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FLUX IDENTIFICATION FOR 1-d SCALAR CONSERVATION

LAWS IN THE PRESENCE OF SHOCKS

CARLOS CASTRO AND ENRIQUE ZUAZUA

Abstract. We consider the problem of flux identification for 1-d scalar con-
servation laws formulating it as an optimal control problem. We introduce a
new optimization strategy to compute numerical approximations of minimizing
fluxes.

We first prove the existence of minimizers. We also prove the convergence
of discrete minima obtained by means of monotone numerical approximation
schemes, by a Γ-convergence argument. Then we address the problem of devel-
oping efficient descent algorithms. We first consider and compare the existing
two possible approaches. The first one, the so-called discrete approach, based
on a direct computation of gradients in the discrete problem and the so-called
continuous one, where the discrete descent direction is obtained as a discrete
copy of the continuous one. When optimal solutions have shock discontinu-
ities, both approaches produce highly oscillating minimizing sequences and the
effective descent rate is very weak. As a remedy we adapt the method of al-
ternating descent directions that uses the recent developments of generalized
tangent vectors and the linearization around discontinuous solutions, intro-
duced by the authors, in collaboration with F. Palacios, in the case where the
control is the initial datum. This method distinguishes descent directions that
move the shock and those that perturb the profile of the solution away from
it. As we shall see, a suitable alternating combination of these two classes of
descent directions allows building more efficient and faster descent algorithms.

1. Introduction

The optimal control of hyperbolic conservation laws is a difficult topic both from
the analytical and computational point of view. One of the main difficulties is that
classical analysis usually fails due to the presence of discontinuous solutions. In the
recent years a number of methods have been proposed to deal with these singular
solutions, to reduce the computational cost and to render these types of problems
affordable, both for scalar equations and systems (see [1], [2], [10], [11], [16], [19],
[21], [26], [35]).

In this article, we focus on the simpler scalar conservation law:

(1.1)

{
∂tu+ ∂x(f(u)) = 0, in R× (0, T ),
u(x, 0) = u0(x), x ∈ R,

T > 0 being a given finite time horizon.
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We address the problem of flux identification in which the flux, which is the
nonlinearity f of the equation, is treated as a control parameter.

To fix ideas, given an initial datum u0 ∈ BV (R) ∩ L∞(R) ∩ L1(R) and a target
ud ∈ L2(R), we consider the cost functional to be minimized as J : C1(R) → R,
defined by

(1.2) J(f) =
1

2

∫
R

|u(x, T )− ud(x)|2 dx,

where u(x, t) ∈ L∞(R× (0, T )) ∩C([0, T ];L1(R)) is the unique entropy solution of
(1.1).

This problem has been previously studied in [26] where particular applications
to identification of mixture concentrations in chromatography are presented. We
also refer to [25] where a complete description of the mathematical modeling of
such problems and their numerical approximation is given.

Although this paper is devoted to the particular choice of J in (1.2), most of our
analysis and numerical algorithms can be adapted to many other functionals and
control problems.

We also introduce the set of admissible nonlinearities Uad ⊂ C1(R), that we
will make precise later in order to guarantee the existence of minimizers for the
following optimization problem: Find fmin ∈ Uad such that,

(1.3) J(fmin) = minf∈Uad
J(f).

As we will see, the existence of minimizers can be easily established under some
natural assumptions on the class of admissible nonlinearities Uad using well-known
well-posedness and compactness properties of solutions of scalar conservation laws.
However, uniqueness is false, in general, due, in particular, to the possible presence
of discontinuities in the solutions of (1.1). We show that these discontinuities may
also affect the performance of the optimization algorithms.

In practical applications and in order to perform numerical computations and
simulations one has to replace the continuous optimization problem above by a
discrete one. It is then natural to consider a discretization of system (1.1) and
the functional J . If this is done in an appropriate way, the discrete optimization
problem has minimizers that are often taken, for small enough mesh-sizes, as ap-
proximations of the continuous minimizers. There are, however, few results in the
context of hyperbolic conservation laws proving rigorously the convergence of the
discrete optimal controls towards the continuous ones, as the mesh-size goes to zero.

One of the first goals of this paper is to provide such a convergence result based
on the fine use of the known properties of monotone conservative schemes.

In the following we will denote by uΔ the approximation of u obtained by a
suitable discretization of system (1.1) with mesh-sizes Δx and Δt for space-time
discretizations. We also denote by JΔ a discretization of J and by Uad,Δ a discrete
version of the set of admissible fluxes, or controls, Uad, and consider the approximate
discrete minimization problem,

(1.4) JΔ(f
min
Δ ) = minfΔ∈Uad,Δ

JΔ(fΔ).

For fixed values of the mesh-size Δ, the existence of minimizers for this discrete
problem is often easy to prove. But, even in that case, their convergence as Δ → 0
is harder to show. This will be done, as mentioned above, in the class of monotone
schemes.
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From a practical point of view it is also important to be able to develop efficient
algorithms for computing accurate approximations of the discrete minimizers. This
is often not an easy matter due to the large number of parameters involved, the
lack of convexity of the functional under consideration, etc.

The most frequently used methods to approximate minimizers are the gradient
ones (steepest descent, conjugate gradient, etc.), although they hardly distinguish
local and global minimizers. This is an added difficulty in problems with many
local minima, a fact that cannot be excluded in our optimization problem, due
to the nonlinear dependence of the state on the initial datum. However, we will
not address this problem here. We shall instead focus on building efficient descent
algorithms.

As we have said, this flux identification problem has been previously studied in
[26]. Also, some numerical methods are discussed to solve the optimization problem
but they are based on a classical approach that can be justified only for smooth
solutions. The main contribution of this paper is that we deal with solutions having
discontinuities. In fact, we propose a new optimization technique where the position
of the discontinuity is treated as a new variable in the optimization process.

The convergence of an algorithm based on this idea is a difficult and interesting
open problem. To understand it in more detail we observe that our strategy can be
interpreted as a relaxation method in finite dimensions where partial derivatives are
used to descend in a cyclic way. In our case, we propose a decomposition of the gra-
dient in two vectors that are used alternatively. One of these components concerns
the position of the discontinuity and the other the usual smooth variation to both
sides of the discontinuity. Convergence of relaxation methods in finite dimensions is
known under convexity and regularity assumptions on the cost functional (see [18]).
A generalization to the present situation could be obtained with similar hypotheses
on the cost functional. However, the cost functional under consideration is neither
convex nor differentiable.

The rest of the paper is organized as follows: In section 2 we prove the existence
of minimizers for problem (1.3). In section 3 we prove the convergence of the
discrete minimizers of (1.4) to minimizers of the continuous problem. In section 4
we analyze the sensitivity of the continuous functional (1.2). We analyze it both for
smooth solutions and for solutions having a single isolated shock. In section 5 we
introduce a new characterization of the sensitivity of the functional which allows
us to identify variations that do not move the shock position. This allows us to
define a new optimization strategy which is the main contribution of this paper.
In section 6 we show how to implement numerically a gradient algorithm to solve
the discrete optimization problem. In particular, we use the sensitivities computed
in the previous sections. Section 7 is devoted to show some numerical experiments
which illustrate the efficiency of the different optimization methods described in
the paper. Section 8 contains some concluding remarks. In the Appendix at the
end of the paper we prove the linearization result for the scalar conservation law,
with respect to the nonlinearity, in the presence of shocks.

2. Existence of minimizers

In this section we state that, under certain conditions on the set of admissible
nonlinearities Uad, there exists at least one minimizer of the functional J given in
(1.2).
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We assume u0 ∈ BV (R) ∩ L∞(R) ∩ L1(R). The Kruzkov theorem states the
existence and uniqueness of a unique entropy solution u(x, t) of (1.1) in the class
u ∈ BV (R× (0, T )) ∩ C0([0, T ];L1

loc(R)) (see [27], [7]). Note that, in our case, the
solution also belongs to C0([0, T ];L1(R)). From the maximum principle (see for
instance [19], p. 60), this unique entropy solution u(x, t) satisfies the upper bound

(2.1) ‖u(·, t)‖L∞(R) ≤ ‖u0‖L∞(R).

Thus, only the values of the nonlinearity f in the interval [−‖u0‖L∞ , ‖u0‖L∞ ] are
relevant to solve (1.1). According to this, the restrictions we will impose in the
fluxes, if any, only make sense within that bounded range.

We consider the class of admissible fluxes Uad:

(2.2) Uad = {f ∈ W 2,∞([−‖u0‖L∞ , ‖u0‖L∞ ]) : ||f ||W 2,∞([−‖u0‖L∞ ,‖u0‖L∞ ]) ≤ C},
where C > 0 is a constant. Note that Uad is a compact set with respect to the
topology of W 1,∞([−‖u0‖L∞ , ‖u0‖L∞ ]), since the interval [−‖u0‖L∞ , ‖u0‖L∞ ] is
bounded.

On the other hand, in [29] it is proved that the application f → uf , where uf is
the unique entropy solution of (1.1) with initial datum u0, satisfies

(2.3) ‖uf (·, t)− ug(·, t)‖L1(R) ≤ t‖f − g‖Lip‖u0‖BV (R).

This continuity result for the solutions of (1.1) with respect to the fluxes f , provides
easily the following existence result (see [26] for details):

Theorem 2.1. Assume that u0 ∈ BV (R) ∩ L∞(R) ∩ L1(R), ud ∈ L2(R) and Uad

is as in (2.2). Then the minimization problem,

(2.4) minf∈Uad
J(f),

has at least one minimizer fmin ∈ Uad.
Uniqueness is, in general, false for this optimization problem.

Proof. The existence of a minimizer is easily obtained from the direct method of
the calculus of variations. We briefly sketch the proof.

Let us consider a minimizing sequence {fj}j≥1 in Uad. Since Uad is bounded
in W 2,∞([−‖u0‖L∞ , ‖u0‖L∞ ]), the sequence fj contains a subsequence, still de-
noted fj , such that fj → f weakly-* in W 2,∞([−‖u0‖L∞ , ‖u0‖L∞ ]) and strongly in
W 1,∞([−‖u0‖L∞ , ‖u0‖L∞ ]). Obviously, f ∈ Uad and it is a minimizer if we show
that limj→∞ J(fj) = J(f).

Let uj be the unique entropy solution of (1.1) with numerical flux fj . Then, as
we mentioned above, only the values of fj on the bounded set [−‖u0‖L∞ , ‖u0‖L∞ ]
are relevant to obtain uj , and therefore to evaluate J . This, together with the
continuity result in (2.3), provides the continuity of J .

The lack of uniqueness of minimizers can be easily checked for some specific
choices of the initial datum. This can be easily seen observing that the flux f only
affects the slope of the characteristics associated to (1.1) on the range of u. Thus,
for example, the shock wave function

u(x, t) =

{
1 if x ≤ t/2,
0 if x > t/2,

which only takes two values u = 0, 1, solves (1.1) whatever f is, provided f ′(0) = 0,
f ′(1) = 1 and f(1) − f(0) = 1/2. If we take u0 = u(x, 0) and ud = u(x, T ), all of
these fluxes f are minimizers of (2.4) for which J(f) = 0. �
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Remark 2.1. The proof above can be slightly modified to deal with larger classes
of admissible nonlinearities Uad. For instance, Uad ⊂ W 1,∞([−‖u0‖L∞ , ‖u0‖L∞ ])
with the bound ‖f ′‖L∞([−‖u0‖L∞ ,‖u0‖L∞ ]) ≤ C. The main difficulty in this case is

that we cannot apply the Lipschitz dependence property (2.3) to deduce the L1-
convergence of solutions, when considering a minimizing sequence fj → f . Instead,
we use the uniform convergence fj → f which holds, at least for a subsequence.
Then, it is possible to pass to the limit in the weak formulation∫ T

0

∫
R

(ujψt + fj(uj)ψx) dx dt+

∫
R

u0(x)ϕ(x, 0) = 0, ∀ψ ∈ C1
c (R× [0, T )),

since the solutions uj converge a.e. The latter is guaranteed by the uniform BV
estimate on the solutions consequence of the L1-contraction property and the fact
that the initial data are taken to be in BV . Obviously, since we are dealing with
the unique entropy solutions, a similar argument is needed to pass to the limit on
the weak form of the entropy condition. In this way, we obtain the convergence
uj → u in L1

loc(R× (0, T )). The convergence of uj(·, T ) → u(·, T ) in L1
loc(R) follows

from the uniform BV estimate of uj(·, T ). Finally, the convergence in L1(R) can be
deduced by proving that the integral of |uj(·, T )| on (−∞,−K) ∪ (K,∞) is small
for large K, uniformly in j. This is easily obtained arguing with the domain of
dependence of uj(x, T ) in x ∈ (−∞,−K)∪ (K,∞), the L1-contraction and the fact
that uj(x, 0) = u0(x) ∈ L1(R).

In practice, we can also remove the W 1,∞ bound in the admissible set Uad by
including a regularization term in the functional J , i.e., we can consider Uad =
W 1,∞([−‖u0‖L∞ , ‖u0‖L∞ ]) and the penalized functional

(2.5) J(f) =
1

2

∫
R

|u(x, T )− ud(x)|2 dx+K

∫ 1

0

|f ′(s)| ds

for some penalization parameter K > 0. The same arguments as before allow prov-
ing the existence of minimizers for this functional but, this time, without imposing
a priori bounds on the fluxes f .

In practical applications, the above infinite dimensional optimization problem
is usually reduced to a finite dimensional one by considering a finite dimensional
subspace of the class of admissible fluxes Uad, that we denote by UM

ad . More precisely,
we take UM

ad as a subset of the set of linear combinations of some, a priori chosen,
smooth basis functions f1, ..., fM ∈ W 2,∞([−‖u0‖L∞ , ‖u0‖L∞ ]),

(2.6)
UM
ad =

{
f =

∑M
j=1 αjfj , with αj ∈ R for all j = 1, ...,M,

and ‖f‖W 2,∞([−‖u0‖L∞ ,‖u0‖L∞ ]) ≤ C
}
.

The reduced minimization problem can be stated as follows: Find fmin ∈ UM
ad

such that

(2.7) J(fmin) = minf∈UM
ad

J(f).

Of course, the arguments in the proof of Theorem 2.1 allow showing that the min-
imizer of (2.7) exists as well for all finite M . But this time things can be done
more easily since the space of possible designs/controls is finite-dimensional. More
precisely, the bound ‖f‖W 2,∞([−‖u0‖L∞ ,‖u0‖L∞ ]) ≤ C in the set of admissible con-
trols can be relaxed to any other one guaranteeing the boundedness of the scalar
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coefficients αj , i = 1, ...,M , in the linear combination of the reference fluxes under
consideration.

This is in fact the problem that we approximate numerically in the following
section.

3. The discrete minimization problem

The purpose of this section is to show that discrete minimizers obtained through
suitable numerical schemes, converge to a minimizer of the continuous problem
(2.7), as the mesh-size tends to zero. This justifies the usual engineering practice
of replacing the continuous functional and model by discrete ones to compute an
approximation of the continuous minimizer.

We introduce a suitable discretization of the functional J and the conservation
law (1.1). Let us consider a mesh in R × [0, T ] given by (xj , t

n) = (jΔx, nΔt)
(j = −∞, ...,∞; n = 0, ..., N +1 so that (N +1)Δt = T ), and let un

j be a numerical
approximation of u(xj , t

n) obtained as the solution of a suitable discretization of
the equation (1.1).

