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DISCONTINUOUS GALERKIN ERROR ESTIMATION FOR

LINEAR SYMMETRIZABLE HYPERBOLIC SYSTEMS

SLIMANE ADJERID AND THOMAS WEINHART

Abstract. We present an a posteriori error analysis for the discontinuous
Galerkin discretization error of first-order linear symmetrizable hyperbolic sys-
tems of partial differential equations with smooth solutions. We perform a local
error analysis by writing the local error as a series and showing that its lead-
ing term can be expressed as a linear combination of Legendre polynomials of
degree p and p + 1. We apply these asymptotic results to show that projec-
tions of the error are pointwise O(hp+2)-superconvergent. We solve relatively
small local problems to compute efficient and asymptotically exact estimates
of the finite element error. We present computational results for several linear
hyperbolic systems in acoustics and electromagnetism.

1. Introduction

In this paper, we develop an a posteriori error estimation for the discontinuous
Galerkin method applied to linear symmetrizable hyperbolic systems. First-order
hyperbolic systems arise in many areas of continuum physics when fundamental bal-
ance laws are formulated (such as the conservation of mass, momentum, or energy)
and if other small-scale, dissipative mechanisms can be neglected. Many of these
systems are symmetrizable, such as Maxwell’s equations of electromagnetism, the
wave equation, and the two-dimensional Euler equation modeling gas dynamics.
While linear symmetrizable systems can be symmetrized with little effort, sym-
metrization of nonlinear symmetrizable systems such as the two-dimensional Euler
equations can be expensive, in which case it is advantageous to avoid symmetriza-
tion and discretize the original symmetrizable system.

The discontinuous Galerkin (DG) finite element method was first used to solve
the neutron equation [25] and ordinary differential equations [24]. Cockburn and
Shu [17, 18, 19] introduced the Runge-Kutta Discontinuous Galerkin (RKDG)
method to solve first-order hyperbolic systems. The solution space of DG meth-
ods consists of piecewise continuous polynomial functions. As such, it can sharply
capture discontinuities in the solution. They are also locally conservative, and
can handle problems with complex geometries to high order. They have a simple
communication pattern between elements with a common face, which is useful for
parallel computation and adaptive methods, since it is easy to construct locally
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refined meshes with hanging nodes. Furthermore, they exhibit strong superconver-
gence that can be used to estimate the discretization error.

A posteriori error estimates are used to verify solutions, guide adaptive algo-
rithms, and stop the refinement process. An ideal estimate is (i) asymptotically
exact in the sense that the error estimate in some norm approaches zero under
mesh refinement at the same rate as the actual error and (ii) computationally ef-
ficient by requiring a small fraction of the solution cost. Several a posteriori DG
error estimates are known for hyperbolic problems [15, 16, 21, 23]. Adjerid et al. [5]
developed the first asymptotically correct a posteriori DG error estimates for one-
dimensional linear and nonlinear hyperbolic problems. Later, Adjerid and Massey
[6, 7] showed how to construct accurate error estimates for multi-dimensional scalar
problems on rectangular meshes. They showed that the leading term of the DG
error is spanned by two (p+1)-degree Radau polynomials in the x and y directions,
respectively. Krivodonova and Flaherty [22] showed that the leading term of the
local discretization error on triangles having one outflow edge is spanned by a subop-
timal set of orthogonal polynomials of degree p and p+1. They computed DG error
estimates by solving local problems involving numerical fluxes, thus requiring infor-
mation from neighboring inflow elements. Adjerid and Baccouch [2, 4] investigated
DG methods on structured and unstructured triangular meshes with several finite
element spaces to discover new superconvergence properties and compute efficient
and accurate error estimates. Cheng and Shu [12, 13, 14] investigated the super-
convergence of discontinuous solutions for hyperbolic and convection-diffusion prob-
lems. They observed that p-degree DG [12] and LDG [13] solutions stay O(hp+2)
superconvergent in the L2 norm towards a particular projection of the exact so-
lution for linear and nonlinear problems. In [14] they presented a general super-
convergence theory for one-dimensional linear hyperbolic and convection-diffusion
problems where they proved that the difference between the discontinuous solu-
tion and a particular projection of the exact solution is O(hp+3/2) and grows most
linearly with time. Such superconvergence results explain the observed long-time
accuracy of discontinuous solutions and are an essential ingredient in proving the
asymptotic exactness of a posteriori DG error estimates [3].

In [8, 9], we developed a residual-based a posteriori error estimation for the
discontinuous Galerkin method for linear symmetric hyperbolic systems. In this
paper, we extend this work and develop an a posteriori error estimation for linear
symmetrizable hyperbolic systems. In our analysis, we symmetrize both the hyper-
bolic system and its DG formulation and apply the results of [8] to the resulting
symmetric system. The a posteriori error estimation procedure for symmetrizable
systems is different from that for symmetric systems since the range and the null
space are generally skew for symmetrizable matrices, whereas they are orthogonal
for symmetric matrices; thus, we have to be careful to distinguish between the null
space orthogonal and the range of these matrices. The main differences from the
symmetric case can be summarized in the following points: (i) pointwise supercon-

vergence can be observed only in the projection of the error onto
⋂d

i=1 R((Asi
i )t),

si = +,−, (ii) the error estimate is obtained by splitting the leading term of the
discretization error applying skew projections into the range and null space of the
flux matrices, (iii) the Drazin inverse is used to define the skew projection opera-
tors, and (iv) the test function spaces for the error estimation procedure are now
based on the range and null spaces of the transpose of each flux matrix which leads



DISCONTINUOUS GALERKIN ERROR ESTIMATION 1337

to Petrov-Galerkin problems for the error estimates. Computational results suggest
that our a posteriori error estimates stay good for a relatively long time.

This manuscript is organized as follows: in §2 we state the problem and present
the weak DG formulation for symmetrizable hyperbolic systems. In §3 we present a
local error analysis for first-order multi-dimensional hyperbolic systems. We discuss
our a posteriori error estimation procedure in §4. In §5 we validate our theory by
presenting computational results for several problems in two- and three-dimensions.
We conclude with a few remarks in §6.

2. Problem formulation

Let d be the space dimension, x = (x1, . . . , xd)
t the space variable defined on a

domain Ω = (0, 1)d ∈ R
d, and t the time variable defined on [0, T ].

Let u : [0, T ]×Ω → R
m be the true solution of the linear symmetrizable hyper-

bolic system

(2.1a)
∂u

∂t
+

d∑
i=1

Ai
∂u

∂xi
= g(t,x), x ∈ Ω, 0 < t < T,

with constant coefficient matrices Ai, 1 ≤ i ≤ d, such that there is a symmetric
positive definite matrix S0 for which the matrices

(2.1b) Si = S0Ai, 1 ≤ i ≤ d,

are symmetric. Further, assume that u satisfies the following initial and boundary
conditions

u(0,x) = u0(x), x ∈ Ω,(2.1c) (
d∑

i=1

(νiAi)
−

)
u(t,x) =

(
d∑

i=1

(νiAi)
−

)
uB(t,x), x ∈ ∂Ω, 0 < t < T,(2.1d)

where ∂Ω denotes the boundary of Ω and ν denotes the unit outward normal on
∂Ω.

We call a real matrix M symmetrizable, if and only there is a symmetric positive
definite matrix S such that SM is symmetric. By [11], M ∈ Rm×m is symmetriz-
able, if and only if it is diagonalizable over the reals, i.e.,

(2.2a) M = P diag(λ1, . . . , λm)P−1, P ∈ R
m×m, λ1, . . . , λm ∈ R.

We define

M+ = P diag(max(λ1, 0), . . . ,max(λm, 0))P−1,(2.2b)

M− = P diag(min(λ1, 0), . . . ,min(λm, 0))P−1, and(2.2c)

sgn(M) = P diag(sgn(λ1), . . . , sgn(λ1))P
−1,(2.2d)

where sgn(x), x ∈ R denotes the standard signum function.
Let R(M) and N (M) denote the range and null space of M, respectively. Using

basic linear algebra, we prove that these matrices satisfy the following properties
summarized in a lemma.
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Lemma 2.1. Let M ∈ R
m×m be symmetrizable. Then M+, M− and sgn(M), as

defined in (2.2), satisfy the following:

M = M+ +M−,(2.3a)

N (M+ −M−) = N (sgn(M)) = N (M) ⊆ N (Ms), s = +,−,(2.3b)

R(Ms) ⊆ R(M) = R(sgn(M)), s = +,−,(2.3c)

M+ sgn(M) = M+, M− sgn(M) = −M−.(2.3d)

We select g, the initial conditions u0 and the boundary conditions uB such that
u(t,x) lies in the space Cp+2 = [C2([0, T ], Cp+2(Ω))]m where

(2.4) C2([0, T ], Cp+2(Ω)) = {v | ∂
kv(t,x)

∂tk
∈ Cp+2(Ω), k = 0, 1, 2, 0 < t < T}.

Now, let us partition the domain Ω = (0, 1)d into a uniform mesh Th consisting
of Nd square elements of size h = N−1 defined as

(2.5a) Th =

{∏d

i=1
(nih, nih+ h) : 0 ≤ ni < N, 1 ≤ i ≤ d

}
.

Let Pp, p ≥ 0, denote the polynomials in x ∈ R
d with coefficients in R

m of total
degree at most p+1 and of degree at most p in each space variable x1, . . . , xd, that
is

(2.5b) Pp =

{∑
α
cαx

α : cα ∈ R
m, |α| ≤ p+ 1, max

1≤i≤d
αi ≤ p

}
.

Here, we use the finite element space

(2.5c) Vh
p = {v(t,x) : v|ω ∈ Pp, ω ∈ Th, 0 ≤ t ≤ T}.

The weak formulation of (2.1a) is obtained by multiplying (2.1a) by a test func-
tion v, integrating over an arbitrary element ω ∈ Th, and applying Green’s identity
to write
(2.6)∫

ω

vt

(
∂u

∂t
− g

)
dx =

d∑
i=1

∫
ω

∂vt

∂xi
Aiu dx−

∫
∂ω

vtνiAiu ds, ∀ ω ∈ Th, 0 < t < T,

where ∂ω denotes the boundary of ω and ν its outward unit normal.
Since Vh

p allows discontinuities across element boundaries ∂ω of any element

ω ∈ Th, we define the traces of uh ∈ Vh
p on ∂ω as

(2.7) u+
h (t,x) = lim

ε→0+
uh(t,x− εν), u−

h (t,x) = lim
ε→0+

uh(t,x+ εν), x ∈ ∂ω,

where ν denotes the unit outward normal on the boundary ∂ω. We will write
uh = u+

h whenever there is no confusion.
Applying the Steger-Warming numerical flux, [27],

(2.8) h(u+
h ,u

−
h ,ν) =

d∑
i=1

((νiAi)
+u+

h + (νiAi)
−u−

h ), x ∈ ∂ω, ω ∈ Th,
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we complete the definition of the discontinuous Galerkin method which consists of
finding uh ∈ Vh

p such that

(2.9)

∫
ω

vt

(
∂uh

∂t
− g

)
dx

=

d∑
i=1

(∫
ω

∂vt

∂xi
Aiuh dx−

∫
∂ω

vt((νiAi)
+uh + (νiAi)

−u−
h ) ds

)
,

ω ∈ Th, v ∈ Pp, 0 < t < T.

