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AN IMPROVED LOWER BOUND

FOR THE DE BRUIJN-NEWMAN CONSTANT

YANNICK SAOUTER, XAVIER GOURDON, AND PATRICK DEMICHEL

Abstract. In this article, we report on computations that led to the discovery
of a new Lehmer pair of zeros for the Riemann ζ function. Given this new
close pair of zeros, we improve the known lower bound for de Bruijn-Newman
constant Λ. The Riemann hypothesis is equivalent to the assertion Λ ≤ 0. In
this article, we establish that in fact we have Λ > −1.14541×10−11. This new
bound confirms the belief that if the Riemann hypothesis is true, it is barely
true.

1. Introduction

The Riemann hypothesis is a long standing conjecture in mathematics. It asserts
that the non-trivial zeros of the Riemann ζ function all have a real part equal to
1/2. Many attempts have been made to prove it. To this end, Pólya considered a
family of trigonometric integrals Hλ, defined by

Hλ(x) =

∫ ∞

0

etu
2

Φ(u) cos(xu)du (λ ∈ R, x ∈ C),

where

Φ(u) =

∞∑
n=1

(2π2n4e9u − 3πn2e5u) exp(−πn2e4u) (0 ≤ u < ∞).

With this definition, we have [Tit86, p. 255] H0(x) = Ξ(x/2)/8, where Ξ is the
classic Riemann function defined by

Ξ(x) = −1

2
(x2 +

1

4
)ξ(

1

2
+ ix),

ξ(s) =
1

2
s(s− 1)π−s/2Γ(

1

2
s)ζ(s).

The Riemann hypothesis is then equivalent to the fact that the functions Ξ
and H0 have only real zeros. Pólya hoped to prove this property for the integral
functions Hλ, and to deduce the Riemann hypothesis as a corollary. In the general
case, results were obtained by de Bruijn and Newman. In fact, de Bruijn [dB50]
showed that Hλ has only real zeros if λ ≥ 1/2. Moreover, if λ is such that Hλ

has only real zeros, then it also holds for any λ′ with λ′ ≥ λ. On the other
hand, Newman [New76] showed that there is at least one value for λ such that
the corresponding Hλ function has at least one non-real zero. Thus the following
definition makes sense.
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Definition 1.1. There exists a finite real value Λ such that Hλ has only real zeros
if and only if λ ≥ Λ. The value Λ is called the de Bruijn-Newman constant.

With this definition, the Riemann hypothesis is equivalent to the assertion Λ ≤ 0.
Recently, Kai et al. [KKL09] have shown that Λ < 1/2. Much work has been done
to obtain lower bounds for Λ [CNV88, tR91, NRV92, CRV91]. These were based
on the search of non-real zeros for Jensen polynomials, except for [CRV91], which
involves the computation of the Laguerre difference for functionsHλ. Then, Csordas
et al. [CSV94] made studies on the law of motion for the zeros of functions Hλ when
λ is varying. They obtained a new lower bound for Λ by considering a close pair of
zeros for the function ζ. Such pairs, whose difference is unusually small, are called
Lehmer pairs. Then successive computations of zeros for ζ gave improved lower
bounds for Λ [CSV94, COSV93, Odl00]. In [Odl00], Odlyzko obtained the best
lower bound, prior to the work related here, by establishing that Λ > −2.7× 10−9.

2. The de Bruijn-Newman constant and Lehmer pairs

The basic tool that we will use in this article is the main theorem of [CSV94]
(Theorem A, below). As we will see, this theorem enables us to obtain only negative
lower bounds for Λ. Thus, without explicit mention to the contrary, in this paper,
we always suppose that the Riemann hypothesis holds. If it is not the case, then
we have Λ > 0 and thus any negative lower bound we might obtain for Λ is trivially
correct. Likewise, an eventual multiple zero for H0 would immediately prove that
Λ ≥ 0 [CSV94]. Thus, we also suppose that the zeros of H0 are all real and simple.
Note that if x is a zero, then −x is also a zero. Therefore, we number the positive
zeros of H0 in increasing order:

0 < x1 ≤ x2 ≤ x3 ≤ x4 ≤ ...

and we extend our numbering to negative zeros by putting

x−j = −xj (j = 1, 2, ...),

with x0 undefined. With the definition ofH0, we note that the zeros of the Riemann
ζ function are exactly 1/2+ ixj/2 for j ∈ Z− 0. Given this, following [CSV94], we
define Lehmer pairs of zeros.