Let u0
Δ = {u0

j} be the discrete initial datum, which is taken to be an approx-

imation of the initial datum u0 of the continuous conservation law. Similarly, let
ud
Δ = {ud

j} be the discretization of the target ud at xj . A common choice is to take,

(3.1) u0
j =

1

Δx

∫ xj+1/2

xj−1/2

u0(x)dx, ud
j =

1

Δx

∫ xj+1/2

xj−1/2

ud(x)dx,

where xj±1/2 = xj ±Δx/2.
We also consider the following approximation of the functional J in (1.2):

(3.2) JΔ(f) =
Δx

2

∞∑
j=−∞

(uN+1
j − ud

j )
2.

In order to compute un
j from f and u0

Δ, we introduce a 3-point conservative
numerical approximation scheme for (1.1):

(3.3) un+1
j = un

j − λ
(
gnj+1/2 − gnj−1/2

)
, λ =

Δt

Δx
, j ∈ Z, n = 0, ..., N,

where,

gnj+1/2 = g(un
j , u

n
j+1),

and g is a Lipschitz continuous function usually referred to as the numerical flux.
These schemes are consistent with (1.1) when g(u, u) = f(u).

As usual, in order to define convergence results of discrete solutions, we introduce
the piecewise constant function uΔ defined in R× [0, T ] by

uΔ(x, t) = un
j , x ∈ (xj−1/2, xj+1/2), t ∈ [tn, tn+1).

We assume that the numerical schemes also satisfy the following two properties:

(1) The following discrete version of the maximum principle in (2.1):

(3.4) ‖uΔ(x, t)‖L∞ ≤ ‖u0
Δ‖L∞ , ∀n ≥ 0.

(2) The discrete solutions converge to weak entropy solutions of the continuous
conservation law, as the discretization parameter Δx tends to zero, with
some fixed λ = Δt/Δx, under a suitable CFL condition.
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The so-called monotone schemes (see [19], Chap. 3) constitute a particular class
of conservative numerical methods that satisfy these conditions. Recall that a
method is said to be monotone if the function H(u, v, w) = v− λ(g(v, w)− g(u, v))
is a monotone increasing function in each argument. Some examples of monotone
methods are the Lax-Friedrichs, Engquist-Osher and Godunov schemes, under a
suitable CFL condition which depends on each method. Their numerical fluxes are
given, respectively, by

gLF (u, v) =
f(u) + f(v)

2
− v − u

2λ
,(3.5)

gEO(u, v) =
1

2

(
f(u) + f(v)−

∫ v

u

|f ′(s)|ds
)
,(3.6)

gGod(u, v) =

{
minw∈[u,v] f(w), if u ≤ v,
maxw∈[v,u] f(w), if u ≥ v.

(3.7)

For example, the CFL condition for the Lax-Friedrichs scheme is as follows (see
[20], p. 139),

λmax
j

∣∣∣∣f(uj+1)− f(uj)

uj+1 − uj

∣∣∣∣ ≤ 1.

In the sequel we make explicit the dependence of the numerical flux g on f
by writing g(u, v; f). We also assume that the numerical flux g(u, v; f) depends
continuously on f ∈ UM

ad , with respect to the W 2,∞ norm, and that the Lipschitz
constant of g is independent of f , i.e.,

(3.8)
|g(u1, v1; f)− g(u2, v2; f)|

|u1 − u2|+ |v1 − v2|
≤ C, ∀ui, vi ∈ [−‖u0‖L∞ , ‖u0‖L∞ ],

with a constant C independent of f ∈ UM
ad . Note that in (3.8) it is enough to

consider values of u, v in a finite interval. In fact, the discrete maximum principle
(3.4) ensures the boundedness of the discrete solutions regardless of the chosen flux
f ∈ UM

ad .
We then consider the following discrete minimization problem: Find fmin

Δ ∈ UM
ad

such that

(3.9) JΔ(f
min
Δ ) = minf∈UM

ad
JΔ(f),

where UM
ad is as in (2.6).

For each Δx,Δt > 0 it is easy to see that the discrete analogue of the existence
result in Theorem 2.1 holds. Moreover, the uniform bound (3.8) and formula (2.3)
allow also to pass to the limit as Δx,Δt → 0.

Theorem 3.1. Assume that the hypotheses of Theorem 2.1 are satisfied. Assume
also that uΔ is obtained by a conservative monotone numerical scheme consistent
with (1.1) and that the associated numerical flux g(u, v; f) satisfies (3.8) and it
depends continuously on f ∈ UM

ad . Then:

• For all Δx,Δt > 0, the discrete minimization problem (3.9) has at least
one solution fmin

Δ ∈ UM
ad .

• Any accumulation point of fmin
Δ ∈ UM

ad as Δx,Δt → 0 (with Δt/Δx = λ
fixed and under the corresponding CFL condition), is a minimizer of the
continuous problem (2.4) in UM

ad .



2032 C. CASTRO AND E. ZUAZUA

Proof. For fixed Δx and Δt the proof of the existence of minimizers can be done
as in the continuous case.

We now address the limit problem Δx → 0, when λ = Δt/Δx is fixed that, for
simplicity, we denote by Δ → 0.

We follow a standard Γ-convergence argument. The key ingredient is the follow-
ing continuity property: Assume that {fj}j≥1 ⊂ UM

ad satisfies fj → f weakly-* in
W 2,∞([−‖u0‖L∞ , ‖u0‖L∞ ]) and strongly in W 1,∞([−‖u0‖L∞ , ‖u0‖L∞ ]). Then

(3.10) lim
(j,Δ)→(∞,0)

JΔ(fj) = J(f).

In the particular case under consideration, the convergence assumption on the non-
linearities is equivalent to the convergence of the finite dimensional parameters αj

entering in the definition of the set of admissible controls UM
ad .

The continuity property (3.10) is easily obtained from the estimate,

|JΔ(fj)− J(f)| ≤ |JΔ(fj)− J(fj)|+ |J(fj)− J(f)|.
The second term on the right-hand side converges to zero, as j → ∞, due to the
continuity of J stated in the proof of Theorem 2.1. Concerning the first term, we
use the convergence of the discrete solutions obtained with monotone numerical
schemes, as Δ → 0, under the CFL condition, in the L∞(0, T ;L2(R)) norm (see,
for example, [19]). In fact, following the argument in [19] (Theorem 3.4, p. 132), it
is easy to check that this convergence is uniform with respect to the fluxes f ∈ UM

ad

under the uniform bound (2.6).

Now, let f̂ ∈ UM
ad be an accumulation point of the minimizers of JΔ, f

min
Δ , as

Δ → 0. To simplify the notation we still denote by fmin
Δ the subsequence for which

fmin
Δ → f̂ , as Δx,Δt → 0. Let h ∈ UM

ad be any other function. We are going to
prove that

(3.11) J(f̂) ≤ J(h).

Taking into account the continuity property (3.10), we have

J(h) = lim
Δ→0

JΔ(h) ≥ lim
Δ→0

JΔ(f
min
Δ ) = J(f̂),

which proves (3.11). �
Remark 3.1. Using the fact that the initial datum u0 is assumed to be in BV ,
the same existence and convergence results may be proved within larger classes
of admissible sets Uad and not only in the finite dimensional one UM

ad . For the
existence of minimizers we can mimic the argument in Remark 2.1 as soon as
Uad ⊂ W 1,∞(−‖u0‖L∞ , ‖u0‖L∞) guarantees the minimum compactness properties
so that the nonlinearities converge uniformly on bounded sets.

Concerning the convergence of minimizers, the main difficulty is to establish the
uniform convergence of discrete solutions uΔ in L∞(0, T ;L2(R)) with respect to the
fluxes in Uad. But, as we said in the proof above, this is a consequence of the uniform
bound (2.6). In fact, the BV assumption on the initial datum and the monotonicity
of the numerical schemes under consideration, ensure uniform BV bounds on the
solutions, both discrete and continuous ones, and this for all nonlinearities. This
allows proving the uniform convergence of uΔ → u in L1

loc(R) for any t ∈ [0, T ].
Then, arguing with the domain of dependence of discrete solutions and the fact
that u0 ∈ L1(R) it is easy to obtain the uniform convergence uΔ(·, t) → u(·, t) in
L1(R). Finally, the uniform bound in L∞ provides the convergence in L2(R).
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Remark 3.2. Theorem 3.1 concerns global minima. However, both the continuous
and discrete functionals may possibly have local minima as well. Extending this
kind of Γ-convergence result for local minima requires further important develop-
ments.

4. Sensitivity analysis: the continuous approach

In this section we describe and analyze the continuous approach to obtain descent
directions for the discrete functional JΔ. We recall that in this case we use a
suitable discretization of the steepest descent direction obtained for the continuous
functional J on the subset UM

ad .
The set UM

ad can be parametrized by the vector of components α = (α1, ..., αM ) ∈
R

M with values on the subset determined by the W 2,∞ bound of the elements in
UM
ad . Thus, a natural way to impose this constraint is to assume that AM is given

by,

(4.1) AM = {(α1, ..., αM ) ∈ R
M such that |αi| ≤ γi, i = 1, ...,M},

for some constants γi > 0. The optimization problem (2.7) is then reduced to the
constrained minimization problem: Find αmin such that,

(4.2) J(αmin) = minα∈AM J(α).

This optimization problem is usually written as an unconstrained problem for an

augmented cost function J̃(α) = J(α)+
∑M

i=1 λiαi which incorporates the Lagrange
multiplier λ = (λ1, ..., λM ) ∈ R

M . Note, however, that the main difficulty to obtain
a descent direction for the augmented functional comes from the computation of
the gradient of J , an issue that we address now.

We divide this section into three more subsections: More precisely, in the first
one we consider the case where the solution u of (1.1) has no shocks, in the second
and third subsections we analyze the sensitivity of the solution and the functional
in the presence of a single shock located on a regular curve.

4.1. Sensitivity without shocks. In this subsection we give an expression for the
sensitivity of the functional J with respect to the flux based on a classical adjoint
calculus for smooth solutions.

Let f ∈ C2(R). Let C1
0 (R) be the set of C1 functions with compact support

and let u0 ∈ C1
0 (R) be a given datum for which there exists a classical solution

u(x, t) of (1.1) in (x, t) ∈ R × [0, T + τ ], for some τ > 0. Note that this imposes
some restrictions on u0 and f other than being smooth. More precisely, we must
have T + τ < −1/min(infx(f

′′(u0(x))u
′
0(x)), 0) to guarantee that two different

characteristics do not meet in the time interval [0, T + τ ].
The following holds:

Theorem 4.1. Under the above assumptions on u0, f and T , given any function
δf ∈ C2(R), the Gateaux derivative of J in the direction of δf is given by

δJ(f)(δf) = −T

∫
R

∂x(δf(u(x, T )))
(
u(x, T )− ud(x)

)
dx.(4.3)

Remark 4.1. Formula (4.3) establishes, in particular, that only the values of δf in
the range of u at time t = T are relevant for the Gateaux derivative of the functional
J .
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Remark 4.2. Note that for classical solutions the Gateaux derivative of J at f is
given by (4.3) and this provides a descent direction for J at f , as we have already
seen. However, this is not very useful in practice since, even when we initialize the
iterative descent algorithm with f so that the corresponding solution u is smooth,
we cannot guarantee that the solution will remain classical along the iteration.

Corollary 4.1. Assume that the hypotheses of Theorem 4.1 hold. Assume also
that the fluxes f are chosen in the finite dimensional subspace parametrized by
AM in (4.1). The derivative of the functional J at α in the tangent direction
δα = (δα1, ..., δαM ) ∈ R

M is given by

δJ(α)(δα) = −T
M∑

m=1

δαm

∫
R

∂x(fm(u(x, T ))) (u(x, T )− ud(x)) dx.(4.4)

Thus, in the absence of constraints, the steepest descent direction for J at α is given
by

(4.5) δαm =

∫
R

∂x(fm(u(x, T ))) (u(x, T )− ud(x)) dx, for all m ∈ 1, ...,M.

Remark 4.3. Formula (4.3) allows us to also deduce a descent direction for J(f)
when we deal with the infinite dimensional space Uad, at least in some particular
cases. For example, assume that the solution u of (1.1) satisfies the following
condition: there exists a finite set of intervals {Ii}Ii=1 where u(·, T ) is a strictly
monotone function, i.e.,

∂xu(x, T ) �= 0, for x ∈ Ij ,

and u(·, T ) is constant outside of these intervals. Let Uj be the range of u(x, T )
on x ∈ Ij . Then, on each Ij we make the change of variables x ∈ Ij → yj(x) =
u(x, T ) ∈ Uj , with inverse y ∈ Uj → xj(y) ∈ Ij . We have

dx =
dxj

dy
dy, ∂x =

dyj
dx

∂y =

(
dxj

dy

)−1

∂y, on x ∈ Ij

and therefore,

δJ(f)(δf) = −T

∫
R

∂x(δf(u(x, T ))) (u(x, T )− ud(x)) dx

= −T

J∑
j=1

∫
Uj

δf ′(y) (y − ud(xj(y))) dy

= −T

∫
⋃J

j=1 Uj

δf ′(y)
J∑

j=1

χUj
(y) (y − ud(xj(y))) dy,(4.6)

where χUj
(y) is the characteristic function of the set Uj .

This expression provides a natural way to compute a descent direction for the
continuous functional J . We just take δf such that

(4.7) δf ′(y) =
J∑

j=1

χUj
(y) (y − ud(xj(y)), y ∈

J⋃
j=1

Uj .

Note that the value of δf ′ outside the set
⋃J

j=1 Uj does not affect the derivative
of J .
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This yields the steepest descent direction for the continuous functional. Note,
however, that this is not very useful since it requires a detailed analysis of the
intervals where u(x, T ) is a monotone function. Moreover, in practice, it is more
natural to deal with finite dimensional sets of admissible nonlinearities as in (4.5)
rather than with the full complexity of the nonlinearities in (4.7).

Proof of Theorem 4.1. The first idea is to prove that, for ε > 0 sufficiently small,
the solution uε(x, t) corresponding to the perturbed flux,

(4.8) fε(s) = f(s) + εδf(s),

is also a classical solution in (x, t) ∈ R× [0, T ] and it can be written as

(4.9) uε = u+ εδu+ o(ε), with respect to the C0 topology,

where δu is the solution of the linearized equation,

(4.10)

{
∂tδu+ ∂x (f

′(u)δu) = −∂x(δf(u)),
δu(x, 0) = 0.

Assume for the moment that (4.9) holds. Now, let δJ be the Gateaux derivative of
J at f in the direction δf . From (4.9) it is easy to see that

(4.11) δJ =

∫
R

(u(x, T )− ud(x))δu(x, T ) dx,

where δu solves the linearized system above (4.10). Note that the solution of (4.10)
is simply given by

(4.12) δu(x, t) = −t∂x(δf(u(x, t))).

In fact, it obviously, satisfies the initial condition δu(x, 0) = 0 and

∂t(−t∂x(δf(u(x, t)))) + ∂x(−f ′(u)t∂x(δf(u(x, t))))

= −∂x(δf(u(x, t)))− t∂x(δf
′(u(x, t))∂tu) + t∂x(f

′(u(x, t))δf ′(u(x, t))∂xu)

= −∂x(δf(u(x, t)))− t∂x(δf
′(u(x, t))(∂tu− ∂x(f(u))) = −∂x(δf(u(x, t))).

