/2

.

By (5.3), the series
∑∞

n=1[2
nμ‖fn‖]2 converges. Therefore, limn→∞ ‖f−gn‖Hμ

= 0,
as desired. �

6. Wavelet bases in Hμ(0, 1) and Hμ((0, 1)2)

In this section we use the cubic splines studied in §2 to construct wavelet bases
of Hμ

0 (0, 1) and Hμ
0 ((0, 1)

2).

For j ∈ Z, let φj be the B-splines given in §2. Recall that φn,j(x) = 2n/2φj(2
nx),

x ∈ R. For n ≥ 3, {φn,j : j = 1, . . . , 2n − 1} is a Riesz basis of Vn(0, 1) with Riesz

bounds independent of n. Suppose fn =
∑2n−1

j=1 an,jφn,j ∈ Vn(0, 1). Then

(6.1) B2
1

2n−1∑
j=1

|an,j |2 ≤
∥∥∥∥
2n−1∑
j=1

an,jφn,j

∥∥∥∥
2

2

≤ B2
2

2n−1∑
j=1

|an,j |2,

where B1 and B2 are positive constants independent of n. We have

2n−1∑
j=1

an,jφn,j(k/2
n) = fn(k/2

n) for k = 1, . . . , 2n − 1.

Note that φn,j(k/2
n) = 2n/2φj(k). Let Fn denote the matrix

(
φj(k)

)
1≤j,k≤2n−1

.

Then

Fn =

⎡
⎢⎢⎢⎢⎢⎣

7/12 1/6 0 · · · 0 0 0
1/6 2/3 1/6 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · 1/6 2/3 1/6
0 0 0 · · · 0 1/6 7/12

⎤
⎥⎥⎥⎥⎥⎦ .

Let ‖Fn‖ denote the norm of the matrix Fn on the 2 space. Clearly, ‖Fn‖ ≤ 1.
Moreover, Fn is diagonally dominant. It is easily verified that ‖F−1

n ‖ ≤ 3 for all
n ≥ 3. Consequently,

(6.2) C2
1

2n−1∑
k=1

∣∣fn(k/2n)∣∣2 ≤
2n−1∑
j=1

∣∣2n/2an,j∣∣2 ≤ C2
2

2n−1∑
k=1

∣∣fn(k/2n)∣∣2,
where C1 and C2 are positive constants independent of n.

Let Pn be the linear projection from Vn+1 onto Vn given as follows: For fn+1 ∈
Vn+1, fn := Pnfn+1 is the unique element in Vn(0, 1) determined by the interpola-
tion condition

fn(k/2
n) = fn+1(k/2

n) ∀ k = 1, . . . , 2n − 1.

Suppose fn =
∑2n−1

j=1 an,jφn,j ∈ Vn. For m ≥ 3, let fm := Pm · · ·Pn−1fn. The

function fm can be represented as fm =
∑2m−1

j=1 am,jφm,j . We have fm(k/2m) =
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fn(k/2
m) for k = 1, . . . , 2m − 1. It follows from (6.1) and (6.2) that

‖fm‖22 ≤ B2
2

2m−1∑
j=1

|am,j |2 ≤ B2
2C

2
22

−m
2m−1∑
k=1

∣∣fm(k/2m)
∣∣2

≤ B2
2C

2
22

−m
2n−1∑
k=1

∣∣fn(k/2n)∣∣2 ≤ B2
2C

2
2C

−2
1 2−m

2n−1∑
j=1

∣∣2n/2an,j∣∣2
≤ B2

2C
2
2C

−2
1 B−2

1 2n−m‖fn‖22.

Consequently,

‖Pm · · ·Pn−1‖ ≤ C2(n−m)/2,

where C := B2C2C
−1
1 B−1

1 .
The wavelets are constructed as follows. Let

ψ(x) := −1

4
φ(2x) + φ(2x− 1)− 1

4
φ(2x− 2), x ∈ R.

Then ψ is supported on [0, 3]. Moreover,

ψ(1) = −1

4
φ(2) + φ(1) = 0 and ψ(2) = φ(3)− 1

4
φ(2) = 0.

Hence, ψ(j) = 0 for all j ∈ Z. Moreover, let

ψb(x) := φb(2x)−
1

4
φ(2x), x ∈ R.

Then ψb is supported on [0, 2], and ψb(j) = 0 for all j ∈ Z. For n ≥ 3 and x ∈ R,
let

ψn,j(x) :=

⎧⎪⎨
⎪⎩

2n/2ψb(2
nx), j = 1,

2n/2ψ(2nx− j + 2), j = 2, . . . , 2n − 1,

2n/2ψb(2
n(1− x)), j = 2n.

We have ψn,j ∈ Vn+1(0, 1) and Pnψn,j = 0 for j = 1, . . . , 2n. Let Wn be the
linear span of {ψn,j : j = 1, . . . , 2n}. Then dim(Wn) = 2n. Moreover, {ψn,j : j =
1, . . . , 2n} is a Riesz basis of Wn with Riesz bounds independent of n. Thus, Wn

is the kernel space of Pn, and hence Vn+1 is the direct sum of Vn and Wn. An
application of Theorem 5.3 with ν = 1/2 gives the following result.