Definition A. Let k be a positive integer such that xk and xk+1 are successive
simple zeros of H0. Then (xk, xk+1) is a Lehmer pair of zeros for H0 if we have
(xk+1 − xk)

2.Gk < 4/5 with

Gk =
∑

j �=0,k,k+1

{ 1

(xk − xj)2
+

1

(xk+1 − xj)2
}
.(2.1)

We can now state the main theorem from [CSV94].

Theorem A. Let (xk, xk+1) be a Lehmer pair of zeros for H0. Set

λk =
(1− 5

4 (xk+1 − xk)
2.Gk)

4/5 − 1

8Gk
(2.2)

so that −1/(8Gk) < λk < 0. Then the de Bruijn-Newman constant Λ satisfies the
inequality Λ ≥ λk.

The Taylor expansion for λk shows that, provided that Gk is not too large, λk

is close to −(xk+1 − xk)
2/8. In this case, the closer a Lehmer pair, the better the

lower bound.
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Table 1. Close pairs of zeros for the function ζ(1/2+it), according
to Gourdon and Demichel [GD04].

t1 t2 t2 − t1
7954022502373.43289015387 7954022502373.43289494012 4.7863× 10−6

18580341990011.1593414105 18580341990011.1593364110 4.9995× 10−6

18523741991636.3643689901 18523741991636.3643759580 6.9679× 10−6

4307762397492.0712366929 4307762397492.0712295734 7.1195× 10−6

16671318581127.6545668867 16671318581127.6545740724 7.1857× 10−6

8847150598019.2235982778 8847150598019.2236059816 7.7038× 10−6

10123949469608.2309097616 10123949469608.2309189455 9.1839× 10−6

20825125156965.3882387859 20825125156965.3882484837 9.6978× 10−6

17335277232221.2458033031 17335277232221.2457934935 9.8096× 10−6

5907264585921.6903635665 5907264585921.6903535057 1.00608× 10−5

21285800773585.4550406956 21285800773585.4550510671 1.03715× 10−5

3. Numerical verification of the Riemann hypothesis

Much work has been done on the numerical verification of the Riemann hypoth-
esis. For what we are concerned with here, those computations are useful to obtain
Lehmer pairs of zeros. However, from a more general point of view, those compu-
tations can be used, for instance, to improve bounds on Chebyshev functions or to
broaden zero free regions for ζ. The largest systematic verification with an official
announcement was performed in 2001 by van de Lune [vdL01]. He claimed that the
first 1010 zeros of the function ζ lie on the critical line and they are all simple. The
verification performed was systematic up to height T = 3293531632.415. These
numerical values will be used in what follows.

Two other larger verifications have been performed but neither obtained an offi-
cial certification. The first one was managed by Wedeniwski [Wed05], and involved
distributed computations over more than ten thousands computers. After four years
of computation, the project was ended and Wedeniwski announced that the first
1011 zeros of the Riemann ζ function lie on the critical line. Computations were
based on the Riemann-Siegel formula. The second verification was by Gourdon and
Demichel [GD04]. Using the fast multiple evaluation algorithm of Odlyzko [OS88],
in 2004, they verified that the first 1013 zeros lie on the critical line. Moreover,
Demichel continued computing and reached the 1014-th zero. They obtained many
pairs of close zeros (see Table 1).

However, neither of these verifications was validated by the American Mathe-
matical Society. The reason seems to be, in Wedeniwski’s case, that there was
no evidence that all zeros were computed. Also, the verification of Gourdon and
Demichel had not been checked independently. In this paper, we refer to close zeros
obtained by Gourdon and Demichel. Thus, in order to formally establish our new
lower bound, we will have to verify their calculations, at least near the close pair
of zeros we will consider.

4. An upper bound for GK

In order to establish the new lower bound, we will use Theorem A with the first
close pair of Table 1. In the following, we denote the rank of appearance of this



2284 YANNICK SAOUTER, XAVIER GOURDON, AND PATRICK DEMICHEL

Table 2. A close pair of zeros for ζ, with adjacent zeros.

