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ACCELERATED FINITE DIFFERENCE SCHEMES

FOR SECOND ORDER DEGENERATE ELLIPTIC

AND PARABOLIC PROBLEMS IN THE WHOLE SPACE

ISTVÁN GYÖNGY AND NICOLAI KRYLOV

Abstract. We give sufficient conditions under which the convergence of finite
difference approximations in the space variable of possibly degenerate second
order parabolic and elliptic equations can be accelerated to any given order of
convergence by Richardson’s method.

1. Introduction

This is the third article of a series studying a class of finite difference equations,
related to finite difference approximations in the space variable of second order
parabolic and elliptic PDEs in R

d. These PDEs are given on the whole R
d in the

space variable, and may degenerate and become first order PDEs. Denote by uh

the solutions of the finite difference equations corresponding to a given grid with
mesh-size h. By shifting the grid so that x becomes a grid point we define uh for
all x ∈ R

d rather than only at the points of the original grid. In [5] and [6], the
first and second articles of the series, we focus on the smoothness in x of uh, rather
than their convergence for h → 0. The main results in [5] and [6] give estimates,
independent of h, for the first order derivatives Duh and for derivatives Dkuh in x
of any order k, respectively.

In the present paper one of our main concerns is the smoothness of the approx-
imations uh in (x, h). In particular, we are interested in the convergence of uh,
and their derivatives in x, in the supremum norm, as h → 0. We give conditions
ensuring that for any given integer k ≥ 0 the approximations uh admit power series
expansions up to order k + 1 in h near 0 like

(1.1) uh =

k∑
j=0

hju(j) + hk+1rh,

and such that the coefficients are bounded functions of (t, x) ∈ [0, T ] × R
d for

fixed T > 0 in the case of parabolic equations, and, with the exception of rh, are
independent of h. This is Theorem 2.3, our first result on Taylor’s formula for uh

in h. We obtain it by proving first Theorems 2.1 and 2.2 below on the solvability
of the PDE that is being approximated, and of a system of degenerate parabolic
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1432 I. GYÖNGY AND N. KRYLOV

PDEs, respectively, for the coefficients u(j), j = 0, . . . , k. Of course, u(0) is the
true solution of the corresponding PDE. The remainder term rh satisfies a finite
difference equation, with the same difference operator appearing in the equation
for uh, and we estimate rh by making use of the maximum principle enjoyed by
this operator. This is a standard approach to get power series expansions for finite
difference approximations in general, and it works well in many situations, when
suitable results regarding the equations for the coefficients u(j) are available. In
our situation it requires some facts either from the theory of diffusion processes or
from the theory of degenerate parabolic equations. However, we do not use any
facts from these theories. We prove Theorem 2.1, and hence Theorem 2.2, relying
on results on finite difference schemes, obtained in [6] by elementary techniques. It
is worth saying that since long ago finite difference equations were already used to
prove the solvability of partial differential equations (see, for instance, [8] and [9]).
Our contribution lies in considering degenerate equations.

After establishing the expansions of uh in h not only can we obtain the possibility
to prove the convergence of uh to the true solution in the supremum norm as h → 0
but also the possibility to accelerate it to any order under appropriate assumptions.
We prove the latter by taking linear combinations of finite difference approximations
corresponding to different mesh-sizes. This method is especially effective when
many of the coefficients in the expansion of uh are zero. These results are given by
Theorem 2.5 and Corollary 2.8. Their counterparts in the elliptic case are presented
by Corollary 3.7.

The idea of accelerating the convergence of finite difference approximations in
the above way is well known in numerical analysis. This is due to L.F. Richardson,
who showed that it works in some cases and he demonstrated its usefulness in [15]
and [16]. This method is often called Richardson’s method or extrapolation to the
limit , and is applied to various types of approximations. The reader is referred to
the survey papers [2] and [4] for a review on the history of the method and on the
scope of its applicability and to textbooks (for instance, [10] and [11]) concerning
finite difference methods and their accelerations. Our paper seems to be the first
one to justify the method for degenerate elliptic and parabolic equations in spaces
with supremum norm.

We are interested in approximating in the sup norm not only the true solution
but also its derivatives. Note that even if the coefficients u(j) are bounded smooth
functions of (t, x), the derivatives Dkuh of uh in x may not admit similar expan-
sions, since the derivatives of rh may not be bounded in h near 0. Note also that
the bounds on the sups of u(j) and rh generally depend on T , and may grow expo-
nentially in T . This becomes a big obstacle to extending our results to the elliptic
case.

Our next result on power series expansions, Theorem 2.7, improves the previous
theorem in two directions. It gives sufficient conditions such that for any given
integer k ≥ 0:

(a) Dkuh admits an expansion similar to (1.1),
(b) the bounds on the coefficients are independent of T .
Having (a) we can approximate the k-th derivatives of the true solution by Dkuh

with rate of order h and accelerate the rate under appropriate assumptions. We
can also approximate the k-th derivatives of the true solution with finite difference
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operators in place of Dk applied to uh, which is more convenient in applications
because it does not require computing the derivatives of uh.

We ensure (a) and (b) by relying heavily on derivative estimates, independent
of T , obtained in [5] and [6] for solutions of finite difference equations. Property
(b) of the expansions allows us to extend Theorem 2.7 to the elliptic case. This
extension is Theorem 3.5.

As a consequence of the derivative estimates proved in [6] we obtain also (see
Theorem 2.9 below) estimates, independent of h and T , for the derivatives of uh

in x and h. The derivative of uh in h satisfies a finite difference scheme similar
to that satisfied by uh, with a free term whose supremum is estimated by the
supremum of the third order derivatives of uh. This explains why one derivative in
h is equivalent to three derivatives in x. Clearly, Theorem 2.9 immediately implies
Taylor’s formula for uh in h, up to appropriate order, with bounded coefficients.
It is interesting to notice that the converse implication does not hold: If for k ≥ 1
the function uh admits a power series expansion up to order k+1 in h near 0 with
bounded coefficients, it does not imply, in general, that the derivative of uh in h
up to order k+1 are bounded functions. That is why Theorem 2.7 does not imply
Theorem 2.9, and the latter implies the former only if condition (i) in Theorem 2.7
is satisfied. Additional information on the behaviour of the derivatives of uh in x
and h when h is near 0 is given by Theorem 2.11. The corresponding result in the
elliptic case is Theorem 3.4.

In this article we are working with equations in the whole space, and plan to
consider equations in bounded smooth domains in a subsequent article. Still it may
be worth noting that the results of this article are applicable to the one-dimensional
ODE

(1− x2)2u′′(x)− c(x)u(x) = f(x), x ∈ (−1, 1).

The point is that one need not prescribe any boundary value of u at the points ±1
and if one considers this equation on all of R, the values of its coefficients and f
outside (−1, 1) do not affect the values of u(x) for |x| < 1.

Another rather standard example even of a uniformly nondegenerate equation
with constant coefficients is the following. Take the one-dimensional heat equation

ut = uxx, t ≥ 0, u(0, x) = cosx.

Then the true solution is

u(t, x) = e−t cosx, u(1, 0) = e−1 = 0.3678794,

and the obvious symmetric finite difference scheme in the space variable with mesh-
sizes h = 1/2 and h = 1/4 give the approximations

v(1, 0) = 0.3755591 and w(1, 0) = 0.3697965,

respectively, for u(1, 0). These approximations are accurate up to the second digit
only, whereas Richardson’s accelerated approximation

4w(1, 0)/3− v(1, 0)/3 = 0.3678756

gives the correct value up to the fifth (out of seven) digit. By the way, if one does
not use the acceleration, then one gets such accuracy for h = 0.011, which is almost
25 times smaller than 1/4.
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2. Formulation of the main results for parabolic equations

We fix some numbers h0, T ∈ (0,∞) and for each number h ∈ (0, h0] we consider
the integral equation

(2.1) u(t, x) = g(x) +

∫ t

0

(
Lhu(s, x) + f(s, x)

)
ds, (t, x) ∈ HT

for u, where g(x) and f(s, x) are given real-valued Borel functions of x ∈ R
d and

(s, x) ∈ HT = [0, T ]× R
d, respectively, and Lh is a linear operator defined by

Lhϕ(t, x) = L0
hϕ(t, x)− c(t, x)ϕ(x),(2.2)

L0
hϕ(t, x) =

1

h

∑
λ∈Λ1

qλ(t, x)δh,λϕ(x) +
∑
λ∈Λ1

pλ(t, x)δh,λϕ(x),(2.3)

for functions ϕ on R
d. Here Λ1 is a finite subset of Rd such that 0 �∈ Λ1,

δh,λϕ(x) =
1

h
(ϕ(x+ hλ)− ϕ(x)), λ ∈ Λ1,

qλ(t, x) ≥ 0, pλ(t, x), and c(t, x) are given real-valued Borel functions of (t, x) ∈
H∞ = [0,∞)× R

d for each λ ∈ Λ1. Set |Λ1|2 =
∑

λ∈Λ1
|λ|2.

As usual, we denote

Dα = Dα1
1 . . . Dαd

d , Di =
∂

∂xi
, |α| =

∑
i

αi, Dij = DiDj

for multi-indices α = (α1, . . . , αd), αi ∈ {0, 1, . . . }. For smooth ϕ and integers
k ≥ 0 we introduce Dkϕ as the collection of partial derivatives of ϕ of order k, and
define

|Dkϕ|2 =
∑
|α|=k

|Dαϕ|2, [ϕ]k = sup
x∈Rd

|Dkϕ(x)|, |ϕ|k =
∑
i≤k

[ϕ]i.

