FOURIER EXPANSIONS FOR APOSTOL-BERNOULLI, APOSTOL-EULER AND APOSTOL-GENOCCHI POLYNOMIALS

A. BAYAD

Abstract

We find Fourier expansions of Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials. We give a very simple proof of them.

1. Introduction and statement of main results

Let $w \in \mathbb{C}$ and x a variable. The Apostol-Bernoulli polynomials $B_{n}(x ; w)$, Apostol-Euler polynomials $E_{n}(x ; w)$ and Apostol-Genocchi polynomials $G_{n}(x ; w)$ are given by the generating functions

$$
\begin{align*}
& \left.\sum_{n \geq 0} B_{n}(x ; w) \frac{t^{n}}{n!}=\frac{t e^{x t}}{w e^{t}-1},|t+\log (w)|<2 \pi\right) \tag{1.1}\\
& \left.\sum_{n \geq 0} E_{n}(x ; w) \frac{t^{n}}{n!}=\frac{2 e^{x t}}{w e^{t}+1},|t+\log (w)|<\pi\right) \tag{1.2}\\
& \left.\sum_{n \geq 0} G_{n}(x ; w) \frac{t^{n}}{n!}=\frac{2 t e^{x t}}{w e^{t}+1},|t+\log (w)|<\pi\right) \tag{1.3}
\end{align*}
$$

where

$$
w=|w| e^{i \theta},-\pi \leq \theta<\pi \text { and } \log (w)=\log (|w|)+i \theta
$$

These polynomials are a natural extension of the classical Bernoulli, Euler and Genocchi polynomials: $B_{n}(x)=B_{n}(x ; 1), E_{n}(x)=E_{n}(x ; 1), G_{n}(x)=G_{n}(x ; 1)$, see [3]. These polynomials have many applications in mathematics. Our main results are

Theorem 1.1. Let $w \in \mathbb{C} \backslash\{0\}$. For $0<x<1$ if $n=1,0 \leq x \leq 1$ if $n \geq 2$. We have

$$
\begin{equation*}
B_{n}(x ; w)=\frac{-n!}{w^{x}(2 \pi i)^{n}} \sum_{k \in \mathbb{Z}}^{*} \frac{e^{2 \pi i k x}}{\left(k-\frac{\log (w)}{2 \pi i}\right)^{n}} \tag{1.4}
\end{equation*}
$$

where $\sum_{k \in \mathbb{Z}}^{*}=\sum_{k \in \mathbb{Z} \backslash\{0\}}$ if $w=1$ and $\sum_{k \in \mathbb{Z}}^{*}=\sum_{k \in \mathbb{Z}}$ if $w \neq 1$.

[^0]Theorem 1.2. Let $w \in \mathbb{C} \backslash\{0\}$. For $0<x<1$ if $n=0,0 \leq x \leq 1$ if $n \geq 1$. We have

$$
\begin{equation*}
E_{n}(x ; w)=\frac{2(n!)}{w^{x}(2 \pi i)^{n+1}} \sum_{k \in \mathbb{Z}}^{* *} \frac{e^{2 \pi i\left(k-\frac{1}{2}\right) x}}{\left(k-\frac{1}{2}-\frac{\log (w)}{2 \pi i}\right)^{n+1}} \tag{1.5}
\end{equation*}
$$

where $\sum_{k \in \mathbb{Z}}^{* *}=\sum_{k \in \mathbb{Z} \backslash\{0\}}$ if $w=-1$ and $\sum_{k \in \mathbb{Z}}^{* *}=\sum_{k \in \mathbb{Z}}$ if $w \neq-1$.
Theorem 1.3. Let $w \in \mathbb{C} \backslash\{0\}$. For $0<x<1$ if $n=0,0 \leq x \leq 1$ if $n \geq 1$. We have

$$
\begin{equation*}
G_{n}(x ; w)=\frac{2(n!)}{w^{x}(2 \pi i)^{n}} \sum_{k \in \mathbb{Z}}^{* *} \frac{e^{2 \pi i\left(k-\frac{1}{2}\right) x}}{\left(k-\frac{1}{2}-\frac{\log (w)}{2 \pi i}\right)^{n}} \tag{1.6}
\end{equation*}
$$

Remark 1.4. Luo's proof [4, for Theorems 1.1 and 1.2, uses the Lipschitz summation formula [2] which is not easy to understand. In this paper we propose a very simple proof. On the other hand, Theorem 1.3 is new.

