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FOURIER EXPANSIONS FOR APOSTOL-BERNOULLI,

APOSTOL-EULER AND APOSTOL-GENOCCHI POLYNOMIALS

A. BAYAD

Abstract. We find Fourier expansions of Apostol-Bernoulli, Apostol-Euler
and Apostol-Genocchi polynomials. We give a very simple proof of them.

1. Introduction and statement of main results

Let w ∈ C and x a variable. The Apostol-Bernoulli polynomials Bn(x;w),
Apostol-Euler polynomials En(x;w) and Apostol-Genocchi polynomials Gn(x;w)
are given by the generating functions
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where

w = |w|eiθ,−π ≤ θ < π and log(w) = log(|w|) + iθ.

These polynomials are a natural extension of the classical Bernoulli, Euler
and Genocchi polynomials: Bn(x)=Bn(x; 1), En(x) = En(x; 1), Gn(x)=Gn(x; 1),
see [3]. These polynomials have many applications in mathematics. Our main re-
sults are

Theorem 1.1. Let w ∈ C\{0}. For 0 < x < 1 if n = 1, 0 ≤ x ≤ 1 if n ≥ 2. We
have

Bn(x;w) =
−n!

wx(2πi)n
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)n ,(1.4)

where
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if w = 1 and
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if w �= 1.
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Theorem 1.2. Let w ∈ C\{0}. For 0 < x < 1 if n = 0, 0 ≤ x ≤ 1 if n ≥ 1. We
have

En(x;w) =
2(n!)

wx(2πi)n+1

∗∗∑
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2 )x

(
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2 − log(w)
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)n+1 ,(1.5)

where
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k∈Z

=
∑

k∈Z\{0}
if w = −1 and

∗∗∑
k∈Z

=
∑
k∈Z

if w �= −1.

Theorem 1.3. Let w ∈ C\{0}. For 0 < x < 1 if n = 0, 0 ≤ x ≤ 1 if n ≥ 1. We
have

Gn(x;w) =
2(n!)

wx(2πi)n
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e2πi(k−
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2 )x(
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2 − log(w)
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)n .(1.6)

Remark 1.4. Luo’s proof [4], for Theorems 1.1 and 1.2, uses the Lipschitz summa-
tion formula [2] which is not easy to understand. In this paper we propose a very
simple proof. On the other hand, Theorem 1.3 is new.

2. Proofs of main results

Proof of Theorem 1.1. We consider
∫
C
fn(t) dt with fn(t) =

t−next

wet−1 , the contour C

being a circle with radius (2N+ε)π (ε fixed real number such that επi± log(w) �= 0
(mod 2πi)), centered at the origin. If w �= 1, the poles of the integrand are tk =
2πik − log(w), k ∈ Z and t∞ = 0. The residues of the functions fn(t) for k ∈ Z are
easily found to be w−x(2πik− log(w))−ne2πikx, and from Theorem 1.1 the residue

at z∞ = 0 is seen to be Bn(x;w)
n! . The integral around the circle C tends to zero as

N → ∞ provided 0 < x < 1 if n = 1, 0 ≤ x ≤ 1 if n ≥ 2, and by the theorem of
residues we obtain

Bn(x;w) =
−n!

wx(2πi)n

∑
k∈Z

e2πikx(
k − log(w)

2πi

)n .

If w = 1, the poles of the integrand are tk = 2πik, k ∈ Z. The residues of the
functions fn(t) for k ∈ Z\{0} are easily found to be (2πik)−ne2πikx, and from

Theorem 1.1 the residue at z0 = 0 is seen to be Bn(x;w)
n! . The integral around the

circle C tends to zero as N → ∞ provided 0 < x < 1 if n = 1, 0 ≤ x ≤ 1 if n ≥ 2,
and by the theorem of residues we obtain

Bn(x;w = 1) =
−n!

(2πi)n

∑
k∈Z

e2πikx

kn
.

This yields the theorem. �

Proof of Theorem 1.2. We apply the same method to the function gn(t) =
t−(n+1)ext

wet+1

the contour C ′ being a circle with radius (2N + 1 + ε)π (ε fixed real number such
that επi± log(w) �= 0 (mod πi)), centered at the origin. We omit the details. �

Proof of Theorem 1.3. We have Gn+1(x;w) = (n+1)En(x;w). Thus we get Theo-
rem 1.3 from Theorem 1.2. �
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