For functions ψh depending on h ∈ (0, h0] the notation Dk
hψh means the k-th

derivative of ψ in h. For Borel measurable bounded functions ψ = ψ(t, x) on HT

we write ψ ∈ Bm = Bm
T if, for each t ∈ [0, T ], ψ(t, x) is continuous in R

d and for
all multi-indices α with |α| ≤ m the generalized functions Dαψ(t, x) are bounded
on HT . In this case we use the notation

‖ψ‖2m = sup
HT

∑
|α|≤m

|Dαψ(t, x)|2.

This notation will also be used for functions ψ independent of t. We denote by
C∞

0 (Rd) the space of infinitely differentiable functions with compact support in R
d.

Let m ≥ 0 be a fixed integer. We make the following assumptions.

Assumption 2.1. For any λ ∈ Λ1, we have pλ, qλ, c, f, g ∈ Bm and, for k = 0, ...,m
and some constants Mk we have

(2.4) sup
HT

( ∑
λ∈Λ1

(|Dkqλ|2 + |Dkpλ|2
)
+ |Dkc|2

)
≤ M2

k .

Remark 2.1. By Theorem 2.3 of [5] under Assumption 2.1 for each h ∈ (0, h0], there
exists a unique bounded solution uh of (2.1), this solution is continuous in HT , and
all of its derivatives in x up to order m are bounded. Actually, in Theorem 2.3 of
[5] it is required that the derivatives of the data up to order m be continuous in HT ,
but its proof can be easily adjusted to include our case (see Remark 2.6 below).
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Naturally, we view (2.1) as a finite difference scheme for the problem

∂

∂t
u(t, x) = Lu(t, x) + f(t, x), t ∈ (0, T ], x ∈ R

d,(2.5)

u(0, x) = g(x), x ∈ R
d,(2.6)

where

(2.7) L := 1
2

∑
λ∈Λ1

d∑
i,j=1

qλλiλjDiDj +
∑
λ∈Λ1

d∑
i=1

pλλiDi − c.

By a solution of (2.5)-(2.6) we mean a bounded continuous function u(t, x) on
HT , such that it belongs to B2 and satisfies

(2.8) u(t, x) = g(x) +

∫ t

0

[Lu(s, x) + f(s, x)] ds

in HT in the sense of generalized functions, that is, for any t ∈ [0, T ] and φ ∈
C∞

0 (Rd),

∫
Rd

φ(x)u(t, x) dx =

∫
Rd

φ(x)g(x) dx+

∫ t

0

∫
Rd

φ(−cu+ f)(s, x) dxds

+

∫ t

0

∫
Rd

φ
∑
λ∈Λ1

(
1
2

d∑
i,j=1

qλλiλjDiDju+

d∑
i=1

pλλiDiu
)
(s, x) dxds.(2.9)

Observe that if u ∈ B2, then (2.9) implies that (2.8) holds almost everywhere with
respect to x and if u ∈ B3, then the second derivatives of u in x are continuous in
x and (2.8) holds everywhere.

The reader can find in [7] a discussion showing that in all practically interesting
cases of parabolic equations like (2.8) the operator L can be represented as in (2.7),
so that considering operators L0

h in form (2.3) is rather realistic.
The following theorem on existence and uniqueness of solutions is a classical

result (see, for instance, [12], [13], [14]) which we are going to obtain by using
finite-difference approximations.

Theorem 2.1. Let Assumption 2.1 hold with m ≥ 2. Then equation (2.8) has a
unique solution, u(0) ∈ B2 = B2

T . Moreover, u(0) ∈ Bm
T and

(2.10) ‖u(0)‖m ≤ N(‖f‖m + ‖g‖m),

where N is a constant, depending only on d, m, |Λ1|, M0,. . . , Mm, and T .

Observe that this result is rather sharp in what concerns the smoothness of
solutions, which is seen if all the coefficients of L are identically zero and f is
independent of t in which case the solution is tf(x) + g(x).

The existence part in Theorem 2.1 is proved in Section 6 and uniqueness in
Section 4.

In Section 6 a repeated application of this theorem allows us to prove a result
on the solvability of (2.13) below. We first introduce

(2.11) L(i) := 1
(i+1)(i+2)

∑
λ∈Λ1

qλ∂
i+2
λ + 1

i+1

∑
λ∈Λ1

pλ∂
i+1
λ ,
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where

(2.12) ∂λϕ :=
∑
i

λiDiϕ

is the derivative of ϕ in the direction of λ. Consider the system of equations

(2.13) u(j)(t, x) =

∫ t

0

(
Lu(j)(s, x) +

j∑
i=1

Ci
jL(i)u(j−i)(s, x)

)
ds,

(t, x) ∈ HT , j = 1, . . . , k.

Remark 2.2. Quite often in this article we use the following symmetry condition:
(S) Λ1 = −Λ1 and qλ = q−λ for all λ ∈ Λ1.
Notice that, if condition (S) holds, then

h−1
∑
λ∈Λ1

qλ(t, x)δh,λϕ(x) = (1/2)
∑
λ∈Λ1

qλ(t, x)Δh,λϕ(x),

where
Δh,λϕ(x) = h−2(ϕ(x+ hλ)− 2ϕ(x) + ϕ(x− hλ)).

Theorem 2.2. Let k ≥ 1 be an integer.
(i) If Assumption 2.1 is satisfied with m ≥ 3k + 2, then (2.13) has a unique

solution {u(j)}kj=1, such that

(2.14) u(j) ∈ Bm−3j , ‖u(j)‖m−3j ≤ N(‖f‖m + ‖g‖m)

for j = 1, . . . , k.
(ii) If the symmetry condition (S) holds and Assumption 2.1 is satisfied with

m ≥ 2k + 2, then (2.13) has a unique solution {u(j)}kj=1, such that

(2.15) u(j) ∈ B
m−2j , ‖u(j)‖m−2j ≤ N(‖f‖m + ‖g‖m)

for j = 1, . . . , k. In addition, if

(2.16) p−λ = −pλ, for λ ∈ Λ1,

then

(2.17) u(j) = 0,

for odd numbers j ≤ k.
In all cases the constants N depends only on d, m, |Λ1|, M0, . . . ,Mm, and T .

The next series of results is related to the possibility of expansion

(2.18) uh(t, x) = u(0)(t, x) +
∑

1≤j≤k

hj

j!
u(j)(t, x) + hk+1rh(t, x),

for all (t, x) ∈ HT and h ∈ (0, h0], where uh is the unique bounded solution of (2.1)
(see Remark 2.1) and rh is a function on HT defined for each h ∈ (0, h0] such that

(2.19) |rh(t, x)| ≤ N(‖f‖m + ‖g‖m)

for all (t, x) ∈ HT , h ∈ (0, h0].
We introduce

χh,λ = qλ + hpλ.

Assumption 2.2. For all (t, x) ∈ HT , h ∈ (0, h0], and λ ∈ Λ1,

(2.20) χh,λ(t, x) ≥ 0.
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Assumption 2.3. We have∑
λ∈Λ1

λqλ(t, x) = 0 for all (t, x) ∈ HT .

Notice that condition (S) is stronger than Assumption 2.3.

Theorem 2.3. Let Assumption 2.1 with m ≥ 3 and Assumption 2.2 hold. Let k ≥ 0
be an integer. Then expansion (2.18) holds with rh satisfying (2.19), provided one
of the following conditions is met:

(i) m ≥ 3k + 3 and Assumption 2.3 holds;
(ii) m ≥ 2k + 3 and condition (S) holds;
(iii) k is odd, m ≥ 2k + 2, and conditions (S) and (2.16) are satisfied.

In each of the cases (i)–(iii) the constant N depends only on d, m, |Λ1|, M0, . . . ,Mm,
and T . In case (iii) we have u(j) = 0 for all odd j in expansion (2.18).

We prove this theorem in Section 7. The following corollary is one of the results of
[3] proved there by using the theory of diffusion processes. We obtain it immediately
from case (iii) with k = 1. Of course, the result is well known for uniformly
nondegenerate equations but we do not assume any nondegeneracy of L, which
becomes just a zero operator at those points where qλ = pλ = c = 0.

Corollary 2.4. Let conditions (S) and (2.16) be satisfied. Let Assumption 2.1 with
m = 4 and Assumption 2.2 hold. Then we have |uh − u0| ≤ Nh2.

Actually, in [3] a full discretization in time and space is considered for parabolic
equations, so that, formally, Corollary 2.4 does not yield the corresponding result
of [3]. On the other hand, a similar corollary can be derived from Theorem 3.5
below which treats elliptic equations and it does imply the corresponding result of
[3]. It also generalizes it because in [3] one of the assumptions, unavoidable for
the methods used there, is that qλ = r2λ with functions rλ that have four bounded
derivatives in x, which may easily not be the case under the assumptions of Theorem
3.5.

To formulate our main result about acceleration for parabolic equations we fix
an integer k ≥ 0 and set

(2.21) ūh =

k∑
j=0

bju2−jh,

where, naturally, u2−jh are the solutions to (2.1), with 2−jh in place of h,

(2.22) (b0, b1, ..., bk) := (1, 0, 0, ..., 0)V −1

and V −1 is the inverse of the Vandermonde matrix with entries

V ij := 2−(i−1)(j−1), i, j = 1, ..., k + 1.

The following result is a simple corollary of Theorem 2.3.

