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SOME GENERALIZED EUCLIDEAN AND 2-STAGE EUCLIDEAN
NUMBER FIELDS THAT ARE NOT NORM-EUCLIDEAN

JEAN-PAUL CERRI

ABSTRACT. We give examples of Generalized Euclidean but not norm-Euclid-
ean number fields of degree greater than 2. In the same way we give examples
of 2-stage Euclidean but not norm-Euclidean number fields of degree greater
than 2. In both cases, no such examples were known.

1. INTRODUCTION

In 1985, Johnson, Queen and Sevilla [9] introduced a generalization of the clas-
sical notion of Kuclidean number field.

Definition 1.1. A number field K is said to be Generalized Fuclidean or simply
G.E. if for every («, f) € Zi x Zx\{0} such that the ideal («, ) is principal, there
exists T € Zk such that

INk/gla = YB)| < [Ngq(B)l-

If (a, B) is principal, we thus have at our disposal the Euclidian algorithm to
compute a ged of @ and 5 because it is easy to see that (5, — Y3) is principal
again, and so on. Note that if K is norm-Euclidean, then K is G.E. and, if K is
principal, i.e., has class number 1, then K is G.E. if and only if K is norm-Euclidean.
If we want to illustrate the difference between “G.E.” and “norm-Euclidean”, the
interesting case is when K is G.E. but not principal (so not norm-Euclidean). The
following result was established by Johnson, Queen and Sevilla in [9].

Theorem 1.1. The quadratic number field Q(\/d) is G.E. but not norm-Euclidean
for d = 10 and d = 65. The quadratic number field Q(\/d) is not G.E. for d =
15, 26, 30, 35, 39, 51, 78, 87, 102, 115, 195 and 230.

Furthermore, Johnson, Queen and Sevilla conjectured that K = Q(v/d) (with
d > 1 squarefree) is G.E. if and only if K is norm-Euclidean or d = 10 or 65.

Another variation on norm-Euclidean number fields has been introduced by
Cooke [1].

Definition 1.2. Let m be a rational integer > 1. The number field K is m-stage
Euclidean if and only if for every o € Zg and every 8 € Zg\{0} there exists a
positive rational integer k < m and k pairs (g;,r;) (1 < i < k) of elements of Zg
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such that
a = Bq +r,
B = 7Tig2 + 72,
Tk—2 = Tk—1qk + Tk,

and [Nk q(re)| < [Nk /o(B)|-
When it is well defined, let us put

1 ag
[Q1;(I2a~~~an}:CI1+ R 1 :aa
q2 1
q3 _|_ .o _|_ J—
qk
where aj, and by are given by
a = (g1, bl = ]-,
az = a1q2+1, by =g,
and recursively for k£ > 3 by
ag = Gk—1qk +ag—2, br = qrbr—1 + br_2.

Since 0 a ,
@ Gk (_1)k+1_k

B by biB’

this definition is equivalent to the following.

Definition 1.3. The number field K is m-stage Euclidean if and only if for every
¢ € K, there exists a positive rational integer k¥ < m, and k elements ¢1,q2,...,qx €
Zx such that
1
< T/
[Nk /q(br)|

As in the previous case, norm-Euclidean implies m-stage Euclidean, but contrary
to what happens with the G.E. condition, we have the following result [7].

’NK/Q(f —[q1,92,-- -,Qk])’

Theorem 1.2. A number field K with unit rank r > 1 (i.e., r = rank (Z3;) > 1)
is principal if and only if K is m-stage Euclidean for some m.

As a consequence, if we want to study the difference between m-stage Euclidean
and norm-FEuclidean, we have to look at number fields with class number 1 and find
some example where K is principal, m-stage Euclidean, but not norm-Euclidean.
The following result was established by Cooke [7].

Theorem 1.3. For d = 14, 22, 23, 31, 38, 43, 46, 53, 61, 69, 89, 93, 97, Q(\/d) is
2-stage Buclidean, but not norm-FEuclidean.