Theorem 6.1. For 1/2 < μ < 5/2, the set

{2−3μφ3,j : j = 1, . . . , 7} ∪ {2−nμψn,k : n ≥ 3, k = 1, . . . , 2n}

forms a Riesz basis of Hμ
0 (0, 1).

We are in a position to investigate wavelet bases in Hμ
0 ((0, 1)

2). Recall that,
for j = (j1, j2) ∈ Z2, φn,j(x) = φn,j1(x1)φn,j2(x2), x = (x1, x2) ∈ R2. For n ≥ 3,
Vn((0, 1)

2) is the linear span of {φn,j : j ∈ Jn}, where Jn = {(j1, j2) ∈ Z2 : 1 ≤
j1, j2 ≤ 2n − 1}. Clearly, Vn((0, 1)

2) is a subspace of Hμ
0 ((0, 1)

2) for 0 ≤ μ < 5/2.
Moreover,

⋃∞
n=3 Vn((0, 1)

2) is dense in L2((0, 1)
2).

Suppose fn =
∑

j∈Jn
an,jφn,j ∈ Vn((0, 1)

2). Then

B2
1

∑
j∈Jn

|an,j |2 ≤
∥∥∥∥∑
j∈Jn

an,jφn,j

∥∥∥∥
2

2

≤ B2
2

∑
j∈Jn

|an,j |2,
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where B1 and B2 are positive constants independent of n. Moreover,∑
j∈Jn

an,jφn,j(k/2
n) = fn(k/2

n) for k ∈ Jn.

Note that φn,j(k/2
n) = 2nφj1(k1)φj2(k2) for j = (j1, j2) ∈ Jn and k = (k1, k2) ∈

Jn. The matrix (φj1(k1)φj2(k2))1≤j1,j2≤2n−1,1≤k1,k2≤2n−1 can be viewed as the
Kronecker product Fn ⊗ Fn, where Fn is the matrix (φj1(k1))1≤j1,k1≤2n−1. (See
[15, Chap. 4] for the definition and properties of the Kronecker product.) We have

‖Fn ⊗ Fn‖ ≤ 1 and ‖(Fn ⊗ Fn)
−1‖ = ‖F−1

n ⊗ F−1
n ‖ ≤ 9.

Consequently,

C2
1

∑
k∈Jn

∣∣fn(k/2n)∣∣2 ≤
∑
j∈Jn

∣∣2nan,j∣∣2 ≤ C2
2

∑
k∈Jn

∣∣fn(k/2n)∣∣2,
where C1 and C2 are positive constants independent of n. Let Pn be the lin-
ear projection from Vn+1((0, 1)

2) onto Vn((0, 1)
2) given as follows: For fn+1 ∈

Vn+1((0, 1)
2), fn := Pnfn+1 is the unique element in Vn((0, 1)

2) determined by the
interpolation condition

fn(k/2
n) = fn+1(k/2

n) ∀ k ∈ Jn.

By using the same argument as above we obtain

‖Pm · · ·Pn−1‖ ≤ C2n−m,

where C is a constant independent of m and n. Let Wn be the kernel space of Pn.
Then

dim(Wn) = dim(Vn+1((0, 1)
2))− dim(Vn((0, 1)

2)) = (2n − 1)2n + 2n(2n − 1) + 22n.

For two functions v and w defined on [0, 1], we use v⊗w to denote the function on
[0, 1]2 given by v ⊗ w(x1, x2) := v(x1)w(x2), 0 ≤ x1, x2 ≤ 1. Let

Γ′
n := {φn,j1 ⊗ ψn,k2

: 1 ≤ j1 ≤ 2n − 1, 1 ≤ k2 ≤ 2n},
Γ′′
n := {ψn,k1

⊗ φn,j2 : 1 ≤ j2 ≤ 2n − 1, 1 ≤ k1 ≤ 2n},
Γ′′′
n := {ψn,k1

⊗ ψn,k2
: 1 ≤ k1, k2 ≤ 2n}.

It is easily seen that Γn := Γ′
n∪Γ′′

n∪Γ′′′
n is a Riesz basis of Wn with Riesz bounds

independent of n.
Now an application of Theorem 5.3 with ν = 1 gives the following result.

Theorem 6.2. For 1 < μ < 5/2, the set

{2−3μφ3,j : j ∈ J3} ∪
∞⋃

n=3

{2−nμw : w ∈ Γn}

forms a Riesz basis of Hμ
0 ((0, 1)

2).
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7. The wavelet method for the biharmonic equation

In this section we apply the wavelet bases constructed in the previous section
to numerical solutions of the biharmonic equation (1.4) for Ω = (0, 1)2. In what
follows, we write Vn for Vn((0, 1)

2) and always assume n ≥ 3. Also, all the functions
are real-valued.

In order to solve the variational problem (1.5) on the unit square Ω = (0, 1)2,
we use Vn to approximate H2

0 (Ω). Recall that Φn := {φn,j : j ∈ Jn} is a basis of
Vn. We look for un ∈ Vn such that

(7.1) 〈Δun,Δv〉 = 〈f, v〉 ∀ v ∈ Vn.