Theorem 2.5. In each situation when Theorem 2.3 is applicable we have that the
estimate

(2.23) |ūh(t, x)− u(0)(t, x)| ≤ N(‖f‖m + ‖g‖m)hk+1

holds for all (t, x) ∈ HT , h ∈ (0, h0], where N is a constant depending only on d,
m, |Λ1|, M0, . . . ,Mm, and T .
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Proof. By Theorem 2.3

u2−jh = u(0) +
k∑

i=1

hi

i!2ji
u(i) + r̄2−jhh

k+1, j = 0, 1, ..., k,

with r̄2−jh := 2−j(k+1)r2−jh , which gives

ūh =
k∑

j=0

bju2−jh = (
k∑

j=0

bj)u
(0) +

k∑
j=0

k∑
i=1

bj
hi

i!2ij
u(i) +

k∑
j=0

bj r̄2−jhh
k+1

= u(0) +

k∑
i=1

hi

i!
u(i)

k∑
j=0

bj
2ij

+

k∑
j=0

bj r̄2−jhh
k+1 = u(0) +

k∑
j=0

bj r̄2−jhh
k+1,

since
k∑

j=0

bj = 1,

k∑
j=0

bj2
−ij = 0, i = 1, 2, ..., k

by the definition of (b0, ..., bk). Hence,

sup
HT

|ūh − u(0)| = sup
HT

|
k∑

j=0

bj r̄2−jh|hk+1 ≤ N(‖f‖m + ‖g‖m)hk+1,

and the theorem is proved. �

Sometimes it suffices to combine fewer terms u2−jh to get accuracy of order k+1.
To consider such a case for odd integers k ≥ 1 define

(2.24) ũh =
k̃∑

j=0

b̃ju2−jh ,

where

(2.25) (b̃0, b̃1, ..., b̃k̃) := (1, 0, 0, ..., 0)Ṽ −1, k̃ = k−1
2 ,

and Ṽ −1 is the inverse of the Vandermonde matrix with entries

Ṽ ij := 4−(i−1)(j−1), i, j = 1, ..., k̃ + 1.

Theorem 2.6. Suppose that the assumptions of Theorem 2.3 are satisfied and
condition (iii) is met. Then for ũh we have

sup
HT

|u(0) − ũh| ≤ N(‖f‖m + ‖g‖m)hk+1

for all h ∈ (0, h0], where N depends only on d, m, |Λ1|, M0, . . . ,Mm, and T .

Proof. We obtain this result from Theorem 2.3 by a straightforward modification
of the proof of the previous result, taking into account that for odd j the terms
with hj vanish in expansion (2.18) when condition (iii) holds in Theorem 2.3. �

Example 2.1. Assume that in the situation of Theorem 2.6 we have m = 8. Then

ũh := 4
3uh/2 − 1

3uh

satisfies
sup
HT

|u(0) − ũh| ≤ Nh4

for all h ∈ (0, h0].
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The above results show that if the data in equation (2.8) are sufficiently smooth,
then the order of accuracy in approximating the solution u(0) can be as high as we
wish if we use suitable mixtures of finite difference approximations calculated along
nested grids with different mesh-sizes. Assume now that we need to approximate
not only u(0) but its derivative Dαu(0) for some multi-index α as well. What
accuracy can we achieve? The answer is closely related to the question of whether
the expansion

(2.26) Dαuh(t, x) = Dαu(0)(t, x) +
∑

1≤j≤k

hj

j!
Dαu(j)(t, x) + hk+1Dαrh(t, x)

holds for all (t, x) ∈ HT and h ∈ (0, h0], such that

(2.27) |Dαrh(t, x)| ≤ N(‖f‖m + ‖g‖m)

for all (t, x) ∈ HT , h ∈ (0, h0].
The result concerning this expansion and the following series of results appeared

after the authors tried to extend the above theorems from the parabolic to the ellip-
tic case. The main and rather hard obstacle is that the constants in our estimates
depend on T and, actually, may grow exponentially in T . By the way, this obstacle
is caused by possible degeneration of our equations and exists even if we consider
equations in a bounded smooth domain.

To be able to give some conditions under which this does not happen, we intro-
duce new notation and investigate smoothness properties of uh with respect to x.
As a simple byproduct of this investigation we also obtain smoothness of uh with
respect to h, which, by the way, cannot be derived from (2.18).

Take a function τλ defined on Λ1 taking values in [0,∞) and for λ ∈ Λ1 introduce
the operators

Th,λϕ(x) = ϕ(x+ hλ), δ̄h,λ = τλh
−1(Th,λ − 1).

Set
‖Λ1‖2 =

∑
λ∈Λ1

|τλλ|2.

For uniformity of notation we also introduce Λ2 as the set of fixed distinct vectors
�1, ..., �d, none of which is in Λ1, and define

δ̄h,�i = τ0Di, Th,�i = 1, Λ = Λ1 ∪ Λ2,

where τ0 > 0 is a fixed parameter. For λ = (λ1, λ2) ∈ Λ2 introduce the operators

Th,λ = Th,λ1Th,λ2 , δ̄h,λ = δ̄h,λ1 δ̄h,λ2 .

For k = 1, 2, μ ∈ Λk we set

Qh,μϕ = h−1
∑
λ∈Λ1

(δ̄h,μqλ)δh,λϕ, L0
h,μϕ = Qh,μϕ+

∑
λ∈Λ1

(δ̄h,μpλ)δh,λϕ,

Ah(ϕ) = 2
∑
λ∈Λ

(δ̄h,λϕ)L
0
h,λTh,λϕ, Qh(ϕ) =

∑
λ∈Λ1

χh,λ(δh,λϕ)
2.

Below B(Rd) is the set of bounded Borel functions on R
d and K is the set of

bounded operators Kh = Kh(t) mapping B(Rd) into itself preserving the cone of
nonnegative functions and satisfying Kh1 ≤ 1.

Finally, fix some constants δ ∈ (0, 1] and K ∈ [1,∞).

Assumption 2.4. There exists a constant c0 > 0 such that c ≥ c0.
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Remark 2.3. The above assumption is almost irrelevant if we only consider (2.1)
on a finite time interval. Indeed, if c is just bounded, say |c| ≤ C = const, by
introducing a new function v(t, x) = u(t, x)e−2Ct we will have an equation for v
similar to (2.1) with L0

hv−(c+2C)v and fe−2Ct in place of Lhu and f , respectively.
Now for the new c we have c+ 2C ≥ C.

By Kh in the assumptions below, and later in the article, we mean a generic
operator of class K. This operator may be different at each appearance even in one
line.

Assumption 2.5. We have m ≥ 1 and for any h ∈ (0, h0], there exists an operator
Kh = Kh,m ∈ K, such that

(2.28) mAh(ϕ) ≤ (1− δ)
∑
λ∈Λ

Qh(δ̄h,λϕ) +KQh(ϕ) + 2(1− δ)cKh

( ∑
λ∈Λ

|δ̄h,λϕ|2
)

on HT for all smooth functions ϕ.

Assumption 2.6. We have m ≥ 2 and, for any h ∈ (0, h0] and n = 1, ...,m, there
exist operators Kh = Kh,n ∈ K, such that

n
∑
ν∈Λ

Ah(δ̄h,νϕ) + n(n− 1)
∑
λ∈Λ2

(δ̄h,λϕ)Qh,λTh,λϕ ≤ (1− δ)
∑
λ∈Λ2

Qh(δ̄h,λϕ)

+K
∑
λ∈Λ

Qh(δ̄hλϕ) + 2(1− δ)cKh

( ∑
λ∈Λ2

|δ̄h,λϕ|2
)
+KKh

( ∑
λ∈Λ

|δ̄h,λϕ|2
)

(2.29)

on HT for all smooth functions ϕ.

Obviously, Assumptions 2.5 and 2.6 are satisfied if qλ and pλ are independent of
x. In the general case, as it is discussed in [5], the above assumptions impose not
only analytical conditions, but they are related also to some structural conditions,
which can be somewhat easier to analyze under the symmetry condition (S).

Assumption 2.7. For all t ∈ [0, T ],

(2.30)
∑
λ∈Λ1

λqλ(t, x) is independent of x.

In the main case of applications we will require the last sum to be identically
zero as in Assumption 2.3.

Remark 2.4. Assumptions 2.5 and 2.6 are discussed at length and in great detail in
[5] and [6], and sufficient conditions, without involving test functions ϕ are given for
these assumptions to be satisfied. In particular, it is shown in [6] that if condition
(S) holds, m ≥ 2, τλ = 1, Assumptions 2.1 and 2.2 are satisfied, and qλ ≥ κ for a
constant κ > 0, then both Assumptions 2.5 and 2.6 are satisfied for any c0 > 0 and
δ ∈ (0, 1), if h0 is sufficiently small and τ0, K, and Kh are chosen appropriately.
Moreover, the condition κ > 0 can be dropped, provided, additionally, that c0 is
large enough (this time we need not assume that h is small). Remember, that by
Remark 2.3 the condition that c0 be large is, actually, harmless as long as we are
concerned with equations on a finite time interval. Mixed situations, when c is large
at those points where some of qλ can vanish are also considered in [6].

In [5] we have seen that Assumption 2.5 imposes certain nontrivial structural
conditions on qλ which cannot be guaranteed by the size of c0 if qλ is only once
continuously differentiable. In contrast, even without condition (S), given that
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Assumptions 2.1, 2.5, 2.7 are satisfied and m ≥ 2, as is shown in [6], Assumption
2.6 is also satisfied if c0 is large enough.