2. Proofs of main results

Proof of Theorem 1.1. We consider $\int_{C} f_{n}(t) d t$ with $f_{n}(t)=\frac{t^{-n} e^{x t}}{w e^{t}-1}$, the contour C being a circle with radius $(2 N+\epsilon) \pi(\epsilon$ fixed real number such that $\epsilon \pi i \pm \log (w) \neq 0$ $(\bmod 2 \pi i))$, centered at the origin. If $w \neq 1$, the poles of the integrand are $t_{k}=$ $2 \pi i k-\log (w), k \in \mathbb{Z}$ and $t_{\infty}=0$. The residues of the functions $f_{n}(t)$ for $k \in \mathbb{Z}$ are easily found to be $w^{-x}(2 \pi i k-\log (w))^{-n} e^{2 \pi i k x}$, and from Theorem 1.1 the residue at $z_{\infty}=0$ is seen to be $\frac{B_{n}(x ; w)}{n!}$. The integral around the circle C tends to zero as $N \rightarrow \infty$ provided $0<x<1$ if $n=1,0 \leq x \leq 1$ if $n \geq 2$, and by the theorem of residues we obtain

$$
B_{n}(x ; w)=\frac{-n!}{w^{x}(2 \pi i)^{n}} \sum_{k \in \mathbb{Z}} \frac{e^{2 \pi i k x}}{\left(k-\frac{\log (w)}{2 \pi i}\right)^{n}}
$$

If $w=1$, the poles of the integrand are $t_{k}=2 \pi i k, k \in \mathbb{Z}$. The residues of the functions $f_{n}(t)$ for $k \in \mathbb{Z} \backslash\{0\}$ are easily found to be $(2 \pi i k)^{-n} e^{2 \pi i k x}$, and from Theorem 1.1 the residue at $z_{0}=0$ is seen to be $\frac{B_{n}(x ; w)}{n!}$. The integral around the circle C tends to zero as $N \rightarrow \infty$ provided $0<x<1$ if $n=1,0 \leq x \leq 1$ if $n \geq 2$, and by the theorem of residues we obtain

$$
B_{n}(x ; w=1)=\frac{-n!}{(2 \pi i)^{n}} \sum_{k \in \mathbb{Z}} \frac{e^{2 \pi i k x}}{k^{n}}
$$

This yields the theorem.
Proof of Theorem 1.2. We apply the same method to the function $g_{n}(t)=\frac{t^{-(n+1)} e^{x t}}{w e^{t}+1}$ the contour C^{\prime} being a circle with radius $(2 N+1+\epsilon) \pi$ (ϵ fixed real number such that $\epsilon \pi i \pm \log (w) \neq 0(\bmod \pi i))$, centered at the origin. We omit the details.

Proof of Theorem 1.3. We have $G_{n+1}(x ; w)=(n+1) E_{n}(x ; w)$. Thus we get Theorem 1.3 from Theorem 1.2.

References

[1] T. M. Apostol, On the Lerch zeta function, Pacific J. Math. 1 (1951), 161-167. MR0043843 (13:328b)
[2] R. Lipschitz, Untersuchung der Eigenschaften einer Gattung von unendlichen Reihen, J. Reine und Angew. Math. CV (1889), 127-156.
[3] H. Liu, W. Wang, Some identities on the Bernoulli, Euler and Genocchi polynomials via power sums and alternate power sums, Discrete Math., Volume 309, 10, (2009), 3346-3363. MR 2526753 (2010i:11031)
[4] Q-M. Luo, Fourier expansions and integral representations for the Apostol-Bernoulli and Apostol-Euler polynomials, Math. Comp., Volume 78 (2009), No. 268, 2193-2208. MR2521285 (2010d:11029)

Département de Mathématiques, Université d'Évry Val d’Essonne, Bd. F. Mitterrand, 91025 Évry Cedex, France

E-mail address: abayad@maths.univ-evry.fr

[^0]: Received by the editor July 19, 2010 and, in revised form, August 14, 2010.
 2010 Mathematics Subject Classification. Primary 11Yxx, 30D30.
 Key words and phrases. Fourier series, Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi numbers and polynomials, residue theorem.