Suppose un =
∑

φ∈Φn
yφφ. Let An be the matrix (〈Δσ,Δφ〉)σ,φ∈Φn

, and let ξn
be the column vector (〈f, φ〉)φ∈Φn

. Then the column vector yn = (yφ)φ∈Φn
is the

solution of the system of linear equations

(7.2) Anyn = ξn.

However, the condition number κ(An) of the matrix An is of the size O(24n). Hence,
without preconditioning it would be very difficult to solve the system of equations
(7.2).

Now we employ the wavelet bases constructed in the previous section to solve
the variational problem (7.1). Let Bn be the matrix (〈Δχ,Δψ〉)χ,ψ∈Ψn

, where

(7.3) Ψn := {2−6φ3,j : j ∈ J3} ∪
n−1⋃
k=3

{2−2kw : w ∈ Γk}.

We use λmax(Bn) and λmin(Bn) to denote the maximal and minimal eigenvalue of
Bn, respectively. Then κ(Bn) := λmax(Bn)/λmin(Bn) gives the condition number
of Bn in the 2-norm. We claim that the condition number κ(Bn) is uniformly
bounded (independent of n). To justify our claim, let λ be an eigenvalue of the
matrix Bn. Then there exists a nonzero column vector z ∈ R

Ψn such that Bnz = λz.
It follows that zTBnz = λzT z, where zT denotes the transpose of the column vector
z. Suppose z = (aψ)ψ∈Ψn

. It is easily seen that

zTBnz =
〈 ∑
ψ∈Ψn

aψΔψ,
∑

ψ∈Ψn

aψΔψ
〉
=

∥∥∥∥Δ( ∑
ψ∈Ψn

aψψ
)∥∥∥∥

2

L2(Ω)

=

∣∣∣∣ ∑
ψ∈Ψn

aψψ

∣∣∣∣
2

H2
0 (Ω)

.

By Theorem 6.2, there exist two positive constants C1 and C2 (independent of n)
such that

(7.4) C2
1

∑
ψ∈Ψn

|aψ|2 ≤
∣∣∣∣ ∑
ψ∈Ψn

aψψ

∣∣∣∣
2

H2
0 (Ω)

≤ C2
2

∑
ψ∈Ψn

|aψ|2.

On the other hand, zTBnz = λzT z = λ
∑

ψ∈Ψn
|aψ|2. Consequently,

C2
1

∑
ψ∈Ψn

|aψ|2 ≤ λ
∑

ψ∈Ψn

|aψ|2 ≤ C2
2

∑
ψ∈Ψn

|aψ|2.

Hence, C2
1 ≤ λ ≤ C2

2 . This shows that κ(Bn) ≤ C2
2/C

2
1 for all n ≥ 3.

The condition numbers κ(Bn) are computed for 4 ≤ n ≤ 9 and listed in Table 7.1.
The numerical computation confirms our assertion that κ(Bn) is uniformly bounded
(independent of n).
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Table 7.1. Condition number of the preconditioned matrix

Level n Size of Bn λmax(Bn) λmin(Bn) κ(Bn)

4 225× 225 2.7160 0.07996 33.97

5 961× 961 2.7883 0.07995 34.88

6 3969× 3969 2.8082 0.07994 35.13

7 16129× 16129 2.8259 0.07994 35.35

8 65025× 65025 2.8434 0.07994 35.57

9 261121× 261121 2.8489 0.07994 35.64

The biharmonic equation (1.4) is often decoupled as

(7.5) −Δu = w and −Δw = f in Ω.

For the decoupled biharmonic equation (7.5) with the homogeneous boundary con-
dition, a multigrid preconditioner was proposed in [28]. It is clear from Tables 1,
2, and 3 in [28] that the condition number of the preconditioned matrix grows like
O(h−1), where h is the mesh size. In fact, for piecewise linear approximation on
the 48 × 48 grid, the condition number already exceeds 80. In comparison, the
condition number of κ(Bn) is uniformly bounded. For the 512× 512 grid (n = 9),
κ(B9) < 36.

Suppose un =
∑

ψ∈Ψn
zψψ. Let ηn be the column vector ηn = (〈f, ψ〉)ψ∈Ψn

, and

let zn be the column vector (zψ)ψ∈Ψn
. Then un is the solution to the variational

problem (7.1) if and only if zn is the solution of the following system of linear
equations:

(7.6) Bnzn = ηn.

Suppose u∗
n =

∑
ψ∈Ψn

z∗ψψ, where z
∗
n = (z∗ψ)ψ∈Ψn

is the vector in RΨn such that

Bnz
∗
n = ηn, i.e., z

∗
n is the exact solution to the equation (7.6). Let u be the exact

solution to the biharmonic equation (1.4), and let e∗n := u∗
n − u. Then ‖Δe∗n‖L2(Ω)

represents the discretization error in the energy norm, and ‖e∗n‖L2(Ω) represents the
discretization error in the L2 norm.