This yields a system of ODEs which is integrated by the embedded Dormand-
Prince method [20] with the temporal discretization error kept much smaller than
the spatial error. However, for the purpose of analyzing the behavior of the spatial
discretization error, we assume exact time integration.

In the remainder of this section, we define approximations of the initial and
boundary conditions u0 and uB by functions in Vh

p so the approximation errors for
the initial and boundary conditions have a similar behavior as the discontinuous
Galerkin discretization error.

For simplicity, we only consider the approximation on the element ω = (0, h)d.
Let Δ = (0, 1)d denote the reference element and let Γ denote its boundary.

We split Γ =
⋃d

i=1 Γi, where
(2.10a)
Γi = Γ−

i ∪ Γ+
i , Γ−

i = {ξ ∈ Δ : ξi = 0}, Γ+
i = {ξ ∈ Δ : ξi = 1}, 1 ≤ i ≤ d.

For ω = (0, h)d with boundary ∂ω, there is an affine transformation x : Δ → ω,
x(ξ) = hξ.

We split ∂ω =
⋃d

i=1 γi, where

(2.10b) γi = γ−
i ∪ γ+

i , γ±
i = x(Γ±

i ), 1 ≤ i ≤ d.

Let Lp(ξ) denote the Legendre polynomial of degree p, as defined in [1], shifted
to [0, 1]. It is well known that Lp(ξ) is orthogonal to all polynomials of degree not
exceeding p− 1 and satisfies

(2.11)

∫ 1

0

Lp(ξ)Lq(ξ)dξ =
δpq

2p+ 1
,

∫ 1

0

Lp(ξ)L
′
p+1(ξ)dξ = 2,

where δpq is the Kronecker delta, which is equal to 1 if p = q and 0 otherwise.
In order to obtain an error in the initial and boundary conditions consistent with

the DG discretization error we define the operators π and πs
i , s = +,−, 1 ≤ i ≤ d,

respectively, to approximate the initial conditions on ω = (0, h)d and the boundary
conditions on γs

i ∩ ∂Ω.
Let Π denote the L2 projection on ω: [L2(ω)]m → Pp and let Πs

i denote the L2

projection on the boundary γs
i : [L

2(γs
i )]

m → Pp|γs
i
, s = +,−, 1 ≤ i ≤ d.

Adjerid and Weinhart [9] showed that when the initial condition is approximated
by the L2 projection Πu0, both superconvergence and effectivity indices are polluted
near t = 0 and all results in this manuscript are recovered at t = O(1). Similarly,
when the boundary conditions are approximated by the L2 projection Πs

iuB , the
superconvergence is polluted on elements near the boundary.

In order to reduce these pollution effects, we approximate the initial and bound-
ary conditions such that the leading error terms are similar to those of the DG
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error. Such operators are given below as π for the initial condition and πs
i for the

boundary conditions:

πv(x) = Πv(x) +

d∑
i=1

Lp

(xi

h

)
sgn(Ai)c̄i, c̄i =

∫
ω
v(x)Lp+1

(
xi

h

)
dx∫

ω
L2
p+1

(
xi

h

)
dx

.(2.12)

πs
iv(x) = Πs

iv +
∑

j∈D(i)

Lp

(xi

h

)
sgn(Ai)c̄

s
ij ,(2.13a)

where D(i) = {1, 2, . . . , d} \ {i}, and

(2.13b) c̄sij =

∫
γs
i
v(x)Lp+1

(xj

h

)
ds∫

γs
i
L2
p+1

(xj

h

)
ds

, s = +,−, j ∈ D(i), 1 ≤ i ≤ d.

In our analysis we will need the following lemma proved in [8] and we include it
here for the sake of completeness and clarity.

Lemma 2.2. Let ω = (0, h)d, v(x) ∈ [Cp+2(ω̄)]m and ξ = h−1x. If Πv is the
L2-projection onto Pp on ω and πs

iv as defined in (2.13a). Then there exists a
positive constant C independent of h such that∥∥∥∥v(x)−Πv(x)− hp+1

d∑
j=1

Lp+1

(xj

h

)
cj

∥∥∥∥
∞,ω

≤ Chp+2,(2.14a)

∥∥∥∥v(x)− πv(x)− hp+1
d∑

j=1

(
Lp+1

(xj

h

)
cj − Lp

(xj

h

)
sgn(Aj)cj

)∥∥∥∥
∞,ω

≤ Chp+2.

(2.14b)

Furthermore, on the boundary γs
i we have∥∥∥∥v(x)−πs

iv(x)−hp+1
∑

j∈D(i)

(
Lp+1

(xj

h

)
cj−Lp

(xj

h

)
sgn(Ai)cj

)∥∥∥∥
∞,γs

i

≤Chp+2,

s = +,−, 1 ≤ i ≤ d,(2.14c)

where

(2.14d) cj =
1

ap+1

1

(p+ 1)!

∂p+1v(0)

∂xp+1
j

, 1 ≤ j ≤ d,

and ap+1 denotes the coefficient of ξp+1 in Lp+1(ξ).

Proof. The proof is given in [8]. �

3. Local error analysis

In this section we perform a local error analysis on one element ω = (0, h)d

by writing the local error as a Maclaurin series and showing that its leading term
can be expressed as a linear combination of Legendre polynomials of degree p and
p+1. For special hyperbolic systems where the coefficient matrices are nonsingular
we show that the leading term of the error is spanned by (p + 1)-degree Radau
polynomials.



DISCONTINUOUS GALERKIN ERROR ESTIMATION 1341

Thus, let uh ∈ Pp satisfy the local DG formulation on ω = (0, h)d,∫
ω

vt

(
∂uh

∂t
−g

)
dx

=

d∑
j=1

(∫
ω

∂vt

∂xj
Ajuh dx−

∫
γj

vt((νjAj)
+uh+(νjAj)

−u−
h ) ds

)
,(3.1a)

∀ v ∈ Pp, 0 < t < T,

subject to the initial and boundary conditions

uh(0,x) = πu0(x), x ∈ ω,(3.1b)

(νiAi)
−u−

h (t,x) = (νiAi)
−πs

iu(t,x),(3.1c)

x ∈ γs
i , s = +,−, 1 ≤ i ≤ d, 0 < t < T,

where u = uB on the boundary of Ω.
Next, we will show that there is a symmetric system equivalent to (2.1) and that

the corresponding DG formulation, as developed in [8], is equivalent to (3.1). Then
we apply the results of [8] to the symmetric system.

Since S0 is symmetric positive definite, it admits a Cholesky factorization

(3.2a) S0 = RtR,

where R is a positive definite matrix. We define the auxiliary matrix

(3.2b) Bi = RAiR
−1, 1 ≤ i ≤ d.

The following properties, which can be shown using basic linear algebra, will be
needed in our error analysis.

Lemma 3.1. Let R and Bi, 1 ≤ i ≤ d, be as defined in (3.2). Then Bi is
symmetric and
(3.3)
BiR=RAi, Bs

iR=RAs
i , s=+,−, sgn(Bi)R = R sgn(Ai), s=+,−, 1≤ i≤d.

Furthermore, the following holds for every v ∈ R
m:

v ∈ N (Ai) if and only if Rv ∈ N (Bi),(3.4a)

v ∈ R(Ai) if and only if Rv ∈ R(Bi),(3.4b)

v ∈ N (At
i) if and only if R−tv ∈ N (Bt

i) = N (Bi), and(3.4c)

v ∈ R(At
i) if and only if R−tv ∈ R(Bt

i) = R(Bi).(3.4d)

In the remainder of this section we show how to symmetrize the hyperbolic
system and its weak DG formulation.

First, we left-multiply (2.1) by R, substitute U = Ru, and use (3.3) to obtain
the symmetric system

(3.5a)
∂U

∂t
+

d∑
i=1

Bi
∂U

∂xi
= Rg(t,x), x ∈ Ω, 0 < t < T,
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subject to the initial and boundary conditions

U(0,x) = Ru0(x), x ∈ Ω,(3.5b) ( d∑
i=1

(νiBi)
−
)
U−(t,x) =

( d∑
i=1

(νiBi)
−
)
Ru(t,x), x ∈ ∂Ω, 0 < t < T.(3.5c)

Substituting w = R−tv and Uh = Ruh in (3.1a) and using (3.3) yields∫
ω

wt

(
∂Uh

∂t
−Rg

)
dx =

d∑
j=1

(∫
ω

∂wt

∂xj
BjUh dx

−
∫
∂ω

wt((νiBi)
+U+

h + (νiBi)
−U−

h ) ds

)
, ∀ v ∈ Pp, 0 < t < T.(3.6)

Left-multiplying (3.1b-c) by R, substituting U = Ru, and using (3.3) yields the
initial and boundary conditions

Uh(0,x) = Rπu0(x), x ∈ ω,(3.7a)

(νiBi)
−U−

h (t,x) = (νiBi)
−Rπs

iu(t,x),(3.7b)

x ∈ γs
i , s = +,−, 1 ≤ i ≤ d, 0 < t < T.

Next, we show that the initial and boundary conditions Uh(0,x) and U−
h (t,x),

respectively, may be expressed as approximations of U(0,x) = Ru0(x) and
U−(t,x) = Ru−(t,x).

For v ∈ [L2(ω)]m, we define the approximation operator

(3.8) π̃v(x) = Πv(x) +
d∑

i=1

Lp

(xi

h

)
sgn(Bi)c̄i,

where c̄i, 1 ≤ i ≤ d, and Π are defined in (2.12).
Similarly, for v ∈ [L2(γs

i )]
m, s = +,−, 1 ≤ i ≤ d, we define

π̃s
iv(x) = Πs

iv +
∑

j∈D(i)

Lp

(xi

h

)
sgn(Bi)c̄

s
ij ,(3.9)

where c̄sij and Πs
i , s = +,−, j ∈ D(i), 1 ≤ i ≤ d, are defined in ((2.13a)).