Formula (4.3) is finally obtained substituting (4.12) into formula (4.11).
It remains to see that (4.9) holds. The proof is based on the classical character-

istics approach by writing both u and uε in terms of their initial data. We need
some previous estimates,

‖uε(·, t)‖Lip ≤ C,(4.13)

1

ε
‖uε(·, t)− u(·, t)‖L∞(R) ≤ C,(4.14)

lim
ε→0

‖∂xuε(·, t)− ∂xu(·, t)‖L∞(R) = 0,(4.15)

uniformly in t ∈ [0, T ], for some constant C > 0. Here, ‖uε(·, t)‖Lip stands for the
Lipschitz norm of uε(·, t).

Let us prove (4.13). Given 0 ≤ t0 < t ≤ T and x, x′ ∈ R, we have

|uε(x
′, t)− uε(x, t)|

= |uε(x
′ − (t− t0)f

′
ε(uε(x

′, t)), t0)− uε(x− (t− t0)f
′
ε(uε(x, t)), t0)|

≤ ‖uε(·, t0)‖Lip(|x− x′|+ (t− t0)|f ′
ε(uε(x

′, t))− f ′
ε(uε(x, t))|)

≤ ‖uε(·, t0)‖Lip(|x− x′|+ (t− t0)‖f ′′
ε ‖L∞ |uε(x

′, t)− uε(x, t)|),
where ‖f ′′

ε ‖L∞ is the norm of f ′′
ε in L∞([−‖u0‖L∞(R), ‖u0‖L∞(R)]) since, by the

maximum principle, this interval contains the range of uε(x, t) for all x ∈ R and
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t ∈ [0, T ]. Obviously ‖f ′′
ε ‖L∞ is uniformly bounded in ε for any function fε = f+εδf

with f, δf ∈ C2(R).
Thus, for t− t0 < ‖uε(·, t0)‖−1

Lip‖f ′′
ε ‖−1

L∞ , we have

(4.16) |uε(x
′, t)− uε(x, t)| ≤

‖uε(·, t0)‖Lip

1− (t− t0)‖uε(·, t0)‖Lip‖f ′′
ε ‖L∞

|x− x′|.

If we apply formula (4.16) with t0 = 0 we obtain that the Lipschitz constant for
uε(·, t) is uniform in ε for t ∈ [0, t1] with t1 < ‖u0‖−1

Lip‖f ′′
ε ‖−1

L∞ , since uε(x, 0) = u0(x)

which does not depend on ε. In particular, the Lipschitz constant for uε(·, t1) is
uniform in ε.

Note that the same argument with t0 = t1 in formula (4.16) provides the
analogous result for the larger time t ∈ [0, t2] where t2 is such that t2 − t1 <
‖uε(·, t1)‖−1

Lip‖f ′′
ε ‖−1

L∞ . Following an iterative process we could expect to cover the

whole time interval [0, T ]. However, the Lipschitz bound for uε(·, tn) may possibly
deteriorate in time and this argument could fail to reach the final time T , since in
this case

(4.17) tn+1 − tn < ‖uε(·, tn)‖−1
Lip‖f ′′

ε ‖−1
L∞ → 0, as n → ∞.

Thus, before considering larger times, we prove that the Lipschitz constant for
uε(·, t1) can be shown to be independent of t ∈ [0, t1]. In this way, the right-hand
side in (4.17) is uniformly bounded from below and the sequence tn can be chosen
in such a way that the iterative argument above will cover the whole interval [0, T ].

The idea is to prove that (4.14) and (4.15) hold uniformly in t ∈ [0, t1]. Then, the
uniform bound for the Lipschitz norm of uε(·, t) in t ∈ [0, t1] is easily obtained from
the regularity of u(x, t) and the uniform convergence (4.15), using a perturbation
argument that we show below.

Now, we prove that formulas (4.14) and (4.15) hold in t ∈ [0, t1]. They are
obtained with similar arguments. We focus on (4.15) since the proof of (4.14) is
easier.

Given t > t0 ≥ 0, we define y(x, t) = x − (t − t0)f
′(u(x, t)) and yε(x, t) =

x− (t− t0)f
′
ε(uε(x, t)). We have

|∂xuε(x, t)− ∂xu(x, t)|
= |∂x(uε(yε(x, t), t0))− ∂x(u(y(x, t), t0))|
≤ |∂xuε(yε(x, t), t0)|(t− t0)|f ′′(uε)∂xuε + εδf ′′(uε)∂xuε − f ′′(u)∂xu|
+|∂xuε(yε(x, t), t0)− ∂xu(y(x, t), t0)||1− (t− t0)f

′′(u)∂xu|
≤ (ε ‖δf ′′‖L∞ + ‖f ′′(uε(·, t))∂xuε − f ′′(u(·, t))∂xu‖L∞) ‖uε(·, t)‖Lip (t− t0)

+C|∂xuε(yε(x, t), t0)− ∂xu(yε(x, t), t0)|+ C|∂xu(yε(x, t), t0)− ∂xu(y(x, t), t0)|
≤ (ε ‖δf ′′‖L∞ + ‖f ′′‖L∞ ‖∂xuε(·, t)− ∂xu(·, t)‖L∞) ‖uε(·, t)‖Lip (t− t0)

+(‖f ′′(uε(·, t))− f ′′(u(·, t))‖L∞ ‖u‖Lip) ‖uε‖Lip (t− t0)

+C ‖∂xuε(·, t0)− ∂xu(·, t0)‖L∞ + C|∂xu(yε(x, t), t0)− ∂xu(y(x, t), t0)|,

with C = 1 + (t− t0)‖f ′′‖L∞‖u‖Lip. Thus, if we choose

(t− t0) <
1

2
min0<ε<ε0 ‖uε‖−1

Lip ‖f ′′‖−1
L∞ ,
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then
1

2
‖∂xuε(·, t)− ∂xu(·, t)‖L∞ ≤ ε ‖δf ′′‖L∞ ‖uε(·, t)‖Lip (t− t0)

+ ‖f ′′(uε(·, t))− f ′′(u(·, t))‖L∞ ‖u‖Lip ‖uε‖Lip (t− t0)

+C|∂xu(x− (t− t0)f
′
ε(uε), t0)− ∂xu(x− (t− t0)f

′(u), t0)|
+C‖∂xuε(·, t0)− ∂xu(x, t0)‖L∞ .(4.18)

Now we take the limit as ε → 0 in this expression. The first term on the right-
hand side converges to zero from the uniform bound of ‖uε‖Lip. For the second
term we also use the regularity of f ∈ C2, and the fact that we are assuming the
uniform convergence ‖uε(·, t) − u(·, t)‖L∞(R) → 0, as ε → 0, stated in (4.14). The
convergence of the third term is easily obtained from the uniform continuity of ∂xu.
In fact, u ∈ C1

0 since it is a classical solution with u0 ∈ C1
0 (R). Finally, the last limit

goes to zero if t0 = 0. This allows us to prove the convergence of the right-hand

side, uniformly in t ∈ [0, t1] with t1 = min0<ε<ε0 ‖uε‖−1
Lip ‖f ′′‖−1

L∞ .

Once we have proved (4.15) uniformly in t ∈ [0, t1] we can deduce a uniform
bound for the Lipschitz constant of uε, independent of t ∈ [0, t1]. As we said above,
we use a perturbation argument,

(4.19) ‖∂xuε(·, t)‖L∞ ≤ ‖∂xu(·, t)‖L∞ + ‖∂xuε(·, t)− ∂xu(·, t)‖L∞ .

The hypotheses on the initial datum u0 and T guarantee that the solution u ∈
C1

0 (R × [0, T ]) and therefore ‖∂xu(·, t)‖L∞ can be bounded by a constant C inde-
pendent of t ∈ [0, T ]. On the other hand, the convergence (4.15) guarantees that
we can choose ε > 0 sufficiently small so that the second term in (4.19) is also
bounded by a constant independent of t ∈ [0, t1].

Estimate (4.13) for larger time is obtained from a continuation argument. We
choose t2 such that t2 − t1 < ‖uε(·, t1)‖−1

Lip‖f ′′
ε ‖−1

L∞ . From formula (4.16) we obtain

a bound of the Lipschitz norm of uε(·, t), uniform in ε, for t ∈ [0, t2]. This allows
us to prove (4.14) and (4.15) in t ∈ [0, t2], and a bound for the Lipschitz norm of
uε independent of t ∈ [0, t2]. Following an iterative process we obtain a similar
result on t ∈ [0, tn], n ≥ 1. Note that we cover the interval [0, T ] in a finite number
of steps since the bound for tn+1 − tn, given by ‖uε(·, tn)‖−1

Lip‖f ′′
ε ‖−1

L∞ , is bounded
below by a constant independent of tn.

Once the previous estimates (4.13)-(4.15) are obtained we go back to the proof
of (4.9). Let us write

wε =
1

ε
(uε − u− εδu).

We have to see that limε→0 ‖uε(·, t)‖L∞(R) = 0 uniformly in t ∈ [0, T ]. The function
wε satisfies system

(4.20)

⎧⎪⎨
⎪⎩

∂twε + ∂x(f
′(u)wε) = −∂x(δf(uε)− δf(u))

− 1
ε∂x(f(uε)− f(u)− f ′(u)(uε − u)), t ∈ [0, T ], x ∈ R ,

wε(x, 0) = 0, x ∈ R.

Note that system (4.20) is a linear conservation law where the nonhomogeneous
term is small, for ε small. System (4.20) is analogous to the linearized system
(4.10) for which the solution is given by (4.12). Thus, the solution of (4.20) is given
by,

wε = −t∂x(δf(uε)− δf(u))− t

ε
∂x(f(uε)− f(u)− f ′(u)(uε − u)).
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Then,

|wε(x, t)| ≤ t|δf ′(uε)∂xuε − δf ′(u)∂xu|

+
t

ε
|f ′(uε)∂xuε − f ′(u)∂xu− f ′′(u)∂xu(uε − u)− f ′(u)(∂xuε − ∂xu)|

≤ t|δf ′(uε)− δf ′(u)||∂xu|+ t|δf ′(u)||∂xuε − ∂xu|

+
t

ε
|f ′(uε)− f ′(u)− f ′′(u)(uε − u)||∂xu|

+
t

ε
|f ′(uε)− f ′(u)||∂xuε − ∂xu|

≤ t ‖δf ′′‖L∞ ‖uε − u‖L∞ ‖u‖Lip + t ‖δf ′‖L∞ ‖∂xuε − ∂xu‖L∞

+
t

ε
‖∂xu‖L∞ ‖f ′(uε)− f ′(u)− f ′′(u)(uε − u)‖L∞

+
t

ε
‖f ′′‖L∞ ‖uε − u‖L∞ ‖∂xuε − ∂xu‖L∞ ,

which converges to zero, as ε → 0, in view of (4.13)-(4.15) and the regularity of
f . �

Remark 4.4. Formula (4.12) for δu(x, T ) can be obtained by the method of char-
acteristics. In fact, (4.10) can be reduced to an ordinary differential equation when
looking at the solution δu along their characteristic curves, parametrized by (x(t), t)
with t ∈ [0, T ]. In this way, δu(x(t), t) satisfies

(4.21) δu(x(t), t) = −
∫ t

0

exp

(
−
∫ t

s

∂x(f
′(u))(x(r), r) dr

)
∂x(δf(u))(x(s), s) ds.

This expression can be simplified by using the biparametric family of changes of
variables ys,t : R → R defined by,

(4.22) ys,t(x) = x+ f ′(u(x, s))(t− s), t ∈ [0, T ], and s ∈ [0, t].

Note that, for fixed x ∈ R and s ∈ [0, T ], the function r → (x+f ′(u(x, s))r, s+r)
with r ∈ (−t, T − t) is a parametrization of the characteristic line, associated to
(1.1), which contains the point (x, s). Thus, the point of coordinates (ys,t(x), t)
is, in fact, the point of this characteristic line corresponding to the time t, i.e.,
r = t− s. In particular,

(4.23) ys,t(x(s)) = x(t), for all 0 ≤ s ≤ t ≤ T.

This provides an easy geometric interpretation of these changes of variables that
are well-defined since we are assuming that u does not generate shocks in t ∈ (0, T ).
If we apply the change of variables x → yr,t(x) for ∂x(f

′(u(x, t))) and x → ys,t(x)
for ∂x(δf(u(x, t))), we see that (4.21) and (4.12) are equal.

4.2. Linearization in the presence of shocks. In this section we collect some
existing results on the sensitivity of the solution of conservation laws in the presence
of shocks. We follow the analysis in [9] but similar results in different forms and
degrees of generality can be found in [1], [4], [5], [35] or [19], for example.

We focus on the particular case of solutions having a single shock in a finite time
interval t ∈ [0, T ], but the analysis can be extended to consider more general one-
dimensional systems of conservation laws with a finite number of noninteracting
shocks. The theory of duality and reversible solutions developed in [4] and [5] is
the one leading to more general results.
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We introduce the following hypothesis:
(H) Assume that u(x, t) ∈ BV (R × (0, T )) ∩ C0([0, T ];L1

loc(R)) is a weak en-
tropy solution of (1.1) with a single discontinuity along a regular curve Σ =
{(t, ϕ(t)), t ∈ [0, T + τ ]}, for some τ > 0, which is uniformly Lipschitz continuous
outside Σ. In particular, it satisfies the Rankine-Hugoniot condition on Σ:

(4.24) ϕ′(t)[u]ϕ(t) = [f(u)]ϕ(t) , 0 ≤ t ≤ T + τ.

Here we have used the notation [v]x0
= v(x+

0 )− v(x−
0 ) for the jump at x0 of any

piecewise continuous function v with a discontinuity at x = x0.
Note that hypothesis (H) above concerns a time interval [0, T + τ ] larger than

expected for our optimization problem, which only requires the value of the solution
u at time t = T . This is to guarantee that, for solutions of (1.1) satisfying (H),
sufficiently small perturbations of the flux function f in (1.1) will provide solutions
which still satisfy hypothesis (H), with possibly different values of τ > 0.

Note that Σ divides R × (0, T ) in two parts: Q− and Q+, the subdomains of
R× (0, T ) to the left and to the right of Σ respectively.

Figure 1. Subdomains Q− and Q+.

As we will see, in the presence of shocks, for correctly dealing with optimal
control and design problems, the state of the system has to be viewed as being
a pair (u, ϕ) combining the solution of (1.1) and the shock location ϕ. This is
relevant in the analysis of sensitivity of functions below and when applying descent
algorithms.

Then the pair (u, ϕ) satisfies the system

(4.25)

⎧⎪⎪⎨
⎪⎪⎩

∂tu+ ∂x(f(u)) = 0, in Q− ∪Q+,
ϕ′(t)[u]ϕ(t) = [f(u)]ϕ(t) , t ∈ (0, T ),

ϕ(0) = ϕ0,
u(x, 0) = u0(x), in {x < ϕ0} ∪ {x > ϕ0}.

We now analyze the sensitivity of (u, ϕ) with respect to perturbations of the
flux f . To be precise, we adopt the functional framework based on the generalized
tangent vectors introduced in [9].