Theorem 2.7. Let Assumptions 2.1 through 2.6 hold with m ≥ 3. Let k ≥ 0
and let l ∈ [0,m] be integers. Then for every multi-index α such that |α| ≤ l the
function Dαuh is a continuous function on HT and expansion (2.26) holds with
Dαrh satisfying (2.27), provided one of the following conditions is met:

(i) m ≥ 3k + 3 + l;
(ii) m ≥ 2k + 3 + l and condition (S) holds;
(iii) k is odd, m ≥ 2k + 2 + l, and conditions (S) and (2.16) are satisfied.

In each of the cases (i)–(iii) the constant N depends only on d, m, δ, K, τ0, c0, |Λ1|,
‖Λ1‖, M0, . . . ,Mm. In case (iii) we have u(j) = 0 for all odd j in the expansion.

We prove this theorem in Section 7. Remember the definition of ūh and ũh in
(2.21) and (2.24). The following is an obvious consequence of Theorem 2.7.

Corollary 2.8. Suppose that the assumptions of Theorem 2.7 are satisfied. Then

sup
HT

|Dαūh −Dαu(0)| ≤ Nhk+1(‖f‖m + ‖g‖m),

and if condition (iii) is met, then

sup
HT

|Dαũh −Dαu(0)| ≤ Nhk+1(‖f‖m + ‖g‖m),

where N depends only on on d, m, δ, K, τ0, c0, |Λ1|, ‖Λ1‖, M0, . . . ,Mm.

Remark 2.5. Observe that for k = 0 Theorem 2.7 implies that

(2.31) sup
HT

|Dαuh −Dαu(0)| ≤ Nh

if m ≥ 3 + |α| and Assumptions 2.1 through 2.6 hold. In addition, one can replace
Dαuh in (2.31) with δαh , where

δαh = δα1

h,e1
· · · · · δαd

h,ed

and ei is the i-th basis vector in R
d. This follows easily from the mean value

theorem and Theorem 2.9 below. The reader understands that a similar assertion
is true in the case of Corollary 2.8 with the only difference that one needs larger
m and better finite-difference approximations of Dα. We can use, for example, the
approximation

k∑
j=0

bjδ
α
2−jh

of Dα, where b0, ..., bk are defined in (2.21), since it is not difficult to see that for
|α| = l and sufficiently smooth functions ϕ,

sup
Rd

|Dαϕ−
k∑

j=0

bjδ
α
2−jhϕ| ≤ Chk+1|ϕ|l+k+1

with a constant C depending only on d, k and l.

Next we investigate the smoothness of uh in x and h. Recall that for functions
ϕ depending on h we use the notation Dr

hϕ for the r-th derivative of ϕ in h. As
usual, D0

hϕ := ϕ.
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Remark 2.6. Suppose that Assumption 2.1 is satisfied. Take h1 ∈ (0, h0), consider
equation (2.1) as an equation about the function uh(t, x) as a function of (h, t, x) ∈
[h1, h0]×HT and look for solutions in the space Bm(h1) = Bm

T (h1) which is defined
as the space of functions on [h1, h0]×HT with finite norm

(2.32)
∑

|α|+3r≤m

sup
[h1,h0]×HT

|DαDr
huh(t, x)|.

It is obvious that the integrand in (2.1) can be considered as the result of applica-
tion of an operator, which is bounded in Bm(h1), to uh(s, x). Therefore, a standard
abstract theorem on solvability of ODEs in Banach spaces shows that there exists a
solution of (2.1) in Bm(h1). Since just bounded solutions are uniquely defined by
(2.1), we conclude that our uh belongs to Bm(h1) for any h1 ∈ (0, h0). Obviously,
if the derivatives of the data are continuous in x, the same will hold for uh.

The above argument actually works if we replace |α|+3r ≤ m with |α|+ r ≤ m
in (2.32). We talk about (2.32) in the above form because we will show that under
our future assumptions the quantity (2.32) is bounded independently of h1.

Theorem 2.9. Let k ≥ 0 and m ≥ 2 be integers and suppose that Assumptions 2.1
through 2.6 are satisfied. Then, for each integer r ≥ 0 such that

3k + r ≤ m,

the generalized derivatives DrDk
huh exist on (0, h0]×HT , are bounded, and we have

(2.33) |DrDk
huh| ≤ N(‖f‖m + ‖g‖m),

where N is a constant depending only on m, δ, c0, τ0,K, M0, . . . ,Mm, |Λ1|, and
‖Λ1‖. In particular, uh ∈ Bm and

‖uh‖m ≤ N(‖f‖m + ‖g‖m).

We prove this theorem in Section 5, and in Section 6 we show that the following
fact, used when we come to the elliptic case, is a simple corollary of it.

Theorem 2.10. Suppose that Assumptions 2.1 through 2.6 hold with m ≥ 2. Then
the constant N in (2.10) depends only on m, δ, c0, τ0,K, M0, . . . ,Mm, |Λ1|, and
‖Λ1‖ (thus, is independent of T ). The same is true for the constants N in Theorems
2.2, 2.3, 2.5, and 2.6.

Additional information on the behavior of DrDk
huh for small h is provided by

the following result which we prove in Section 5.

Theorem 2.11. Let k ≥ 1 be an odd number and suppose that Assumptions 2.1
through 2.6 hold with m ≥ 3k + 1. Assume that the symmetry condition (S) and
(2.16) are satisfied.

Then, for any integer r ≥ 0 such that

3k + r ≤ m− 1

we have

(2.34) sup
HT

|DrDk
huh| ≤ N(‖f‖m + ‖g‖m)h

for all h ∈ (0, h0], where N depends only on m, δ, c0, τ0, K, |Λ1|, ‖Λ1‖, M0,...,
Mm.
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3. Main results for elliptic equations

Here we assume that pλ, qλ, c, and f are independent of t and now we turn our
attention to the equations

Lhvh(x) + f(x) = 0 x ∈ R
d,(3.1)

Lv(x) + f(x) = 0 x ∈ R
d.(3.2)

Naturally, by a solution of (3.2) we mean a function v on R
d such that it belongs

to B2 and (3.2) holds almost everywhere. Clearly, if a solution v belongs to B3

and qλ, pλ, c, and f are continuous functions on R
d, then (3.2) holds everywhere.

First we prove the existence and uniqueness of the solutions of equations (3.1)
and (3.2).

Theorem 3.1. Suppose that Assumption 2.1 is satisfied with an m ≥ 0 and let
Assumptions 2.2 and 2.4 hold. Then equation (3.1) has a unique bounded solution
vh. Moreover, vh belongs to Bm.

Proof. Observe that (3.1) is equivalent to

vh(x) = h2ξ(x)f(x) + ξ(x)
∑
λ∈Λ1

χλvh(x+ λh),

where

ξ−1 = h2c+
∑
λ∈Λ1

χλ.

It is seen that the existence and uniqueness of bounded solution of (3.1) follows by
contraction principle. Using smooth successive iterations yields that vh ∈ Bm. �

Theorem 3.2. Let Assumptions 2.1 through 2.6 hold with an m ≥ 2. Then equa-
tion (3.2) has a unique solution v in the space B2. Moreover, v ∈ Bm and there
is a constant N depending only on m, δ, c0, τ0, K, M0, . . . ,Mm, |Λ1|, and ‖Λ1‖
such that

(3.3) ‖v‖m ≤ N‖f‖m.

Proof. First we prove uniqueness. Let v ∈ B2 satisfy (3.2) with f = 0. Take a
constant ν > 0, so small that c − ν ≥ c0/2 and conditions (2.28) and (2.29) hold
with c − ν and δ/2 in place of c and δ, respectively. Then for each T > 0 the
function u(t, x) := eνtv(x), (t, x) ∈ HT , is a solution of class B2

T of the equation

(3.4)
∂

∂t
u = (L+ ν)u on HT

with initial condition u(0, x) = v(x). Hence by virtue of Theorem 2.10 for every
T > 0,

eνT |v(x)| = |u(T, x)| ≤ N‖v‖2,
where N is independent of (T, x). Multiplying both sides of the above inequality
by e−νT and letting T → ∞ we get v = 0, which proves uniqueness.

To show the existence of a solution in Bm, let u be a function defined on H∞
such that for each T > 0 its restriction onto HT is the unique solution in Bm

T of
(3.4) with initial condition u(0, x) = f(x) (see Theorem 2.1). By Theorem 2.10,

sup
H∞

∑
r≤m

|Dru| ≤ N‖f‖m
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with a constant N depending only on m, δ, c0, τ0, K, M0, . . . ,Mm, |Λ1|, and ‖Λ1‖.
Hence

v(x) :=

∫ ∞

0

e−νtu(t, x) dt, x ∈ R
d

is a well-defined function on R
d, v ∈ Bm, and

Lv(x) =
∫ ∞

0

e−νtLu(t, x) dt

=

∫ ∞

0

e−νt(
∂

∂t
u(t, x)− νu(t, x)) dt = −f(x),

where the last equality is obtained by integration by parts. Consequently, v is a
solution of (3.4) and it satisfies estimate (3.3). �

Theorem 3.3. Let k ≥ 0 and suppose that Assumptions 2.1 through 2.6 are sat-
isfied with an m ≥ 3k. Then, for any h ∈ (0, h0] and for each integer r ≥ 0, such
that

3k + r ≤ m,

for the unique bounded solution vh of (3.1) we have

(3.5) sup
(0,h0]×Rd

|DrDk
hvh| ≤ N‖f‖m,

where N is a constant depending only on m, δ, c0, τ0,K, |Λ1|, ‖Λ1‖, M0, . . . ,Mm.
In particular,

‖vh‖m ≤ N‖f‖m.

Proof. To prove (3.5), take a constant ν > 0 as in the proof of Theorem 3.2, define
u(t, x) := vh(x)e

νt, and observe that u is the unique bounded solution of

∂

∂t
u = L0

hu− (c− ν)u+ eνtf, u(0, x) = vh(x).