Lemma 3.2. Let R be defined in (3.2a), π in (2.12), πs
i in ((2.13a)), π̃ in (3.8),

and π̃s
i in (3.9), s = +,−, 1 ≤ i ≤ d. The following holds for any v ∈ [Cp+2(ω̄)]m:

R(πv)(x) = π̃(Rv)(x), x ∈ ω, and(3.10a)

R(πs
iv)(x) = π̃s

i (Rv)(x), x ∈ γi, s = +,−, 1 ≤ i ≤ d.(3.10b)

Proof. By the definition of π̃(Rv) in (3.8) and the definition of c̄i in (2.12), we get

π̃(Rv)(x) = Π(Rv)(x) +

d∑
i=1

Lp

(xi

h

)
sgn(Bi)Rc̄i

= R(Πv)(x) +R

d∑
i=1

Lp

(xi

h

)
sgn(Ai)c̄i

= R(πv)(x),(3.11)
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where we used (3.3) and the fact that the L2 projection is commutable with any
finite-dimensional linear operator.

The proof of (3.10b) follows the same reasoning and is therefore omitted. �

Substituting (3.10) and (3.5b-c) into (3.7) yields

Uh(0,x) = π̃U(0,x), x ∈ ω,(3.12a)

(νiBi)
−U−

h (t,x) = (νiBi)
−π̃s

iU
−(t,x),(3.12b)

x ∈ γs
i , s = +,−, 1 ≤ i ≤ d, 0 < t < T.

Therefore, U = Ru satisfies the symmetric system (3.5), while Uh = Ruh

satisfies the DG formulation (3.6) and (3.12). In the following section we apply the
results established in [8] to U and Uh.

3.1. Asymptotic behavior of the local discretization error. Now, we are
ready to state a theorem for the local discretization error e = u− uh.

Theorem 3.3. Let u ∈ Cp+2 and uh ∈ Pp, respectively, be the solutions of (2.1)
and (3.1). Then the local finite element error on ω, at t = O(1) and p ≥ 1, can be
written as

(3.13a) e(t, hξ) = u(t, hξ)− uh(t, hξ) = hp+1
d∑

i=1

ri(t, hξi) +O(hp+2), ξ ∈ Δ,

where

(3.13b) ri(t, hξi) = Lp+1(ξi)ci(t)− Lp(ξi)(sgn(Ai)ci(t) + di(t)), 1 ≤ i ≤ d,

with

(3.13c) ci(t) =
1

ap+1

1

(p+ 1)!

∂p+1u(t,0)

∂xp+1
i

, di(t) ∈ N (Ai) ∩
d⊕

k=1

R(Ak),

where
⊕

denotes the direct sum.

Proof. U = Ru satisfies the symmetric system (3.5), while Uh = Ruh satisfies
the DG formulation (3.6) and (3.12). Since u ∈ Cp+2 and uh ∈ Pp, we have
U = Ru ∈ Cp+2 and Uh = Ruh ∈ Pp. By Lemma 3.1, Bi is symmetric for
1 ≤ i ≤ d. Thus, U and Uh satisfy the conditions of Theorem 3.6 in [8]. Therefore,
for p ≥ 1 and t = O(1),

(3.14a) U(t, hξ)−Uh(t, hξ) = hp+1
d∑

i=1

r̃i(t, hξi) +O(hp+2), ξ ∈ Δ,

where

(3.14b) r̃i(t, hξi) = Lp+1(ξi)c̃i(t)− Lp(ξi)(sgn(Bi)c̃i(t) + d̃i(t)), 1 ≤ i ≤ d,

with

(3.14c) c̃i(t) =
1

ap+1

1

(p+ 1)!

∂p+1U(t,0)

∂xp+1
i

, d̃i(t) ∈ N (Bi) ∩
d⊕

k=1

R(Bk).

We obtain (3.13) by left-multiplying (3.14) by R−1 and substituting u = R−1U,

uh = R−1uh, ri = R−1r̃i, ci = R−1c̃i and di = R−1d̃i, 1 ≤ i ≤ d. Furthermore,

(3.4a) and (3.4b) lead to di = R−1d̃i ∈ N (Ai) ∩
⊕d

k=1 R(Ak). �
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In order for the DG solution uh to be O(hp+2)-superconvergent at any point
in ω, the leading error term shown in Theorem 3.3 has to be zero at this point.
This pointwise superconvergence happens for nonsymmetric systems that satisfy
the assumptions of the following theorem.

Since for nonsymmetric matrices, R(A±
i ) 
= R((A±

i )
t), the superconvergence

results stated in the following theorem are different from those in [8]. Here z ∈⋂d
i=1 R((Asi

i )t) instead of
⋂d

i=1 R((Asi
i )), si = +,−.

Theorem 3.4. Under the conditions of Theorem 3.3, with p ≥ 1 and t = O(1), we
let ξ̄sj , 1 ≤ j ≤ p+1, denote the roots of Rs

p+1(ξ), s = +,−, shifted to [0, 1]. Thus,

i) If there exists a unit vector z ∈
⋂d

i=1 R((Asi
i )t), si = +,−, then the pro-

jection zte(t,x) of the local error onto span{z} is O(hp+2) superconvergent
at the points (t, hξ̄), ξ̄i = ξ̄siki

, 1 ≤ ki ≤ p+ 1, 1 ≤ i ≤ d, i.e.,

(3.15) zte(t, hξ̄) = O(hp+2).

ii) Moreover, if γi(a) = {x ∈ (0, h)d : xi = a}, 0 ≤ a ≤ h, and if v ∈ Pp−1 is
a unit vector with respect to the C∞ norm, then, at a = hξ̄sk, we have the
superconvergence of the following error averages:

(3.16)
1

hd−1

∫
γi(hξ̄sk)

vtAs
ie ds = O(hp+2), 1 ≤ k ≤ p+ 1, s = +,−, 1 ≤ i ≤ d

and

(3.17)
1

hd−1

∫
γs
i

vt((νiAi)
+e+ (νiAi)

−e−) ds = O(hp+2), s = +,−, 1 ≤ i ≤ d.

Proof. We will prove (3.15) for the case si = +, 1 ≤ i ≤ d.

Thus, assume that there exists a unit vector z ∈
⋂d

i=1 R((A+
i )

t), i.e., there exists
vi such that

(3.18) (A+
i )

tvi = z, 1 ≤ i ≤ d.

Left pre-multiplying e in (3.13a) by zt and evaluating the resulting function at the
points (t, hξ̄), ξ̄ = (ξ̄+k1

, . . . , ξ̄+kd
), 1 ≤ ki ≤ p+ 1, 1 ≤ i ≤ d, we obtain

(3.19)

zte(t, hξ̄) = hp+1
d∑

i=1

(
Lp+1(ξ̄

+
ki
)ztci − Lp(ξ̄

+
ki
)(zt sgn(Ai)ci + ztdi)

)
+O(hp+2).

By the property (2.3b) and (3.13c) we have di ∈ N (Ai) ⊆ N (A+
i ), which yields

by (3.18)

(3.20) ztdi = vt
iA

+
i di = 0.

Applying (3.18) and the property (2.3d) yields

(3.21) zt sgn(Ai)ci = vt
iA

+
i sgn(Ai)ci = vt

iA
+
i ci = ztci.

Substituting (3.20) and (3.21) into (3.19), we prove that

(3.22) zte(t, hξ̄) = hp+1
d∑

i=1

R+
p+1(ξ̄

+
ki
)ztci +O(hp+2) = O(hp+2).

Following the same line of reasoning we establish (3.15) for all other cases.
The proof of (3.16) and (3.17) can be found in [9] for symmetric systems and

d = 2 and is therefore omitted. �
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4. A Posteriori error estimation

Here we present an a posteriori error estimation procedure for symmetrizable
systems using projections onto the range and null spaces of the coefficient matrices
Ai, 1 ≤ i ≤ d to split the DG error into two parts as explained below.

Let us consider a symmetrizable matrix M with real eigenpairs (λj ,pj), j =
1, . . . ,m such that λj 
= 0, j = 1, . . . , r and λr+1 = · · · = λm = 0. Thus, R(M) =
span(p1, . . . ,pr) and N (M) = span(pr+1, . . . ,pm). Thus, every v ∈ R

m can be
written as

(4.1) v = vR + vN , where vR ∈ R(M), vN ∈ N (M).

Thus, for each matrix M = Ai we have the following projections:

(4.2) PRi v = vR and PNi = I − PRi .

Next, the Drazin inverse [26] of a symmetrizable matrixM=P diag(λ1, . . . , λm)P−1

is defined by

(4.3a) MD = P diag(λ†
1, . . . , λ

†
m)P−1,

where

(4.3b) x† =

{
x−1, if x 
= 0,

0, if x = 0.

From the definition of the Drazin inverse for symmetrizable matrices we have

(4.4) (MD)t = (Mt)D.

In the following lemma we show that the projections PRi and PNi corresponding

to a symmetrizable matrix Ai can be expressed in terms of the Drazin inverse AD
i .

Lemma 4.1. Let AD
i be the Drazin inverse of Ai, 1 ≤ i ≤ d. Then,

i) PRi = AD
i Ai = AiA

D
i ,

ii) PNi = I−AD
i Ai.

Proof. The proof is established by direct verification. �

In the next lemma we show that the leading term of the discretization error may
be split into two components.

Lemma 4.2. Under the assumptions of Theorem 3.3, for p > 1 and t = O(1), the
leading term of the spatial discretization error can be split into two parts as

(4.5a) e = eR + eN +O(hp+2),

where

eR(t, hξ) = hp+1
d∑

i=1

(Lp+1(ξi)c
R
i (t)− Lp(ξi) sgn(Ai)c

R
i (t)),(4.5b)

eN (t, hξ) = hp+1
d∑

i=1

(Lp+1(ξi)c
N
i (t)− Lp(ξi)di(t)),(4.5c)

with

(4.5d) cRi = PRi ci ∈ R(Ai), cNi = PNi ci,di ∈ N (Ai), 1 ≤ i ≤ d.
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Proof. Under the assumptions of Theorem 3.3, the local discretization error for the
DG method on ω = (0, h)d, for p > 1 and t = O(1), can be written as

(4.6) e(t, hξ) = hp+1
d∑

i=1

(Lp+1(ξi)ci(t)−Lp(ξi)(sgn(Ai)ci(t)+di(t)))+O(hp+2),

where di(t) ∈ N (Ai). Applying Lemma 4.1 to (4.6) yields (4.5). �

We note that if all matrices Ai, 1 ≤ i ≤ d, are invertible, the error component
eN (t,x) is zero.

Next, we show that there is an equivalent splitting for the symmetrized system
(3.5).

Lemma 4.3. Under the assumptions of Theorem 3.3, for p > 1 and t = O(1),

let U = Ru, Uh = Ruh, ẽN = ReN , ẽR = ReR, ẽN = ReN , c̃Ri = RcRi ,

c̃Ni = RcNi , and d̃i = Rdi. Then, the leading term of the spatial discretization
error for the symmetrized systems (3.5) and (3.6) can be split into two parts as

(4.7a) U−Uh = ẽR + ẽN +O(hp+2),

where

ẽR(t, hξ) = hp+1
d∑

i=1

(Lp+1(ξi)c̃
R
i (t)− Lp(ξi) sgn(Bi)c̃

R
i (t)),(4.7b)

eN (t, hξ) = hp+1
d∑

i=1

(Lp+1(ξi)c̃
N
i (t)− Lp(ξi)d̃i(t)),(4.7c)

with

(4.7d) c̃Ri ∈ R(Bi), c̃Ni , d̃i ∈ N (Bi), 1 ≤ i ≤ d.

