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UPPER BOUNDS FOR RESIDUES OF DEDEKIND

ZETA FUNCTIONS AND CLASS NUMBERS

OF CUBIC AND QUARTIC NUMBER FIELDS

STÉPHANE R. LOUBOUTIN

Abstract. Let K be an algebraic number field. Assume that ζK(s)/ζ(s)
is entire. We give an explicit upper bound for the residue at s = 1 of the
Dedekind zeta function ζK(s) of K. We deduce explicit upper bounds on class
numbers of cubic and quartic number fields.

1. Introduction

Let K be an algebraic number field of degree m = r1 + 2r2 > 1, where r1 is the
number of real places of K and r2 is the number of complex places of K. Let κK

be the residue at s = 1 of the Dedekind zeta function function ζK(s) of K. Let dK
be the absolute value of the discriminant of K. Let hK be its class number. Then
(see [Lan, Chapter XIII, Section 3, Theorem 2]):

(1) hK =
wK

√
dK

2r1(2π)r2RegK
κK ,

where wK ≥ 2 is the number of complex roots of unity in K and RegK is the
regulator of K. To get upper bounds on hK we need lower bounds on RegK (e.g.,
see [Sil]) and upper bounds on κK (e.g., see [Lou00]). If K is a real quadratic
number field, then

(2) hK ≤ 1

2

√
dK

([Le] and [Ram, Corollary 2]); if K is a real cyclic cubic number field, then

(3) hK ≤ 2

3

√
dK

(see [MP], and use [Lou93] instead of [MP, Lemme 3.2] to obtain that this bound
is valid for real cyclic cubic number fields of not necessarily prime discriminants).
With e = exp(1), it is known that

(4) κK ≤
(

e log dK
2(m− 1)

)m−1
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([Lou00, Theorem 1] and [Lou01, Theorem 1]). If K is abelian, we have a better
bound:

(5) κK ≤
(
log dK +mλK

2(m− 1)

)m−1

,

where λK = 0 if K is real and λK = 5/2 − log 6 if K is imaginary (use [Ram,
Corollary 1] and notice that if K is imaginary, then m/2 of the m characters in
the group of primitive Dirichlet characters associated with K are odd). For some
totally real number fields, an improvement on (4) is known (see [Lou01, Theorem
2]): if K ranges over a family of totally real number fields of a given degree m > 1
for which ζK(s)/ζ(s) is entire, there exists Cm (computable) such that dK ≥ Cm

implies

(6) κK ≤ logm−1 dK
2m−1(m− 1)!

≤ 1√
2π(m− 1)

(
e log dK
2(m− 1)

)m−1

.

It is known that ζK(s)/ζ(s) is entire if K is normal (see [MM, Chapter 2, Theorem
3]), or if the Galois group of its normal closure is solvable (see [Uch], [vdW] and
[MM, Chapter 2, Corollary 4.2]), e.g., for any cubic or quartic number field. This
paper generalizes (6) to not necessarily totally real number fields:

Theorem 1. Let r1 and r2 be given, with r1+2r2 ≥ 3. There exists dr1,r2 effectively
computable such that for any number field K of degree m = r1 + 2r2 with r1 real
places and r2 complex places, we have

(7) κK ≤ logm−1 dK
2m−1(m− 1)!

,

provided that (i) dK ≥ dr1,r2 and (ii) that ζK(s)/ζ(s) is entire.

For given r1 and r2, we will explain how to use any mathematical software,
we use Maple, to compute such a dr1,r2 . It appears that for the small values of
r1 + 2r2 = m, say for 3 ≤ m ≤ 6, this bound (7) holds true with no restriction on
the size of dK (in fact, we have an even better bound, see Theorem 3), the reason
being that these computed dr1,r2 ’s are less than or equal to the least discriminants
of number fields of degree m = r1 + 2r2 ≤ 6 with r1 real places and r2 complex
places. However, even in the simplest situation where we assume that K is totally
real, we could not in [Lou05] obtain beforehand a C > 0 such that (7) holds true

for K’s of root-discriminants ρK = d
1/m
K greater than C.

Set

γ = lim
m→∞

( m∑
k=1

1

k
− logm

)
= 0.57721 · · ·

(Euler’s constant) and

λr2,m = 2 + r2 log 4− (m− 1)(log(4π)− γ).