By Theorem 2.9 for any T > 0,

eνT |DrDk
hvh(x)| = |DrDk

hu(T, x)| ≤ NeνT ‖f‖m +N‖vh‖m,

where N is a constant, depending only on m, δ, c0, τ0,K, |Λ1|, ‖Λ1‖, M0, . . . ,Mm.
By multiplying the extreme terms by e−νT and letting T → ∞, we get the result.

�

From estimate (2.34) we obtain the corresponding estimate for the derivatives
of vh.

Theorem 3.4. Let the conditions of Theorem 2.11 hold. Then for any integer
r ≥ 0 such that

3k + r ≤ m− 1,

for the solution vh of (3.1) we have

sup
Rd

|DrDk
hvh| ≤ N‖f‖mh

for all h ∈ (0, h0], where N depends only on m, δ, c0, τ0,K, |Λ1|, ‖Λ1‖ and M0,...,
Mm.

Proof. This theorem can be deduced from Theorem 2.11 in the same way as The-
orem 3.3 is obtained from Theorem 2.9. �
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Now we want to establish an expansion for vh, i.e., to show for an integer k ≥ 0
the existence of some functions v(0),...,v(k) on R

d, and a function Rh on R
d for each

h ∈ (0, h0] such that for all x ∈ R
d and h ∈ (0, h0],

vh(x) = v(0)(x) +
∑

1≤j≤k

hj

j!
v(j)(x) + hk+1Rh(x),(3.6)

sup
h∈(0,h0]

sup
Rd

|Rh| ≤ N‖f‖m(3.7)

with a constant N .

Theorem 3.5. Suppose that Assumptions 2.1 through 2.6 are satisfied with an
m ≥ 3. Let k ≥ 0 be an integer. Then expansion (3.6) holds with v(0) being the
unique Bm solution of (3.2) and Rh satisfying (3.7) provided one of the following
conditions is met:

(i) m ≥ 3k + 3;
(ii) m ≥ 2k + 3 and condition (S) holds;
(iii) k is odd, m ≥ 2k + 2, and conditions (S) and (2.16) are satisfied.

In each of the cases (i)–(iii) the constant N in (3.7) depends only on d, m, δ, c0, τ0,
K, |Λ1|, ‖Λ1‖, M0, . . . ,Mm. Moreover, when (iii) holds we have v(j) = 0 for all
odd j.

Proof. Take a small constant ν > 0, as in the proof of Theorem 3.2, let u be a
function defined on H∞ such that for each T > 0 its restriction onto HT is the
unique solution in Bm

T of

∂

∂t
uh = (Lh + ν)uh (t, x) ∈ H∞,

uh(0, x) = f(x) x ∈ R
d,

(see Remark 2.1). As in the proof of Theorem 3.2 we get that

vh(x) =

∫ ∞

0

e−νtuh(t, x) dt.

By Theorem 2.3 in each of the cases (i)–(iii) we have

(3.8) uh(t, x) = u(0)(t, x) +
∑

1≤j≤k

hj

j!
u(j)(t, x) + hk+1rh(t, x),

for all (t, x) ∈ H∞, h ∈ (0, h0], and by Theorem 2.10 we have

(3.9) sup
h∈(0,h0]

sup
H∞

{|uh|+
k∑

j=0

|u(j)|+ |rh|} ≤ N‖f‖m

with a constant N depending only on d, m, δ, c0, τ0,K, M0,...,Mm, |Λ1| and ‖Λ1‖.
Multiplying both sides of equation (3.8) by e−νt and then integrating them over
[0,∞) with respect to dt, we get expansion (3.6) with

Rh(x) :=

∫ ∞

0

e−νtrh(t, x) dt,

v(j)(x) :=

∫ ∞

0

e−νtu(j)(t, x) dt, for j = 0, . . . , k.
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Clearly, (3.9) implies that (3.7) holds with N depending only on d, m, δ, c0, τ0,K,
M0,...,Mm, |Λ1|, and ‖Λ1‖. As we know the function u(0) in (3.8) is theBm solution
of

∂

∂t
u = (L+ ν)u (t, x) ∈ H∞,

u(0, x) = f(x) x ∈ R
d,

which as we have seen in the proof of Theorem 3.2 guarantees that v(0) is the unique
Bm solution of equation (3.2). �

Remark 3.1. We can show similarly that v(i), i = 1, ..., k, is the unique solution of
the system

Lv(j)(s, x) +
j∑

i=1

Ci
jL(i)v(j−i) = 0

in an appropriate class of functions (cf. Theorem 2.2).

The following result can be obtained easily from Theorem 2.7 by inspecting the
proof of the previous theorem.

Theorem 3.6. Let pλ, qλ, c, and f satisfy the conditions of Theorem 3.5, with
m− l in place of m in each of the conditions (i)–(iii) for an integer l ∈ [0,m]. Then
Dαvh is a bounded continuous function on R

d for every multi-index α, |α| ≤ l, and
the expansion (3.6) is valid with Dαvh, {Dαv(j)}kj=0 and DαRh in place of vh,

{v(j)}kj=0 and Rh, respectively. Furthermore, (3.7) holds with DαRh in place of Rh

and a constant N depending only on d, m, δ, c0, τ0,K, |Λ1|, ‖Λ1‖, M0, . . . ,Mm. In
case (iii) we have v(j) = 0 for all odd j in the expansion.

Set

v̄h =

k∑
j=0

bjv2−jh , ṽh =

k̃∑
j=0

b̃jv2−jh ,

where (b0, b1, . . . , bk) and k̃, (b̃0, b̃1, . . . , b̃k̃) are defined in (2.22) and in (2.25). Then
we have the following corollary.

Corollary 3.7. Suppose that the assumptions of Theorem 3.6 are satisfied. Then
for every multi-index α with |α| ≤ l,

sup
Rd

|Dαv̄h −Dαv(0)| ≤ N‖f‖mhk+1,

and if condition (iii) is met, then

sup
Rd

|Dαṽh −Dαv(0)| ≤ N‖f‖mhk+1,

where N depends only on on d, m, δ, K, τ0, c0, |Λ1|, ‖Λ1‖, M0, . . . ,Mm.

4. Proof of uniqueness in Theorem 2.1 and a stipulation

We will see later that the proof of Theorem 2.3 only uses the existence of suf-
ficiently smooth solutions of (2.8) and (2.13). Therefore, if m ≥ 3, uniqueness of
u(0) follows from expansion (2.18). If m = 2, one can use simple ideas based on
integration by parts. We briefly outline these ideas referring to [12], [13], [14] for
details.
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First, one may assume that g = f = 0 and let u(0) be the corresponding so-
lution. Then, by introducing a new function v = u(0)(cosh |x|)−1 one reduces the
issue to uniqueness of v, which satisfies an equation similar to (2.5) with g = f = 0
and different coefficients which we denote by q̂λ, p̂λ, and ĉ = c, and, moreover,
v,Dv,D2v ∈ L2(HT ). After that, one multiplies the equation for v by v and
integrates over HT . One uses integration by parts, and the fact that due to the as-
sumption qλ ≥ 0 we have |Dq̂λ|2 ≤ 4q̂λ sup |D2q̂λ|. One also uses Young’s inequality
implying that

|v(∂λq̂λ)∂λv| ≤ N |vq̂1/2λ ∂λv| ≤ q̂λ(∂λv)
2 +Nv2,

and the fact that 2v̂p̂λ∂λv̂ = p̂λ∂λ(v̂)
2. Then one quickly arrives at a relation like

∫
HT

(N − c)|v|2 dxdt ≥
∫
Rd

|v(T, x)|2 dx ≥ 0,

where N is a constant independent of c. If c is large enough, the above inequality is
only possible if v = 0, which proves uniqueness if c is large enough. In the general
case it only remains to observe that the usual change of the unknown function
taking v(t, x)eλt in place of v for an appropriate λ will lead to as large a c as we
like.

Remark 4.1. Notice that apart from uniqueness in Theorems 2.1 and 2.2 all of our
other assertions and assumptions are stable under applying mollifications of the
data with respect to x. For instance, take a nonnegative ζ ∈ C∞

0 (Rd) with unit
integral, for ε > 0 define ζε(x) = ε−dζ(x/ε) and for locally summable ψ(x) use the
notation

ψ(ε) = ψ ∗ ζε.

Then q
(ε)
λ , p

(ε)
λ , c(ε), f (ε), and g(ε) will satisfy the same assumptions with the same

constants as the original ones and will be infinitely differentiable in x.
It is not hard to see that if our assertions are true for the mollified data, then

they are also true for the original ones. For instance, let vε be the solution of (2.5)
with the new data. The uniform in ε estimates of the derivatives in x and the
equation itself, guaranteeing that the first derivatives in time are bounded, show
that vε are uniformly continuous in [0, T ] × {|x| ≤ R} for any R. Then there is a
sequence εn ↓ 0 such that vεn converges uniformly in [0, T ] × {|x| ≤ R} for any R
to a bounded continuous function v.

This along with uniform boundedness of |Dαvε|, |α| ≤ m, lead to the fact that the
generalized derivatives |Dαv|, |α| ≤ m, are bounded and admit the same estimates
as those of vε. Also, since Dαvεn → Dαv in the sense of distributions and all of
them are uniformly bounded, we conclude that this convergence is true in the weak
sense in any L2([0, T ]× {|x| ≤ R}). Now it is easy to pass to the limit in equation
(2.9) written for modified coefficients and vε in place of u concluding that since the

derivatives converge weakly and q
(ε)
λ → qλ,..., f

(ε) → f uniformly on HT , v satisfies
(2.9).