Definition 4.1 ([9]). Let v : R → R be a piecewise Lipschitz continuous function
with a single discontinuity at y ∈ R. We define the set Γ(v,y) as the family of all

continuous paths γ : [0, ε0] → L1(R)× R with
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1. γ(0) = (v, y) and ε0 > 0 possibly depending on γ.
2. For any ε ∈ [0, ε0], γ(ε) = (vε, yε) where the functions vε are piecewise

Lipschitz with a single discontinuity at x = yε, depending continuously on ε, and
there exists a constant L independent of ε ∈ [0, ε0] such that

|vε(x)− vε(x
′)| ≤ L|x− x′|,

whenever yε /∈ [x, x′].
The paths γ(ε) = (vε, yε) ∈ Γ(v,y) will be referred to as regular variations of

(v, y).
Furthermore, we define the set T(v,y) of generalized tangent vectors of (v, y) as the

space of (δv, δy) ∈ L1 ×R for which the path γ(δv,δy) given by γ(δv,δy)(ε) = (vε, yε)
with

(4.26) vε =

{
v + εδv + [v]y χ[y+εδy,y] if δy < 0,
v + εδv − [v]y χ[y,y+εδy] if δy > 0,

yε = y + εδy,

satisfies γ(δv,δy) ∈ Γ(v,y).
Finally, we define the equivalence relation ∼ defined on Γ(v,y) by

γ ∼ γ′ if and only if lim
ε→0

‖vε − v′ε‖L1

ε
= 0,

and we say that a path γ ∈ Γ(v,y) generates the generalized tangent vector (δv, δy) ∈
T(v,y) if γ is equivalent to γ(δv,δy) as in (4.26).

Remark 4.5. The path γ(δv,δy) ∈ Γ(v,y) in (4.26) represents, at first order, the
variation of a function v by adding a perturbation function εδv and by shifting the
discontinuity by εδy.

Note that, for a given pair (v, y) (v being a piecewise Lipschitz continuous func-
tion with a single discontinuity at y ∈ R) the associated generalized tangent vectors
(δv, δy) ∈ T(v,y) are those pairs for which δv is Lipschitz continuous with a single
discontinuity at x = y.

The main result in this section is the following:

Theorem 4.2. Let f ∈ C2(R) and (u, ϕ) be a solution of (4.25) satisfying hypoth-
esis (H) in (4.24). Consider a variation δf ∈ C2(R) for f and let fε = f + εδf ∈
C2(R) be a new flux obtained by an increment of f in the direction δf . Assume
that (uε, ϕε) is the unique entropy solution of (4.25) with flux fε. Then, for all
t ∈ [0, T ] the path (uε(·, t), ϕε(t)) is a regular variation for (u(·, t), ϕ(t)) (in the
sense of Definition 4.1) generating a tangent vector (δu(·, t), δϕ(t)) ∈ L1 × R, i.e.,
(uε(·, t), ϕε(t)) ∈ Γ(δu(·,t),δϕ(t)). Moreover, (δu, δϕ) ∈ C([0, T ]; (L1(R) × R)) is the
unique solution of the system

(4.27)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tδu+ ∂x(f
′(u)δu) = −∂x(δf(u)), in Q− ∪Q+,

δϕ′(t)[u]ϕ(t) + δϕ(t)
(
ϕ′(t)[ux]ϕ(t) − [uxf

′(u)]ϕ(t)
)

+ϕ′(t)[δu]ϕ(t) − [f ′(u)δu]ϕ(t) − [δf(u)]ϕ(t) = 0, in (0, T ),
δu(x, 0) = 0, in {x < ϕ0} ∪ {x > ϕ0},
δϕ(0) = 0.

We prove this technical result in the Appendix at the end of the paper.

Remark 4.6. The linearized system (4.27) has a unique solution which can be com-
puted in two steps. The method of characteristics determines δu in Q− ∪Q+, i.e.,
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outside Σ, from the initial data δu0 (note that system (4.27) has the same charac-
teristics as (4.25)). We also have the value of u and ux to both sides of the shock Σ
and this allows us to determine the coefficients of the ODE that δϕ satisfies. Then,
we solve the ordinary differential equation to obtain δϕ.

Remark 4.7. Due to the finite speed of propagation for (1.1) the result in Theorem
4.2 can be stated locally, i.e., in a neighborhood of the shock Σ. Thus, Theorem
4.2 can be easily generalized for solutions having a finite number of noninteracting
shocks.

Remark 4.8. The equation for δϕ in (4.27) is formally obtained by linearizing the
Rankine-Hugoniot condition [u]ϕ′(t) = [f(u)] with the formula δ[u] = [δu]+[ux]δϕ.

We finish this section with the following result which characterizes the solutions
of (4.27).

Theorem 4.3. Let f ∈ C2(R) and (u, ϕ) be a solution of (4.25) satisfying hypoth-
esis (H) in (4.24). The solution (δu, δϕ) ∈ C([0, T ]; (L1(R) × R)) of the system
(4.27) is given by,

δu(x, t) = −t∂x(δf(u(x, t))), in Q− ∪Q+,(4.28)

δϕ(t) = t
[δf(u(·, t))]ϕ(t)
[u(·, t)]ϕ(t)

, for all t ∈ [0, T ].(4.29)

Proof. Formula (4.28) holds when u is smooth, as we stated in (4.12). The same
formula holds in the region where u is Lipschitz, i.e., Q− ∪Q+, by a density argu-
ment.

We now prove formula (4.29). Without loss of generality, we focus on the case
t = T . For simplicity we divide this part of the proof into two steps. First we show
that

(4.30) T [δf(u(·, T ))]ϕ(T ) =

∫
Σ

([δu], [f ′(u)δu+ δf(u)]) · n dΣ,

and then,

(4.31)

∫
Σ

([δu], [f ′(u)δu+ δf(u)]) · n dΣ = δϕ(T )[u(·, T )]ϕ(T ).

At this point we have to introduce some notation. Let

(4.32) x− = ϕ(T )− f ′(u(ϕ(T )−, T ))T, x+ = ϕ(T )− f ′(u(ϕ(T )+, T ))T,

and consider the following subsets (see Figure 2),

Q̂− = {(x, t) ∈ R× (0, T ) such that x < ϕ(T )− f ′(u(ϕ(T )−, T ))(T − t)},
Q̂+ = {(x, t) ∈ R× (0, T ) such that x > ϕ(T )− f ′(u(ϕ(T )+, T ))(T − t)},(4.33)

D− = Q−\Q̂−, D+ = Q+\Q̂−.(4.34)

Note that, in Q̂− ∪ Q̂+ the characteristics do not meet the shock at any time
t ∈ [0, T ].

In order to prove (4.30) we write the first equation in (4.27) as

(4.35) divt,x(δu, f
′(u)δu+ δf(u)) = 0, in Q− ∪Q+.
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Figure 2. Subdomains Q̂− and Q̂+

Thus, integrating this equation over the triangle D− = Q−\Q̂−, using the diver-
gence theorem and the fact that δu(x, 0) = δu0(x) = 0 for all x ∈ R, we obtain

0 =

∫
∂D−

(δu, f ′(u)δu+ δf(u)) · n dσ =

∫
Σ

(δu−, f ′(u−)δu− + δf(u−)) · n dΣ

+

∫
γ−

(δu, f ′(u)δu+ δf(u)) · n dσ,(4.36)

where n denotes the normal exterior vector to the boundary of D− and, for any
continuous function v, defined in x ∈ Q−, we have noted that

v−(x) = lim
ε→0

v(x− εn), for x ∈ Σ.

The curve γ− in (4.36) is the characteristic line joining (t, x) = (0, x−) with (t, x) =
(T, ϕ(T )). A parametrization of this line is given by
(4.37)
γ− :

{
(t, γ−(t)) ∈ (0, T )× R such that γ−(t) = x− + tf ′(u(x−, 0)), t ∈ (0, T )

}
.

With this parametrization the last integral in the right-hand side of (4.36) can be
written as
(4.38)∫

γ−
(δu, f ′(u)δu+ δf(u)) · n dσ =

∫ T

0

δf(u(γ−(t), t)) dt = Tδf(u(ϕ(T )−, T )),

where the last identity comes from the fact that u is constant along γ−, i.e.,
u(γ−(t), t) = u(ϕ(T )−, T ) for all t ∈ [0, T ].

Thus, taking into account (4.38), the identity (4.36) reads

0 =

∫
Σ

(δu−, f ′(u−)δu− + δf(u−)) · n dΣ+ Tδf(u(ϕ(T )−, T )).(4.39)

Of course we obtain a similar formula if we integrate (4.35) this time over D+ =

Q+\Q̂+,

0 = −
∫
Σ

(δu+, f ′(u+)δu+ + δf(u+)) · n dΣ− Tδf(u(ϕ(T )+, T )),(4.40)

The sign in (4.40) is changed with respect to (4.39) since we maintain the same
choice for the normal vector.

Combining the identities (4.39) and (4.40) we easily obtain (4.30).
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Finally, we prove that (4.31) holds true. We consider the following parametriza-
tion of Σ:

(4.41) Σ = {(x, t) ∈ R× (0, T ), such that x = ϕ(t), with t ∈ (0, T )} .

The cartesian components of the normal vector to Σ at the point (x, t) = (ϕ(t), t)
are given by

nt =
−ϕ′(t)√

1 + (ϕ′(t))2
, nx =

1√
1 + (ϕ′(t))2

.

This, together with the second equation in system (4.27), give

[δu]Σnt + [f ′(u)δu+ δf(u)]Σnx

=
−ϕ′(t)[δu(·, t)]ϕ(t) + [f ′(u(·, t))δu(·, t) + δf(u(·, t))]ϕ(t)√

1 + (ϕ′(t))2

=
δϕ′(t)[u(·, t)]ϕ(t) + δϕ(t)

(
ϕ′(t)[∂xu(·, t)]ϕ(t) − [∂x(f(u))(·, t)]ϕ(t)

)
√
1 + (ϕ′(t))2

=
δϕ′(t)[u(·, t)]ϕ(t) + δϕ(t)

(
ϕ′(t)[∂xu(·, t)]ϕ(t) + [∂tu(·, t)]ϕ(t)

)
√
1 + (ϕ′(t))2

=
1√

1 + (ϕ′(t))2
d

dt

(
δϕ(t)[u(·, t)]ϕ(t)

)
.(4.42)

Thus, integrating on Σ,∫
Σ

([δu]Σnt + [f ′(u)δu+ δf(u)]Σnx) dΣ =

∫ T

0

d

dt

(
δϕ(t)[u(·, t)]ϕ(t)

)
dt

= δϕ(T )[u(·, T )]ϕ(T ) − δϕ(0)[u(·, 0)]ϕ(0) = δϕ(T )[u(·, t)]ϕ(T ),

where the last identity is due to the initial condition δϕ(0) = 0 in (4.27). This
concludes the proof of (4.31). �

4.3. Sensitivity of J in the presence of shocks. In this section we study the
sensitivity of the functional J . This requires to study the sensitivity of the solutions
u of the conservation law with respect to variations associated with the generalized
tangent vectors defined in the previous section.

Theorem 4.4. Assume that f ∈ C2(R) is a nonlinearity for which the weak entropy
solution u of (1.1) satisfies the hypothesis (H). Then, for any δf ∈ C2(R), the
following holds:

δJ = lim
ε→0+

J(f + εδf)− J(f)

ε

= −T

∫
{x<ϕ(T )}∪{x>ϕ(T )}

∂x(δf(u))(x, T ) (u(x, T )− ud(x)) dx

−T
η

[u(·, T )]ϕ(T )

[δf(u(·, T ))]ϕ(T ),(4.43)

where

(4.44) η =
1

2

[
(u(·, T )− ud(ϕ(T )))2

]
ϕ(T )

,
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if ud is continuous at x = ϕ(T ), and

(4.45) η =

{
1
2

[
(u(·, T )− ud(ϕ(T )+))2

]
ϕ(T )

, if δϕ(T ) > 0,
1
2

[
(u(·, T )− ud(ϕ(T )−))2

]
ϕ(T )

, if δϕ(T ) < 0,

if ud has a jump discontinuity at x = ϕ(T ).

Remark 4.9. Note that, when ud is discontinuous at x = ϕ(T ), the value of η in
(4.45) depends on the sign of δϕ(T ). This means that the expression of δJ in (4.43)
is not necessarily the same if we take the limit as ε → 0 for negative values of ε.
The functional J in this case is not Gateaux differentiable, in general.

Formula (4.43) coincides with formula (4.3) in the absence of shocks or when
[δf(u(·, T ))]ϕ(T ) = 0. In this case the Gateaux derivative of J exists and it is as if
no shocks were present. We prove later that, in fact, if this condition is satisfied,
then the variation δf , to first order, does not move the shock position.

We briefly comment on the above result before giving the proof. Formula (4.43)
provides easily a descent direction for J when looking for a flux f in the finite dimen-
sional subspace UM

ad , defined in (2.6). In this case the derivative of the functional
J at α in the tangent direction δα = (δα1, ..., δαM ) ∈ R

M is given by

δJ(α)(δα) = −
M∑

m=1

δαm

(
T

∫
R

∂x(fm(u))(x, T ) (u(x, T )− ud(x)) dx

− ηm
[u(·, T )]ϕ(T )

T [fm(u(·, T ))]ϕ(T )

)
,(4.46)

where ηm is the value of η in (4.45) when δf = fm.
Thus, the steepest descent direction for J at α is given by

δαm = T

∫
R

∂x(fm(u))(x, T ) (u(x, T )− ud(x)) dx

− ηm
[u(·, T )]ϕ(T )

T [fm(u(·, T ))]ϕ(T ), for all m ∈ 1, ...,M .(4.47)

Note, however, that this expression is not very useful in practice since it does
not avoid computing the linearized system (4.27) for each fm with m = 1, ...,M , in
order to compute ηm, since the knowledge of the sign of δϕ(T ) is required. This is
due to the lack of Gateaux differentiability of J that does not allow us to apply a
proper adjoint methodology.

We finish this section with the proof of Theorem 4.4.

Proof of Theorem 4.4. We first prove the following:

δJ = lim
ε→0+

J(f + εδf)− J(f)

ε

=

∫
{x<ϕ(T )}∪{x>ϕ(T )}

(u(x, T )− ud(x))δu(x, T ) dx− ηδϕ(T ),(4.48)

where the pair (δu, δϕ) is a generalized tangent vector of (u(·, T ), ϕ(T )) which solves
the linearized problem (4.27) and η is defined in (4.44)-(4.45).

Let us obtain (4.48) in the particular case where ud is discontinuous at x = ϕ(T )
and δϕ(T ) > 0, the other cases being similar. Let fε = f + εδf and (uε, ϕε) be
the solution of (4.25) associated to the flux fε. From Theorem 4.2, (uε, ϕε) is a
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path for a generalized tangent vector (δu, δϕ) satisfying (4.27). Thus, (uε, ϕε) is
equivalent to a path of the form (4.26) and we have

1

ε
(J(fε)− J(f)) =

1

2ε

(∫
R

(uε(x, T )− ud(x))2dx−
∫
R

(u(x, T )− ud(x))2dx

)

=

∫
{x<ϕ(T )}∪{x>ϕ(T )+εδϕ(T )}

(u(x, T )− ud(x))δu(x, T ) dx

+
1

2ε

∫ ϕ(T )+εδϕ(T )

ϕ(T )

(
u(x, T )− [u]ϕ(T ) − ud(x)

)2
dx

− 1

2ε

∫ ϕ(T )+εδϕ(T )

ϕ(T )

(
u(x, T )− ud(x)

)2
dx+O(ε)

=

∫
{x<ϕ(T )}∪{x>ϕ(T )+εδϕ(T )}

(u(x, T )− ud(x))δu(x, T ) dx

+
δϕ(T )

2

(
u(ϕ(T )−, T )− ud(ϕ(T )+)

)2
−δϕ(T )

2

(
u(ϕ(T )+, T )− ud(ϕ(T )+)

)2
+O(ε)

=

∫
{x<ϕ(T )}∪{x>ϕ(T )+εδϕ(T )}

(u(x, T )− ud(x))δu(x, T ) dx

−δϕ(T )[
1

2

(
u(x, T )− ud(ϕ(T )+)

)2
]ϕ(T ) +O(ε).