Furthermore, Cooke and Weinberger [8] proved that, under GRH, every princi-
pal number field K with unit rank r > 1 is 4-stage Euclidean, and even 2-stage
Euclidean if K has at least one real place.
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For both notions (G.E. and m-stage Euclidean), no examples of number fields of
degree greater than 2 were known. Our main results are the following.

Theorem 1.4. None of he totally real number fields enumerated in Table 1 are
principal. They all are G.E. except for the second cubic number field of discriminant
3969, defined by x> — 21x — 35, which is neither principal nor G.E.

TABLE 1. Here, n is the degree of the field K, Dk its discriminant,
P(z) its equation, h its class number and M (K) its Euclidean

minimum.
n | Dk P(x) h| M(K)
311957 2% —22 =92+ 10 212
312597 |23 —22 -9 +8 315/2
312777 2% —2% — 140 +23 2[5/3
313969 | 23 — 212 — 28 314/3
313969 | 2% —21x—35 317/3
313981 |23 —2? —1lz+12 2 [3/2
314212 [2%—122—10 31772
34312 |23 —22 162 +8 3] 11/4
315684 |23 — 142 — 14 319/2
4 | 21025 | 2% — 1722 + 36 21
4132625 | 2 — 23 — 1922 +4x +76 |2 [ 1
4 146400 | 27 — 2222 + 116 2 |5/4
4 151200 | 2* — 2022 + 50 217/2

Theorem 1.5. The totally real number fields of degree 3 and of discriminants
< 15000 which are principal but not norm-Euclidean (82 cases) are 2-stage norm-
FEuclidean. The same is true for degree 4 and discriminants 18432, 34816, 35152
and for degree 5 and discriminant 390625. In all of these cases, the number field is
principal, not norm-FEuclidean, but 2-stage norm-FEuclidean.

Details on the number fields appearing in Theorem [ are available from [6] and
are given in the online version of this papelﬁ In Section 2, we recall other definitions
and general results. In Sections 3 and 4, we study the case of Generalized Euclidean
number fields and the case of 2-stage Euclidean number fields, respectively.

2. THE ALGORITHM, GENERALITIES

Let K be a number field of degree n. We have designed an algorithm which
allows us to compute the Euclidean minimum of K, in particular when K is totally
real [5], but also in the general case [3]. According to theoretical results [4], this
algorithm can also give the upper part of the Euclidean spectrum of K and this
yields new examples of number fields with interesting properties.

In [2] and [10] the Euclidean minimum of the number field with discriminant 3969, defined
by z3 — 21z — 28 was erroneously announced to be 1.
2See the “Table Supplement” link on line.
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From now on, we suppose that K is totally real and that n > 2. We denote by
Z the ring of its integers and by N g its absolute norm. The Fuclidean minimum
of an element £ € K is

mr(§) = TieanK [Nk /(€ — 1)

and the Fuclidean minimum of K is

M(K) = sup m (§).
{eK
The set of values taken by my is called the Fuclidean spectrum of K. We know
the following important result [4].

Theorem 2.1. The Fuclidean spectrum of K is the union of {0} and of a strictly
decreasing sequence of rationals (r;);>0 with limit 0. For each i, the set of £ € K
such that mg(§) = r; is finite modulo Z .

In fact, we have a stronger result, which can be formulated in terms of the
inhomogeneous spectrum. However, we shall not need this in what follows.

Corollary 2.2. The set of £ € K such that mg (&) > 1 is finite modulo Z .

Recall now that we have at our disposal an algorithm which can give us all the
¢ € K such that mg(€) > 1. Without going into detail—these can be found in
[B]—let us give nevertheless the theorem which justifies the algorithm and the main
ideas that are behind it. Let us choose a constant £ > 0 and a let us embed K
into K ®gR =: K, which we can identify with R”, in which Zg is a lattice. Under
this identification an element ¢ of K is viewed as (0;(£))1<i<n, where the o; are
the embeddings of K into R. The map mg extends to a map mz from R™ to RT
in a natural way:

Moreover, the product of two elements of K is extended to the product coordinate
by coordinate in R™. This new product of two elements z,y € R™ will be denoted
by x - y. Finally, let € be a nontorsion unit of Zj.

