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THE IMPACT OF ζ(s) COMPLEX ZEROS ON π(x) FOR x < 1010
13

DOUGLAS A. STOLL AND PATRICK DEMICHEL

Abstract. An analysis of the local variations of the prime counting function
π(x) due to the impact of the non-trivial, complex zeros �k of ζ(s) is provided

for x < 1010
13

using up to 200 billion ζ(s) complex zeros. A new bound

for |li(x) − π(x)| < x1/2(log log log x + e + 1)/e log x is proposed consistent
with the error growth rate in Littlewood’s proof that li(x) − π(x) changes
sign infinitely often. This bound is also consistent with all presently known
cases where π(x) > li(x) including many new examples listed. This implies
that Littlewood’s constant K = 1/e, the lower bound for Skewes’ number is
3.17×10114 and the positive constant c in the Riemann Hypothesis equivalent
|li(x)− π(x)| < c log(x)x1/2 is less than 3× 10−27.

1. Introduction

Let Lj be the jth iterated logarithm of x; Lj = log(Lj−1); L1 = log(x); L2 =
log log(x), etc. We use li(x) as the standard logarithmic integral. Following con-
vention with γ = Euler’s constant (0.57721 . . .),

li(x) = lim
ε→0

(∫ 1−ε

0

dt

log t
+

∫ x

1+ε

dt

log t

)
=

∞∑
k=1

Lk
1

k · k!
+ L2 + γ.

We also use the asymptotic approximation to li(x ) (see Appendix 1)

(1) li(x) ≈ x

L1

�L1−1�∑
k=0

k!

Lk
1

+ O(L
−1/2
1 ).

Bernhard Riemann’s 8-page paper in 1859 provided a major breakthrough in our
understanding of the prime counting function π(x ), and the influence the complex
zeros of the Riemann zeta function ζ(s) have on it [21]. He showed that much of the
error in using li(x ) as an estimate for π(x ) comes from including prime powers while
the rest comes from what Riemann called the “periodic” terms that trace back to
oscillations due to a logarithmic summation involving the complex zeros of ζ(s).
The Riemann Hypothesis (RH), that all ζ(s) complex zeros “very likely” have their
real component equal 1/2 still influences today’s number theory efforts. Riemann’s
correction for removing the prime power counts is given by (see Appendix 1)

(2) R(x) =
T∑

n=2

−μ(n)

n
li
(
x

1
n

)
≈

T∑
n=2

−μ(n)
x

1
n

L1

�L1
n −1�∑
j=0

j!

(
n

L1

)j

.
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Where T is the summation upper limit (see Section 2) and μ(n) is the Möbius
function defined as:

μ(n)=

⎧⎪⎨
⎪⎩
1 if n = 1,

0 if n contains one or more multiple prime factors (n is not square-free),

(−1)k if n is the product of k distinct primes.

The common estimate for π(x) is given by: π(x) ≈ R(x) = li(x)−R(x). Tables
of π(x) (e.g. Riesel [18]) show a smaller variation on average using the Riemann
formula versus li(x). Many mathematicians assumed that li(x) > π(x) for all x (see
[13, ix], [1, 1], [5, 235]) until J. E. Littlewood proved that li(x)−π(x) < 0 eventually,
and changes sign infinitely often. However, Littlewood made no estimate where the
first “crossover” would occur [18]. The sum of the complex oscillations can peak
in a sharp spike and drive π(x ) to exceed li(x) (local density of primes > than
1/log x), or drive the local prime density < 1/log x, and li(x) greatly exceeds π(x).
Littlewood also proved that just removing prime powers is, in the long run, not a
much better estimate for π(x) than is li(x). The first region where li(x) is a better
estimate of π(x) than R(x) is, occurs from x = 3, 445, 027 to 3, 445, 031. Rubinstein
and Sarnak [25] showed that over large extended regions the proportion of x such
that li(x) > π(x) is about 0.99999973, later verified by Bays and Hudson [1].