We obtain (4.48) by passing to the limit as ε → 0.
The final formula (4.43) is then a consequence of (4.48) and Theorem 4.3. �

5. Alternating descent directions

In this section we introduce a suitable decomposition of the vector space of
tangent vectors associated to a flux function f . As we will see this decomposition
allows us to obtain simplified formulas for the derivative of J in particular situations.
For example, we are interested in those variations δf for which, at first order, the
shock does not move at t = T .

Theorem 5.1. Assume that f is a nonlinearity for which the weak entropy solution
u of (1.1) satisfies the hypothesis (H) and, in particular, the Rankine-Hugoniot
condition (4.24). Let δf ∈ C2(R) be a variation of the nonlinearity f and (δu, δϕ)
the corresponding solution of the linearized system (4.27). Then, δϕ(T ) = 0 if and
only if

(5.1) [δf(u(·, T ))]ϕ(T ) = 0.

Moreover, if condition (5.1) holds, the generalized Gateaux derivative of J at f
in the direction δf can be written as

(5.2) δJ = −T

∫
R

∂x(δf(u))(x, T )(u(x, T )− ud(x)) dx.

Proof. The characterization (5.1) follows from the identity (4.29). On the other
hand, formula (5.2) is a particular case of identity (4.43). �
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Remark 5.1. Formula (5.2) provides a simplified expression for the generalized
Gateaux derivative of J when considering variations δf that do not move the shock
position at t = T , at first order, i.e., those for which δϕ(T ) = 0. These directions
are characterized by formula (5.1).

In practice we assume that the fluxes f are taken in the finite dimensional space
UM
ad , defined in (2.6). The set UM

ad can be parametrized by α = (α1, ..., αM ) ∈ R
M .

The condition (5.1) reads

(5.3)

M∑
m=1

αm[δfm(u(·, T ))]ϕ(T ) = 0,

which defines a hyperplane in R
M , corresponding to the set (α1, ..., αM ) ∈ R

M

orthogonal to

(5.4) ([δf1(u(·, T ))]ϕ(T ), ..., [δfM (u(·, T ))]ϕ(T )) ∈ R
M .

The results in Theorem 5.1 suggest the following decomposition of the tangent
space Tα = R

M constituted by the variations δα ∈ R
M of a vector α ∈ R

M :

(5.5) Tα = T 1
α ⊕ T 2

α,

where T 1
α is the subset constituted by the vectors (δα1, ..., δαM ) satisfying (5.3);

and the one-dimensional subspace T 2
α, generated by (5.4).

According to (4.46) and (5.2), the derivative of the functional J at α in the
tangent direction δα = (δα1, ..., δαM ) ∈ T 1

α is as in (4.4) and the steepest descent
direction for J at α, when restricted to T 1

α, is then given by (4.5).
Roughly speaking, we have obtained a steepest descent direction for J among

the variations which do not move the shock position at t = T , i.e., δϕ(T ) = 0.
On the other hand, T 2

α defines a second class of variations which allows us to
move the discontinuity of u(x, T ).

Note that, contrarily to [11] we do not consider the class of variations that, mov-
ing the shock, do not deform the solution away from it since this class is generically
empty on the present context in which the nonlinearity is perturbed by a finite
number of parameters.

We now define a strategy to obtain descent directions for J at f . To illustrate
this we consider the simplest case, i.e.,

(5.6) ud are Lipschitz continuous with a discontinuity at x = xd.

As the solution u has a shock discontinuity at the final time t = T , located at
some point x = ϕ(T ), there are two possibilities, depending on the value of ϕ(T ):

1. ϕ(T ) �= xd. Then, we perturb f with variations in T 2
α until we have xd =

ϕ(T ). This is, in fact, a one-dimensional optimization problem that we can
solve easily.

2. We already have xd = ϕ(T ) and then we consider descent directions δf ∈
T 1
f . To first order, these directions will not move the value of ϕ at t = T ,

but will allow us to better fit the value of the solution to both sides of the
shock.

In practice, the deformations of the second step will slightly move the position of
the shock because the condition δϕ(T ) = 0 that characterizes variations in the
subspace T 1

f , only affects the position of the discontinuity at first order. Thus, one
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has to iterate this procedure to assure a simultaneous better placement of the shock
and a better fitting of the value of the solution away from it.

This alternating descent method can be interpreted as a particular case of the
relaxation method in which local minima are attained by optimizing in the direc-
tions given by the partial derivatives in a cyclic way. In our case, we divide the
gradient in two components and optimize using them alternatively. Convergence
of such algorithms is obtained under regularity assumptions on the functional and
certain coerciveness conditions (see, for example [18]). In the present situation the
functional is not even differentiable due to (4.43)-(4.45) and the convergence of this
alternating method constitutes an interesting open problem.

In the next section we explain how to implement a descent algorithm following
these ideas that, of course, can also be used in the case where the number of shocks
of u0 and ud is not necessarily one, or the same.

6. Numerical approximation of the descent directions

We have computed the gradient of the continuous functional J in several cases
(u smooth and having shock discontinuities) but, in practice, one has to look for
descent directions for the discrete functional JΔ. In this section we discuss the var-
ious possibilities for searching them depending on the approach chosen (continuous
versus discrete) and the degree of sophistication adopted.

We consider the following possibilities:

• The discrete approach: differentiable schemes.
• The discrete approach: non-differentiable schemes.
• The continuous approach.
• The continuous alternating descent method.

The last one is the new method we propose in this article by adapting the one
introduced in [11] in the context of inverse design in which the control is the initial
datum.

In the following section we present some numerical experiments that allow us
to easily compare the efficiency of each method. As we shall see, the alternating
descent method we propose, alternating the variations of the flux to sometimes
move the shock and some others to correct the profile to both sides of it, is superior
in several ways. It avoids the drawbacks of the other methods related either to
the inefficiency of the differentiable methods to capture shocks or the difficulty
of dealing with nondifferentiable schemes and the uncertainty of using “pseudo-
linearizations”. As a consequence of this, the method we propose is much more
robust and makes the functional J decrease in a much more efficient way in a
significantly smaller number of iterations.

The rest of this section is divided as follows: We first compute the gradient
of the discrete cost functional when the numerical scheme chosen to approximate
the nonlinear conservation law is differentiable. When the numerical scheme is not
differentiable the gradient of the cost functional is not well defined and a descent
direction must be computed in a different way. The usual approach is to consider a
particular choice of the subgradient. We refer to [11] where this is treated in detail
for the particular case of the Burgers equation. The last two subsections contain
methods based on the continuous approach. More precisely, the third one describes
the a priori more natural method based on the discretization of the continuous
gradient while the fourth subsection is devoted to the new method introduced in
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this work in which we consider a suitable decomposition of the generalized tangent
vectors.

We do not address here the convergence of descent algorithms when using the
approximations of the gradients described above. In the present case, and taking
into account that when dealing with the discrete functional JΔ the number of control
parameters is finite, one could prove convergence by using LaSalle’s invariance
principle and the cost functional as a Lyapunov functional, at least in the case of
the discrete approach.

6.1. The discrete approach: Differentiable numerical schemes. Computing
the gradient of the discrete functional JΔ requires calculating one derivative of JΔ
with respect to each node of the mesh. This can be done in a cheaper way using
the adjoint state. We illustrate it on the Lax-Friedrichs numerical scheme. Note
that this scheme satisfies the hypothesis of Theorem 3.1 and therefore the numerical
minimizers are good approximations of minimizers of the continuous problem. How-
ever, as the discrete functionals JΔ are not necessarily convex the gradient methods
could possibly provide sequences that do not converge to a global minimizer of JΔ.
But this drawback and difficulty appears in most applications of descent methods in
optimal design and control problems. As we will see, in the present context, the ap-
proximations obtained by gradient methods are satisfactory, although convergence
is slow due to unnecessary oscillations that the descent method introduces.

Computing the gradient of JΔ, rigourously speaking, requires the numerical
scheme (3.3) under consideration to be differentiable and, often, this is not the
case. To be more precise, for the scalar equation (1.1) we can choose efficient
methods which are differentiable (as the Lax-Friedrichs one) but this is not the
situation for general systems of conservation laws in higher dimensions, as Euler
equations. For such complex systems the efficient methods, such as Godunov, Roe,
etc., are not differentiable (see, for example [22] or [28]) thus making the approach
in this section useless.

We observe that when the 3-point conservative numerical approximation scheme
(3.3) used to approximate the scalar equation (1.1) has a differentiable numerical
flux function g, then the linearization is easy to compute. We obtain

(6.1)

⎧⎪⎪⎨
⎪⎪⎩

δun+1
j = δun

j − λ
(
δgnj+1/2 + ∂1g

n
j+1/2δu

n
j + ∂2g

n
j+1/2δu

n
j+1

−δgnj−1/2 − ∂1g
n
j−1/2δu

n
j−1 − ∂2g

n
j−1/2δu

n
j

)
,

j ∈ Z, n = 0, ..., N.

Here, δgnj+1/2 = δg(un
j , u

n
j+1) where δg represents the Gateaux derivative of the

numerical flux g(u, v) with respect to the flux f . Note that (6.1) is in fact a
suitable discretization of (4.10).

On the other hand, for any variation δf ∈ Uad of f , the Gateaux derivative of
the cost functional defined in (3.2) is given by

(6.2) δJΔ = Δx
∑
j∈Z

(uN+1
j − ud

j )δu
N+1
j ,

which is the discrete version of (4.11).
It is important to observe that here we cannot solve system (6.1) to obtain

the discrete version of (4.12), as in the continuous case, since it is based on a
characteristic construction which is difficult to translate at the discrete level. Thus,
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unlike in the continuous case, we must introduce a discrete adjoint system to obtain
a simplified expression of the Gateaux derivative (6.2).

The discrete adjoint system for any differentiable flux function g is,

(6.3)

{
pnj = pn+1

j + λ
(
∂1g

n
j+1/2(p

n+1
j+1 − pn+1

j ) + ∂2g
n
j−1/2(p

n+1
j − pn+1

j−1 )
)
,

pN+1
j = uN+1

j − ud
j , j ∈ Z, n = 0, ..., N.

In fact, when multiplying the equations in (6.1) by pn+1
j and adding in j ∈ Z and

n = 0, ..., N , the following identity is easily obtained:

(6.4) Δx
∑
j∈Z

(uN+1
j − ud

j )δu
N+1
j = −Δxλ

N∑
n=0

∑
j∈Z

(δgnj+1/2 − δgnj−1/2)p
n+1
j .

This is the discrete version of the identity∫
R

(u(x, T )− ud(x))δu(x, T ) dx = −
∫ T

0

∫
R

∂x(f
′(u(x, t)))p(x, t) dx dt,

which holds in the continuous case, and it allows us to simplify the derivative of
the discrete cost functional. Note also that (6.3) is also a particular discretization
of the adjoint system{

−∂tp− f ′(u)∂xp = 0, x ∈ R, t ∈ (0, T ),
p(x, T ) = u(x, T )− ud(x), x ∈ R.

In view of (6.3) and (6.4), for any variation δf ∈ Uad of f , the Gateaux derivative
of the cost functional defined in (3.2) is given by

(6.5) δJΔ = Δx
∑
j∈Z

(uN+1
j − ud

j )δu
N+1
j = −Δxλ

N∑
n=0

∑
j∈Z

(δgnj+1/2 − δgnj−1/2)p
n+1
j ,

which is the discrete version of

δJ = −
∫ T

0

∫
R

∂x(δf(u(x, t)))p(x, t) dx dt.

Formula (6.5) allows us to obtain easily the steepest descent direction for JΔ. In

fact, given f ∈ UM
ad with f =

∑M
m=1 αmfm for some coefficients αm ∈ R, and

δf =
M∑

m=1

δαmfm,

making explicit the dependence of the numerical flux g on f by writing g(u, v) =
g(u, v; f), we have

δgnj+1/2 = δg(un
j , u

n
j+1; f) = ∂fg(u

n
j , u

n
j+1; f)δf =

M∑
m=1

∂fg(u
n
j , u

n
j+1; f)fm δαm.

When substituting in (6.5), we obtain
(6.6)

δJΔ = −Δxλ
N∑

n=0

∑
j∈Z

M∑
m=1

(∂fg(u
n
j , u

n
j+1; f)fm − ∂fg(u

n
j−1, u

n
j ; f)fm) δαm pn+1

j ,
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and a descent direction for JΔ at fΔ is given by

(6.7) δαm = Δxλ

N∑
n=0

∑
j∈Z

(∂fg(u
n
j , u

n
j+1; f)fm − ∂fg(u

n
j−1, u

n
j ; f)fm) pn+1

j .

Remark 6.1. At this point it is interesting to compare formulas (6.6) and (6.7)
with their corresponding expressions at the continuous level, i.e., formulas (4.4)
and (4.5), respectively. The discrete formulas are obtained by projecting formula
(6.5) into the finite dimensional subspace UM

ad , while the continuous ones come from
the projection of the simplified expression (4.4). As we have said before, we do not
know how to obtain a discrete version of (4.4) from (6.5).

As a consequence, the discrete formula (6.7) involves more computations than
expected for any discrete version of (4.5), and it even requires solving a discrete
adjoint system. From the computational point of view, this makes a priori preferable
to use as a descent direction a suitable discretization of (4.5) rather than (6.7).

Remark 6.2. We do not address here the problem of the convergence of these adjoint
states towards the solutions of the continuous adjoint system. Of course, this is
an easy matter when u is smooth but is far from being trivial when u has shock
discontinuities. Whether or not these discrete adjoint systems, as Δ → 0, allow
reconstructing the complete adjoint system, with the inner Dirichlet condition along
the shock, constitutes an interesting problem for future research. We refer to [23]
for preliminary work on this direction.

6.2. The continuous approach. This method is based on the result stated in
Theorem 4.4 indicating that the sensitivity of the functional is obtained by formula
(4.3). In particular, when considering the finite dimensional subspace UM

ad , the
steepest descent direction is given by (4.4). A tentative descent direction for the
discrete functional is then obtained by a numerical approximation of (4.4). One
possible choice is to take, for each m ∈ 1, ...,M ,

(6.8) δαm = T
∑
j∈Z

(fm(uN+1
j+1 )− fm(uN+1

j ))

(
uN+1
j + uN+1

j+1

2
−

ud
j + ud

j+1

2

)
,

where un
j is obtained from a suitable conservative numerical scheme regardless of

its differentiability. This formula is obviously consistent with the components of
the steepest descent direction in (4.5), if no shocks are present.

6.3. The alternating descent method. Here we propose a new method inspired
by the results in Theorem 5.1 and the discussion thereafter. We shall refer to this
new method as the alternating descent method, that was first introduced in [11]
in the context of an optimal control problem for the Burgers equation where the
control variable is the initial datum.