Proof. First, we left-multiply (4.5a-c) by R and substitute U = Ru, Uh = Ruh,

ẽN = ReN , ẽR = ReR, ẽN = ReN , c̃Ri = RcRi , c̃Ni = RcNi , and d̃i = Rdi.
Applying

R sgn(Ai) = sgn(Bi)R,

which is obtained from (3.2b), yields (4.7a-c).
Finally, combining (4.5d) and Lemma 3.1 leads to (4.7d). �

Next, we describe an a posteriori error estimation procedure for estimating both
eR and eN (when needed). We prove that, for smooth solutions, our local error
estimates converge to the true error under mesh refinement. Up to this point we
are not able to prove the asymptotic exactness of our global a posteriori error
estimates. However, computational results for several hyperbolic systems shown in
§5 suggest that our global a posteriori error estimates are asymptotically exact for
smooth solutions.

Since the range and null space are not orthogonal for nonsymmetric matrices,
we need to define test function spaces for the error estimation that are different
from the solution space. Thus, we solve local Petrov-Galerkin problems in order to
compute error estimates.
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4.1. The stationary error estimate. The stationary a posteriori error estima-
tion procedure for computing estimates for eR consists of determining
(4.8a)

ER(t, hξ) =

d∑
j=1

(
Lp+1(ξj)− Lp(ξj) sgn(Aj)

)
γR
j (t), γR

j ∈ R(Aj), 1 ≤ j ≤ d,

such that
(4.8b)∫
ω

Lp

(xi

h

)
vt

⎛
⎝∂uh

∂t
+

d∑
j=1

Aj
∂(uh +ER)

∂xj
− g

⎞
⎠ dx = 0, ∀ v ∈ R(At

i), 1 ≤ i ≤ d.

By Lemma 4.1 and (4.4), (PRi )t = (AD
i Ai)

t = (At
i)

DAt
i is the projection onto

R(At
i), thus R((PRi )t) = R(At

i).
Since (4.8b) holds for all v ∈ R(At

i) and the columns of (PRi )t are in the range
of At

i, thus (4.8b) yields

(4.9)

∫
ω

Lp

(xi

h

)
PRi

⎛
⎝∂uh

∂t
+

d∑
j=1

Aj
∂(uh +ER)

∂xj
− g

⎞
⎠ dx = 0, 1 ≤ i ≤ d.

Substituting (4.8a) into (4.9) and applying the orthogonality properties (2.11), we
obtain

(4.10a) Aiγ
R
i

∫
ω

Lp

(xi

h

)
L′
p+1

(xi

h

)
dx = rRp,i,

where rRp,i is the projection of the residual onto R(Ai) as

(4.10b) r
R
p,i = PRi

∫
ω

Lp

(xi

h

)⎛⎝g − ∂uh

∂t
−

d∑
j=1

Aj
∂uh

∂xj

⎞
⎠ dx, 1 ≤ i ≤ d.

Using (2.11) we further reduce (4.10a), obtaining

(4.11) 2hd−1Aiγ
R
i = rRp,i, 1 ≤ i ≤ d.

Since rRp,i ∈ R(Ai), we can solve (4.11) to find the unique solution γR
i ∈ R(Ai),

(4.12) γR
i =

h1−d

2
AD

i r
R
p,i, 1 ≤ i ≤ d.

Next, we show that this stationary error estimate is asymptotically exact under
mesh refinement.

Theorem 4.4. Under the assumptions of Theorem 3.3, let us consider the error
estimate

(4.13) ER(t, hξ) =
d∑

i=1

(Lp+1(ξi)− Lp(ξi) sgn(Ai))
h1−d

2
AD

i rRp,i,

where rRp,i, 1 ≤ i ≤ d, are defined in (4.10b).
Then, for p ≥ 1 and t = O(1),

(4.14) eR(t,x) = ER(t,x) +O(hp+2), x ∈ ω.
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Proof. Left-multiplying (4.8a) by R and substituting Ẽ
R

= RER and γ̃R
i = RγR

i

yields
(4.15a)

Ẽ
R
(t, hξ) =

d∑
j=1

(
Lp+1(ξj)− Lp(ξj) sgn(Bj)

)
γ̃R
j (t), γ̃R

j ∈ R(Bj), 1 ≤ j ≤ d,

where we used (3.4b) and the fact that γR
j ∈ R(Aj).

Substituting v = Rtw, Uh = Ruh, and Ẽ
R

= RER into (4.8b) yields

∫
ω

Lp

(xi

h

)
wt

⎛
⎝∂Uh

∂t
+

d∑
j=1

Bj
∂(Uh + Ẽ

R
)

∂xj
−Rg

⎞
⎠ dx = 0,

∀ w ∈ R(Bi), 1 ≤ i ≤ d,(4.15b)

where we used (3.4d) and the fact that v ∈ R(At
i).

Since system (4.15) satisfies Theorem 4.1 in [8], we obtain, for p ≥ 1 and t =
O(1),

(4.16) ẽR(t,x) = Ẽ
R
(t,x) +O(hp+2), x ∈ ω.

Left-multiplying (4.16) withR−1 and substituting eR = R−1ẽR and ER = R−1Ẽ
R

yields (4.14). �

4.2. The transient error estimate. Here we present a transient a posteriori error
estimation procedure to compute estimates for eN . Note that if all Ai, 1 ≤ i ≤ d,
are invertible, eN = 0 by definition in (4.5c).

By Lemma 2.2, the approximations πu0 on ω and πs
iu on the boundary ∂ω

satisfy

e(0,x) = u0(x)− πu0(x)

= hp+1
d∑

j=1

(Lp+1

(xj

h

)
cj(0)− Lp

(xj

h

)
sgn(Aj)cj(0)) +O(hp+2), x ∈ ω,(4.17)

e−(t,x) = u(t,x)− πs
iu(t,x)

= hp+1
∑

j∈D(i)

(Lp+1

(xj

h

)
cj(t)− Lp

(xj

h

)
sgn(Aj)cj(t)) +O(hp+2),

x ∈ γs
i , s = +,−, 1 ≤ i ≤ d.(4.18)

We split the error at t = 0 into e = eR + eN + O(hp+2) as in (4.5a) and define

EN (0,x) by

(4.19) EN (0,x) = eN (0,x) = hp+1
d∑

i=1

(Lp+1

(xi

h

)
PNi c̄i(0)),

where PNi c̄i(0) is the projection of c̄i(0) into N (Ai).
On the boundary, we define E− by the leading term of (4.18),

E−(t,x) = hp+1
∑

j∈D(i)

(Lp+1

(xj

h

)
c̄sij(t)− Lp

(xj

h

)
sgn(Aj)c̄

s
ij(t)),

x ∈ γs
i , s = +,−, 1 ≤ i ≤ d.(4.20)
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Then we define the error estimate for eN by determining the coefficients of
(4.21a)

EN (t,x) =
d∑

j=1

(Lp+1

(xj

h

)
γN
j (t)− Lp

(xj

h

)
δj(t)), γN

j , δj ∈ N (Aj), 1 ≤ j ≤ d,

such that

∫
ω

vt

⎛
⎝∂(uh +EN )

∂t
+

d∑
j=1

Aj
∂uh

∂xj
− g

⎞
⎠ dx

=
d∑

j=1

∫
γj

vt(νjAj)
−
(
uh +ER +EN − u−

h −E−
)
ds, ∀ v ∈ Ep,(4.21b)

where ER equals the stationary component defined by (4.8) and

(4.21c) Ep =

{
v(x) =

d∑
i=1

(
Lp+1

(xi

h

)
ai − Lp

(xi

h

)
bi

)
: ai,bi ∈ N (At

i)

}
.

Thus, by Lemma 4.1 and (4.4), (PNi )t = I − (AD
i Ai)

t = I − (At
i)

DAt
i is the

projection onto N (At
i), and therefore R((PNi )t) = N (At

i).
Replacing v in (4.21b) by Lm(ξi)(P

N
i )t, m = p, p+ 1, 1 ≤ i ≤ d, yields

∫
ω

Lm

(xi

h

)
PNi

⎛
⎝∂(uh +EN )

∂t
+

d∑
j=1

Aj
∂uh

∂xj
− g

⎞
⎠ dx

=

d∑
j=1

∫
γj

Lm

(xi

h

)
PNi (νjAj)

−
(
uh +ER +EN − u−

h −E−
)
ds,

∀ m = p, p+ 1, 1 ≤ i ≤ d.(4.22)

By (2.3c), PNi (νiAi)
− = 0, thus (4.22) can be written as

(4.23a)

∫
ω

Lm

(xi

h

)
PNi

∂EN

∂t
dx−

∑
j∈D(i)

∫
γj

Lm

(xi

h

)
PNi (νjAj)

−EN ds = rNm,i,

where rNm,i is the projection of the residual onto N (Ai) along R(Ai), given by

rNm,i = PNi

∫
ω

Lm

(xi

h

)⎛⎝g − ∂uh

∂t
−

d∑
j=1

Aj
∂uh

∂xj

⎞
⎠ dx

+ PNi

d∑
j=1

∫
γj

Lm

(xi

h

)
(νjAj)

−
(
uh +ER − u−

h −E−)
)
ds,

m = p, p+ 1, 1 ≤ i ≤ d.(4.23b)

For m = p+ 1, we use the orthogonality properties (2.11) to reduce (4.23a) to

(4.24)

∫
ω

L2
p+1

(xi

h

)
γ̇N
i dx−

∑
j∈D(i)

∫
γj

L2
p+1

(xi

h

)
PNi (νjAj)

−γN
i ds = r

N
p+1,i,
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which by (2.11) is equal to

(4.25a) γ̇N
i =

1

h
PNi

∑
j∈D(i)

(A−
j −A+

j )γ
N
i +

2p+ 3

hd
r
N
p+1,i.

For m = p, similarly we get

(4.25b) δ̇i =
1

h
PNi

∑
j∈D(i)

(A−
j −A+

j )δi +
2p+ 1

hd
r
N
p,i,

subject to the initial conditions

(4.25c) γN
i (0) = hp+1PNi c̄i(0), δi(0) = 0.

Note that (4.25) and (4.23b) ensures that γN
i , δi ∈ N (Ai), 1 ≤ i ≤ d.

Then (4.25) and (4.23b) together describe the procedure to obtain the coefficients

of EN .
Now, we are ready to show the asymptotic exactness of the error estimate.