The first x for which li(x) < π(x) is known as Skewes’ number (referred to here
as S1). In 1933, Stanley Skewes (Littlewood’s former student) proved that given the
Riemann Hypothesis, S1 would occur no later than x = e^(e^(e79)) [28] which he

lowered to x = ee
20

in 1955 [29]. Even if the RH should prove false, Skewes showed
that a crossover would still occur before x = 10^(10^(10963)). Upper bounds for
S1 have decreased steadily as computers were used to investigate the oscillations
in li(x) − π(x ). R. Lehman’s theorem [17] helped reduce S1 to 1.5926 × 101165 in
1966; H. J. J. te Riele cut it to 6.6578 × 10370 in 1987 [31]. Bays and Hudson
reduced S1 to 1.39822 × 10316 (hinting that S1 could be 1.398 × 10316) [1]. Using
106 complex zeros they plotted 10, 000 values of li(x)−π(x) between 106 and 10400.
Chao and Plymen used 107 complex zeros to refine Bays and Hudson’s results and
confirm a crossover at 1.39801 × 10316 [4]. Saouter and Demichel refined the error
terms in Lehman’s theorem and, with 22 million complex zeros, found the lowest
upper bound to date for S1 at 1.3971667× 10316 [26]. Our analysis conducted with
up to 200 billion complex zeros gives computational evidence that a crossover may
exist near 1.397162914×10316 (unconfirmed via Lehman’s theorem) [7]. While it is
possible that another region less than this may harbor a very narrow crossover, we
did not find one. Similarly, the lower bound for S1 has increased with additional
computational attention over the last 50 years. Gauss claims to have confirmed
li(x) > π(x) for x < 300, 000 [10]. Rosser and Schoenfeld showed S1 > 108 in
1962 [22], then Brent improved the lower bound to 8× 1010 in 1975 [3] and Kotnik
raised it to 2× 1014 in 2008 [15]. We (and independently Andry Kulsha [16]) have
confirmed S1 > 1018 while the detailed tables of π(x ) from Tomás e Silva, suggest
S1 > 1020 [30].
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2. ζ(s) complex zeros impact on π(x)

We start with the Riemann analytical form for π(x ) as given by Edwards [9]

(3) π(x) =

∞∑
n=1

μ(n)

n
J
(
x

1
n

)
with the analytical formula for J(x ) defined as

(4) J(x) = li(x) −
∑
ρk

li(xρk) − log 2 +

∫ ∞

x

dt

t(t2 − 1) log t
for x ≥ 2.

To calculate π(x ), both li(x) and the sum,
∑

ρk
li(xρk) taken over the complex zeros

ρk of ζ(s), for x and the 1/n roots of x are required, (where
∑

ρk
li(xρk) is Riemann’s

“periodic term”). The last term, extremely small for x > 20, does contribute small
corrections from the x1/n roots of x. Let

(5) I(x) =

∫ ∞

x

dt

t(t2 − 1) log t
− log 2.

Since we count primes starting at 2, the Möbius summation is halted when x < 2
by setting T = �L1/log 2�. We define two correction terms, C(x) (which is usually
ignored since |C(x)| � 1 for large x ) and Z(x):

C(x) =
T∑

n−1

μ(n)

n
I
(
x

1
n

)
with |C(x)| = O

(
1

L1

)
and(6a)

Z(x) =

T∑
n=1

μ(n)

n

∑
ρk

li
{[

x
1
n

]ρk
}

=

T∑
n=1

μ(n)

n

∑
ρk

(
li(xρk/n) + li(xρ∗

k/n)
)
,(6b)

where ρk = ϕ+ iαk and ρ∗k = ϕ− iαk, are the kth symmetric, complex root pair of
ζ(s) and per the RH, we assume ϕ = 1/2. Recognizing that Z(x ) and C(x ) may be
positive or negative, equation (3) now becomes

(7) π(x) = li(x) − R(x) − Z(x) + C(x).