To fix ideas we assume that we look for f in the finite dimensional subspace
UM
ad . We also assume that both the target ud and the initial datum u0 are Lipschitz

continuous functions having one single shock discontinuity. But these ideas can be
applied in a much more general context in which the number of shocks is larger and
do not even necessarily coincide.

To initiate the optimization iterative process we choose a nonlinearity f in such a
way that the solution at time t = T has a profile similar to ud, i.e., it is a Lipschitz
continuous function with a single discontinuity of negative jump, located on an
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arbitrary point x ∈ R. The main idea now is to build a minimizing sequence of
J alternating the following two steps: First we perturb the flux f so to move the
discontinuity of the solution u of (1.1) at time t = T , regardless of its value to both
sides of the discontinuity. Once this is done we perturb the resulting f so that the
position of the discontinuity is kept fixed and alter the value of u(x, T ) to both
sides of it. This is done by decomposing the set of variations associated to f into
the two subsets introduced in (5.5), considering alternatively variations δα ∈ T 1

α

and δα ∈ T 2
α as descent directions.

For a given initialization of f , in each step of the descent iteration process we
proceed in the following three sub-steps:

(1) Determine the subspaces T 1
α and T 2

α by computing the vector (5.4). Note
that T 2

α is in fact a one-dimensional subspace.
(2) We consider the vector (5.4) that generates T 2

α, and choose the optimal
step, so to minimize the functional in that direction of variation of the
nonlinearity f . This involves a one-dimensional optimization problem that
we can solve with a classical method (bisection, Armijo’s rule, etc.). In this
way we obtain the best location of the discontinuity on that step.

(3) We then use the descent direction δα ∈ T 1
α to modify the value of the

solution at time t = T to both sides of the discontinuity. Here, we can again
estimate the step size by solving a one-dimensional optimization problem
or simply take a constant step size.

7. Numerical experiments

In this section we present some numerical experiments which illustrate the results
obtained in an optimization model problem with each one of the numerical methods
described in this paper.

The following numerical methods are considered:

(1) The discrete approach with the Lax-Friedrichs scheme. The optimization
procedure is based on the steepest descent method and the descent direc-
tions are computed using the adjoint approach.

(2) The discrete approach with the Roe scheme. It has the numerical flux,

gR(u, v) =
1

2
(f(u) + f(v)− |A(u, v)|(v − u)),

where the matrix A(u, v) is a Roe linearization which is an approximation
of f ′. In the scalar case under consideration A(u, v) is a function given by,

A(u, v) =

{
f(u)−f(v)

u−v , if u �= v,

f ′(u), if u = v .

The optimization procedure is again based on the steepest descent method
and the descent directions are computed using the adjoint approach. We
recall that unlike the Lax-Friedrichs scheme this one is not differentiable
and the adjoint system is obtained formally (see [19], [11]).

(3) The continuous approach with the Roe scheme. We use the method de-
scribed in subsection 6.2. In this case, as we discretize the continuous
adjoint system, the use of a differentiable or a nondifferentiable scheme is
not relevant to approximate the direct problem. However, in practice, a
numerical scheme based on a pseudo-linearization of the scheme used for
the direct problem is usually more efficient. This pseudo-linearization is
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usually obtained by considering a particular choice of the subdifferential in
the regions where the scheme is not differentiable.

(4) The continuous approach with the Roe scheme using the generalized tan-
gent vectors decomposition and the alternating descent method described
in subsection 6.3.

We have chosen as computational domain the interval (−4, 4) and we have taken
as boundary condition in (1.1), at each time step t = tn, the value of the initial
data at the boundary. This can be justified if we assume that both the initial and
final data u0, ud take the same constant value ū in a sufficiently large neighborhood
of the boundary x = ±4, and the value of f ′(ū) does not become very large in the
optimization process, due to the finite speed of propagation. A similar procedure
is applied for the adjoint equation.

In our experiments we assume that the flux f is a polynomial. The relevant part
of the flux function is its derivative since it determines the slope of the characteristic
lines. Thus, we take f ′ of the form

f ′(u) = α1P1(u) + α2P2(u) + · · ·+ α6P6(u),

where αj are some real coefficients and Pj(u) are the Legendre polynomials, or-
thonormal with respect to the L2(a, b)-norm. The interval [a, b] is chosen in such
a way that it contains the range of u0, and therefore the range of the solutions u
under consideration. To be more precise, we take [a, b] = [0, 1] and then
(7.1)

P1(u) = 1,

P2(u) =
√
12(u− 1/2),

P3(u) =
√
80(3/2u2 − 3/2u+ 1/4),

P4(u) =
√
448(5/2u3 − 15/4u2 + 3/2u− 1/8),

P5(u) =
√
2304(35/8u4 − 35/4u3 + 45/8u2 − 5/4u+ 1/16),

P6(u) =
√
11264(63/8u5 − 315/16u4 + 35/2u3 − 105/16u2 + 15/16u− 1/32).

Experiment 1. We first consider a piecewise constant initial datum u0 and target
profile ud given by

u0 =

{
1 if x < 1,
0 if x ≥ 1,

(7.2)

ud =

{
1 if x < 0,
0 if x ≥ 0,

(7.3)

and the time T = 1.
We solve the optimization problem (3.9) with the above described different meth-

ods. The algorithms are initialized either with f = 0 or the nonlinearity correspond-
ing to the Burgers equation,

(7.4) f(u) = u2/2.

Note that the solution u of the corresponding scalar conservation laws can be com-
puted explicitly for this choice of the initial datum and the nonlinearities. If f = 0,
u(x, t) = u0(x) while for the Burgers equation u(x, 1) = 1 if x ≤ 3/2 and zero
otherwise. This function u(x, 1) has the same profile as ud but the discontinuity
is shifted. Thus the optimization method should find a nonlinearity that simply
moves the discontinuity of u(x, t) to the same place as the one of ud(x) at time
t = 1.
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Note also that any nonlinearity for which f ′(0) < f ′(1) and f(0) − f(1) = 1 is
a minimizer for J whose value is zero. Indeed, in that case u is a piecewise shock
solution that, at the final time, is located precisely at the point x = 0. In particular,
an obvious minimizer is obtained by the linear flux f(u) = −u.

Recall that the stability of the numerical scheme chosen to approximate the
conservation law depends on the CFL condition, which relates Δt/Δx with the
speed of propagation, characterized by f ′(u). Despite this, the discrete optimization
problem still has a sense without that constraint, but the convergence of the discrete
optima is not guaranteed in this case.

We have first conducted the experiment without any a priori bound on the size
of the admissible nonlinearities. In our experiment, regardless of the method em-
ployed (Lax-Friedrichs, Roe, continuous, etc.), the nonlinearity obtained after the
optimization process turns out to be very sensitive to the CFL condition. This
effect is more evident for the Lax-Friedrichs scheme. In Figure 3 we show the de-
rivative of the nonlinearity f ′ obtained with Δt/Δx = 1/2, 1/4, 1/8. We observe
that its L∞-norm increases as Δt/Δx decreases. Thus, roughly speaking, the CFL
condition acts as an active constraint and the method tends to saturate the ad-
missible W 1,∞-bound guaranteeing stability. This also indicates the necessity of
including a bound in the W 1,∞-norm of the nonlinearities f in order to ensure the
convergence of the method, as required in our theoretical results.

0 0.2 0.4 0.6 0.8 1

0

1

2

 

 

Courant number 1/2
Courant number 1/4
Courant number 1/8

Figure 3. Experiment 1. f ′(s) obtained after 30 iterations of
the gradient method, for the unpenalized functional (3.2), with
the Lax-Friedrichs scheme and for different values of the Courant
number Δx/Δt = 1/2, 1/4, 1/8. The algorithm is initialized with
f = 0.

In order to avoid this unstability, instead of considering a constrained opti-
mization problem including a bound on f , we incorporate a penalization term in
the functional, as indicated in (2.5). The modified functional penalizes f ′ in the
L2(0, 1)-norm. Note that the chosen norm is not a very important issue at this
level since we are looking for nonlinearities in a finite dimensional set.

Thus, we effectively minimize the functional

J(u) =

∫
R

|u(x, T )− ud(x)|2 dx+
1

10

∫ 1

0

|f ′(s)|2ds.
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Of course, the nonlinearity f(u) = −u is no longer a minimizer of this functional
but minimizers are likely to be close.

In Table 1 we present the nonlinearities f obtained with the different methods
and the corresponding values of f(0)− f(1).

Table 1. Experiment 1. Values for the parameters found after 12
iterations of the descent algorithm with the different methods. The
last column contains the value f(0) − f(1), which must be 1 for
the minimizers of the continuous functional without penalization.
We assume that the Courant number is Δt/Δx = 0.5 and the
algorithm is initialized with fini = 0 in the first two tables and
fini = u2/2 in the last one.

Δx = 1
20

α1 α2 α3 α4 α5 α6 f(0)− f(1)

Lax-Fr. −0.9082 0.2149 0.2014 −0.1127 0.0675 −0.0268 0.9082
Roe −0.9354 0.1347 0.1797 −0.1048 0.0176 0.0059 0.9354
Cont. −0.9240 0.1575 0.2299 −0.2108 0.0226 −0.0139 0.9240
Alt. −0.9832 0.3000 0.0054 −0.0046 −0.0029 0.0078 0.9832

Δx = 1
40

α1 α2 α3 α4 α5 α6 f(0)− f(1)

Lax-Fr. −0.9176 0.0681 0.1997 −0.1167 0.0656 0.0237 0.9176
Roe −0.9648 0.0171 0.0797 −0.1415 0.0183 0.0480 0.9354
Cont. −0.9465 0.0234 0.1304 −0.2533 −0.0136 0.1058 0.9465
Alt. −0.9865 0.1227 0.0831 −0.1129 −0.0407 0.0404 0.9865

Δx = 1
20

α1 α2 α3 α4 α5 α6 f(0)− f(1)

Lax-Fr. −0.9136 0.2220 0.1907 −0.1070 0.0666 −0.0320 0.9136
Roe −0.9536 0.1403 0.1201 −0.0611 0.0241 −0.0318 0.9536
Cont. −0.9125 0.1879 0.3727 −0.1332 −0.0488 −0.1111 0.9125
Alt. −0.9782 0.3017 0.0404 −0.0288 0.0169 −0.0267 0.9782

In Figure 4 we show the value of the functional after the first 12 iterations for
Δx = 1/20, 1/40. We see that the alternating method obtains lower values of the
functional in fewer iterations. Note also that the situation is similar if we consider
finer meshes or different initializations.

Experiment 2. Now we consider a piecewise constant initial datum u0 and target
profile ud given by

u0 =

{
1 if x < −2,
0 if x ≥ −2,

(7.5)

ud =

{
1 if x < 2,
0 if x ≥ 2,

(7.6)

and the time T = 1.
We solve the optimization problem (3.9) with the above described different meth-

ods. The algorithms are initialized with f = 0.
The main difference with the previous experiment is that the discontinuity of the

initial datum and the target are now far away, and shifted to the right, unlike the
previous example. In fact, any nonlinearity f , with f ′(0) < f ′(1), which satisfies
f(0)−f(1) = −4 is a minimizer of the continuous functional J without penalization.
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Figure 4. Experiment 1. Log of the functional versus the number
of iterations for the different methods. Δt/Δx = 1/20 (upper left)
and 1/40 (upper right) with initialization f = 0. The lower figure
corresponds to the initialization f(u) = u2/2 and Δx = 1/20.

Another important remark is that the characteristic lines corresponding to the
minimizers will have higher slopes and, therefore, we will require a smaller value of
the Courant number to achieve stability. We take Δt/Δx = 0.1.

In Figure 5 we show the value of the functional after the first 20 iterations for
Δx = 1/20.

Table 2. Experiment 2. Optimal values for the parameters with
the different methods (Δx = 1/20).

Par. α1 α2 α3 α4 α5 α6 f(0)− f(1)

L-Fr. 3.0128 −0.7864 −0.7380 0.0834 0.0728 0.0011 −3.0128
Roe 3.0236 −0.9298 −0.6349 0.1732 0.0640 −0.0505 −3.0236
Cont. 2.9050 −0.9717 −0.8027 0.3290 0.0037 −0.0700 −2.9050
Alt. 3.2532 −0.5759 −0.5268 0.2900 −0.0408 −0.0963 −3.2532
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Figure 5. Experiment 2. Log of the functional versus the num-
ber of iterations for the different methods. We assume that the
discretization parameter is Δx = 1/20.

Experiment 3. Now we consider

u0 =

{
sin(2πx) if |x| < 2,
0 if |x| ≥ 2,

(7.7)

ud =

{
sin(2π(x− 1/2)) if |x− 1/2| < 2,
0 if |x− 1/2| ≥ 2,

(7.8)

and the time T = 1.
Note that the linear flux f(u) = u/2 is a minimizer of the continuous functional.

We solve the optimization problem (3.9) with the above described different methods.
The algorithms are initialized with (7.4).

The main difference with the previous experiment is that there is no discontinuity
in the initial datum nor in the target. However, the solution generates shocks due
to the oscillations of u0.

In Figure 6 we show the value of the functional after the first 20 iterations for
Δx = 1/20 and Δt/Δx = 0.5.

Table 3. Experiment 3. Optimal values for the parameters with
the different methods

parameters α1 α2 α3 α4 α5 α6

Lax-Friedrichs 0.4601 0.5786 0.0016 −0.0954 −0.0034 −0.0383
Roe −0.5497 1.4065 −0.0901 0.1191 −0.0165 0.0446
Continuous −0.5326 1.0487 −0.0246 0.0244 −0.0020 0.0030
Alternating 0.4902 0.1256 0.0276 −0.0804 0.0037 −0.0110
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Figure 6. Experiment 3. Log of the functional versus the number
of iterations for the different methods.
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Figure 7. Experiment 3. Target and solution at time T = 1
with the optimal f found with the Lax-Friedrichs (upper left), Roe
(upper right), continuous (lower left) and alternating (lower right)
methods.

Experiment 4. Now we consider

u0 =

{
max(−(x− 1)2/8 + 1/2, 0) if x < 1,
min((x− 1)2/8− 1/2, 0) if x ≥ 1,

(7.9)

ud =

{
max(−(x+ 1/2)2/8 + 1/2, 0) if x < −1/2,
min((x+ 1/2)2/8− 1/2, 0) if x ≥ −1/2,

(7.10)

and the time T = 1.
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Figure 8. Experiment 4. Initial datum u0, final datum ud and
the solution u(x, T ) with the initialization parameters αj .

In this case the flux f(u) = −3/2u is a minimizer of the continuous functional
without penalization. We solve the optimization problem (3.9) with the above
described different methods. The algorithms are initialized with (7.4).

In Figure 9 we show the value of the functional after the first 20 iterations for
Δx = 1/20.
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Figure 9. Experiment 4. Log of the functional versus the number
of iterations for the different methods.

Table 4. Experiment 4. Optimal values for the parameters with
the different methods

parameters α1 α2 α3 α4 α5 α6

Lax-Friedrichs −1.4628 0.9797 −0.0459 0.0006 −0.0030 0
Roe −1.4591 1.1609 −0.0695 0.0257 −0.0072 0.0043
Continuous −1.4564 1.1437 −0.0451 0.0196 −0.0031 0.0028
Alternating −1.4518 0.9447 −0.0927 −0.0047 −0.0108 −0.0005
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Figure 10. Experiment 4. Target and solution at time T = 1
with the optimal f found with the Lax-Friedrichs (upper left), Roe
(upper right), continuous (lower left) and alternating (lower right)
methods.