Gram blocks Zeros
[g34011300784333, g34011300784335) tK−2 = 7954022502373.0094352194

tK−1 = 7954022502373.1219461606
[g34011300784335, g34011300784337) tK = 7954022502373.43289015387

tK+1 = 7954022502373.43289494012
[g34011300784337, g34011300784338) tK+2 = 7954022502373.7336782379

pair as K. This means that xK = 2t1 and xK+1 = 2t2 where the values t1 and t2
refer to the champion pair of Table 1. We will then have to verify that this pair
of zeros is indeed a Lehmer pair. The purpose of this part is to obtain an upper
bound for GK that only depends on xK−1, xK , xK+1 and xK+2.

The main theorem that we will use to validate our new lower bound is the
following (see [COSV93]).

Theorem B. If K > 1010, then

GK ≤ 2 log(xK+1)

(xK+1 − xK+2)2
+

2 log(xK)

(xK − xK−1)2

+ (log(xK) + log(xK+1))
π2

12
+

4× 1010

(xK − 2T )2
+ 4.

(4.1)

Proof. Analytical computations related to the proof of this theorem can be found
in [COSV93]. The major difference here, concerns K, which is treated as an un-
known in Theorem B, while it has a fixed value in [COSV93]. �

5. A new bound for the de Bruijn-Newman constant

With Theorem B, for a given close pair of zeros (tK , tK+1) of ζ, it is possible
to compute an upper bound for GK if we also have numerical values for the two
adjacent zeros tK−1 and tK+2. Computations performed by Gourdon and Demichel
give us these values for the specific close pair we are considering (see Table 2). It is
then eventually possible to compute a lower bound for Λ, provided that conditions
of Theorem A are satisfied. Checking that the zeros are simple is not necessary as
stated in Section 2. The only remaining problem is to check that computed values
for tK−1, tK , tK+1 and tK+2 are correct, that is to say that no intermediate zero
is missing. This point is implicit in computational verifications of the Riemann
hypothesis but here an independent verification is necessary, since Gourdon and
Demichel’s computations are not officially certified.

Modern computational verifications of the Riemann hypothesis have been greatly
simplified by Turing’s approach to the problem [Tur53], although some errors of
detail were later corrected by Lehman [Leh70]. The main interest of this method
is that it only involves evaluations of ζ on the critical line.

First, let us recall some classical definitions. For t > 0, we define the functions
θ(t) and Z(t) by θ(t) = Arg

{
Γ
(
1
4 + 1

2 it
)}

− t
2 log π and Z(t) = exp(iθ(t))ζ

(
1
2 + it

)
.

Then the function Z(t), called the Hardy function, is real and ζ(1/2 + it) = 0 if
and only if Z(t) = 0. The Riemann-Siegel formula gives a practical way to compute
Z(t). The function θ(t) is computed by its asymptotic expansion for large t. For
n ≥ 0, the n-th Gram point is defined to be the unique solution greater than 7 of
θ(gn) = nπ. A Gram point gn is said to be regular if (−1)nZ(gn) > 0, and irregular
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otherwise. A Gram block is an interval [gn, gn+k) with k ≥ 1 such that gn and gn+k

are regular Gram points, while the Gram points gn+k′ are irregular for all k′ with
1 ≤ k′ < k. Corresponding to the points gn, we define a companion sequence hn of
real numbers such that

• hn can be positive, zero or negative;
• if gn is a regular Gram point, then hn = 0;
• the property (−1)nZ(gn + hn) > 0 holds for all n;
• the series gn + hn is monotonically increasing.

Finally, we denote by N(T ) as usual the number of solutions to ζ(σ + it) = 0 with
0 ≤ t < T , and 0 < σ < 1. We then have the following.

Theorem C. Let n be a positive integer such that gn is a regular Gram point. If
there exist integers k, k′ > 0 such that gn−k > 168π and

2.30 + 0.128 log( gn2π ) +
∑k−1

j=1 hn−j

gn − gn−k
< 1,

2.30 + 0.128 log(
gn+k′
2π ) +

∑k′−1
j=1 hn+j

gn+k′ − gn
< 1,

then we have N(gn) = n+ 1.

Proof. This theorem is proved for the general case of Dirichlet L-series in [Rum93,
Prop. 3]. �

Thus, Theorem C can be used to determine exactly the number of solutions to
ζ(σ + it) = 0 with 0 ≤ t < gn and 0 < σ < 1, provided that gn is a regular Gram
point and that a companion series hm has been computed for n − k + 1 ≤ m ≤
n + k′ − 1. To apply Theorem C, the values k and k′ can be arbitrary, i.e., no
hypothesis is required on the eventual regularity of either the Gram points gn−k or
gn+k′ , or for any intermediate Gram points (except gn).