Theorem 4.5. Under the assumptions of Theorem 3.3, let ER be computed as
specified in Theorem 4.4. Consider the estimate

(4.26) EN (t, hξ) =

d∑
j=1

(Lp+1(ξj)γ
N
j (t)− Lp(ξj)δj(t)),

where γN
i , δi, 1 ≤ i ≤ d, are solutions of (4.25) and (4.23b).

Then, at t = O(1) and for p ≥ 1,

(4.27) eN (t,x) = EN (t,x) +O(hp+2), x ∈ ω.

Proof. Left-multiplying (4.21a) by R and substituting Ẽ
N

= RER, γ̃N
i = RγN

i

and δ̃i = Rδi yields

(4.28a) Ẽ
N
(t, hξ) =

d∑
j=1

(Lp+1(ξj)γ̃
N
j − Lp(ξj)δ̃j), γ̃N

i , δ̃i ∈ N (Bi), 1 ≤ i ≤ d,

where we used (3.4a) and the fact that δi ∈ N (Ai).

Substituting w = R−tv, Uh = Ruh, Ẽ
N

= REN , Ẽ
R

= RER and Ẽ
−
= RE−

into (4.21b) yields

∫
ω

wt

⎛
⎝∂(Uh + Ẽ

N
)

∂t
+

d∑
j=1

Bj
∂Uh

∂xj
−Rg

⎞
⎠ dx

=

d∑
j=1

∫
γj

wtνjB
μ̄j

j

(
Uh + Ẽ

R
+ Ẽ

N −U−
h − Ẽ

−)
ds,

∀ w(x) =
d∑

i=1

(
Lp+1

(xi

h

)
ai − Lp

(xi

h

)
bi

)
, ai,bi ∈ N (Bi).(4.28b)

where we used (3.4c) and the fact that v ∈ Ep.
Since system (4.28) satisfies Theorem 4.3 in [8], we obtain, for p ≥ 1 and t =

O(1),

(4.29) ẽN (t,x) = Ẽ
N
(t,x) +O(hp+2), x ∈ ω.
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Left-multiplying (4.29) with R−1 and substituting Ẽ
N

= R−1eN and Ẽ
N

=
R−1eN yields (4.27). �

5. Computational examples

In Section 4, we showed asymptotic exactness of our a posteriori error estimates
for a local DG formulation. We will now present computational results for sev-
eral symmetrizable systems that suggest that our a posteriori error estimates are
globally asymptotically exact for smooth solutions.

The accuracy of a posteriori error estimates is measured by the global effectivity
index with respect to the L2 norm

(5.1) θ =
‖E‖2,Ω
‖e‖2,Ω

,

where E is either ER or ER +EN .
We also need the componentwise L2-error,

(5.2) ‖e‖∗ = (‖e1‖2,Ω, . . . , ‖em‖2,Ω)t ,

and the componentwise effectivity index,

(5.3) θ∗ =

(
‖E1‖2,Ω
‖e1‖2,Ω

, . . . ,
‖Em‖2,Ω
‖em‖2,Ω

)t

,

where E = (E1, . . . , Em)t and e = (e1, . . . , em)t.
Ideally, the transient global effectivity indices should approach unity under mesh

refinement.

Example 5.1. Let us consider the two-dimensional hyperbolic system

(5.4a)
∂u

∂t
+A1

∂u

∂x1
+A2

∂u

∂x2
= g(t,x), x ∈ (0, 1)2, 0 < t < 1,

where

(5.4b) A1 =

⎛
⎝1 1 −1
1 1 2
1 1 2

⎞
⎠ , A2 =

⎛
⎝−6 0 −8

1 −4 7
0 0 2

⎞
⎠ ,

and select g(t, x, y), initial and boundary conditions such that the true solution is

(5.4c) u(t,x) = exp(t+ x1 + x2)(1, 1, 1)
t.

Note that the system (5.4) is equivalent to the symmetric system for U = Ru

(5.5a)
∂U

∂t
+B1

∂U

∂x1
+B2

∂U

∂x2
= Rg(t,x), x ∈ (0, 1)2, 0 < t < 1,

where

(5.5b) B1 =

⎛
⎝2 0 1
0 0 0
1 0 2

⎞
⎠ , B2 =

⎛
⎝−5 1 0

1 −5 0
0 0 2

⎞
⎠ , R =

⎛
⎝1 1 0
0 1 −1
0 0 1

⎞
⎠ .

A discussion of the symmetric system (5.5) can be found in [9].
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Basic linear algebra yields

R(A+
1

t
) ∩R(A+

2

t
) = span{(0, 0, 1)t},(5.6a)

R(A+
1

t
) ∩R(A−

2

t
) = span{(1, 1, 0)t}.(5.6b)

Applying Theorem 3.4, we expect O(hp+2) pointwise superconvergence of the error
projections e3 = (0, 0, 1)te, and e1 + e2 = (1, 1, 0)te at Radau points.

We solve (5.4) on uniform meshes having 202, 402, 602, 802 elements for p = 1, 2, 3.
Tables 5.1 and 5.2 present the maximum projected errors for |e3| at shifted Radau
points (ξ+i , ξ

+
j ) and |e1+e2| at shifted Radau points (ξ+i , ξ

−
j ) at t = 1, respectively.

We observe that the error projections areO(hp+2) superconvergent at Radau points,
which is in agreement with Theorem 3.4.

Table 5.1. Maximum projected errors for |e3| at shifted Radau
points (ξ+i , ξ

+
j ) for Example 5.1 at t = 1.

N p = 1 p = 2 p = 3
|e3|+,+

∞ order |e3|+,+
∞ order |e3|+,+

∞ order
202 1.1200e-3 − 1.8108e-5 − 5.1874e-7 −
402 1.4253e-4 2.9742 1.1460e-6 3.9820 1.7717e-8 4.8718
602 4.3063e-5 2.9518 2.2630e-7 4.0009 2.3803e-9 4.9506
802 1.8347e-5 2.9657 7.1624e-8 3.9989 5.6916e-10 4.9737

Table 5.2. Maximum projected errors for |e1 + e2| at shifted
Radau points (ξ+i , ξ

−
j ) for Example 5.1 at t = 1.

N p = 1 p = 2 p = 3
|e1 + e2|+,−

∞ order |e1 + e2|+,−
∞ order |e1 + e2|+,−

∞ order
202 2.2442e-3 − 2.2283e-5 − 1.0707e-6 −
402 2.9304e-4 2.9371 1.4024e-6 3.9900 3.2800e-8 5.0287
602 8.7966e-5 2.9678 2.8129e-7 3.9622 4.3023e-9 5.0097
802 3.7358e-5 2.9769 8.9331e-8 3.9872 1.0201e-9 5.0029

We present the componentwise L2-errors and effectivity indices corresponding to
the stationary error estimate ER at t = 1 in Table 5.3. In Table 5.4, we present the
L2-errors and global effectivity indices for the transient error estimate ER+EN at
t = 1. We plot the transient global effectivity indices versus time in Figure 5.1.

Since N (A1) = span{(−1, 1, 0)t} and N (A2) = {0}, the stationary error esti-
mate should be asymptotically exact for the third component only. Our numerical
results, which show that ER is an accurate approximation of the third component
of the error, are in full agreement with Theorem 4.4. Furthermore, the transient
global effectivity indices stay close to unity at all times, thus the error estimate
ER +EN is asymptotically exact under mesh refinement. Again, our results are in
full agreement with Theorem 4.5.
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Table 5.3. Componentwise L2(Ω)-errors ‖e‖∗, ‖e − ER‖∗ and
their order of convergence. Stationary global effectivity indices for
Example 5.1 at t = 1.

p N ‖e‖∗ order ‖e−ER‖∗ order θ∗

1

202

⎡
⎣5.7350e-33.8792e-3

3.0973e-3

⎤
⎦ −

⎡
⎣1.7931e-31.4606e-3

4.2058e-4

⎤
⎦ −

⎡
⎣0.99250.7909

0.9905

⎤
⎦

402

⎡
⎣1.4135e-39.6321e-4

7.6788e-4

⎤
⎦
⎡
⎣2.02052.0098

2.0120

⎤
⎦

⎡
⎣3.8625e-43.5407e-4

5.3478e-5

⎤
⎦

⎡
⎣2.21492.0445

2.9754

⎤
⎦
⎡
⎣1.01180.7951

0.9973

⎤
⎦

602

⎡
⎣6.2607e-44.2727e-4

3.4075e-4

⎤
⎦
⎡
⎣2.00852.0047

2.0039

⎤
⎦

⎡
⎣1.6484e-41.5642e-4

1.5917e-5

⎤
⎦

⎡
⎣2.10012.0148

2.9888

⎤
⎦
⎡
⎣1.01630.7964

0.9986

⎤
⎦

802

⎡
⎣3.5166e-42.4013e-4

1.9157e-4

⎤
⎦
⎡
⎣2.00502.0031

2.0019

⎤
⎦

⎡
⎣9.1037e-58.7774e-5

6.7335e-6

⎤
⎦

⎡
⎣2.06382.0085

2.9905

⎤
⎦
⎡
⎣1.01810.7971

0.9992

⎤
⎦

2

202

⎡
⎣9.4899e-56.4873e-5

5.2935e-5

⎤
⎦ −

⎡
⎣2.9179e-52.3785e-5

8.9282e-6

⎤
⎦ −

⎡
⎣1.00170.8066

0.9886

⎤
⎦

402

⎡
⎣1.1742e-58.0523e-6

6.5681e-6

⎤
⎦
⎡
⎣3.01473.0102

3.0107

⎤
⎦

⎡
⎣3.0753e-62.7999e-6

5.6091e-7

⎤
⎦

⎡
⎣3.24623.0866

3.9925

⎤
⎦
⎡
⎣1.01680.8134

0.9972

⎤
⎦

602

⎡
⎣3.4710e-62.3817e-6

1.9433e-6

⎤
⎦
⎡
⎣3.00583.0043

3.0036

⎤
⎦

⎡
⎣8.6725e-78.1833e-7

1.1096e-7

⎤
⎦

⎡
⎣3.12193.0338

3.9963

⎤
⎦
⎡
⎣1.02010.8149

0.9988

⎤
⎦

802

⎡
⎣1.4629e-61.0041e-6

8.1940e-7

⎤
⎦
⎡
⎣3.00343.0026

3.0018

⎤
⎦

⎡
⎣3.5788e-73.4335e-7

3.5134e-8

⎤
⎦

⎡
⎣3.07683.0190

3.9976

⎤
⎦
⎡
⎣1.02140.8155

0.9993

⎤
⎦

3

202

⎡
⎣1.3609e-69.3751e-7

7.6992e-7

⎤
⎦ −

⎡
⎣4.9842e-73.8953e-7

2.1759e-7

⎤
⎦ −

⎡
⎣0.98620.7809

0.9509

⎤
⎦

402

⎡
⎣8.3042e-85.7629e-8

4.6996e-8

⎤
⎦
⎡
⎣4.03464.0240

4.0341

⎤
⎦

⎡
⎣2.3848e-82.1379e-8

7.1458e-9

⎤
⎦

⎡
⎣4.38554.1875

4.9284

⎤
⎦
⎡
⎣1.01080.8034

0.9852

⎤
⎦

602

⎡
⎣1.6322e-81.1342e-8

9.2372e-9

⎤
⎦
⎡
⎣4.01234.0089

4.0122

⎤
⎦
⎡
⎣ 4.3560e-9

4.0937e-9

9.5490e-10

⎤
⎦
⎡
⎣4.19304.0767

4.9639

⎤
⎦
⎡
⎣1.01590.8087

0.9930

⎤
⎦

802

⎡
⎣5.1545e-93.5838e-9

2.9175e-9

⎤
⎦
⎡
⎣4.00664.0048

4.0063

⎤
⎦
⎡
⎣ 1.3340e-9

1.2804e-9

2.2807e-10

⎤
⎦
⎡
⎣4.11344.0403

4.9776

⎤
⎦
⎡
⎣1.01790.8108

0.9959

⎤
⎦
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Table 5.4. L2-errors ‖e‖2,Ω, ‖e−ER−EN ‖2,Ω and their order of
convergence. Transient global effectivity indices for Example 5.1
at t = 1.