Suppose un =
∑

ψ∈Ψn
zψψ, where zn = (zψ)ψ∈Ψn

is an approximate solution to

the equation (7.6). Let en := un − u. It was proved in Theorem 3.1 that

(7.7) ‖Δe∗n‖L2(Ω) =
∥∥Δ(u− u∗

n)
∥∥
L2(Ω)

≤
∥∥Δ(u− un)

∥∥
L2(Ω)

= ‖Δen‖L2(Ω).

Thus, for any approximate solution un, the error ‖Δen‖L2(Ω) is no less than the
discretization error ‖Δe∗n‖L2(Ω) in the energy norm. If ‖Δen‖L2(Ω) ≤ K‖Δe∗n‖L2(Ω),
where K is a constant close to 1, then we say that the error of an approximate
solution un achieves the level of discretization error in the energy norm. Similarly,
if ‖en‖L2(Ω) ≤ K‖e∗n‖L2(Ω), then we say that the error of an approximate solution
un achieves the level of discretization error in the L2 norm.

We observe that each ψ ∈ Ψn can be uniquely expressed as ψ =
∑

φ∈Φn
sψφφ.

Let Sn denote the matrix (sψφ)ψ∈Ψn,φ∈Φn
, which represents the wavelet transform.
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Then Bn = SnAnS
T
n and ηn = Snξn. Hence, the equation (7.6) is equivalent

to (7.2) if we set yn = ST
n zn. Actually, we will use the PCG (Preconditioned

Conjugate Gradient) algorithm (see, e.g., [24, pp. 94–95]) to solve the system of
linear equations

(7.8) SnAnyn = Snξn.

We observe that An is an N2 ×N2 matrix and yn is an N2 column vector, where
N = 2n − 1. Each iteration of the PCG algorithm requires a multiplication of
the matrix An with a vector and a multiplication of the matrix Sn with a vec-
tor. A multiplication of An with a vector requires O(N2) work. A multiplica-
tion of the matrix Sn with a vector can be performed by using the corresponding
wavelet transform. Hence, it also requires O(N2) work. We will use an approxi-
mate solution to the equation SnAnyn = Snξn as an initial guess for the equation
Sn+1An+1yn+1 = Sn+1ξn+1 at the next level. Since κ(Bn) is uniformly bounded,
the number of iterations needed from level n to level n+1 is bounded (independent
of n). Thus, the total work required for the solution of the equation (7.8) to the
level of discretization error is O(N2). In other words, our algorithm is optimal.

8. Numerical examples: error estimates in the energy norm

The biharmonic equation arises in many applications. In fluid mechanics, the
solution u of (1.4) represents the stream function, and −Δu represents the vortic-
ity of the fluid. In linear elasticity, u is used to describe the airy stress function.
Then (DjDku)1≤j,k≤2 gives the Cauchy stress tensor. Thus, estimation of the error
‖Δen‖L2(Ω) in the energy norm has its own significance in physics. In this section,
we focus on error estimates in the energy norm. Our goal is to find efficient algo-
rithms for computing approximate solutions that achieve the level of discretization
error.

For a finite nonempty subset J , RJ can be viewed as a vector space. Recall that
the 2 norm of a vector z = (zj)j∈J ∈ RJ is given by

‖z‖2 =

(∑
j∈J

|zj |2
)1/2

.

For n ≥ 3, let Ψn be the set defined in (7.3). We use Pn to denote the mapping
from R

Ψn to Vn that sends (aψ)ψ∈Ψn
to

∑
ψ∈Ψn

aψψ. For zn ∈ R
Ψn , it follows from

(7.4) that

(8.1) C1‖zn‖2 ≤ ‖Δ(Pnzn)‖L2(Ω) ≤ C2‖zn‖2.

Recall that Bn is the matrix (〈Δχ,Δψ〉)χ,ψ∈Ψn
. We wish to solve the linear

system of equations Bnzn = ηn with ηn := (〈f, ψ〉)ψ∈Ψn
, where f is the function on

the right-hand side of the biharmonic equation (1.4). For zn ∈ RΨn , rn := ηn−Bnzn
represents the corresponding residue. In particular, for zn = 0, r0n := ηn is the
initial residue. We have Bn(zn − z∗n) = Bnzn − ηn = −rn. Suppose that C1 and
C2 are two positive constants such that (7.4) is valid. Then λmax(Bn) ≤ C2

2 and
λmin(Bn) ≥ C2

1 . Hence,

C2
1‖zn − z∗n‖2 ≤ ‖rn‖2 ≤ C2

2‖zn − z∗n‖2.
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This in connection with (8.1) gives

C1

C2
2

‖rn‖2 ≤ ‖Δ(un − u∗
n)‖L2(Ω) ≤

C2

C2
1

‖rn‖2,

where un = Pnzn and u∗
n = Pnz

∗
n. Recall that en = un − u and e∗n = u∗ − u,

where u is the exact solution to the biharmonic equation (1.4). Consequently,
en − e∗n = un − u∗

n and

‖Δ(en − e∗n)‖L2(Ω) = ‖Δ(un − u∗
n)‖L2(Ω) ≤ C‖rn‖2,

where C = C2/C
2
1 . This together with (7.7) yields

‖Δe∗n‖L2(Ω) ≤ ‖Δen‖L2(Ω) ≤ ‖Δe∗n‖L2(Ω) + C‖rn‖2.
By Theorem 3.1, ‖Δe∗n‖L2(Ω) ≤ M12

−2n for some positive constant M1 independent

of n. Therefore, if the residue rn is made so small that ‖rn‖2 ≤ M22
−2n, we will

have ‖Δen‖L2(Ω) ≤ M2−2n with M := M1 + CM2.