A similar argument takes care of Theorem 2.2 (in which uniqueness will be
derived from uniqueness in Theorem 2.1).

Our claim about stability of other results is almost obvious and from this moment
on we will assume that the data are as smooth in x as desired.



1448 I. GYÖNGY AND N. KRYLOV

5. Proof of Theorems 2.9 and 2.11

In [5] (see there Theorems 2.3 and 2.1 and Corollary 3.2 if m = 0) and [6] we
obtained the following result on the smoothness in x of the solution uh to equation
(2.1).

Theorem 5.1. Suppose that Assumptions 2.1 and 2.4 are satisfied. Suppose that
(i) if m = 1, then Assumptions 2.2 and 2.5 are satisfied, and
(ii) if m ≥ 2, then Assumptions 2.2, 2.5, 2.6, and 2.7 are satisfied. Then for

h ∈ (0, h0] we have that Dkuh, k = 0, ...,m, are continuous in x and

(5.1) sup
HT

m∑
k=0

|Dkuh| ≤ N(Fm +Gm),

where

Fn =
∑
k≤n

sup
HT

|Dkf |, Gn =
∑
k≤n

sup
Rd

|Dkg|,

and N depends only on τ0, m, δ, c0, K, |Λ1|, ‖Λ1‖, M0, ...,Mm (N depends on
fewer parameters if m ≤ 1).

To proceed further we need a few formulas.

Lemma 5.2. Let ϕ be a function on HT and n ≥ 0 be an integer.
(i) Assume that the derivatives of ϕ in x ∈ R

d up to order n+ 1 are continuous
functions in x. Then for each h > 0,

(5.2) Dn
h

∑
λ∈Λ1

pλδh,λϕ =
∑
λ∈Λ1

pλ

∫ 1

0

θn∂n+1
λ ϕ(t, x+ hθλ) dθ

on HT , where ∂λϕ is introduced in (2.12).
(ii) Assume that the derivatives of ϕ in x up to order n + 2 are continuous

functions in x, and that Assumption 2.3 holds. Then

(5.3) Dn
h

∑
λ∈Λ1

h−1qλδh,λϕ =
∑
λ∈Λ1

qλ

∫ 1

0

(1− θ)θn∂n+2
λ ϕ(t, x+ hθλ) dθ,

on HT .

Proof. By Taylor’s formula applied to ϕ(t, x+ hθλ) as a function of θ ∈ [0, 1],

δh,λϕ(t, x) =

∫ 1

0

∂λϕ(t, x+ hθλ) dθ

and

δh,λϕ(t, x) = ∂λϕ(t, x) + h

∫ 1

0

(1− θ)∂2
λϕ(t, x+ hθλ) dθ.

Multiplying the first equality by pλ and summing up in λ over Λ1 we obtain (5.2)
for n = 0. Multiplying the second equality by qλ, summing up in λ over Λ1 we
obtain (5.3) for n = 0 since ∑

λ∈Λ1

qλ∂λϕ = 0

due to Assumption 2.3.
After that it only remains to differentiate n times in h both parts of the particular

case of formulas (5.2) and (5.3). The lemma is proved. �
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We introduce

u
(j)
h = Dj

huh

and observe that by Remark 2.6 under Assumption 2.1 the functions ∂n
λu

(j)
h are

well defined if n + j ≤ m. By combining this with Lemma 5.2 and the Leibnitz
formula we obtain the following.

Corollary 5.3. Let Assumptions 2.1 and 2.3 be satisfied. Let k ≥ 1 be an integer
such that k + 2 ≤ m. Then

(5.4) u
(k)
h (t, x) =

∫ t

0

(
Lhu

(k)
h (s, x) +Rk

h(s, x)
)
ds

on (0, h0]×HT , where

Rk
h(t, x) =

k∑
i=1

Ci
k

∑
λ∈Λ1

∫ 1

0

θi
[
pλ(t, x)(∂

i+1
λ u

(k−i)
h )(t, x+ hθλ)

+(1− θ)qλ(t, x)(∂
i+2
λ u

(k−i)
h )(t, x+ hθλ)

]
dθ.

Now we are ready to prove Theorems 2.9 and 2.11.

Proof of Theorem 2.9. If m = 2 or k = 0, our assertion follows directly from The-
orem 5.1. Therefore, in the rest of the proof we assume that m ≥ 3 and k ≥ 1.

We will be using (5.4). Observe that if 1 ≤ i ≤ k, then

(i+ 2) + r + (k − i) = k + 2 + r ≤ 3k + r ≤ m.

Thus by Remark 2.6 we know that Di+2+ru
(k−i)
h are bounded and continuous on

HT . It follows that R
k
h ∈ Br. By Theorem 5.1 with r in place of m we obtain

Ik,r := sup
HT

∑
j≤r

|Dju
(k)
h | ≤ N sup

HT

∑
j≤r

|DjRk
h|.

It is not hard to see that

|DjRk
h| ≤ N sup

HT

k∑
i=1

i+2+j∑
n=1

|Dnu
(k−i)
h | ≤ N

k∑
i=1

Ik−i,i+2+j .

Hence,

Ik,r ≤ N
k∑

i=1

Ik−i,i+2+r.

Here on the right the first index of Ik,r is reduced by at least 1 and the sum of
indices increased by 2. Therefore, after k iterations we will come to the inequality

Ik,r ≤ NI0,k+2k+r.

It only remains to observe that I0,3k+r ≤ I0,m and the latter quantity is estimated
in Theorem 5.1. The theorem is proved. �

Proof of Theorem 2.11. First, observe that the symmetry assumption and (2.16)
imply that for any smooth function ϕ(x), odd i ≥ 0, and any multi-index α, such
that |α| ≤ m, we have

(5.5)
∑
λ∈Λ1

(Dαpλ)∂
i+1
λ ϕ =

∑
λ∈Λ1

(Dαqλ)∂
i+2
λ ϕ = 0.
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If k = 1 and an integer n ≤ r, then owing to (5.5), we have∣∣Dn
∑
λ∈Λ1

qλ(t, x)(∂
3
λuh)(t, x+ hθλ)

∣∣

=
∣∣Dn

∑
λ∈Λ1

qλ(t, x)
[
(∂3

λuh)(t, x+ hθλ)− ∂3
λuh(t, x)

]∣∣

≤ Nh sup
HT

∑
i≤r

|Di+4uh| ≤ Nh‖u‖m ≤ N(‖f‖m + ‖g‖m)h =: NJh,

where the last two estimates follow from the fact that r + 4 = r + 3k + 1 ≤ m and
from Theorem 2.9, respectively. Similarly,∣∣Dn

∑
λ∈Λ1

pλ(t, x)(∂
2
λuh)(t, x+ hθλ)

∣∣

=
∣∣Dn

∑
λ∈Λ1

pλ(t, x)
[
(∂2

λuh)(t, x+ hθλ)− ∂2
λuh(t, x)

]∣∣ ≤ NJh.

Hence,

sup
HT

∑
n≤r

|DnR1
h| ≤ N(‖f‖m + ‖g‖m)h ≤ NJh

and applying Theorem 5.1 to (5.4) yields (2.34).
Now we proceed by induction on k. Assume that for an odd number j estimate

(2.34) holds whenever 3k+r ≤ m−1 and odd k ≤ j. This hypothesis is justified by
the above for j = 1 and to prove the theorem it suffices to show that the hypothesis
also holds with j + 2 in place of j. Take an odd k and an integer r such that

k ≤ j + 2, 3k + r ≤ m− 1

and again use (5.4). As above, to obtain (2.34) it suffices to prove that

(5.6) sup
HT

∑
n≤r

|DnRk
h| ≤ NJh.

Take an integer n ≤ r. Observe that if 1 ≤ i ≤ k and i is even, then k − i is odd
and k − i ≤ j + 2− i ≤ j and

3(k − i) + i+ 2 + n = 3k + n− 2i+ 2 ≤ m− 1− 2i+ 2 ≤ m− 1

so that by the induction hypothesis

(5.7) sup
HT

∣∣Dn
∑
λ∈Λ1

qλ(t, x)(∂
i+2
λ u

(k−i)
h )(t, x+ hθλ)

∣∣ ≤ NJh.

If 1 ≤ i ≤ k and i is odd, then i+2 is odd too and as in the beginning of the proof∣∣Dn
∑
λ∈Λ1

qλ(t, x)(∂
i+2
λ u

(k−i)
h )(t, x+ hθλ)

∣∣

=
∣∣Dn

∑
λ∈Λ1

qλ(t, x)
[
(∂i+2

λ u
(k−i)
h )(t, x+ hθλ)− ∂i+2

λ u
(k−i)
h (t, x)

]∣∣

≤ Nh sup
HT

∑
i≤k,l≤r

|Dl+i+3u
(k−i)
h |,

where the last sup is majorated by NJ owing to Theorem 2.9 since

3(k − i) + r + i+ 3 ≤ m− 1− 2i+ 3 ≤ m.
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In both situations we have (5.7). Similarly, if 1 ≤ i ≤ k and i is odd, then i + 1 is
even and ∣∣Dn

∑
λ∈Λ1

pλ(t, x)(∂
i+1
λ u

(k−i)
h )(t, x+ hθλ)

∣∣

=
∣∣Dn

∑
λ∈Λ1

pλ(t, x)
[
(∂i+1

λ u
(k−i)
h )(t, x+ hθλ)− ∂i+1

λ u
(k−i)
h (t, x)

]∣∣

≤ Nh sup
HT

∑
i≤k,l≤r

|Dl+i+2u
(k−i)
h |,

where the last sup is majorated by NJ again owing to Theorem 2.9 since

3(k − i) + r + i+ 2 ≤ m− 1− 2i+ 2 ≤ m.