The main idea is to find in a fundamental domain F associated to Zg in R", s
distinct bounded sets 7; (1 <4 < s) with the property that for each such 7; there

exists an X; € Zx and s; integers n;1,...,n; s, (s; > 0) such that

(1) (Eﬂ_XZ)\HC U 7;%',1 (izla"'as)a
1<i<s;

where

H = {x € R" such that my(x) < k}.

We consider the 7; as the vertices of a directed graph G and represent (Il) by s;
directed edges whose tail is 7; and whose respective heads are the ’7;% , (1< <sy).
To describe such an edge of G we shall use the notation 7; — T, ,(X;). The set
C of simple cycles of G is nonempty and finite. Each element ¢ of C of length j is
in the form of the circular path, 75 — T{(Xg) - — T/_1(X]_5) = Ty (Xj_,), for
some subset {77,...,T/_1} C{T1,...,Ts}, where X] denotes the element X € Z
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associated to 7;. This defines, in a unique way, j elements of K, &,...,&j_1 by
the formula
X I g+ Xy,
B el —1
the indices being read modulo j. In this context, we say that &,...,§;—1 are
associated to the cycle c.

We denote by £ the finite set of all elements of K associated to the elements of
C. The &; associated to a cycle ¢ are in the same orbit modulo Zg under the action
of Z3; (in fact £41 =€ - & — X)) and satisfy

mg(§o) =+ = mg(§-1) =: m(c),

which is a rational number. Finally, define

(r=0,...,5—1);

T

m(G) = maxm(c) = max mz(§).

Let us say that G is convenient if every infinite path of G is ultimately periodic.
The essential result is the following.

Theorem 2.3. Assume that G is convenient and that there exists T € {T1,...,Ts}
and x € R™ such that my(x) > k. Then:

i) mg(z) <m(G).

ii) If v € K, there exists § € € such that x = £ mod Zg.

In this situation we know all the potential & € K such that mg(€) > k, and
since computing mg (§) is possible (again see [] for more details), we know in fact
that all of the £ € K such that mg(§) > k. To identify the elements £ € K such
that mg(€) > 1, it is sufficient to run the algorithm with & = 0.999, for instance.

3. GENERALIZED EUCLIDEAN NUMBER FIELDS

3.1. Generalities. From the definition of a G.E. number field and the definition
of the map mg, we have the following result.

Proposition 3.1. The field K is G.E. if and only if for every (a, §) € Zx xZk \{0}
such that mg (a/B) > 1, the ideal («, B) is not principal.

Remark 1. Suppose that we have at our disposal the finite set S of all £ € K (mod-
ulo Z k) such that mg (€) > 1, and that for each such £ we have a representative u/v
where (u,v) € Zg x Zg\{0}. Let (a, 8) € Zg x Zx\{0} such that mg(a/B) > 1.
Then there exists £ = u/v in S such that o/ = u/v + v with v € Zk. Since

(a,8) = (Bu/v+18,8) = (Bu/v, B) = B/v(u,v),
it is sufficient, for proving that K is G.E., to check that for every £ = u/v € S,
(u,v) is not principal.

3.2. A first example. The purpose of this subsection is to study in detail a par-
ticular case. Other results, obtained in another way, will be given in the next
subsection. Let K be the normal quartic field generated by any one of the roots of

P(X) = X*-20X2 + 50.