Since λr2,m < 0 for m ≥ 3, Theorem 1 follows from the bound

(8) κK ≤
(
log dK + λr2,m

)m−1

2m−1(m− 1)!
+Or2,m(logm−3 dK),
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where the implied constants are effective and depend on r2 and m only. To prove
(8), we generalize the method introduced in [Lou96]. Set

γ(1) = lim
m→∞

( m∑
k=1

log k

k
− 1

2
log2 m

)
= −0.07281 · · ·

and

μr2,m = 3 + r2π
2/12− (m− 1)(π2/8− γ2 − 2γ(1)).

The error term in (8) is less than or equal to zero if μr2,m > 0 and dK is large
enough. Now, μr2,m > 0 if and only if we are in one of the following cases:

Table 1

m r2 λr2,m μr2,m dK ≥
2 0 2 + γ − log(4π) = 0.04619 · · · 1.95384 · · · 3

2 1 2 + γ − log π = 1.43248 · · · 2.77631 · · · 3

3 0 2 + 2γ − 2 log(4π) = −1.90761 · · · 0.90769 · · · 146

3 1 2 + 2γ − 2 log(2π) = −0.52132 · · · 1.73015 · · · 4

4 1 2 + 3γ − log(16π3) = −2.47513 · · · 0.68400 · · · 75100

4 2 2 + 3γ − log(4π3) = −1.08883 · · · 1.50647 · · · 35

5 2 2 + 4γ − 4 log(2π) = −3.04264 · · · 0.46031 · · · 21 · 1010

6 3 2 + 5γ − log(16π5) = −3.61015 · · · 0.23662 · · · 21 · 1031

It will follow that we have a pleasingly explicit bound:

Theorem 2. Assume that we are in one of the eight cases of Table 1. Then,

κK ≤
(
log dK + λr2,m

)m−1

2m−1(m− 1)!
,

provided that dK is large enough, as given in the last column of Table 1.

The results in [Lou93] and [Lou96] are the case m = 2 of Theorem 2 above.
(However, in the quadratic case we have an even better bound (see [Ram]).) Finally,
by taking constants slightly less than these λr2,m, we have a the fully explicit
following result where we do not have any restriction on dK (compare with Theorem
1):

Theorem 3. Let K be a number field of degree m ∈ {2, 3, 4, 5, 6} for which
ζK(s)/ζ(s) is entire. Then,

κK ≤
(
log dK + λ)m−1

2m−1(m− 1)!
,

where λ is as in Table 2:
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Table 2

m r2 = 0 r2 = 1 r2 = 2 r2 = 3

2 0.04620 1.43249

3 −1.74865 −0.52132

4 −2.94863 −2.07896 −1.08883

5 −4.21779 −3.29415 −2.41877

6 −5.49315 −4.55901 −3.64104 −2.76490

Corollary 4. If K is a totally real cubic number field, then

(9) hK ≤ 1

2

√
dK .

If K is a totally real quartic number field which contains no quadratic subfield, then

(10) hK ≤ 5
√
10

24

√
dK .

We refer to [Dai] for examples of number fields with very large class numbers.

2. Proof of the bound (8)

We adapt [Lou00, Proof of Theorem 7]. Let K be a number field of degree

m = r1 + 2r2 > 1. Assume that ζK(s)/ζ(s) is entire. Set AK/Q =
√
dK/4r2πm−1,

ΓK/Q(s) = Γr1−1(s/2)Γr2(s) =
2r2(s−1)

πr2/2
Γr1+r2−1(s/2)Γr2((s+ 1)/2)

(notice that r1 + r2 − 1 ≥ 0 and r2 ≥ 0) and

FK/Q(s) = As
K/QΓK/Q(s)(ζK(s)/ζ(s)).

Then, FK/Q(s) is entire and FK/Q(s) = FK/Q(1− s). Let

(11) SK/Q(x) :=
1

2πi

∫ c+i∞

c−i∞
FK/Q(s)x−sds (c > 1 and x > 0)

denote the inverse Mellin transform of FK/Q(s). Then,

(12) SK/Q(x) =
1

x
SK/Q(

1

x
)

(notice that FK/Q(s) is entire, shift the vertical line of integration �(s) = c > 1
in (11) leftwards to the vertical line of integration �(s) = 1 − c < 0, then use the
functional equation FK/Q(1 − s) = FK/Q(s) to come back to the vertical line of
integration �(s) = c > 1). For �(s) > 1,

FK/Q(s) =

∫ ∞

0

SK/Q(x)xsdx

x

is the Mellin transform of SK/Q(x). Using (12), we obtain

(13) FK/Q(s) =

∫ ∞

1

SK/Q(x)(xs + x1−s)
dx

x
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on the whole complex plane. Now, write ζK(s)/ζ(s) =
∑

n≥1 aK/Q(n)n−s and

ζm−1(s) =
∑

n≥1 am−1(n)n
−s (�(s) > 1). Then, |aK/Q(n)| ≤ am−1(n) (see [Lou01,

(55)]) and

SK/Q(x) =
∑
n≥1

aK/Q(n)HK/Q(nx/AK/Q),

where

HK/Q(x) =
1

2πi

∫ c+i∞

c−i∞
ΓK/Q(s)x−sds.