Finally, if 1 ≤ i ≤ k and i is even, then k − i is odd, k − i ≤ j + 2− i ≤ j, and

3(k − i) + r + i+ 1 ≤ m− 1− 2i+ 1 < m− 1,

so that by the induction hypothesis
∣∣Dn

∑
λ∈Λ1

pλ(t, x)(∂
i+1
λ u

(k−i)
h )(t, x+ hθλ)

∣∣ ≤ NJh,

which is now shown to hold in both subcases. By combining this with (5.7) we
come to (5.6) and the theorem is proved. �

6. Proof of Theorems 2.1, 2.2, and 2.10

Proof of Theorem 2.1. First we replace qλ with symmetric ones using the fact that
the symmetrization does not affect formula (2.7). To this end introduce

Λs
1 = Λ1 ∩ (−Λ1), Λ̂1 = Λ1 ∪ (−Λ1).

On Λs
1 we set q̂±λ = (1/2)(qλ + q−λ). If λ ∈ ±(Λ1 \ Λs

1), we set q̂λ = (1/2)q±λ.

Then Λ̂1 and q̂λ satisfy the symmetry condition (S) and can be used to represent
the first term on the right in (2.7) in place of the original ones. Next, we redefine

and extend pλ introducing p̂λ on Λ̂1, so that p̂λ = M0 + pλ on Λs
1, for λ ∈ Λ1 \ Λs

1

we set p̂±λ = M0 ± (1/2)pλ, and for −λ ∈ Λ1 \ Λs
1 we set p̂±λ = M0 ∓ (1/2)p−λ.

(Remember that for the constant M0 from Assumption 2.1 we have |pλ| ≤ M0.)

Then Λ̂1 and p̂λ can be used to represent the second term on the right in (2.7) in
place of the original ones. One of the advantages of the new p̂λ is that p̂λ ≥ 0,
which implies that the new χλ satisfies Assumption 2.2.

Choose τλ > 0 arbitrarily. As in Remark 6.4 of [5] and Remark 4.3 of [6]
one shows that Assumptions 2.5 and 2.6 are also satisfied for any δ ∈ (0, 1), say
δ = 1/2, if c is sufficiently large (independently of h) and τ0 > 0,K, and Kh are
chosen appropriately and depending only on d, |Λ1|, ‖Λ1‖,M0,M1,M2. We first
concentrate on the case that c is indeed sufficiently large. In that case by Theorem
2.9, for h ∈ (0, h0], there exists a unique solution uh(t, x) of class Bm

T satisfying

equation (2.1) with L̂h in place of Lh, where L̂h is constructed from Λ̂1, q̂λ, and
p̂λ. Furthermore,

(6.1) ‖uh‖m ≤ N(‖f‖m + ‖g‖m),



1452 I. GYÖNGY AND N. KRYLOV

where N is a constant depending only on m, inf c, |Λ1|, M0,..., Mm, and ‖Λ1‖.
Upon observing that owing to Remark 2.2,

|L̂huh| ≤ N(sup
HT

|D2uh|+ sup
HT

|Duh|+ sup
HT

|uh|)

with N independent of h, we conclude from the equation for uh that their first
derivatives in t are bounded uniformly in h. Therefore, there exists a sequence
h(n) ↓ 0 such that uh(n) converges uniformly on [0, T ]× {x : |x| ≤ R} for any R to
a continuous function v. Then (6.1) implies that v ∈ Bm and

(6.2) ‖v‖m ≤ N(‖f‖m + ‖g‖m)

with the same N as in (6.1). If we take τλ ≡ 1, then Remark 6.4 of [5] and Remark
4.3 of [6] imply that both N ’s can be chosen to depend only on d, m, inf c, |Λ1|,
and M0, ...,Mm.

Next, the modified equation (2.1) yields that for any φ ∈ C∞
0 (Rd) and t ∈ [0, T ],∫

Rd

uh(t, x)φ(x) dx =

∫
Rd

g(x)φ(x) dx

+

∫ t

0

∫
Rd

∑
λ∈Λ̂1

uh(s, x)[(1/2)Δh,λ(q̂λφ) + δh,−λ(p̂λφ)](s, x) dxds

+

∫ t

0

∫
Rd

(−cuh + f)φ(s, x) dx ds.

We pass to the limit in this equation and find that v satisfies an integral equation,
integrating by parts in which it proves that v is a solution of (2.8).

Finally, we notice that the case that c is not large is reduced to the one above
by the usual change of the unknown function taking v(t, x)eλt in place of v for
an appropriate λ, which leads to subtracting λv from the right-hand side of (2.5).
For the new equation we then find a solution admitting estimate (6.2) with N
independent of T but coming back to the solution of the original equation will
bring an exponential factor depending on T .

This and the uniqueness proved in Section 4 completes the proof of the theorem.
�

Remark 6.1. In the above proof we considered arbitrary τλ > 0 for the following
reason. If Assumptions 2.1 through 2.6 hold with m ≥ 2, then by Theorem 2.9
estimate (6.1) and hence (6.2) hold with N depending only on m, δ, c0, τ0,K, M0,
..., Mm, |Λ1|, and ‖Λ1‖. This proves the assertion of Theorem 2.10 regarding the
constant N in Theorem 2.1.

Proof of Theorem 2.2. Notice that for each j = 1, . . . , k equation (2.13) does not
involve the unknown functions u(l) with indices l > j. Therefore, we can solve
(2.13) and prove the statements (i) and (ii) recursively on j.

First we prove that there is at most one solution (u(1), . . . , u(k)) in the space
B2 × · · · ×B2. Denote

Sj =

j∑
i=1

Ci
jL(i)u(j−i).

We may assume that u(0) = 0. Then clearly S1 = 0 and by Theorem 2.1 we have
u(1) = 0. If for a j ∈ {2, . . . , k} we have u(1) = u(2) = · · · = u(j−1) = 0, then
clearly Sj = 0 which by Theorem 2.1 yields u(j) = 0. Hence the statements on
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uniqueness follow because for every j = 1, 2, . . . , k we obviously have Bm−3j ⊂ B2

when m ≥ 3k + 2 and Bm−2j ⊂ B2 when m ≥ 2k + 2.
While dealing with the existence of a solution, first take j = 1. Observe that by

Theorem 2.1 we have u(0) ∈ Bm with m ≥ 5 in case (i) and with m ≥ 4 in case
(ii). Thus in case (i) we have S1 ∈ Bm−3 ⊂ B2 and by Theorem 2.1 it follows that
there exists u(1) ∈ Bm−3 satisfying (2.13) and admitting the estimate

‖u(1)‖m−3 ≤ N‖u(0)‖m.

Taking the estimate of the last term again from Theorem 2.1 we obtain (2.14) for
j = 1. In case (ii) we actually have better smoothness of S1, because the first
sum in (2.11) is zero for i = 1 and, for that matter, for all odd i. It follows that
S1 ∈ Bm−2 and this leads to (2.15) for j = 1 as above. By adding that under the
conditions (S) and (2.16) we have L(1) = 0, S1 = 0, and u(1) = 0, we obtain (2.17)
for j = 1. Notice that here we use that by Remark 4.1 we may assume smooth data
in x for equation (2.1).

Passing to higher j we assume that k ≥ 2. Suppose that, for a j ∈ {2, ..., k} we
have found u(1),...,u(j−1) with the asserted properties. Then in case (i) we have

L(i)u(j−i) ∈ B
m−3j ⊂ B

2

for i = 1, . . . , j, since

m− 3(j − i)− (i+ 2) = m− 3j + 2i− 2 ≥ m− 3j ≥ 2.

Hence Sj ∈ Bm−3j and therefore by Theorem 2.1 there exists u(j) ∈ Bm−3j satis-
fying (2.13) and admitting the estimate

‖u(j)‖m−3j ≤ N

j∑
i=1

‖u(j−i)‖m−3j+i+2

≤ N

j∑
i=1

‖u(j−i)‖m−3(j−i) ≤ N(‖f‖m + ‖g‖m),

where the last inequality follows by the induction hypothesis.
In case (ii) we take into account that due to condition (S) we have

(6.3)
∑
λ∈Λ1

qλ∂
i+2
λ ϕ = 0,

and due to condition (2.16) we have

(6.4)
∑
λ∈Λ1

pλ∂
i+1
λ ϕ = 0

for odd numbers i and sufficiently smooth functions ϕ. It follows that in case (ii)
for i = 1, ..., j we have

L(i)u(j−i) ∈ B
m−2j ⊂ B

2,

since L(1)u(j−1) = 0 and for i ≥ 2,

m− 2(j − i)− (i+ 2) = m− 2j + i− 2 ≥ m− 2j ≥ 2.
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Hence, Sj ∈ Bm−2j and therefore by Theorem 2.1 there exists u(j) ∈ Bm−2j

satisfying (2.13) and admitting the estimate

‖u(j)‖m−2j ≤ N

j∑
i=2

‖u(j−i)‖m−2j+i+2 ≤ N

j∑
i=2

‖u(j−i)‖m−2(j−i),

and by using the induction hypothesis we come to (2.15).
Furthermore, in case (ii) if (2.16) is satisfied, our induction hypothesis says that

u(l) = 0 for all odd l ≤ j − 1. If j is even, then, obviously, u(l) = 0 for all odd l ≤ j
as well. If j is odd, then to carry the induction forward it only remains to prove
that u(j) = 0. However, for odd i we have

L(i)u(j−i) = 0

due to (6.3)-(6.4). This equality also holds if i ≥ 2 and i is even, since then j − i is
odd and u(j−i) = 0 by assumption. Thus, Sj = 0 and u(j) = 0. �

Remark 6.2. The above proof is based on Theorem 2.1 and leads to estimates
(2.14) and (2.15) with N depending only on the same parameters as in Theorem
2.1. Therefore, according to Remark 6.1 if Assumptions 2.1 through 2.6 are satisfied
and the restrictions on m and k from Theorem 2.2 are met, then the constants N
in estimates (2.14) and (2.15) depend only on m, δ, c0, τ0,K, M0, ..., Mm, |Λ1|, and
‖Λ1‖. This proves the part of assertions of Theorem 2.10 concerning Theorem 2.2.
The proof of its remaining assertions can be obtained in the same way and is left
to the reader.