The field K is totally real, its discriminant is 51200, its class number is 2, and a
Z-basis of Zk is (eq, eq, e3,e4) with

e1=1, ea =V2, e3 = /104 5V2, eq = \/10 — 5v/2.
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Our algorithm shows that

M(K) =

()= 1

and that there is a unique £ € K (modulo Zg) such that mg(§) > 1. More
precisely,

1

£=3

According to Remark [, if we want to establish that K is G.E., we just have to
prove that the ideal (2, e3 + e4) is not principal.

(e3 +eq).

Theorem 3.2. The field K is not norm-Fuclidean, but it is G.E.

Proof. First, we note that es + e4 = es - e3, so that we are reduced to proving that
the ideal (es,e3) is not principal. Suppose on the contrary that it is principal so
that we have

ex Ly +e3 Ly = vy,
with v € Zg. Since N /g(e2) = 4 and Nk g(e3) = 50, we have
Ngo(v) | 2 = ged(4,50),

so that we have two possibilities: either v € Z}- or Nk /g(v) = 2.
First case: v is a unit and we have, in fact, es Zx + e3 Zx = Z .
In this case, there exist u, v € Zx such that

(2) l=ey-u+esz-v.

Let us write

(3) {u = a+ bey + ces + dey,

v = da +bey+ ez +dey,

where a,b,c,d,a’, b, c,d € Z.

Since eg - e3 = e3+e4, €24 = e3 —e4 and ez - e4 = Hea, if we substitute (@) into
(@) we obtain, by identification of the coefficients in our Z-basis, that 2b+ 10¢’ = 1,
which is clearly impossible.

Second case: v has norm =+2.
If v = a + bey + ce3 + dey where a,b,c,d € Z, an easy computation leads to
+2 = NK/Q(Z/)
= a* +4b* +50¢* + 50d* — 4a%b? — 20a%® — 20ad? — 4002
—40b%d? + 100c2d? + 40abc?® — 40abd?® + 200cd® — 200dc® + 80abed.
This implies that
+2 = (a® — 20*)* (mod5),

which is impossible as neither of £2 are quadratic residues (mod5). g
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3.3. The Dedekind-Hasse criterion. In this subsection, we study the link be-
tween G.E. and a Euclidean-type map that we shall deduce from the Dedekind-
Hasse criterion. This will lead us to define an easy test which allows us to find
new examples, without requiring detailed calculations as above. First, recall the
Dedekind-Hasse criterion (see for instance [I1]).

Theorem 3.3. A number field K has class number 1 if and only if for every
a, B € Zr\{0} such that B 1 «, there exist v, 6 € Zy such that

(4) 0 < [Nksglay = B)| < [Nk/q(B)]-
This leads to the following natural definition.

Definition 3.1. For every £ € K\Zg we shall denote by hx(£) the real number
defined by
hi (&) =inf{mg(YE); T € Zk and YE & Zk }.

This map has the following elementary properties, which we give here without
proof.

Proposition 3.4. For every £ € K\Zy we have:

(1) 0 < hi(8) <mi(§)-
(2) For every a € Zg, hx(§ + o) = hi (§).
(3) For every e € Z};, hix(ef) = hi ().

We can now reformulate the Dedekind-Hasse criterion as follows.

Theorem 3.5. A number field K has class number 1 if and only if for every
¢ € K\Zk we have hi(§) < 1.

Proof. The norm being multiplicative, (@) can be reformulated as follows: For every
¢ € K\Zx there exist 7, § € Zg such that

(5) 0 < |Nkjo(y§—9d)l <1,

which leads to m g (§) < 1. Since (@) cannot be true if v§ € Zg, we have hi (§) < 1.
Conversely, since [Nk q(v€ — 0)| = 0 implies v§ € Zg, which is excluded in the
definition of hy, we see that if hx(€) < 1, then (@) is true. O

Now consider a number field K and put
S ={£ e K; muc(e) > 1.
Suppose that K is not norm-Euclidean so that S # (). We have the following result.

Theorem 3.6. One of the following three possibilities holds:

(1) For every £ € S, hx(§) <1. Then K has class number 1 and is not G.E.