Since HK/Q(x) > 0 for x > 0 (see [Lou01, Theorem 20]) 1), we have

|SK/Q(x)| ≤
∑
n≥1

am−1(n)HK/Q(nx/AK/Q).

Plugging this into (13), we obtain
√
dK

(2π)r2
κK = FK/Q(1) =

∫ ∞

1

SK/Q(x)(1 + 1/x)dx

≤
∑
n≥1

am−1(n)

∫ ∞

1

HK/Q(nx/AK/Q)(1 + 1/x)dx

=
∑
n≥1

am−1(n)
1

2πi

∫ c+i∞

c−i∞

(∫ ∞

1

(nx/AK/Q)−s(1 + 1/x)dx

)
ΓK/Q(s)ds

=
∑
n≥1

am−1(n)
1

2πi

∫ c+i∞

c−i∞

(
1

s− 1
+

1

s

)
ΓK/Q(s)(n/AK/Q)

−sds

=
1

2πi

∫ c+i∞

c−i∞

(
1

s− 1
+

1

s

)
ΓK/Q(s)ζm−1(s)As

K/Qds.

Therefore, we have

(14) κK ≤ IK(s) :=
1

2πi

∫ c+i∞

c−i∞
fK(s)ds (c > 1),

where

fK(s) = Γ̃r2(s)Λm−1(s)

(
1

s− 1
+

1

s

)
d
(s−1)/2
K ,

Λ(s) = π−s/2Γ(s/2)ζ(s) and Γ̃(s) = Γ((s+1)/2)/
(
Γ(s/2)/Γ(1/2)

)
. Recall that Λ(s)

has only two poles, both simple, at s = 1 and s = 0, and satisfies the functional
equation Λ(s) = Λ(1− s). Moreover, 1/Γ(s/2) is entire whereas Γ((s+ 1)/2) has a
simple pole at each odd negative integer. It follows that fK(s) has a pole of order
m > 1 at s = 1, a pole of order m− r2 = r1 + r2 ≥ 1 at s = 0, and a pole of order
r2 ≥ 0 at each negative odd integer. Now, as in [Lou01, Page 1207], in the range

σ1 ≤ σ ≤ σ2 and |t| ≥ 1, we have Γ̃(σ + it) = O(
√
|t|) and there exists M ≥ 0

such that Λ(σ + it) = O(|t|Me−π|t|/4). Hence, we are allowed to shift in (14) the

1Notice the misprints in [Lou00, page 273, line 1] and [Lou01, Theorem 20] where one should
read

(M1 � M2)(x) =

∫ ∞

0
M1(x/t)M2(t)

dt

t
.
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vertical line of integration �(s) = c > 1 leftwards to the vertical line of integration
�(s) = 1/2. We pick up one residue and obtain:

(15) κK ≤ Ress=1(fK(s)) + IK(1/2) = Ress=1(fK(s)) +Or2,m(d
−1/4
K ).

The bound (8) now follows from Lemma 5 below.

3. Computation of some residues

To prove Theorems 2 and 3, we need a better approximation to IK(s). By
shifting in (14) the vertical line of integration �(s) = c > 1 leftwards to the vertical
line of integration �(s) = −2, we pick up three residues and we obtain:

(16) κK ≤ Ress=1(fK(s)) + Ress=0(fK(s)) + Ress=−1(fK(s)) + IK(−2),

where Ress=1(fK(s)) is a polynomial of degree m − 1 in log dK with real coeffi-
cients,

√
dKRess=0(fK(s)) is a polynomial of degree r1 + r2 − 1 in log dK with real

coefficients, and dKRess=−1(fK(s)) is a polynomial of degree r2 − 1 in log dK with
real coefficients. This section is devoted to computing these residues.

Lemma 5. Set

fk,l(s) = Γ̃k(s)Λl(s)

(
1

s− 1
+

1

s

)
e(s−1)X .

Then, Ress=1(fk,l(s)) is a polynomial of degree l in X with real coefficients and

Ress=1(fk,l(s)) =

(
X +Ak,l

)l
l!