For k > 3, let Ek be the linear mapping from RΨk−1 to RΨk that sends (aψ)ψ∈Ψk−1

to (bψ)ψ∈Ψk
, where

bψ :=

{
aψ for ψ ∈ Ψk−1,

0 for ψ ∈ Ψk \Ψk−1.

Note that B3 is a matrix of size 49× 49. We first solve the equation B3z3 = η3
exactly and get the solution z3. Then we use E4z3 as the initial vector and perform
the PCG iterations for the equation B4z4 = η4 to get an approximate solution z4.
Let u3 := P3z3 and u4 := P4u4. Then ẽ3 := u3 − u4 represents the error in the
energy norm at level 3. For 4 ≤ k ≤ n, the above discussion motivates us to choose
the threshold εn,k as follows:

εn,k :=
k

n

‖Δẽ3‖L2(Ω)

22n−5
.

To solve the linear system of equations Bnzn = ηn for n ≥ 4, we will use the
following multilevel algorithm based on wavelets. First, let zn,3 := z3. Second,
for 4 ≤ k ≤ n, use z0n,k := Ekzn,k−1 as the initial vector to perform the PCG

iterations for the equation Bkzn,k = r0k sufficiently many times such that the residue
rn,k := r0k − Bkzn,k satisfies ‖rn,k‖2 ≤ εn,k. Finally, set zn := zn,n and rn := rn,n.
Then rn represents the residue when the algorithm stops, and zn is the desired
approximate solution.

In the above algorithm, suppose that mk (4 ≤ k ≤ n) iterations are performed
for the equation Bkzn,k = r0k. Note that mk iterations at level k are equivalent to
mk/4

n−k iterations at level n. Thus, the total number of equivalent iterations at
level n will be

(8.2) Nit =
n∑

k=4

mk

4n−k
.

We are in a position to give numerical examples to show that the above algorithm
is efficient. The following computation is conducted on a Lenovo desktop with 2
GB memory and an Intel Core 2 CPU 6400 at 2.13 GHz. We implemented our
algorithm in C and used gcc to compile it.

Example 8.1. Consider the biharmonic equation (1.4) on Ω with f given by

f(x1, x2) = tπ4
[
4 cos(2πx1) cos(2πx2)− cos(2πx1)− cos(2πx2)

]
, (x1, x2) ∈ Ω,
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where t > 0 is chosen so that ‖f‖2 = 1. The exact solution of the equation is

(8.3) u(x1, x2) = t
[
1− cos(2πx1)

][
1− cos(2πx2)

]
/16, (x1, x2) ∈ Ω = (0, 1)2.

Table 8.1. Numerical results of Example 8.1

Level n Grid 2n × 2n Nit ‖r0n‖2 ‖rn‖2 ‖Δen‖2 ‖Δe∗n‖2 Time (s)

5 32× 32 1.75 5.64e-3 1.01e-5 2.23e-5 2.00e-5 0.001

6 64× 64 1.81 5.64e-3 1.72e-6 5.21e-6 4.99e-6 0.002

7 128× 128 1.88 5.64e-3 3.02e-7 1.28e-6 1.25e-6 0.007

8 256× 256 1.80 5.64e-3 7.25e-8 3.22e-7 3.11e-7 0.029

9 512× 512 1.81 5.64e-3 1.32e-8 8.02e-8 7.79e-8 0.133

10 1024× 1024 1.50 5.64e-3 9.31e-9 2.12e-8 1.95e-8 0.531

In Table 8.1, the third column gives the total number Nit of equivalent iterations
at level n. For instance, for n = 10 and 4 ≤ k ≤ n, mk iterations are required for
the equation Bkzn,k = r0k, where m4 = 15, m5 = 13, m6 = 8, m7 = 5, m8 = 2,
m9 = 1, and m10 = 1. By (8.2) we obtain

Nit =

n∑
k=4

mk

4n−k
≈ 1.50.

The fourth column of the above table gives the initial residue, and the fifth
column gives the residue when the algorithm terminates. Note that ‖r0n‖2 depends
on n. But the first three digits of ‖r0n‖2 are the same for n ≥ 5.

The sixth column gives the error ‖Δen‖2 = ‖Δen‖L2(Ω) of the approximate
solution in the energy norm. For the purpose of comparison, in the seventh column
we also list the discretization error ‖Δe∗n‖2 = ‖Δe∗n‖L2(Ω) in the energy norm.
Recall that e∗n = u∗

n − u and u∗
n = Pnz

∗
n, where z∗n is the exact solution to the

equation (7.6), which is obtained by sufficiently many iterations. We find

‖Δen‖2 ≤ 1.12‖Δe∗n‖2 for 4 ≤ n ≤ 10.