(2) For every £ € S, hix(§) > 1. Then K is G.E. (and not principal).

(3) There exist &, pn € S such that hx(§) <1 and hx(pu) > 1. Then K is not
principal. If, in addition, there exists £ = a/B € S (with «, 8 € Zk ) with
hi(€) <1 and such that («, B) is principal, then K is not G.E. Otherwise
it is G.E.

Proof. Clearly, we have the three cases.

Case 1. The result is a consequence of Theorem and of the fact that when the
field is principal norm-Euclidean and G.E. are synonymous.
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Case 2. Theorem indicates that K is not principal. By Proposition 3] it is
sufficient to prove that for every £ = o/ € S where «, 8 € Zk, the ideal (a, )
is not principal. Otherwise, we have (a, ) = vZi with v € Zg. By hypothesis
hi (&) > 1 so that for every X, Y € Zi with X¢ & Zi we have

INkjo(Xa =Y B)| > [Ng/o(B)l-

Now v can be written v = Xa — Y5 with X, Y € Zi and X¢ € Zg. Otherwise
v € fZk so that § | v. But this implies that v and § are associates and we
have (o, ) = BZk which implies 8 | « and £ € Zg, which is impossible. We
deduce from this that |Ng (V)| > |Ng/q(B)]. Since Ng,q(v) | Nk/g(B) we have
|INk/o(v)| = [Nk /o(B)|, and since v | B, v and 3 are associates, which is impossible
by the previous argument.

Case 3. Theorem indicates that K is not principal. The second assertion is a
consequence of Proposition Bl Indeed, as previously, if hx () > 1 and £ = «/f,
then (a, ) is not principal and this case is not an obstruction for K to be G.E.
Finally, the only possibilities for contradicting G.E. come from the £ = o/ € S
such that hi(§) < 1 and (e, ) is principal. O

Corollary 3.7. Suppose that K is not norm-Fuclidean and that, with the above
notation, S modulo Zk is composed of a single orbit under the (multiplicative)
action of Zj, modulo Zy, t.e., that if &, p € S there exists an € € Zj, and an
a € Zy such that u = €£ + a. Then either K is principal and not G.E. or K is
not principal but is G.E.

Proof. If K is principal, we are in case 1. Otherwise, since all the elements of .S,
which are in the same orbit, have the same image by hx (Proposition B4), we
cannot be in case 3 of Theorem Finally, we are in case 2 and K is G.E. (]

Remark 2. To simplify notation and vocabulary, we shall often, by abuse of lan-
guage, speak of £ € K to mean £ € K mod Zk. For instance, we shall speak of
orbits in S under the action of Z7; in this context S and these orbits should be
understood modulo Zg.

Corollary 3.8. The totally real number fields of degree 3 and discriminants 1957,
2777, 3981 (see Table 1) are G.E. The totally real number fields of degree 4 and
discriminants 46400 and 51200 (see Table 1) are G.E.

Proof. In fact, in all of these cases, our algorithm establishes that we are under the
previous hypotheses. For discriminant 1957, we have M (K) = 2 and one orbit with
one element in S. For discriminant 2777, we have M (K) = 5/3 and one orbit with
2 elements in S. For discriminant 3981, we have M (K) = 3/2 and one orbit with
one element in S. For discriminant 46400, we have M (K) = 5/4 and one orbit with
3 elements in S. For discriminant 51200, we have M (K) = 7/2 and one orbit with
one element in S. O

Now, if there are several orbits in S, and we want to use Theorem [3.6] we have
to see whether, for one element £ by orbit, and for every orbit, we have hx (£) > 1,
in which case necessarily K is G.E. The problem is now: How can we compute
hi(§)? Our algorithm gives us every such £ by its coordinates in a Z-basis of Zg.
These coordinates are of the form (a1/d,as/d,...,a,/d) where a; € Z for every i
and d € Z~¢. Furthermore, we can compute mg (u) for every p € K. Hence, it is
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easy to see that, to compute hx (§), it is sufficient to compute m g (Y€) for every T
with coordinates in {0,1,...,d — 1} for our basis, such that T¢ ¢ Zk. This is easy
to check. By definition, the value of hg (§) will be the minimum of these mg (1E).
Of course if for every & and every such T we have T¢ € S mod Zg, then K is G.E.
Using this last approach we have established the following result.