p N ‖e‖ order ‖e−ER − EN ‖ order θ

1

202 7.5850e-3 − 1.0329e-3 − 0.9828
402 1.8749e-3 2.016 1.3030e-4 2.987 0.9947
602 8.3105e-4 2.007 3.8708e-5 2.994 0.9974
802 4.6693e-4 2.004 1.6346e-5 2.997 0.9985

2

202 1.2656e-4 − 2.0218e-5 − 0.9824
402 1.5680e-5 3.013 1.2696e-6 3.993 0.9944
602 4.6365e-6 3.005 2.5101e-7 3.998 0.997
802 1.9544e-6 3.003 7.9435e-8 3.999 0.9981

3

202 1.8232e-6 − 4.6946e-7 − 0.9618
402 1.1147e-7 4.032 1.5159e-8 4.953 0.9886
602 2.1917e-8 4.011 2.0158e-9 4.976 0.9944
802 6.9227e-9 4.006 4.8042e-10 4.985 0.9966
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Figure 5.1. Transient global effectivity indices versus time for
Example 5.1.
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Example 5.2. Let us consider Maxwell’s equations of electromagnetism,

ε0
∂E
∂t

= ∇×H, μ0
∂H
∂t

= ∇× E ,(5.7a)

∇ · E = 0, ∇ ·H = 0,(5.7b)

where E(t,x) = (E1, E2, E3)t and H(t,x) = (H1,H2,H3)
t denote the electric and

magnetic field and μ0 = 4π · 10−7 NA−2 and ε0 = c−2
0 μ−1

0 denote the magnetic and
electric permittivity in free space, respectively, with c0 = 299, 792, 458ms−2 being
the speed of light. Equations (5.7b) are satisfied for all t, if the initial conditions
satisfy them.

For a transverse electric wave traveling in the x1x2-plane, E3 = H1 = H2 = 0,
and equation (5.7a) yields the linear symmetrizable hyperbolic system

(5.8a)
∂u

∂t
+A1

∂u

∂x1
+A2

∂u

∂x2
= g, x ∈ Ω = (0, 3)2, 0 < t < 6 · 10−7 s,

where

(5.8b) u =

⎛
⎝Ex

Ey
Hz

⎞
⎠ , A1 =

⎛
⎝0 0 0
0 0 ε−1

0

0 μ−1
0 0

⎞
⎠ , A2 =

⎛
⎝ 0 0 −ε−1

0

0 0 0
−μ−1

0 0 0

⎞
⎠ .

We select initial and boundary conditions such that the true solution is a typical
FM radio wave of wavelength λ = 3m and amplitude A = 1.5V/m traveling in the
direction (x1, x2) = (1, 1),

(5.8c) u(t,x) =

(
1,−1,

√
2μ0ε

−1
0

)t

A sin(
2π

λ
(c0t+

x+ y√
2

)).

Applying Theorem 4.4, the stationary error estimate ER can only accurately ap-

proximate the component of the error lying in (N (A1)
⊕

N (A2))
⊥

=
span{(0, 0, 1)t}, i.e., only ER

3 is an accurate estimate of e3.
To validate our theory for short and long time integration, we solve (5.8) on

uniform meshes havingN = 102, 202, 402 elements for p = 1, 2, 3 on 0 ≤ t ≤ 3·10−8 s
and 0 ≤ t ≤ 6 · 10−7 s, respectively, where the wave travels through the domain
three and 60 times. We present the componentwise L2-errors and effectivity indices
corresponding to the stationary error estimate ER at t = 6 · 10−7 in Table 5.5. In
Table 5.6, we present L2-errors and global effectivity indices for the transient error
estimate ER + EN at t = 6 · 10−7. We plot the transient global effectivity indices
versus time for 0 ≤ t ≤ 3 · 10−8 in Figure 5.2 and for 0 ≤ t ≤ 6 · 10−7 in Figure
5.3. In Figure 5.4, we plot the L2-errors ‖e‖2,Ω and ‖ER +EN ‖2,Ω versus time for
N = 40.

We observe that ER is an accurate approximation of the error only in the third
component, which is in agreement with Theorem 4.4. Furthermore, the transient
global effectivity indices converge to unity under mesh refinement and stay close
to unity at all times, which is in agreement with Theorem 4.5. In Figures 5.2–5.4,
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we observe an oscillation of the L2-error and the transient global effectivity index
that decays in time. We further observe that the transient global effectivity index
converges to unity under mesh refinement and with increasing time for both short
and long times.

Table 5.5. Componentwise L2(Ω)-errors ‖e‖∗, ‖e − ER‖∗ and
their order of convergence. Stationary global effectivity indices for
Example 5.2 at t = 6 · 10−7.

p N ‖e‖∗ order ‖e−ER‖∗ order θ∗

1

102

⎡
⎣6.0564e-26.0564e-2

1.7895e-4

⎤
⎦ −

⎡
⎣3.6643e-23.6643e-2

7.1024e-5

⎤
⎦ −

⎡
⎣0.81100.8110

0.9559

⎤
⎦

202

⎡
⎣1.4784e-21.4784e-2

4.3088e-5

⎤
⎦

⎡
⎣2.03442.0344

2.0541

⎤
⎦

⎡
⎣8.2752e-38.2752e-3

8.8014e-6

⎤
⎦

⎡
⎣2.14672.1467

3.0125

⎤
⎦
⎡
⎣0.83270.8327

0.9887

⎤
⎦

402

⎡
⎣3.6645e-33.6645e-3

1.0666e-5

⎤
⎦

⎡
⎣2.01242.0124

2.0143

⎤
⎦

⎡
⎣1.9939e-31.9939e-3

1.0888e-6

⎤
⎦

⎡
⎣2.05322.0532

3.0150

⎤
⎦
⎡
⎣0.84050.8405

0.9977

⎤
⎦

2

102

⎡
⎣2.0624e-32.0624e-3

6.0813e-6

⎤
⎦ −

⎡
⎣1.2042e-31.2042e-3

1.5271e-6

⎤
⎦ −

⎡
⎣0.81360.8136

0.9815

⎤
⎦

202

⎡
⎣2.5458e-42.5458e-4

7.5420e-7

⎤
⎦

⎡
⎣3.01813.0181

3.0114

⎤
⎦

⎡
⎣1.4211e-41.4211e-4

9.6012e-8

⎤
⎦

⎡
⎣3.08303.0830

3.9915

⎤
⎦
⎡
⎣0.82940.8294

0.9945

⎤
⎦

402

⎡
⎣3.1538e-53.1538e-5

9.4076e-8

⎤
⎦

⎡
⎣3.01303.0130

3.0031

⎤
⎦

⎡
⎣1.7167e-51.7167e-5

6.0238e-9

⎤
⎦

⎡
⎣3.04923.0492

3.9945

⎤
⎦
⎡
⎣0.83840.8384

0.9981

⎤
⎦

3

102

⎡
⎣5.8930e-55.8930e-5

1.7386e-7

⎤
⎦ −

⎡
⎣3.6614e-53.6614e-5

5.2173e-8

⎤
⎦ −

⎡
⎣0.79330.7933

0.9699

⎤
⎦

202

⎡
⎣3.5663e-63.5663e-6

1.0649e-8

⎤
⎦

⎡
⎣4.04654.0465

4.0291

⎤
⎦

⎡
⎣2.0417e-62.0417e-6

1.6389e-9

⎤
⎦

⎡
⎣4.16464.1646

4.9925

⎤
⎦
⎡
⎣0.82300.8230

0.9929

⎤
⎦

402

⎡
⎣ 2.2006e-7

2.2006e-7

6.6243e-10

⎤
⎦
⎡
⎣4.01854.0185

4.0068

⎤
⎦
⎡
⎣ 1.2152e-7

1.2152e-7

5.1297e-11

⎤
⎦
⎡
⎣4.07064.0706

4.9977

⎤
⎦
⎡
⎣0.83450.8345

0.9983

⎤
⎦
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Table 5.6. L2-errors ‖e‖2,Ω, ‖e−ER−EN ‖2,Ω and their order of
convergence. Transient global effectivity indices for Example 5.2
at t = 6 · 10−7.

p N ‖e‖ order ‖e−ER − EN ‖ order θ

1
102 8.5650e-2 − 3.0040e-2 − 0.9509
202 2.0908e-2 2.034 3.9764e-3 2.917 0.9891
402 5.1823e-3 2.012 6.2109e-4 2.679 1.009

2
102 2.9166e-3 − 8.8179e-4 − 0.9531
202 3.6004e-4 3.018 6.0954e-5 3.855 0.9873
402 4.4602e-5 3.013 5.2913e-6 3.526 1.007

3
102 8.3340e-5 − 3.1830e-5 − 0.9346
202 5.0436e-6 4.046 1.0590e-6 4.91 0.9855
402 3.1122e-7 4.018 4.2565e-8 4.637 1.006
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Figure 5.2. Transient global effectivity indices versus time for
Example 5.2.