This demonstrates that the approximate solution obtained by our algorithm achieves
the level of discretization error. Moreover, we see that ‖Δe∗n+1‖2/‖Δe∗n‖2 <
0.2506 ≈ 1/4 for 4 ≤ n ≤ 9. Thus, for the energy norm, the computation in-
dicates that the rate of convergence is of order 2, confirming the assertion made in
Theorem 3.1.

The last column of the above table gives the CPU time in seconds for solving
the linear system of equations Bnzn = ηn. At level n = 10, the matrix B10 has
size 1046529 × 1046529. Our algorithm takes only 0.531 of a second to solve the
equation B10z10 = η10.
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Example 8.2. For (x1, x2) ∈ R2, let z := (x1−1/2)2+(x2−1/2)2−1/4. Consider
the biharmonic equation (1.4) on Ω with f given by

f(x1, x2) =

{
t
[
(4z + 1)2 sin z + 16(4z + 1)(1− cos z) + 32(z − sin z)

]
if z < 0,

0 if z ≥ 0,

where t > 0 is so chosen that ‖f‖2 = 1. The exact solution of the equation is given
by u(x1, x2) = t[sin z − z + z3/3] for (x1, x2) ∈ Ω.

Table 8.2. Numerical results of Example 8.2

Level n Grid 2n × 2n Nit ‖r0n‖2 ‖rn‖2 ‖Δen‖2 ‖Δe∗n‖2 Time (s)

5 32× 32 2.00 5.19e-3 9.35e-6 2.89e-5 2.77e-5 0.001

6 64× 64 1.81 5.19e-3 2.32e-6 7.47e-6 6.78e-6 0.002

7 128× 128 1.92 5.19e-3 3.72e-7 1.76e-6 1.69e-6 0.007

8 256× 256 1.60 5.19e-3 1.35e-7 4.50e-7 4.21e-7 0.026

9 512× 512 1.51 5.19e-3 2.95e-8 1.16e-7 1.05e-7 0.122

10 1024× 1024 1.43 5.19e-3 9.61e-9 2.84e-8 2.63e-8 0.523

In this example, we have ‖Δen‖2 ≤ 1.11‖Δe∗n‖2 for 4 ≤ n ≤ 10.

Example 8.3. Consider the biharmonic equation (1.4) with f given by

f(x1, x2) = te(3x1−x2)
2

, (x1, x2) ∈ Ω = (0, 1)2,

where t > 0 is chosen so that ‖f‖2 = 1. In this case, the exact solution is unknown.
Let ẽn := un − un+1 and ẽ∗n := u∗

n − u∗
n+1.

Table 8.3. Numerical results of Example 8.3

Level n Grid 2n × 2n Nit ‖r0n‖2 ‖rn‖2 ‖Δẽn‖2 ‖Δẽ∗n‖2 Time (s)

5 32× 32 2.75 1.15e-3 7.02e-6 3.58e-5 3.58e-5 0.001

6 64× 64 3.13 1.15e-3 1.83e-6 8.89e-6 8.87e-6 0.002

7 128× 128 3.25 1.15e-3 4.20e-7 2.20e-6 2.20e-6 0.009

8 256× 256 3.31 1.15e-3 8.23e-8 5.51e-7 5.51e-7 0.048

9 512× 512 2.27 1.15e-3 4.98e-8 1.38e-7 1.38e-7 0.157
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Example 8.4. Let (ci1,i2)0≤i1,i2<210 be a random array of real numbers between 0
and 1. Consider the biharmonic equation (1.4) with f being a piecewise constant
function given by

f(x1, x2) := tci1,i2 for
i1
210

< x1 <
i1 + 1

210
and

i2
210

< x2 <
i2 + 1

210

where t > 0 is chosen so that ‖f‖2 = 1.

Table 8.4. Numerical results of Example 8.4

Level n Grid 2n × 2n Nit ‖r0n‖2 ‖rn‖2 ‖Δẽn‖2 ‖Δẽ∗n‖2 Time (s)

5 32× 32 2.75 5.55e-3 8.78e-6 3.31e-5 3.31e-5 0.001

6 64× 64 3.06 5.55e-3 2.01e-6 8.29e-6 8.29e-6 0.002

7 128× 128 1.98 5.55e-3 9.55e-7 2.08e-6 2.08e-6 0.006

8 256× 256 1.99 5.55e-3 2.04e-7 5.35e-7 5.35e-7 0.032

9 512× 512 1.93 5.55e-3 6.20e-8 1.42e-7 1.42e-7 0.139

The biharmonic equation has been extensively studied in the literature. For
numerical solutions of the biharmonic equation, the finite difference method was
used in [7], [6], and [1], and the finite element method was employed in [32], [27], and
[28]. Chang, Wong, Fu in [7], and Chang and Huang in [6] used difference schemes
of second order, while Altas, Dym, Gupta and Manohar in [1] introduced a vector
difference scheme of fourth-order in their solutions of the biharmonic equation. Sun
in [32] and Oswald in [27] considered preconditioning techniques for the biharmonic
equation discretized by quadratic and cubic splines, respectively. Silvester and
Mihajlović in [28] proposed a multigrid preconditioning operator for the decoupled
equation (7.5).