(l = 1),

Ress=1(fk,l(s)) =

(
X +Ak,l

)l
l!

− Ck,l
X l−2

(l − 2)!
(l = 2)

and

Ress=1(fk,l(s)) =

(
X +Ak,l

)l
l!

− Ck,l
X l−2

(l − 2)!
+Ok,l(X

l−3) (l ≥ 3),

where

Ak,l =
(
2 + k log 4− l(log(4π)− γ)

)
/2

and

Ck,l =
(
3 + kπ2/12− l(π2/8− γ2 − 2γ(1))

)
/2.

Proof. We have Γ̃(s) = 1 + a(s− 1) + b(s − 1)2 + O((s− 1)3), with a = log 2 and
b = (log2 2 − π2/12)/2, and (s − 1)Λ(s) = 1 + c(s − 1) + d(s − 1)2 + O((s − 1)3),
with

(17) c = − log(4π)− γ

2
and d =

2(log(4π)− γ)2 + π2 − 8γ2 − 16γ(1)

16
.

For k ≥ 0 and l ≥ 0, it holds that(
1 + az + bz2 +O(z3)

)k(
1 + cz + dz2 +O(z3)

)l(
1 + z − z2 +O(z3)

)
= 1 +Ak,lz +Bk,lz

2 +O(z3),

where Ak,l = ka+ lc+1 and Bk,l = klac+k
(
b+ k−1

2 a2
)
+ l

(
d+ l−1

2 c2
)
+ka+ lc−1.
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Hence, the desired results hold true with

Ck,l = A2
k,l/2−Bk,l =

(
k(a2 − 2b) + l(c2 − 2d) + 3

)
/2.

We have a2 − 2b = π2/12 and c2 − 2d = γ2 + 2γ(1)− π2/8. �

Lemma 6. Set r = l − k, let fk,l(s) and Ak,l be as in Lemma 5, and set

C ′
k,l =

(
3− kπ2/12− l(π2/8− γ2 − 2γ(1))

)
/2.

If r = 0 or r = 1, then

Ress=0(fk,l(s)) = (−1)l(π/2)k
(
X −Ak,l

)r
r!

e−X .

If r = 2, then

Ress=0(fk,l(s)) = (−1)l(π/2)k

((
X −Ak,l

)r
r!

− C ′
k,l

Xr−2

(r − 2)!

)
e−X .

If r ≥ 3, then

Ress=0(fk,l(s)) = (−1)l(π/2)k

((
X −Ak,l

)r
r!

− C ′
k,l

Xr−2

(r − 2)!
+Ok,l(X

r−3)

)
e−X .

Proof. Here, Γ̃(s) = πs
2

(
1 − as + bs2 + O(s3)

)
, with a = log 2 and b = (log2 2 +

π2/12)/2, and sΛ(s) = −
(
1− cs+ ds2 +O(s3)

)
, with c and d as in (17). �

Lemma 7. Let fk,l(s) be as in Lemma 5. We have

Ress=−1(f1,l(s)) =
3

2

(π
6

)l
e−2X .

Lemma 8. It holds that

|IK(−2)| ≤ 5

4π2

Γ(r2/2 + 1)

3m

(
14

m− 1

)r2/2+1

d
−3/2
K .

Proof. Using

|Γ̃(−2 + it)| =
(
4 + t2

1 + t2
πt

2
tanh(

πt

2
)

)1/2

≤
√
2π|t|

and

|Λ(−2 + it)| = |Λ(3− it)| ≤ ζ(3)

π3/2
|Γ((3− it)/2)| = ζ(3)

2π

√
1 + t2

cosh(πt/2)
≤ 1

3
e−π|t|/7,

we obtain:

d
3/2
K |IK(−2)| ≤ 5

6π

∫ ∞

0

|Γ̃(−2 + it)|r2 |Λ(−2 + it)|m−1dt

≤ 5

2π3m

∫ ∞

0

(2πt)r2/2e−π(m−1)t/7dt,

and the desired bound. �
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Table 3. Minimal discriminants

m r2 = 0 r2 = 1 r2 = 2 r2 = 3

2 5 3

3 49 23

4 725 275 117

5 14641 4511 1609

6 300125 92779 28037 9747

4. Proof of Theorems 2 and 3, and contents of Tables 1 and 2

We use (16), the previous lemmas and Table 3 above (see [Odl]).
1. If K is a real quadratic field, then

κK ≤ log dK + 2 + γ − log(4π)

2
− log dK − (2 + γ − log(4π))

2
√
dK

+
35

18π2d
3/2
K

is less than or equal to
(
log dK + 2 + γ − log(4π)

)
/2 for dK ≥ 3.