Example 5.3. Let us consider the equation of an acoustic wave in dry air at 20◦C,

(5.9)
∂ρ

∂t
+∇ · (ρ0v) = 0,

∂v

∂t
+∇

(
c2

ρ0
ρ

)
= 0,

where ρ is the density, v the velocity field, ρ0 = 1.2 kg/m3 the reference density,
and c0 = 340 m/s the speed of sound. In two dimensions, system (5.9) can be
written in symmetrizable hyperbolic form as

(5.10a)
∂u

∂t
+A1

∂u

∂x1
+A2

∂u

∂x2
= 0, x ∈ Ω = (0, 2

√
2π)2, 0 < t < 1,
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Figure 5.3. Transient global effectivity indices versus time for
Example 5.2.
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Figure 5.4. L2-errors ‖e‖2,Ω and ‖ER +EN ‖2,Ω versus time for
Example 5.2 with N = 40.

where

(5.10b) u =

⎛
⎝ ρ
v1
v2

⎞
⎠ , A1 =

⎛
⎜⎝

0 ρ0 0
c20
ρ0

0 0

0 0 0

⎞
⎟⎠ , A2 =

⎛
⎜⎝

0 0 ρ0
0 0 0
c20
ρ0

0 0

⎞
⎟⎠ .
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We select initial and boundary conditions such that the true solution is

ρ(t,x) = sin

(
c0t−

x1 + x2√
2

)
,(5.10c)

v(t,x) =
c0√
2ρ0

sin

(
c0t−

x1 + x2√
2

)
(1, 1)t.(5.10d)
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Figure 5.5. Transient global effectivity indices versus time for
0 ≤ t ≤ 3π

340 for Example 5.3.
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Figure 5.6. Transient global effectivity indices versus time for
0 ≤ t ≤ 1 for Example 5.3.
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Figure 5.7. L2-errors ‖e‖2,Ω and ‖ER +EN ‖2,Ω versus time for
n = 402 and 0 ≤ t ≤ 1 for Example 5.3.

Applying Theorem 4.4, the stationary error estimate ER can only accurately

approximate the component of the error lying in (
⊕3

i=1 N (Ai))
⊥ = span{(1, 0, 0)t},

i.e., only ER
1 is an accurate estimate of e1.

We solve (5.10) on uniform meshes having N = 102, 202, 402 elements for p =
1, 2, 3 on 0 ≤ t ≤ 1 where the wave travels through the domain 38 times. We
present the componentwise L2-errors and effectivity indices corresponding to the
stationary error estimate ER at t = 1 in Table 5.7. In Table 5.8, we present the
L2-errors and global effectivity indices for the transient error estimate ER+EN at
t = 1. We plot the transient global effectivity indices versus time on a short time
interval in Figure 5.5 and for a long time interval in Figure 5.6. In Figure 5.7, we
plot the L2-errors ‖e‖2,Ω and ‖ER +EN ‖2,Ω.

We observe that ER is an accurate approximation of the third component of true
error, which is in agreement with Theorem 4.4 while the transient error estimate
ER+EN accurately approximates the error in all components with transient global
effectivity indices converging to unity under mesh refinement. This is in agreement
with Theorem 4.5. In Figures 5.5–5.7, we observe an oscillation of the L2-error
and the transient global effectivity index that decays in time. We observe that the
transient global effectivity index converges to unity under both mesh refinement
and increasing time.
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Table 5.7. Componentwise L2(Ω)-errors ‖e‖∗, ‖e − ER‖∗ and
their order of convergence. Stationary global effectivity indices for
Example 5.3 at t = 1.

p N ‖e‖∗ order ‖e−ER‖∗ order θ∗

1

102

⎡
⎢⎣
2.0690e-1

51.236

51.236

⎤
⎥⎦ −

⎡
⎢⎣
1.2549e-1

35.889

35.889

⎤
⎥⎦ −

⎡
⎢⎣
0.8632

0.7463

0.7463

⎤
⎥⎦

202

⎡
⎢⎣
4.6514e-2

11.860

11.860

⎤
⎥⎦

⎡
⎢⎣
2.1532

2.1111

2.1111

⎤
⎥⎦

⎡
⎢⎣
1.6000e-2

7.0454

7.0454

⎤
⎥⎦

⎡
⎢⎣
2.9714

2.3488

2.3488

⎤
⎥⎦

⎡
⎢⎣
0.9530

0.8108

0.8108

⎤
⎥⎦

402

⎡
⎢⎣
1.1218e-2

2.8901

2.8901

⎤
⎥⎦

⎡
⎢⎣
2.0519

2.0369

2.0369

⎤
⎥⎦

⎡
⎢⎣
2.0224e-3

1.6039

1.6039

⎤
⎥⎦

⎡
⎢⎣
2.9840

2.1351

2.1351

⎤
⎥⎦

⎡
⎢⎣
0.9865

0.8332

0.8332

⎤
⎥⎦

2

102

⎡
⎢⎣
9.2211e-3

2.3640

2.3640

⎤
⎥⎦ −

⎡
⎢⎣
3.1815e-3

1.4531

1.4531

⎤
⎥⎦ −

⎡
⎢⎣
0.9715

0.7988

0.7988

⎤
⎥⎦

202

⎡
⎢⎣
1.1363e-3

2.8941e-1

2.8941e-1

⎤
⎥⎦

⎡
⎢⎣
3.0206

3.0300

3.0300

⎤
⎥⎦

⎡
⎢⎣
1.9998e-4

1.6465e-1

1.6465e-1

⎤
⎥⎦

⎡
⎢⎣
3.9918

3.1416

3.1416

⎤
⎥⎦

⎡
⎢⎣
0.9930

0.8248

0.8248

⎤
⎥⎦

402

⎡
⎢⎣
1.4156e-4

3.5919e-2

3.5919e-2

⎤
⎥⎦

⎡
⎢⎣
3.0049

3.0103

3.0103

⎤
⎥⎦

⎡
⎢⎣
1.2523e-5

1.9897e-2

1.9897e-2

⎤
⎥⎦

⎡
⎢⎣
3.9972

3.0488

3.0488

⎤
⎥⎦

⎡
⎢⎣
0.9982

0.8331

0.8331

⎤
⎥⎦

3

102

⎡
⎢⎣
3.7275e-4

9.6281e-2

9.6281e-2

⎤
⎥⎦ −

⎡
⎢⎣
1.5589e-4

6.4869e-2

6.4869e-2

⎤
⎥⎦ −

⎡
⎢⎣
0.9330

0.7525

0.7525

⎤
⎥⎦

202

⎡
⎢⎣
2.2347e-5

5.6608e-3

5.6608e-3

⎤
⎥⎦

⎡
⎢⎣
4.0601

4.0882

4.0882

⎤
⎥⎦

⎡
⎢⎣
4.9216e-6

3.3523e-3

3.3523e-3

⎤
⎥⎦

⎡
⎢⎣
4.9852

4.2743

4.2743

⎤
⎥⎦

⎡
⎢⎣
0.9817

0.8090

0.8090

⎤
⎥⎦

402

⎡
⎢⎣
1.3809e-6

3.4671e-4

3.4671e-4

⎤
⎥⎦

⎡
⎢⎣
4.0164

4.0292

4.0292

⎤
⎥⎦

⎡
⎢⎣
1.5429e-7

1.9481e-4

1.9481e-4

⎤
⎥⎦

⎡
⎢⎣
4.9954

4.1050

4.1050

⎤
⎥⎦

⎡
⎢⎣
0.9953

0.8279

0.8279

⎤
⎥⎦

Table 5.8. L2-errors ‖e‖2,Ω, ‖e−ER−EN ‖2,Ω and their order of
convergence. Transient global effectivity indices for Example 5.3
at t = 1.

p N ‖e‖ order ‖e−ER −EN ‖ order θ

1
102 72.459 − 40.492 − 0.8603
202 16.772 2.111 5.1955 2.962 0.9511
402 4.0873 2.037 6.8190e-1 2.93 0.9854

2
102 3.3433 − 1.3193 − 0.9249
202 4.0930e-1 3.03 8.8297e-2 3.901 0.9765
402 5.0798e-2 3.01 6.3763e-3 3.792 0.9952

3
102 1.3616e-1 − 6.9317e-2 − 0.8747
202 8.0057e-3 4.088 2.2749e-3 4.929 0.9629
402 4.9032e-4 4.029 7.8954e-5 4.849 0.9947
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Example 5.4. In three dimensions, (5.9) can be written as the symmetrizable
hyperbolic system

(5.11a) u,t +

3∑
i=1

Ai
∂u

∂xi
= 0, x ∈ Ω = (0, 1)3, 0 < t < 10−2,

where u = (ρ, v1, v2, v3)
t and

(5.11b) A1 =

⎛
⎜⎜⎝

0 ρ0 0 0
c20
ρ0

0 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , A2 =

⎛
⎜⎜⎝

0 0 ρ0 0
0 0 0 0
c2

ρ0
0 0 0

0 0 0 0

⎞
⎟⎟⎠ , A3 =

⎛
⎜⎜⎝

0 0 0 ρ0
0 0 0 0
0 0 0 0
c2

ρ0
0 0 0

⎞
⎟⎟⎠ .

We select initial and boundary conditions such that the true solution is

ρ(t,x) = exp
(
c0t− (x1 + x2 + x3)/

√
3
)
,(5.11c)

v(t,x) =
c0√
3ρ0

exp
(
c0t− (x1 + x2 + x3)/

√
3
)
(1, 1, 1)t.(5.11d)

Basic linear algebra shows that (
⊕3

i=1 N (Ai))
⊥ = span{(1, 0, 0, 0)t}. Applying

our theory, the stationary error estimate ER can only accurately approximate the
first component of the error, i.e., only ER

1 is an accurate estimate of e1.
We solve (5.11) on uniform meshes having N = 103, 153, 203 elements for p =

1, 2, 3 on 0 ≤ t ≤ 10−2. We present the componentwise L2-errors and effectivity
indices corresponding to the stationary error estimate ER at t = 10−2 in Tables 5.9
and 5.10. In Tables 5.11 and 5.12, we present the componentwise and global L2-
errors and effectivity indices for the transient error estimate ER+EN at t = 10−2.
We show the behavior of the error estimate versus time by plotting the transient
global effectivity indices versus time in Figure 5.8.
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Figure 5.8. Transient global effectivity indices versus time for
Example 5.4.
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We observe that ER is an accurate approximation of the third component of the
true error, which is in agreement with Theorem 4.4. However, the transient error
estimate ER + EN accurately approximates all components of the true error with
global effectivity indices staying close to unity at all times and converging to unity
under mesh refinement which is in full agreement with the theory.