Theorem 3.9. The following totally real number fields of degree n are G.E. but
not norm-FEuclidean:

o whenn = 3, the fields in Table 1 with discriminants 2597, 4212, 4312, 5684;
o when n =4, the fields in Table 1 with discriminants 21025, 32625.

Proof. We just give a typical example. For n = 3 and discriminant 2597, we have
two orbits in S, the first one O; with two elements (+(e; + 2e2 + 2e3)/3 modulo
Zy where (e;) is the Z-basis of Zg returned by PARI [I]) and the second one O,
with one element ((e; + es + e3)/2 modulo Zg). Then we can easily check that
Zi - O1 = O1 U {0} and that Zg - Oy = O3 U {0}. The same thing happens in
other cases with sometimes more complicated equalities, but always with Zg - O C
S u{0}. O

Remark 3. If we want to treat all the nonprincipal number fields of degree 3 and
discriminant < 6000, it remains to study the two number fields with discriminant
3969. In these cases, our previous method does not work, because we have some
¢ = /B € S such that hx(€) < 1. The first one, K1, is defined by x3 — 21z — 28.
For this field, S is composed of five orbits O;, 1 <14 < 5. For four of them, say for
1 <i <4, we have Zy - O; € SU{0}; but for the last one, Os, this is not true.
Take an element /3 of Os: here we can take o = 3e; + 2e3 4 2e3 and § = 6 where
(e1,e2,e3) is the Z-basis returned by PARI [I]. We can then prove directly as in
Section that the ideal («a, 8) is not principal. We conclude that K; is G.E.

For the second field, Ky, defined by 2% — 21z — 35 the situation is different.
Here S is composed of seven orbits O;, 1 < i < 7 and four of them, say O;
with 1 < ¢ < 4, are such that Zg - O; € S U {0}. Now if we look at the three
others, we find that two of them contain an a/f for which (a, §) is principal. For
completeness these (a, §) are (7e; + 12es + 4e3,21) and (7e; + 5ea + 11leg, 21) with
the usual notation. Consequently, K5 is not G.E. All the computations, which are
long and complicated—in particular for Kos—have been done by hand and checked
using PARI [I]. We do not give them here for lack of space; anyway they are not
especially enlightening.

Finally, we put all these results together to give us Theorem [[.4]

4. THE 2-STAGE EUCLIDEAN NUMBER FIELDS

Let us begin with an example. Let K be the totally real cubic number field with
discriminant 3988, defined by 2% — 16x — 4. Using our algorithm we see that the
upper part of the Euclidean spectrum of K has five elements:

sp(K) N [1,00) = {19/8, 11/8, 5/4, 19/16, 133/128}.

The set S is composed of five orbits, respectively, the orbits of ae; + bes + ce3 with
(a,b,c) = (0,1/2,1/2), (1/2,1/2,0), (1/2,1/2,1/2), (0,3/4,1/2) and (0,3/8,1/2),
where (e, e9,€3) is the Z-basis of Zg returned by PARI [I]. These orbits have,
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respectively, 1, 1, 1, 2 and 4 elements. For one element £ by orbit, we try to find
q1,q2 € Zk such that

1 1
; E P Y S
) Rl == )< et
by testing “small” g1 € Zx and “small” g2 € Zg\{0}. In each case this is possible,
so that for every £ € S, (@) is true. Finally, this implies that K is 2-stage norm-
Euclidean. Using exactly the same approach we have established the results of
Theorem

Remark 4. Obviously these fields, which are principal and not norm-FEuclidean, are
not G.E.
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