All the papers mentioned above, except [1], focused on residue reduction for the
preconditioned matrices. For relative residue reduction in the 2 norm, the above
numerical examples show that our algorithm requires considerably fewer iterations
than those reported in [32] and [27]. Let us discuss relative residue reduction in the
∞ norm given by the quantity ‖rn‖∞/‖r0n‖∞. In Table 8.5, for ε = 10−4, 10−5, and
10−6, we list the average number of iterations needed for τn := ‖rn‖∞/‖r0n‖∞ < ε
in the above four examples:

Table 8.5. Relative residue reduction

Level n Grid 2n × 2n τn < 10−4 τn < 10−5 τn < 10−6

8 256× 256 1.8 3.0 5.0

9 512× 512 1.4 2.0 2.9

10 1024× 1024 1.3 1.5 1.9
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The relative residue reduction in the ∞ norm was discussed in [28] for the
258 × 258 grid discretized by piecewise linear elements. It required 4 BICGSTAB
iterations to get τ8 < 6.2×10−4 and 20 BICGSTAB iterations to get τ8 < 1.2×10−6.
Further, 3 multigrid V (1, 1) cycles per itearation were performed for preconditioning
(see Table 4 iii) in [28]). The algebraic multigrid method was used [7] and [6]. It
was reported in Table 10 of [6] that more than 40 iterations were needed for the
relative residue reduction in the ∞ norm to be less than 10−6.

We remark that residue reductions are not fully comparable, because the cor-
responding matrices are different in different contexts. We think that it is more
appropriate to compare the efficiency of numerical algorithms to achieve the level
of discretization error. The wavelet method we propose has the advantage that
the number of iterations needed to achieve the level of discretization error will
not increase as the mesh size decreases. Thus, the wavelet method is suitable for
large-scale computation. In comparison, in most of the aforementioned papers, the
number of iterations would increase as the mesh size decreases.

9. Numerical examples: error estimates in the L2 and L∞ norms

In this section we investigate numerical solutions of the biharmonic equation
and estimate errors of approximate solutions in the L2 and L∞ norms. We simply
perform more iterations to achieve the level of discretization error. For the examples
considered in this section, 7 equivalent PCG iterations based on our wavelets will
be sufficient.

The following example was considered in [1]. We define

‖en‖∞ := max
{∣∣en(i1/2n, i2/2n)∣∣ : 0 ≤ i1, i2 ≤ 2n

}
.

This definition agrees with the one given in [1].

Example 9.1. Consider the biharmonic equation (1.4) on Ω = (0, 1)2 with f given
by

f(x1, x2) = 16π4
[
4 cos(2πx1) cos(2πx2)− cos(2πx1)− cos(2πx2)

]
, (x1, x2) ∈ Ω.

The exact solution of the equation is

u(x1, x2) =
[
1− cos(2πx1)

][
1− cos(2πx2)

]
, (x1, x2) ∈ Ω.

The numerical results are listed in Table 9.1.

Table 9.1. Error estimates in the maximum norm

Level n Grid 2n × 2n ‖eDn ‖∞ Time (s) ‖eLD
n ‖∞ Time (s) ‖e∗n‖∞

5 32× 32 6.28e-6 0.003 6.28e-6 0.004 6.28e-6

6 64× 64 3.90e-7 0.007 3.90e-7 0.013 3.90e-7

7 128× 128 2.44e-8 0.026 2.44e-8 0.047 2.44e-8

8 256× 256 4.19e-9 0.110 1.52e-9 0.198 1.52e-9

9 512× 512 4.27e-8 0.507 8.34e-11 0.885 8.31e-11
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In Table 9.1, the third column gives the error ‖eDn ‖∞ by using the double precision
arithmetic, and the fourth column gives the corresponding CPU time in seconds.
Moreover, the fifth column gives the error ‖eLD

n ‖∞ by using the long double precision
arithmetic, and the sixth column gives the corresponding CPU time in seconds.
Finally, the last column gives the discretization error ‖e∗n‖∞ in the ∞ norm.

We observe that, starting from level 8, the accuracy of the approximate solutions
is affected by the roundoff errors if the double precision arithmetic is used. But
the long double precision gives the desired accuracy at levels 8 and 9. We also
observe that ‖e∗n‖∞/‖e∗n+1‖∞ < 0.626 ≈ 2−4 for n = 5, 6, 7, 8. Hence, the rate of
convergence is of order 4.