Table 5.9. Componentwise L2(Ω)-errors ‖e‖∗, ‖e − ER‖∗ and
their order of convergence. Stationary global effectivity indices for
Example 5.4 at t = 10−2.

p N ‖e‖∗ order ‖e−ER‖∗ order θ∗

1

103

⎡
⎢⎢⎢⎣

3.6332e-3

8.0813e-1

8.0813e-1

8.0813e-1

⎤
⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎣

1.8285e-4

4.5296e-1

4.5296e-1

4.5296e-1

⎤
⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎣

1.0210

0.8467

0.8467

0.8467

⎤
⎥⎥⎥⎦

153

⎡
⎢⎢⎢⎣

1.6201e-3

3.6199e-1

3.6199e-1

3.6199e-1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1.9918

1.9807

1.9807

1.9807

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

5.4438e-5

2.0361e-1

2.0361e-1

2.0361e-1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

2.9882

1.9720

1.9720

1.9720

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1.0141

0.8389

0.8389

0.8389

⎤
⎥⎥⎥⎦

203

⎡
⎢⎢⎢⎣

9.1291e-4

2.0450e-1

2.0450e-1

2.0450e-1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1.9940

1.9850

1.9850

1.9850

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

2.3039e-5

1.1536e-1

1.1536e-1

1.1536e-1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

2.9890

1.9750

1.9750

1.9750

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1.0106

0.8347

0.8347

0.8347

⎤
⎥⎥⎥⎦

2

103

⎡
⎢⎢⎢⎣

1.7317e-5

3.7744e-3

3.7744e-3

3.7744e-3

⎤
⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎣

1.2066e-6

2.2111e-3

2.2111e-3

2.2111e-3

⎤
⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎣

1.0140

0.8242

0.8242

0.8242

⎤
⎥⎥⎥⎦

153

⎡
⎢⎢⎢⎣

5.1369e-6

1.1230e-3

1.1230e-3

1.1230e-3

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

2.9971

2.9898

2.9898

2.9898

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

2.3878e-7

6.5783e-4

6.5783e-4

6.5783e-4

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

3.9954

2.9899

2.9899

2.9899

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1.0098

0.8194

0.8194

0.8194

⎤
⎥⎥⎥⎦

203

⎡
⎢⎢⎢⎣

2.1688e-6

4.7497e-4

4.7497e-4

4.7497e-4

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

2.9974

2.9911

2.9911

2.9911

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

7.5630e-8

2.7856e-4

2.7856e-4

2.7856e-4

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

3.9964

2.9871

2.9871

2.9871

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1.0075

0.8166

0.8166

0.8166

⎤
⎥⎥⎥⎦

3

103

⎡
⎢⎢⎢⎣

6.2744e-8

1.3640e-5

1.3640e-5

1.3640e-5

⎤
⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎣

8.9829e-9

8.3564e-6

8.3564e-6

8.3564e-6

⎤
⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎣

1.0041

0.8021

0.8021

0.8021

⎤
⎥⎥⎥⎦

153

⎡
⎢⎢⎢⎣

1.2349e-8

2.6791e-6

2.6791e-6

2.6791e-6

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

4.0089

4.0139

4.0139

4.0139

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1.1839e-9

1.6165e-6

1.6165e-6

1.6165e-6

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

4.9980

4.0515

4.0515

4.0515

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1.0049

0.8051

0.8051

0.8051

⎤
⎥⎥⎥⎦

203

⎡
⎢⎢⎢⎣

3.9033e-9

8.4679e-7

8.4679e-7

8.4679e-7

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

4.0036

4.0037

4.0037

4.0037

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

2.8103e-10

5.0859e-7

5.0859e-7

5.0859e-7

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

4.9989

4.0197

4.0197

4.0197

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1.0045

0.8052

0.8052

0.8052

⎤
⎥⎥⎥⎦



1364 SLIMANE ADJERID AND THOMAS WEINHART

Table 5.10. L2-errors ‖e‖2,Ω, ‖e − ER‖2,Ω and their order of
convergence. Transient global effectivity indices for Example 5.4
at t = 10−2.

p N ‖e‖ order ‖e−ER‖ order θ

1
103 1.3997e-0 − 7.8455e-1 − 0.8467
153 6.2698e-1 1.981 3.5267e-1 1.972 0.8389
203 3.5420e-1 1.985 1.9981e-1 1.975 0.8347

2
103 6.5374e-3 − 3.8298e-3 − 0.8242
153 1.9451e-3 2.99 1.1394e-3 2.99 0.8194
203 8.2268e-4 2.991 4.8247e-4 2.987 0.8166

3
103 2.3624e-5 − 1.4474e-5 − 0.8021
153 4.6404e-6 4.014 2.7999e-6 4.052 0.8051
203 1.4667e-6 4.004 8.8090e-7 4.02 0.8052

Table 5.11. Componentwise L2(Ω)-errors ‖e‖∗, ‖e−ER−EN ‖∗
and their order of convergence. Transient global effectivity indices
for Example 5.4 at t = 10−2.

p N ‖e‖∗ order ‖e − ER − EN ‖∗ order θ∗

1
103

⎡
⎢⎢⎣

3.6332e-3

8.0813e-1

8.0813e-1

8.0813e-1

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

1.8285e-4

6.6799e-2

6.6799e-2

6.6799e-2

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

1.0210

0.9926

0.9926

0.9926

⎤
⎥⎥⎦

153

⎡
⎢⎢⎣

1.6201e-3

3.6199e-1

3.6199e-1

3.6199e-1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.9918

1.9807

1.9807

1.9807

⎤
⎥⎥⎦

⎡
⎢⎢⎣

5.4438e-5

2.5398e-2

2.5398e-2

2.5398e-2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2.9882

2.3850

2.3850

2.3850

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.0141

0.9902

0.9902

0.9902

⎤
⎥⎥⎦

203

⎡
⎢⎢⎣

9.1291e-4

2.0450e-1

2.0450e-1

2.0450e-1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.9940

1.9850

1.9850

1.9850

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2.3039e-5

1.3095e-2

1.3095e-2

1.3095e-2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2.9890

2.3025

2.3025

2.3025

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.0106

0.9894

0.9894

0.9894

⎤
⎥⎥⎦

2
103

⎡
⎢⎢⎣

1.7317e-5

3.7744e-3

3.7744e-3

3.7744e-3

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

1.2066e-6

4.3774e-4

4.3774e-4

4.3774e-4

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

1.0140

0.9867

0.9867

0.9867

⎤
⎥⎥⎦

153

⎡
⎢⎢⎣

5.1369e-6

1.1230e-3

1.1230e-3

1.1230e-3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2.9971

2.9898

2.9898

2.9898

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2.3878e-7

1.0313e-4

1.0313e-4

1.0313e-4

⎤
⎥⎥⎦

⎡
⎢⎢⎣

3.9954

3.5653

3.5653

3.5653

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.0098

0.9880

0.9880

0.9880

⎤
⎥⎥⎦

203

⎡
⎢⎢⎣

2.1688e-6

4.7497e-4

4.7497e-4

4.7497e-4

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2.9974

2.9911

2.9911

2.9911

⎤
⎥⎥⎦

⎡
⎢⎢⎣

7.5630e-8

3.8389e-5

3.8389e-5

3.8389e-5

⎤
⎥⎥⎦

⎡
⎢⎢⎣

3.9964

3.4352

3.4352

3.4352

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.0075

0.9889

0.9889

0.9889

⎤
⎥⎥⎦

3
103

⎡
⎢⎢⎣

6.2744e-8

1.3640e-5

1.3640e-5

1.3640e-5

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

8.9829e-9

2.8570e-6

2.8570e-6

2.8570e-6

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

1.0041

0.9702

0.9702

0.9702

⎤
⎥⎥⎦

153

⎡
⎢⎢⎣

1.2349e-8

2.6791e-6

2.6791e-6

2.6791e-6

⎤
⎥⎥⎦

⎡
⎢⎢⎣

4.0089

4.0139

4.0139

4.0139

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.1839e-9

3.9691e-7

3.9691e-7

3.9691e-7

⎤
⎥⎥⎦

⎡
⎢⎢⎣

4.9980

4.8681

4.8681

4.8681

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.0049

0.9809

0.9809

0.9809

⎤
⎥⎥⎦

203

⎡
⎢⎢⎣

3.9033e-9

8.4679e-7

8.4679e-7

8.4679e-7

⎤
⎥⎥⎦

⎡
⎢⎢⎣

4.0036

4.0037

4.0037

4.0037

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2.8103e-10

1.0018e-7

1.0018e-7

1.0018e-7

⎤
⎥⎥⎦

⎡
⎢⎢⎣

4.9989

4.7855

4.7855

4.7855

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.0045

0.9851

0.9851

0.9851

⎤
⎥⎥⎦
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Table 5.12. L2-errors ‖e‖2,Ω, ‖e−ER −EN ‖2,Ω and their order
of convergence. Transient global effectivity indices for Example 5.4
at t = 10−2.

p N ‖e‖ order ‖e−ER − EN ‖ order θ

1
103 1.3997e-0 − 1.1570e-1 − 0.9926
153 6.2698e-1 1.981 4.3990e-2 2.385 0.9902
203 3.5420e-1 1.985 2.2682e-2 2.303 0.9894

2
103 6.5374e-3 − 7.5819e-4 − 0.9867
153 1.9451e-3 2.99 1.7863e-4 3.565 0.988
203 8.2268e-4 2.991 6.6492e-5 3.435 0.9889

3
103 2.3624e-5 − 4.9485e-6 − 0.9702
153 4.6404e-6 4.014 6.8746e-7 4.868 0.9809
203 1.4667e-6 4.004 1.7352e-7 4.785 0.9851

6. Conclusions

In this paper, we investigated the DG method for linear symmetrizable hyper-
bolic systems with the enriched polynomial space Pp, Pp ⊂ Pp ⊂ Pp+1, and modified
L2-projections to approximate the initial and boundary conditions. For analysis, we
symmetrized both the given system and its discretization and showed that the re-
sults of [8] can be applied to the resulting symmetric system. Thus, we showed that,
for a local problem, the leading term of the discretization error lies in a polynomial
subspace spanned by a linear combination of Legendre polynomials of order p and

p+ 1. We also established that a projection of the DG error into
⋂d

i=1 R((Asi
i )t),

si = +,−, is O(hp+2) superconvergent at Radau points.
We further constructed efficient and asymptotically exact implicit residual-based

a posteriori error estimates where we split the leading term of the discretization
error into two parts and estimated each part separately by solving a relatively
small system of equations based on the local residual of the PDE. For systems
with invertible coefficient matrices, the error estimates are obtained by solving
a stationary problem, while, for general systems, part of the error is computed
by solving a local transient system of equations. In contrast to the symmetric
case, the splitting is not orthogonal, and the test function spaces for the error
estimation are now based on the range, respectively, null space, of the transpose of
each flux matrix, thus we have to solve local Petrov-Galerkin problems to compute
an error estimate. We applied the results of [8] on the asymptotic behavior of the
DG error for symmetric systems to establish asymptotic correctness of the error
estimates for symmetrized systems having smooth solutions. Finally, we presented
computational results for several linear systems such as Maxwell’s equations and
the acoustic problem in two and three space dimensions.

We note that, at this point in time, we are not able to prove the asymptotic
exactness of our global a posteriori error estimates for hyperbolic systems. How-
ever, computational results suggest that the global a posteriori error estimates are
asymptotically exact for smooth solutions. Guided by the error analysis for the
one-dimensional kinematic wave equation [3], we plan to prove the convergence of
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the global error estimate in the near future. Several other challenges such as non-
linear hyperbolic systems, other numerical fluxes and unstructured meshes remain
to be addressed. Currently, we are investigating the behavior of DG errors when
Lax-Friedrichs flux [10] is applied.
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