7. Proof of Theorems 2.3 and 2.7

We need some lemmas. The first one is a simple lemma from undergraduate
calculus on Taylor’s expansion.

Lemma 7.1. Let F be a real-valued function on (0, 1] such that for an integer
m ≥ 0 the derivative F (m+1)(h) of order m+1 exists for all h ∈ (0, 1], and F (m+1)

is a bounded function on (0, 1]. Then

F (k)(0) := lim
s↓0

F (k)(s)

exists for 0 ≤ k ≤ m, and

F (h) =

m∑
k=0

hk

k!
F (k)(0) +Rm(h)

holds for h ∈ [0, 1] with

Rm(h) =

∫ h

0

(h− s)m

m!
F (m+1)(s) ds,

so that

|Rm(h)| ≤ sup
s∈(0,1]

|F (m+1)(s)| hm+1

(m+ 1)!
for all h ∈ [0, 1].
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To formulate our next lemma we recall the operators Lh, L and L(i), defined in
(2.2), (2.7), and (2.11), respectively, and for each h ∈ (0, h0] and integer j ≥ 0 we
introduce the operator

O(j)
h = Lh − L−

∑
1≤i≤j

hi

i!
L(i).

Lemma 7.2. Let Assumption 2.3 hold. Assume that for some integer l ≥ 0 the
functions pλ, qλ belong to Bl for all λ ∈ Λ1. Then for any integer j ≥ 0,

(7.1) ‖O(j)
h ϕ‖l ≤ N‖ϕ‖l+j+3h

j+1

for all h ∈ (0, h0] and ϕ ∈ Bl+j+3, where N is a constant depending only on
|Λ1|,M0, ...,Ml.

Proof. We may assume that the derivatives in x of ϕ up to order l+j+3 are bounded
continuous functions on HT . By Lemma 5.2 the derivatives of the function Lhϕ in
h up to the (l + j + 1)-th order are bounded functions on (0, h0]×HT and

(Lφ)(t, x) = lim
h→0

(Lhϕ)(t, x),

(L(i)φ)(t, x) = lim
h→0

(Di
hLhφ)(t, x).

Thus applying Lemma 7.1 to F (h) := Lhϕ(t, x) for fixed (t, x) and using Lemma
5.2, we have

O(j)
h ϕ =

∫ h

0

(h− ϑ)j

j!
L
(j+1)
ϑ ϕdϑ

=
∑
λ∈Λ1

qλ

∫ h

0

(h− ϑ)j

j!

∫ 1

0

(1− θ)θj+1∂j+3
λ ϕ(t, x+ ϑθλ) dθ dϑ

+
∑
λ∈Λ1

pλ

∫ h

0

(h− ϑ)j

j!

∫ 1

0

θj+1∂j+2
λ ϕ(t, x+ ϑθλ) dθ dϑ.

Now estimate (7.1) follows easily. �

The next lemma is a version of the maximum principle for ∂/∂t − Lh. It is a
special case of Corollary 3.2 in [5].

Lemma 7.3. Let Assumption 2.1 with m = 0 be satisfied and let χh,λ ≥ 0 for
all λ ∈ Λ1. Let v be a bounded function on HT , such that the partial derivative
∂v(t, x)/∂t exists in HT . Let F be a nonnegative integrable function on [0, T ], and
let C be a nonnegative bounded function on HT such that

ν := sup
HT

(C − c) < 0.

Assume that for all (t, x) ∈ HT we have

(7.2)
∂

∂t
v ≤ Lhv + Cv̄+ + F,

where v̄(t) = sup{v(t, x) : x ∈ R
d}. Then in [0, T ] we have

(7.3) v̄(t) ≤ v̄+(0) + |ν|−1 sup
[0,t]

F,

where a+ := (|a|+ a)/2 for real numbers a.
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Proof of Theorem 2.3. By taking uhe
−(M0+1)t in place of uh, we may assume that

c ≥ 1. Consider first the case k = 0. Since m ≥ 3, by Theorem 2.1 equation
(2.7) has a solution u(0), which belongs to Bm and estimate (2.10) holds. Clearly,
w := uh − u(0) is the unique bounded solution of the equation

(7.4) w(t, x) =

∫ t

0

(
Lhw(s, x) + F (s, x)

)
ds, (t, x) ∈ HT ,

where F := O(0)
h u(0) = Lhu

(0) − Lu(0). By Lemma 7.2 and estimate (2.10),

‖O(0)
h u(0)‖0 ≤ N

∑
λ∈Λ1

(‖pλ‖0 + ‖qλ‖0)‖u(0)‖3h ≤ N(‖f‖3 + ‖g‖3)h

with constants N depending only on d, |Λ1| M0,M1,M3, and T . After that an
application of Lemma 7.3 to equation (7.4) proves the statement of Theorem 2.3
for k = 0.

Let k ≥ 1. Then by Theorem 2.2 the system of equations (2.13) has a bounded
solution {u(i)}ki=1. Observe that for

(7.5) w := uh −
k∑

j=0

u(j)h
j

j!

we have equation (7.4) with

F := Lhu
(0) − Lu(0) +

k∑
j=1

Lhu
(j)h

j

j!
−

k∑
j=1

Lu(j)h
j

j!
−G

and

G :=
k∑

j=1

j∑
i=1

1

i!(j − i)!
L(i)u(j−i)hj =

k∑
i=1

k∑
j=i

1

i!(j − i)!
L(i)u(j−i)hj

=

k∑
i=1

k−i∑
l=0

1

i!l!
L(i)u(l)hl+i =

k−1∑
l=0

hl

l!

k−l∑
i=1

hi

i!
L(i)u(l)

=
k∑

j=0

hj

j!

∑
1≤i≤k−j

hi

i!
L(i)u(j).

Hence, by simple arithmetic,

(7.6) F =
k∑

j=0

hj

j!
O(k−j)

h u(j).

Notice that

k − j + 3 ≤ m− 3j for j = 0, 1, . . . , k in case (i),

k − j + 3 ≤ m− 2j for j = 0, 1, . . . , k in case (ii),

k − j + 3 ≤ m− 2j for j = 0, 1, . . . , k − 1 in case (iii).

Therefore, by Theorem 2.2 under each of (i), (ii), and (iii),

‖u(j)‖k−j+3 ≤ N(‖f‖m + ‖g‖m)

for j = 0, 1, . . . , k (u(k) = 0 in the case (iii)). Thus by Lemma 7.2,

‖O(k−j)
h u(j)‖0 ≤ Nhk−j+1‖u(j)‖k−j+3 ≤ Nhk+1−j(‖f‖m + ‖g‖m).
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Consequently,

‖F‖0 ≤ N(‖f‖m + ‖g‖m)hk+1 for h ∈ (0, h0],

where N depends only on d, m, |Λ1|, M0, . . . ,Mm, and T . Hence we get (2.18) by
Lemma 7.3, and the proof is complete. �

Proof of Theorem 2.7. Coming back to the above proof of Theorem 2.3 we see that
function (7.5) satisfies (7.4) with F given by (7.6). We notice that

k − j + 3 + l ≤ m− 3j for j = 0, 1, . . . , k in case (i),

k − j + 3 + l ≤ m− 2j for j = 0, 1, . . . , k in case (ii),

k − j + 3 + l ≤ m− 2j for j = 0, 1, . . . , k − 1 in case (iii).

Therefore by Theorem 2.1, when k = 0, and by Theorem 2.2, when k ≥ 1, under
each of (i), (ii), and (iii),

‖u(j)‖k−j+3+l ≤ N(‖f‖m + ‖g‖m)

for j = 0, 1, . . . , k (u(k) = 0 in case (iii)). By Theorem 2.10 the constant N depends
only on m, δ, c0, τ0, K, M0, ..., Mm, |Λ1|, and ‖Λ1‖. By Lemma 7.2,

‖O(k−j)
h u(j)‖l ≤ Nhk−j+1‖u(j)‖k−j+l+3,

where N is a constant depending only on |Λ1|, M0,. . . , Ml. Hence,

‖F‖l ≤ N(‖f‖m + ‖g‖m)hk+1 for h ∈ (0, h0].

Consequently, applying Theorem 2.9 to equation (7.4), for any multi-index α, |α| ≤
l, for

r
(α)
h := h−(k+1)

(
Dαuh −

k∑
j=0

Dαu(j)h
j

j!

)

we have
‖r(α)h ‖0 = h−(k+1)‖Dαw‖0 ≤ N(‖f‖m + ‖g‖m),

with a constant N depending only on m, d, δ, c0, τ0, K, M0, . . . ,Mm, |Λ1| and
‖Λ1‖, which proves the theorem. �
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