A vector difference scheme of order 4 was used in [1]. The matrix obtained from
discretization using their scheme has size 3(2n − 1)2 × 3(2n − 1)2 at level n. In
comparison, the matrix Bn has size (2n − 1)2 × (2n − 1)2. But our discretization
error ‖e∗n‖∞ is smaller. For instance, for n = 7 we have ‖e∗7‖∞ ≈ 2.44 × 10−8,
while the corresponding discretization error in [1] is 4.2 × 10−8. It was reported
in [1] that 3 FMG (Full Mutligrid) W (3, 2)-cycles were used to achieve the level of
discretization error. We estimate that a multiplication of their matrix with a vector
costs twice as much as a multiplication of our matrix (Bn) with a vector (see the
above comparison of the matrix size). Consequently, we estimate that a multigrid
V (3, 2)-cycle costs as much as 5 PCG iterations of our scheme. The computational
cost of a FMG W (3, 2)-cycle is about twice the cost of a simple V (3, 2)-cycle (see
[1]). Thus, the computational cost of 3 FMG W (3, 2)-cycles is about the cost of 30
PCG iterations of our scheme.

Example 9.2. Consider the biharmonic equation (1.4) on Ω with f given by

f(x1, x2) = e(3x1−x2)
2

, (x1, x2) ∈ Ω.

In this case, the exact solution is unknown. Recall that ẽn = un − un+1 and ẽ∗n =
u∗
n − u∗

n+1. In Table 9.2 we list numerical results of the approximate solutions that
achieve the level of discretization error in the L2 norm. The numerical computation
clearly shows that the rate of convergence is of order 4, confirming the conclusion
of Theorem 3.1.

Table 9.2. Error estimates in the L2 norm

Level n Grid 2n × 2n ‖ẽDn ‖2 Time (s) ‖ẽLD
n ‖2 Time (s) ‖ẽ∗n‖2

5 32× 32 7.18e-7 0.003 7.18e-7 0.004 7.18e-7

6 64× 64 4.18e-8 0.007 4.18e-8 0.013 4.18e-8

7 128× 128 2.54e-9 0.026 2.54e-9 0.047 2.54e-9

8 256× 256 1.67e-10 0.110 1.59e-10 0.198 1.58e-10

9 512× 512 1.20e-9 0.507 1.00e-11 0.885 9.92e-12
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10. Fourth-order elliptic equations

In this section we extend our study to general elliptic equations of fourth-order.
If the Dirichlet form of a fourth-order elliptic operator is strictly coercive, then
the wavelet bases constructed in §6 are still applicable to numerical solutions of
the corresponding fourth-order elliptic equation with the homogeneous boundary
conditions. For simplicity, let us consider the following elliptic equation:

(10.1)

{
Δ(a(x)Δu)(x) = f(x) for x ∈ Ω,

u(x) = ∂u
∂n (x) = 0 for x ∈ ∂Ω,

where a(x) = a(x1, x2) is a continuous function on Ω and there exist two posi-
tive constants K1 and K2 such that K1 ≤ a(x1, x2) ≤ K2 for all (x1, x2) ∈ Ω.
Consequently, there exist two positive constants C1 and C2 such that

C1|u|2H2
0 (Ω) ≤ 〈aΔu,Δu〉 ≤ C2|u|2H2

0 (Ω) ∀u ∈ H2
0 (Ω).

The variational form corresponding to the preceding elliptic equation is

〈aΔu,Δv〉 = 〈f, v〉 ∀ v ∈ H2
0 (Ω).

Thus, our wavelet bases can be used to discretize the above equation. We give two
examples of numerical computation as follows. The long double precision arithmetic
will be used in the computation.

Example 10.1. Let a(x1, x2) := (1+x1)(1+x2) for (x1, x2) ∈ Ω = (0, 1)2. Suppose
that f(x) = Δ(a(x)Δu)(x) for x ∈ Ω, where u is given by

(10.2) u(x1, x2) =
[
1− cos(2πx1)

][
1− cos(2πx2)

]
/4, (x1, x2) ∈ Ω.

Then u is the exact solution of (1.4). The numerical results are listed in Table 10.1.

Table 10.1. Numerical results of Example 10.1

Level n Grid 2n × 2n ‖en‖2 ‖e∗n‖2 Time (s)

5 32× 32 7.38e-7 7.38e-7 0.017

6 64× 64 4.57e-8 4.57e-8 0.053

7 128× 128 2.85e-9 2.85e-9 0.196

8 256× 256 1.78e-10 1.78e-10 0.806

9 512× 512 1.10e-11 1.10e-11 3.524

Example 10.2. Let a(x1, x2) := 1+0.5 sin[10.8(x1−x2)] for (x1, x2) ∈ Ω = (0, 1)2.
Let f(x) = Δ(a(x)Δu)(x) for x ∈ Ω, where u is given by (10.2). Then u is the
exact solution of (10.1). The numerical results are listed in Table 10.2.
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Table 10.2. Numerical results of Example 10.2

Level n Grid 2n × 2n ‖en‖2 ‖e∗n‖2 Time (s)

5 32× 32 8.25e-7 8.25e-7 0.017

6 64× 64 5.11e-8 5.11e-8 0.053

7 128× 128 3.21e-9 3.18e-9 0.196

8 256× 256 2.04e-10 1.99e-10 0.806

9 512× 512 1.26e-11 1.21e-11 3.524
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