8. Conclusions

In this paper we have considered the numerical approximation of a flux opti-
mization problem for a one-dimensional scalar conservation law. To compute the
gradient of the cost functional we have discussed both the discrete approach and
the continuous one for smooth solutions and solutions in presence of a single shock.
The discrete approach requires solving an adjoint system while the continuous one
does not. More precisely, when dealing with smooth solutions, we have deduced a
new formula for the gradient of the continuous functional which does not require
solving the associated adjoint system.

In the presence of a shock, the gradient calculus requires a suitable linearization
of the solutions of the conservation laws, based on the generalized tangent vectors
introduced in [9]. This provides a new formulation of the gradient which takes into
account both small variations on the value of the solutions and small variations on
the position of the discontinuity. Due to the different nature of the admissible vari-
ations it seems natural to consider separately descent directions producing changes
on the shock position and those that do not move it. In this way, we have intro-
duced a new optimization strategy where these directions are used alternatively in
the optimization process.

From a numerical point of view, both approaches (the continuous and the dis-
crete one) provide good results. However, the continuous approach requires less
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computations, due to the fact that the adjoint system is not solved. The alternat-
ing descent directions strategy yields better results than the other methods, when
the displacement of the shocks is relevant, mainly in the first iterations.

In experiment 3 above we also see that, when using a descent direction based
on a displacement of the shock, we can avoid some local minima in some specific
situations.

9. Appendix

In this final section we prove Theorem 4.2. The proof is divided into several
steps. In step 1 we prove that, for all t ∈ [0, T ] the path (uε(·, t), ϕε(t)) is a regular
variation for (u(·, t), ϕ(t)), in the sense of Definition 4.1. Once this is proved we have
to see that its associated generalized tangent vector is (δu, δϕ), for all t ∈ [0, T ],
i.e.,

(9.1) lim
ε→0+

1

ε

∥∥uε(·, t)− u(·, t)− εδu(·, t)− [u]ϕ(t)χ[ϕ(t),ϕ(t)+εδϕ(t)]

∥∥
L1(R)

= 0,

if δϕ > 0, and

lim
ε→0+

1

ε

∥∥uε(·, t)− u(·, t)− εδu(·, t)− [u]ϕ(t)χ[ϕ(t)+εδϕ(t),ϕ(t)]

∥∥
L1(R)

= 0,

if δϕ < 0. Here χ[a,b] is the characteristic function of the set [a, b] ⊂ R. To fix ideas
we assume that δϕ(t) ≥ 0 in t ∈ [0, T ]. If δϕ(t) ≤ 0 in t ∈ [0, T ] or if it changes the
sign in this interval we argue in a similar way on each time interval where the sign
of δϕ(t) is preserved. In step 2 we prove the boundedness of the sequence

(9.2)
1

ε

(
uε(·, t)− u(·, t)− εδu(·, t) + [u]ϕ(t)χ[ϕ(t),ϕ(t)+εδϕ(t)](·)

)
in L1(R), uniformly in t ∈ [0, T ]. In step 3 we identify the weak limit as zero. In
step 4 we prove that the convergence is strong in L1(R). Finally, in step 5 we prove
some identities that are assumed to hold in the previous steps.

Step 1. We prove that for all t ∈ [0, T ] the path (uε(·, t), ϕε(t)) is a regular
variation for (u(·, t), ϕ(t)). Since (u, ϕ) satisfies (4.24) we may assume that there
exists ε0 > 0 such that for ε < ε0 the function uε is Lipschitz continuous in R×[0, T ]
with one single discontinuity at x = ϕε(t) for t ∈ [0, T ]. Moreover, from (2.3), we
have

‖uε − u‖L1(R) ≤ tε‖δf‖Lip‖u0‖BV (R).

This means, in particular, that uε(x, t) → u(x, t) pointwise; i.e., for all (x, t) outside
the discontinuity Σ, and

(9.3) |ϕε(t)− ϕ(t)| ≤ Cε, as ε → 0 for all t ∈ [0, T ],

for some constant C > 0. Moreover, for each t ∈ [0, T ], to both sides of the
discontinuity x = ϕε(t), the Lipschitz constant for uε is uniform in ε. This is easily
obtained adapting the argument in the proof of (4.13) above. This proves that uε

is a regular variation in the sense of Definition 4.1.
Step 2. Boundedness of the sequence in (9.2), in the L1(R)-norm. We first focus

on the region where both u and uε are Lipschitz continuous and the estimates can
be obtained using the characteristics of u. For each ε > 0 and t ∈ [0, T ], let us
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introduce the following subsets:

Q−
ε,t = {x ∈ R s.t. x < min{ϕ(t), ϕε(t)}},

Q+
ε,t = {x ∈ R s.t. x > max{ϕ(t), ϕε(t)}},

Q0
ε,t = {x ∈ R s.t. min{ϕ(t), ϕε(t)} ≤ x ≤ max{ϕ(t), ϕε(t)}}.

We prove that

1

ε
‖uε(·, t)− u(·, t)‖L∞(Q−

ε,t∪Q+
ε,t)

≤ C,(9.4)

lim
ε→0

‖∂xuε(·, t)− ∂xu(·, t)‖L1(Q−
ε,t∪Q+

ε,t)
= 0,(9.5)

lim
ε→0

1

ε
‖uε(·, t)− u(·, t)− εδu(·, t)‖L1(Q−

ε,t∪Q+
ε,t)

= 0.(9.6)

We first consider the bound in (9.4). To fix ideas we focus on x ∈ Q+
ε,t but the

same will be true for Q−
ε,t with analogous arguments. We define

(9.7) y(x, t) = x− (t− t0)f
′(u(x, t)), yε(x, t) = x− (t− t0)f

′
ε(uε(x, t)).

Then,

1

ε
|uε(x, t)− u(x, t)| = 1

ε
|uε(yε(x, t), t0)− u(y(x, t), t0)|

≤ 1

ε
|uε(yε(x, t), t0)− u(yε(x, t), t0)|

+
1

ε
‖u(·, t0)‖Lip (t− t0)|f ′

ε(uε(x, t))− f ′(u(x, t))|

≤ 1

ε
‖uε(·, t0)− u(·, t0)‖L∞(Q+

ε,t)

+
1

ε
‖u(·, t0)‖Lip (t− t0) (|f ′(uε(x, t))− f ′(u(x, t))|+ ε ‖δf ′‖L∞)

≤ 1

ε
‖uε(·, t0)− u(·, t0)‖L∞(Q+

ε,t)

+
1

ε
‖u(·, t0)‖Lip (t− t0)

(
‖f ′′‖L∞ ‖uε(·, t)− u(·, t)‖L∞(Q+

ε,t)
+ ε ‖δf ′‖L∞

)
.

Here, ‖u(·, t0)‖Lip stands for the Lipschitz norm of u(·, t0) when x > ϕ(t0), which
is uniformly bounded in t0 ∈ [0, T ] by hypothesis. Therefore, if we choose t such

that (t− t0) < ‖u(·, t0)‖−1
Lip ‖f ′′‖−1

L∞ ,

1

ε
‖uε(·, t)− u(·, t)‖L∞(Q+

ε,t)
≤

1
ε ‖uε(·, t0)− u(·, t0)‖L∞(Q+

ε,t0
)

1− (t− t0) ‖u(·, t0)‖Lip ‖f ′′‖L∞

+ ‖u(·, t0)‖Lip (t− t0) ‖δf ′‖L∞ .(9.8)

In particular, for t0 = 0, this establishes the estimate (9.4) for t ∈ [0, t1] with

t1 <
∥∥u0

∥∥−1

Lip
‖f ′′‖−1

L∞ . Then, we can apply (9.8) for t0 = t1 to obtain the estimate

in t ∈ [t1, 2t1] and so on until covering the whole interval [0, T ].
Concerning the limit (9.5) we observe that, as before, it is enough to obtain it

for a sufficiently small time interval and then combine it with an iterative argument
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in time. For 0 ≤ t0 ≤ t ≤ T , we have,

∫
Q+

ε,t

|∂xuε(x, t)− ∂xu(x, t)|dx

=

∫
Q+

ε,t

|∂x(uε(yε(x, t), t0))− ∂x(u(y(x, t), t0))|dx

≤
∫
Q+

ε,t

|∂xuε(yε(x, t), t0)|(t− t0)|(f ′′(uε)∂xuε + εδf ′′(uε)∂xuε − f ′′(u)∂xu|dx

+

∫
Q+

ε,t

|∂xuε(yε(x, t), t0)− ∂xu(y(x, t), t0)||1− (t− t0)f
′′(u)∂xu|dx

≤ (ε ‖δf ′′‖L∞ + ‖f ′′(uε)∂xuε − f ′′(u)∂xu‖L1(Q+
ε,t)

) ‖uε(·, t)‖Lip (t− t0)

+C

∫
Q+

ε,t

|∂xuε(yε(x, t), t0)− ∂xu(yε(x, t), t0)|dx

+C

∫
Q+

ε,t

|∂xu(yε(x, t), t0)− ∂xu(y(x, t), t0)|dx

≤ (ε ‖δf ′′‖L∞ + ‖f ′′‖L∞ ‖∂xuε − ∂xu‖L1(Q+
ε,t)

) ‖uε‖Lip (t− t0)

+(‖f ′′(uε(·, t))− f ′′(u(·, t))‖L∞ ‖u‖BV ) ‖uε‖Lip (t− t0)

+C

∫
Q+

ε,t0

|∂yuε(y, t0)− ∂yu(y, t0)|
(1− (t− t0) ‖f ′′

ε ‖L∞ ‖uε‖Lip)
dy

+C

∫
Q+

ε,t

|∂xu(yε(x, t), t0)− ∂xu(y(x, t), t0)|dx,

with C = 1 + (t − t0)‖f ′′‖L∞‖u‖Lip. Thus, if we choose t such that (t − t0) <

min0<ε<ε0 ‖uε‖−1
Lip ‖f ′′‖−1

L∞ , then

lim
ε→0

∫
Q+

ε,t

|∂xuε(x, t)− ∂xu(x, t)|dx ≤ C1 lim
ε→0

‖f ′′(uε)− f ′′(u)‖L∞(Q+
ε,t)

+C2 lim
ε→0

∫
Q+

ε,t

|∂xu(x− (t− t0)f
′
ε(uε), t0)− ∂xu(x− (t− t0)f

′(u), t0)|dx

+C3 lim
ε→0

∫
Q+

ε,t0

|∂xuε(x, t0)− ∂xu(x, t0)|dx,(9.9)

for some constants C1, C2, C3 which only depend on ‖u‖Lip , ‖f ′′‖L∞ , ‖uε‖Lip ,

‖f ′′
ε ‖L∞ and (t− t0), which are quantities that do not depend on ε. Now, we show

that the first two limits on the right-hand side of (9.9) are zero. The last limit is
obviously zero for t0 = 0 and, for larger time, we can apply the iterative argument
described before. The first limit on the right-hand side is zero as a consequence of
the uniform convergence of f ′′(uε(·, t)) to f ′′(u(·, t)) as ε → 0, which is due to the
uniform continuity of f ′′(s) in the compact set s ∈ [−

∥∥u0
∥∥ , ∥∥u0

∥∥] and the estimate
in (9.4).

The second limit on the right-hand side of (9.9) is obtained by a density argu-
ment. Since ∂xu(·, t0) ∈ L1(ϕ(t0),∞) there exists a sequence hn(x) ∈ C1

0 (ϕ(t0),∞)



FLUX IDENTIFICATION FOR SCALAR CONSERVATION LAWS 2063

such that hn → ∂xu(·, t0) in L1(ϕ(t0),∞). Then∫
Q+

ε,t

|∂xu(x− (t− t0)f
′
ε(uε), t0)− ∂xu(x− (t− t0)f

′(u), t0)|dx

≤
∫
Q+

ε,t

|∂xu(x− (t− t0)f
′
ε(uε), t0)− hn(x− (t− t0)f

′
ε(uε), t0)|dx

+

∫
Q+

ε,t

|hn(x− (t− t0)f
′
ε(uε), t0)− hn(x− (t− t0)f

′(u), t0)|dx

+

∫
Q+

ε,t

|hn(x− (t− t0)f
′(u), t0)− ∂xu(x− (t− t0)f

′(u), t0)|dx.(9.10)

Thus, it suffices to see that the first and third limits on the right-hand side converge
to zero as n → ∞, uniformly in ε, while the second limit converges to zero for each
hn. The convergence of this second term is obvious since hn is smooth and,

|f ′
ε(uε)− f ′(u)| ≤ ‖f ′′‖L∞ ‖uε(·, t)− u(·, t)‖L∞(Q+

ε,t)
≤ Cε.

Concerning the first term in (9.10) we observe that, after the change of variables
y = x− (t− t0)f

′
ε(uε(x, t)), we obtain∫

Q+
ε,t

|∂xu(x− (t− t0)f
′
ε(uε), t0)− hn(x− (t− t0)f

′
ε(uε), t0)|dx

≤
∫
Q+

ε,t0

|∂xu(y, t0)− hn(y, t0)|(1− (t− t0) ‖f ′′
ε ‖L∞ ‖uε‖Lip)

−1dy

≤ (1− (t− t0) ‖f ′′
ε ‖L∞ ‖uε‖Lip)

−1

∫ ∞

ϕ(t0)

|∂xu(y, t0)− hn(y, t0)|dy,

which converges to zero, uniformly in ε, as n → ∞, when (t−t0) < ‖uε‖−1
Lip ‖f ′′

ε ‖
−1
L∞ .

Recall that both ‖uε‖Lip and ‖f ′′
ε ‖L∞ are uniformly bounded in ε, when x ∈ Q+

ε,t.
Similarly, the third term in the right-hand side of (9.10) tends to zero, uniformly
in ε, as h → ∞.

We consider now the limit in (9.6). Let us define

wε =
1

ε
(uε − u− εδu), in t ∈ [0, T ], x > max{ϕ(t), ϕε(t)} .

Note that wε is a Lipschitz continuous solution of the system,
(9.11)⎧⎪⎨
⎪⎩

∂twε + ∂x(f
′(u)wε) = −∂x(δf(uε)− δf(u))

− 1
ε∂x(f(uε)− f(u)− f ′(u)(uε − u)), t ∈ [0, T ], x > max{ϕ(t), ϕε(t)}

wε(x, 0) = 0, x > ϕ0.

System (9.11) is analogous to the linearized system (4.10) for which the solution is
given by (4.12). Thus, the solution of (9.11) is given by,

wε = −t∂x(δf(uε)− δf(u))− t

ε
∂x(f(uε)− f(u)− f ′(u)(uε − u)).
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Then,

∫
Q+

ε,t

|wε(x, t)| dx ≤ t

∫
Q+

ε,t

|δf ′(uε)∂xuε − δf ′(u)∂xu|dx

+
t

ε

∫
Q+

ε,t

|f ′(uε)∂xuε − f ′(u)∂xu− f ′′(u)∂xu(uε − u)− f ′(u)(∂xuε − ∂xu)| dx

≤ t

∫
Q+

ε,t

|δf ′(uε)− δf ′(u)||∂xu|dx+ t

∫
Q+

ε,t

|δf ′(u)||∂xuε − ∂xu|dx

+
t

ε

∫
Q+

ε,t

|f ′(uε)− f ′(u)− f ′′(u)(uε − u)||∂xu| dx

+
t

ε

∫
Q+

ε,t

|f ′(uε)− f ′(u)||∂xuε − ∂xu|dx

≤ t ‖δf ′′‖L∞ ‖u‖Lip

∫
Q+

ε,t

|uε − u|dx+ t ‖δf ′‖L∞

∫
Q+

ε,t

|∂xuε − ∂xu|dx

+
t

ε
‖u‖BV ‖f ′(uε)− f ′(u)− f ′′(u)(uε − u)‖L∞

+
t

ε
‖f ′′‖L∞ ‖uε − u‖L∞

∫
Q+

ε,t

|∂xuε − ∂xu|dx,

which converges to zero, as ε → 0, in view of (9.4)-(9.5).
Once (9.4)-(9.6) are proved we address the boundedness of the sequence in (9.2).