2. If K is an imaginary quadratic field, then

κK ≤ log dK + 2 + γ − log π

2
− π

2
√
dK

+
π

4dK
+

35
√
14π

36π2d
3/2
K

is less than or equal to
(
log dK + 2 + γ − log π

)
/2 for dK ≥ 3.

3. If K is a totally real cubic number field, then

κK ≤
(
log dK + 2 + 2γ − 2 log(4π)

)2
8

− (3/2 + γ2 + 2γ(1)− π2/8)

+

(
log dK − (2 + 2γ − 2 log(4π))

)2
8
√
dK

− 3/2 + γ2 + 2γ(1)− π2/8√
dK

+
35

108π2d
3/2
K

is less than or equal to
(
log dK +2+2γ−2 log(4π)

)2
/8 for dK ≥ 146, and less than

or equal to
(
log dK − 1.74865)2/8 for dK ≥ 49.

4. If K is a not totally real cubic number field, then

κK ≤
(
log dK + 2 + 2γ − 2 log(2π)

)2
8

− (3/2 + γ2 + 2γ(1)− π2/12)

+
π

4
√
dK

(
log dK − 2− 2γ + 2 log(2π)

)
+

π2

24dK
+

35
√
7π

216π2d
3/2
K

is less than or equal to
(
log dK + 2 + 2γ − 2 log(2π)

)2
/8 for dK ≥ 4.
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5. The other cases are easily dealt with by using any software for symbolic com-
putation, e.g., Maple, to compute the residues which appear in (16).

5. Proof of Corollary 4

1. Let K be a totally real cubic field. Then, RegK ≥ 1
16 log

2(dK/4) (see [Cus,
Theorem 1] or [Nak, Section 2.3]). Hence,

hK =

√
dK

4RegK
κK ≤ (log dK − 1.74865)2

2 log2(dK/4)

√
dK ≤ 1

2

√
dK .

2. Let K be a totally real quartic number field which contains no real quadratic
subfield. Then, RegK ≥ 1

80
√
10

log3 dK (see [Cus, Theorem 2]). By (7) (see also

[Lou01, Theorem 2, point 3]), we have κK ≤ 1
48 log

3 dK . Hence, by (1), we obtain

hK =

√
dK

8RegK
κK ≤ 5

√
10

24

√
dK .
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[Ram] O. Ramaré. Approximate formulae for L(1, χ). Acta Arith. 100 (2001), 245–266.
MR1865385 (2002k:11144)

[Sil] J. H. Silverman. An inequality relating the regulator and discriminant of a number field.
J. Number Theory 19 (1984), 437–442. MR769793 (86c:11094)

http://www.ams.org/mathscinet-getitem?mr=756083
http://www.ams.org/mathscinet-getitem?mr=756083
http://www.ams.org/mathscinet-getitem?mr=2276192
http://www.ams.org/mathscinet-getitem?mr=2276192
http://www.ams.org/mathscinet-getitem?mr=1282723
http://www.ams.org/mathscinet-getitem?mr=1282723
http://www.ams.org/mathscinet-getitem?mr=1305196
http://www.ams.org/mathscinet-getitem?mr=1305196
http://www.ams.org/mathscinet-getitem?mr=1198740
http://www.ams.org/mathscinet-getitem?mr=1198740
http://www.ams.org/mathscinet-getitem?mr=1408973
http://www.ams.org/mathscinet-getitem?mr=1408973
http://www.ams.org/mathscinet-getitem?mr=1802716
http://www.ams.org/mathscinet-getitem?mr=1802716
http://www.ams.org/mathscinet-getitem?mr=1863848
http://www.ams.org/mathscinet-getitem?mr=1863848
http://www.ams.org/mathscinet-getitem?mr=1482805
http://www.ams.org/mathscinet-getitem?mr=1482805
http://www.ams.org/mathscinet-getitem?mr=630633
http://www.ams.org/mathscinet-getitem?mr=630633
http://www.ams.org/mathscinet-getitem?mr=1378570
http://www.ams.org/mathscinet-getitem?mr=1378570
http://www.ams.org/mathscinet-getitem?mr=1061762
http://www.ams.org/mathscinet-getitem?mr=1061762
http://www.ams.org/mathscinet-getitem?mr=1865385
http://www.ams.org/mathscinet-getitem?mr=1865385
http://www.ams.org/mathscinet-getitem?mr=769793
http://www.ams.org/mathscinet-getitem?mr=769793
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