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FOURIER EXPANSIONS FOR APOSTOL-BERNOULLI,
APOSTOL-EULER AND APOSTOL-GENOCCHI POLYNOMIALS

A. BAYAD

ABSTRACT. We find Fourier expansions of Apostol-Bernoulli, Apostol-Euler
and Apostol-Genocchi polynomials. We give a very simple proof of them.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

Let w € C and z a variable. The Apostol-Bernoulli polynomials B, (z;w),
Apostol-Euler polynomials E,(z;w) and Apostol-Genocchi polynomials G, (z; w)
are given by the generating functions
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where

w = |wle?, -~ <0 <7 and log(w) = log(|w|) + i6.
These polynomials are a natural extension of the classical Bernoulli, Euler
and Genocchi polynomials: B, (x) = B, (x;1), E,(x) = En(z;1), Gr(z) = Gp(a; 1),
see [3]. These polynomials have many applications in mathematics. Our main re-
sults are

Theorem 1.1. Let w € C\{0}. For0<z<1lifn=1,0<z<1ifn>2 We
have
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wherez*:: Z ifwzl(mdz*::Zifw#l.
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Theorem 1.2. Let w € C\{0}. For0<z<1i4n=0,0<z<1ifn>1 We

have
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Theorem 1.3. Let w € C\{0}. ForO0<z<1ifn=0,0<z<1ifn>1 We

have
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Remark 1.4. Luo’s proof [], for Theorems [Tl and [[2] uses the Lipschitz summa-
tion formula [2] which is not easy to understand. In this paper we propose a very
simple proof. On the other hand, Theorem is new.

2. PROOFS OF MAIN RESULTS

Proof of Theorem 1.1. We consider [ f,(t) dt with f,(t) = Zetej, the contour C
being a circle with radius (2N +¢)7 (e fixed real number such that emi £ log(w) # 0
(mod 274)), centered at the origin. If w # 1, the poles of the integrand are t; =
2mik — log(w), k € Z and to, = 0. The residues of the functions f,(t) for k € Z are
easily found to be w=*(2mik — log(w)) "e****% and from Theorem [ the residue
at zoo = 0 is seen to be w The integral around the circle C tends to zero as
N - coprovided 0 <z < 1lifn=10<z<1ifn > 2 and by the theorem of

residues we obtain
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If w = 1, the poles of the integrand are t;, = 2wik,k € Z. The residues of the
functions f,(t) for k € Z\{0} are easily found to be (2mik)~"e?"** and from
Theorem [I.T] the residue at zy = 0 is seen to be W The integral around the
circle C' tends to zero as N — co provided 0 <z < 1lifn=1,0<z <1lifn > 2,

and by the theorem of residues we obtain
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This yields the theorem. O
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Proof of Theorem 1.2. We apply the same method to the function g, (t) = P
the contour C’ being a circle with radius (2N + 1 + €)7 (e fixed real number such
that eri + log(w) # 0 (mod =i)), centered at the origin. We omit the details. O

Proof of Theorem 1.3. We have Gy, 11(z;w) = (n+ 1)E, (z; w). Thus we get Theo-
rem 1.3 from Theorem 1.2. O
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