We have,

1

ε

∥∥uε − u− εδu+ [u]ϕ(t)χ[ϕ,ϕ+εδϕ]

∥∥
L1(R)

=
1

ε

∥∥uε − u− εδu+ [u]ϕ(t)χ[ϕ,ϕ+εδϕ]

∥∥
L1(Q−

ε,t∪Q+
ε,t)

+
1

ε

∥∥uε − u− εδu+ [u]ϕ(t)χ[ϕ,ϕ+εδϕ]

∥∥
L1(Q0

ε,t)

≤ 1

ε
‖uε − u− εδu‖L1(Q−

ε,t∪Q+
ε,t)

+
[u]ϕ(t)

ε

∥∥χ[ϕ,ϕ+εδϕ]

∥∥
L1(Q−

ε,t∪Q+
ε,t)

+
1

ε

∥∥uε − u− εδu+ [u]ϕ(t)χ[ϕ,ϕ+εδϕ]

∥∥
L1(Q0

ε,t)
.

Here, the first term on the right-hand side is bounded, as ε → 0, due to (9.6), the
second one is bounded since the support of the function inside the L1-norm is of
the order of ε and the third one is bounded since the function inside the L1-norm
is uniformly bounded in L∞ and the measure of Q0

ε,t is of the order of ε, uniformly

in t, due to (9.3) together with the definition of Q0
ε,t.

Step 3. Identification of the weak limit of (9.2). From the previous step we
deduce that the sequence in (9.2) converges, as ε → 0, weakly in L1, at least for
a subsequence that we still denote ε. To identify the limit we focus on the weak
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formulations of uε and u. We have,

0 =
1

ε

∫ ∫
R×(0,T )

((uε − u)∂tψ + (fε(uε)− f(u))∂xψ) dxdt

=
1

ε

∫ ∫
R×(0,T )

(
uε − u− εδu+ [u]ϕ(t)χ[ϕ,ϕ+εδϕ]

)
∂tψdxdt

−1

ε

∫ T

0

[f(u)]ϕ∂xψ(ϕ, t)(ϕε − ϕ− εδϕ)dt

+
1

ε

∫ ∫
R×(0,T )

(
εδu− [u]ϕ(t)χ[ϕ,ϕ+εδϕ]

)
∂tψdxdt

+
1

ε

∫ ∫
R×(0,T )

(fε(uε)− f(u)) ∂xψdxdt

+
1

ε

∫ T

0

[f(u)]ϕ∂xψ(ϕ, t)(ϕε − ϕ− εδϕ)dt,(9.12)

for all ψ ∈ C1
0 (R× [0, T )), the set of C1 functions with compact support. Assume

for the moment that the last three terms in the right-hand side of (9.12) tend to
zero as ε → 0, i.e.,

0 = lim
ε→0

{
1

ε

∫ ∫
R×(0,T )

(
εδu− [u]ϕ(t)χ[ϕ,ϕ+εδϕ]

)
∂tψdxdt

+
1

ε

∫ ∫
R×(0,T )

(fε(uε)− f(u)) ∂xψdxdt

+
1

ε

∫ T

0

[f(u)]ϕ∂xψ(ϕ, t)(ϕε − ϕ− εδϕ)dt

}
.(9.13)

Then, if we consider particular test functions ψ(x, t) with support in the following
neighbourhood of Σ,{

(x, t) such that |x− ϕ(t)| < ε2, 0 ≤ t ≤ T
}
,

the first term in the right-hand side of (9.12) vanishes as ε → 0 since the integrand
is bounded by Cte/ε and the support of the integral is a region of measure ε2Cte,
as ε → 0. Therefore,

(9.14) lim
ε→0

1

ε

∫ T

0

[f(u)]ϕ∂xψ(ϕ, t)(ϕε − ϕ− εδϕ)dt = 0.

This provides the convergence,

(9.15) [f(u)]ϕ
1

ε
(ϕε − ϕ− εδϕ) → 0,

at least in the sense of distributions.
From (9.12), (9.13) and (9.15) we obtain the convergence of the first term of

(9.12), for any test function ψ. Now, if we consider ψ(x, t) = ψ1(t)ψ2(x) in separate
variables in formula (9.12), then

0 = lim
ε→0

1

ε

∫ T

0

∫
R

(
uε − u− εδu+ [u]ϕ(t)χ[ϕ,ϕ+εδϕ]

)
ψ′
1ψ2dxdt

=

∫ T

0

ψ′
1 lim
ε→0

1

ε

∫
R

(
uε − u− εδu+ [u]ϕ(t)χ[ϕ,ϕ+εδϕ]

)
ψ2dxdt,(9.16)
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where we have used the dominated convergence theorem. Note that the integrand
of the time integral is uniformly bounded in t ∈ [0, T ] since the bound for (9.2)
obtained in the step 2 above can be chosen independent of t. Therefore we obtain,

lim
ε→0

1

ε

∫
R

(
uε − u− εδu+ [u]ϕ(t)χ[ϕ,ϕ+εδϕ]

)
ψxdx = 0, a.e. t ∈ (0, T ),

for all ψx ∈ C1
0 (R). In fact, the same is true for ψx ∈ L∞(R) with compact support,

since ε−1
(
uε − u− εδu+ [u]ϕ(t)χ[ϕ,ϕ+εδϕ]

)
is bounded in L1(R) for each t ∈ [0, T ],

as ε → 0. This shows the weak convergence
(9.17)
ε−1

(
uε(·, t)− u(·, t)− εδu(·, t) + [u]ϕ(t)χ[ϕ(t),ϕ(t)+εδϕ(t)](·)

)
→ 0 weakly in L1(R).

Step 4. Strong convergence of (9.2). In order to prove the strong convergence in L1

it suffices to see that the convergence in measure holds, for any measurable subset
B ⊂ R with finite measure (see for example [36], p. 122). This means that, for any
δ > 0, the measure of the subset,
(9.18){

x ∈ B with |ε−1
(
uε(x, t)− u(x, t)− εδu(x, t) + [u]ϕ(t)χ[ϕ(t),ϕ(t)+εδϕ](x)

)
| > δ

}
converges to zero, as ε → 0. Recall that, as we stated in (9.6), in the region
Q−

ε,t ∪ Q+
ε,t, ε

−1(uε(x, t) − u(x, t) − εδu(x, t)) converges strongly in L1. Thus, the

subset in (9.18) is inside the region Q0
ε,t ∪ [ϕ(t), ϕ(t) + εδϕ(t)]. But the measure of

this last subset converges to zero as ε → 0, uniformly in t ∈ [0, T ], and therefore
the convergence in measure holds. This proves (9.1).

Step 5. It remains to check that formula (9.13) holds true. Observe that it
suffices to prove the following two identities:

lim
ε→0

1

ε

∫ ∫
R×(0,T )

(
−[u]ϕ(t)χ[ϕ,ϕ+εδϕ]

)
∂tψ dx dt

−
∫ T

0

[u]ϕ(t)ϕ
′(t)δϕ(t)∂xψ(ϕ(t), t)dt

=

∫ T

0

(
−[∂xf(u)]ϕ(t)δϕ(t) + ϕ′[∂xu]ϕ(t)δϕ(t) + [u]ϕ(t)δϕ

′(t)
)
ψ(ϕ(t), t)dt,(9.19)

lim
ε→0

1

ε

{∫ ∫
R×(0,T )

(fε(uε)− f(u)) ∂xψdxdt+

∫ T

0

[f(u)]ϕ∂xψ(ϕ, t)(ϕε − ϕ)dt

}

=

∫ ∫
R×(0,T )

(f ′(u)δu+ δf(u)) ∂xψ.(9.20)

In fact, if (9.19)-(9.20) hold, then (9.13) is equivalent to

0 =

∫ ∫
R×(0,T )

(f ′(u)δu+ δf(u)) ∂xψ +

∫ ∫
R×(0,T )

δu∂tψ

+

∫ T

0

(
−[∂xf(u)]ϕ(t)δϕ(t) + ϕ′[∂xu]ϕ(t)δϕ(t) + [u]ϕ(t)δϕ

′(t)
)
ψ(ϕ(t), t)dt,

which is the weak formulation of the linearized problem (4.27).
We first focus on the limit in (9.19). As we are interested in the limit as ε → 0,

only first order terms with respect to ε are required. In the following, we write
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O(ε) for any term satisfying

lim
ε→0

|O(ε)|
ε

≤ Cte, uniformly in (x, t).

We have
1

ε

∫ ∫
R×(0,T )

(
−[u]ϕ(t)χ[ϕ,ϕ+εδϕ]

)
∂tψdxdt

= −1

ε

∫ T

0

[u]ϕ(t)

∫ ϕ(t)+εδϕ(t)

ϕ(t)

∂tψdtdx

= −1

ε

∫ T

0

[u]ϕ(t)

(
d

dt

∫ ϕ(t)+εδϕ(t)

ϕ(t)

ψdx

)
dt

+
1

ε

∫ T

0

[u]ϕ(t) ((ϕ
′ + εδϕ′)ψ(ϕ+ εδϕ, t)− ϕ′ψ(ϕ, t)) dt

=
1

ε

∫ T

0

d

dt

(
[u]ϕ(t)

) ∫ ϕ(t)+εδϕ(t)

ϕ(t)

ψdxdt

+
1

ε

∫ T

0

[u]ϕ(t) ((ϕ
′ + εδϕ′)ψ(ϕ+ εδϕ, t)− ϕ′ψ(ϕ, t)) dt.(9.21)

Note that, in the last identity, the boundary terms coming from the integration by
parts vanish since we are assuming ψ(x, t) of compact support in t ∈ [0, T ) and
δϕ(0) = 0. To simplify the first term on the right-hand side we write the jump
[u]ϕ(t) in a more explicit way. Let us introduce the following notation:

u(x+, t) = lim
δ→0,δ>0

u(x+ δ, t), u(x−, t) = lim
δ→0,δ>0

u(x− δ, t).

Observe that
d

dt

(
[u]ϕ(t)

)
=

d

dt

(
u(ϕ(t)+, t)− u(ϕ(t)−, t)

)
= ∂tu(ϕ(t)

+, t)− ∂tu(ϕ(t)
−, t) + ∂xu(ϕ(t)

+, t)ϕ′(t)− ∂xu(ϕ(t)
−, t)ϕ′(t)

= [∂tu]ϕ(t) + ϕ′[∂xu]ϕ(t) = −[∂xf(u)]ϕ(t) + ϕ′[∂xu]ϕ(t),(9.22)

where we have used in the last identity that, to both sides of the discontinuity, the
function u satisfies the first equation in (4.25).

On the other hand, as ψ is assumed to be smooth, it can be expanded near
x = ϕ(t) using the Taylor formula, i.e.,

(9.23) ψ(ϕ+ εδϕ, t) = ψ(ϕ, t) + εδϕ∂xψ(ϕ, t) +O(ε2).

Therefore, at first order, we have

(9.24)
1

ε

∫ ϕ(t)+εδϕ(t)

ϕ(t)

ψdxdt = ψ(ϕ, t)δϕ(t) +O(ε).

From (9.22)-(9.24) the right-hand side of (9.21) can be written as∫ T

0

(
−[∂xf(u)]ϕ(t)δϕ(t) + ϕ′[∂xu]ϕ(t)δϕ(t) + [u]ϕ(t)δϕ

′(t)
)
ψ(ϕ(t), t)dt

+

∫ T

0

[u]ϕ(t)ϕ
′(t)δϕ(t)∂xψ(ϕ(t), t)dt+O(ε),

This allows us to deduce the limit in (9.19).
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Concerning the identity (9.20), we have

lim
ε→0

1

ε

∫ ∫
R×(0,T )

(fε(uε)− f(u)) ∂xψ dxdt

= lim
ε→0

1

ε

∫ T

0

∫
Q−

ε,t∪Q+
ε,t

(f(uε) + εδf(uε)− f(u)) ∂xψ dxdt

+ lim
ε→0

1

ε

∫ ∫
Q0

ε,t

(f(uε) + εδf(uε)− f(u)) ∂xψ dxdt.(9.25)

Observe that, on Q−
ε,t ∪Q+

ε,t, the Taylor expansion of both f and δf at u give us

f(uε) = f(u) + f ′(u)(uε − u) +O(‖uε − u‖2L∞),

δf(uε) = δf(u) +O(‖uε − u‖L∞).

This, together with the convergence results stated in (9.4)-(9.6), provide

lim
ε→0

1

ε
‖f(uε)− f(u)− εf ′(u)δu‖L1(Q−

ε,t∪Q+
ε,t)

= 0,

δf(uε) = δf(u) +O(ε).

Therefore, the first limit on the right-hand side of (9.25) can be simplified as
follows:

lim
ε→0

1

ε

∫ T

0

∫
Q−

ε,t∪Q+
ε,t

(f(uε) + εδf(uε)− f(u)) ∂xψ dxdt

= lim
ε→0

∫ ∫
Q−

ε,t∪Q+
ε,t

(f ′(u)δu+ δf(u)) ∂xψ dxdt

=

∫ ∫
R×(0,T )

(f ′(u)δu+ δf(u)) ∂xψ dxdt.(9.26)

Finally, to simplify the last limit in (9.25) we assume, without loss of generality,
that ϕε(t) ≥ ϕ(t). In this case, in Q0

ε,t we have,∥∥uε(·, t)− u(ϕ(t)−, t)
∥∥
L∞(Q0

ε,t)
≤

∥∥uε(·, t)− uε(ϕ(t)
−, t)

∥∥
L∞(Q0

ε,t)

+|uε(ϕ(t)
−, t)− u(ϕ(t)−, t)|

≤ ‖uε(·, t)‖Lip |ϕε(t)− ϕ(t)|+ Cε = O(ε),∥∥u(·, t)− u(ϕ(t)+, t)
∥∥
L∞(Q0

ε,t)
≤ ‖u(·, t)‖Lip |ϕε(t)− ϕ(t)| = O(ε),

and ∫ T

0

∫
Q0

ε,t

|δu(x, t)|dxdt ≤ T ‖δu‖L∞ meas (Q0
ε,t) = O(ε).

Thus, the last limit in (9.25) can be simplified as follows:

1

ε

∫ T

0

∫
Q0

ε,t

(f(uε) + εδf(uε)− f(u)) ∂xψdxdt

= −1

ε

∫ T

0

[f(u)]ϕ

∫ ϕε

ϕ

∂xψdtdt+O(ε)

= −
∫ T

0

[f(u)]ϕ∂xψ(ϕ, t)
ϕε − ϕ

ε
dtdt+O(ε).(9.27)

Substituting (9.26) and (9.27) into (9.25) we obtain (9.20).
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