It has also to be noted that numerical values 2.30 and 0.128 involved in Theorem
C can be improved. Recently, Trudgian [Tru09] claimed that they can be replaced
by 1.41 and 0.0054, respectively. However, this improvement, from a computational
point of view, leads to only a minor decrease in complexity. Indeed, when checking
the Riemann hypothesis, most of the time is spent evaluating the function Z at
various points in order to locate changes of signs. Thus, in such computations, the
impact of Trudgian’s result is quite limited.

Saouter made an independent verification of the computed values for zeros in
an interval of 200 Gram points around the critical pair (tK , tK+1). Since few zeros
had to be checked, the Riemann-Siegel formula was used (see [BBC00]), unlike in
Gourdon’s and Demichel’s work. To ensure great precision in computed zeros, three
correcting terms were also used. Computations were made by the MPFR [FHL+07]
multiprecision package. Computed values for zeros in this second verification were
in complete agreement with those computed by Gourdon and Demichel. A compan-
ion series hn was computed and, setting k = k′ = 35 in Theorem C, computations
showed that Turing’s condition holds at least for all Gram points in the interval
[gK−65, gK+65]. Thus, no zero is missing in Table 2.

Reminding ourselves that we have xn = 2tn for all n ≥ 0, we can now use
Theorem B. We obtain GK ≤ 379.1995 and (xK+1−xK)2×GK ≤ 3.47471× 10−8.
Thus, (xK , xK+1) is a Lehmer pair and Theorem A gives λK > −1.14541× 10−11.
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Table 3. Probability of appearance of Lehmer pairs.

Lower bound δ M Probability Reference
−5.90× 10−9 1.09× 10−4 1.5× 109 0.049 [COSV93]
−2.63× 10−9 1.45× 10−4 5× 109 0.994 [Odl00]
−1.15× 10−11 2.084× 10−5 1× 1014 0.629 This paper

6. Final remarks

The result we obtained was enabled by the discovery of a close pair of zeros
for the Riemann ζ function by Gourdon and Demichel [GD04]. In the conclusion
of [Odl00], Odlyzko expresses the idea that systematic computations of zeros should
produce still better and better lower bounds for Λ. A question then comes to mind:
is the current Lehmer pair we used exceptional or not? The exact distribution law
of zeros of the Riemann ζ function is unknown, but it is conjectured to be the same
as that of eigenvalues of matrices of the Gaussian unitary ensemble. This conjecture
comes from practical observations, but it agrees with Hilbert and Pólya’s conjecture
that the zeros of the Riemann ζ function correspond to eigenvalues of some positive
linear operator.

The Gaussian unitary ensemble has been widely studied in physics. Odlyzko
compared the results from this model to the numerical data of zeros of the Riemann
ζ function [Odl87]. For instance, the GUE conjecture implies that if you define δn =

(tn+1− tn)
log tn

2π

2π , then the probability that the minimal value, amongst M consecu-

tive values, for δn is less than αM−1/3, is approximately equal to 1−exp(−π2α3/9),
provided that α3/M is small. From this relation, and taking into account the num-
ber of zeros which have been computed, it is possible to give a quantative appre-
ciation of close Lehmer pairs that have been used in this and earlier work. These
values are recorded in Table 3. Thus, we can observe that, while in [COSV93] the
Lehmer pair that has been used was rather exceptional, the one used in [Odl00]
was almost totally predictable. The probability of the pair used in this paper lies
between these two: neither exceptional, nor certain. The strategies to obtain these
pairs differ. In [COSV93], the pair was obtained by a complete enumeration of the
first 1.5× 109 zeros of the Riemann ζ function. In [Odl00], the pair considered was
obtained by computing 5 × 109 zeros around the 1020-th zero. Finally, the com-
putation in this paper is based on a complete enumeration of the first 1014 zeros,
performed by Gourdon and Demichel [GD04]. If 1014 zeros around the 1020-th zero
had been computed, then, with the same probability as in this paper, we could
have expected to obtain a close pair with δ � 2× 10−5 and thus a lower bound of
approximately −1.1× 10−12 for Λ. However, it has to be noted that complete enu-
merations of first zeros of ζ have widespread applications in computational number
theory. For instance, this kind of result can be used to refine knowledge of the
prime number distribution [Dus98]. This is not the case for isolated computations.
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thesis, Université de Limoges, 1998.
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