From Riesel and Göhl [24], (6b) can be made computationally tractable by the
following:

li(xρk)+li(xρ∗
k) = 2R{li(xρk)} ≈ 2R

( √
x · eiαkL1(

1
2 + iαk

)
L1

)
=

2
√
x

|ρk|L1
·cos(αkL1−arg ρk).

This allows Z(x) to be expressed in a form similar to (2) for R(x ) with Z(x) =∑
n Zn,

(8) Zn(x) =
μ(n)

n

∑
ρk

li(xρk/n) ≈
∑
ρk

2μ(n)x1/2n

|ρk|L1
· cos

(
αkL1

n
− arg ρk

)
.

Clearly, Zn(x) is proportional to x1/2n whereas Rn(x) is proportional to x1/n. Since
li(x) and R(x ) can be calculated precisely and |C(x)| � 1, the “unpredictable”
oscillatory error in π(x ) is essentially all in Z(x ). For brevity, let lierr(x ) = li(x)−
π(x ) so the error in using lierr(x) to estimate π(x ) becomes

lierr(x) = R(x) + Z(x) − C(x).

Littlewood proved lierr(x ) can be < 0; R(x ) is strictly positive, so −Z(x) must
eventually exceed R(x ) in magnitude. Letting V(x ) = Z(x )/R(x ) be the ratio of the
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ζ(s) (non-trivial zeta zeros correction) to R(x ) (the prime powers correction) allows
us to express lierr(x ) (where S1 now becomes the first occurrence of V(x) = −1) as

(9) lierr(x) = R(x)[1 + V(x)] − C(x).

This allows V(x ) to define the envelope of the complex zeta zero impact. When
π(x ) is known, V(x ) can be computed directly, without resorting to any complex
summation, as

(10a) V (x) =
li(x) − π(x) + C(x)

R(x)
− 1.

For large x, V(x ) is estimated using Z1(x) and R(x) is approximated as li(x1/2)/2 ≈
x1/2/(L1 − 2 − 4/L1) (see Appendix A) leading to:

V (x) =
Z(x)

R(x)
∼=

∑
ρ R{li(xρ)}
li(x1/2)/2

≈
∑
ρk

2
√
x cos(αkL1 − arg ρk)

|ρk|L1
· L1 − 2 − 4/L1√

x

(10b)

∼=
∑
ρk

2 cos(αkL1 − arg ρk)

|ρk|
·
(

1 − 2

L1
− 4

L2
1

)
.

For sufficiently large x (x > 1087,L1 > 200) we can drop the last term and estimate
V(x ) concisely as

(10c) V(x) =
Z(x)

R(x)
≈

∑
ρk

2 cos(αkL1 − arg ρk)

|ρk|
≈

∑
ρk

2 sin(αkL1)

αk
.

To balance computational accuracy and efficiency, we recommend using the co-
sine summation for the first 10,000 zeros, before switching to the sine summation
(as arg ρk ≈ π/2 for large ρk). The computational benefit of (10b) and (10c) is of
course working with L1(x) instead of x1/2 for extremely large x. A thorough search
for ±V(x) peaks using the exact expression (10a) for x < 1018 was made by one
author (Stoll). Two approximate V(x) peaks for 1018 < x < 1020 were derived from
the extensive π(x) tables of Thomás Oliveira é Silva [30]. Equation (10b) was then

used for 1020 < x < 1010
13

using a sampling approach with 10,000 zeros to identify
regions of high |V(x)| followed by telescoping in with smaller step sizes and 105 to
107 non-trivial zeros to isolate peaks. The most significant V(x) peaks are listed in
Tables 2 and 3 of Section 3.

We now propose a symmetric upper and lower bound for x ≥ 3 for V(x), linear
in L3(x), where V(x) can be positive or negative based on (10b), of
(11)

|V(x)| <
(
c1L3 + c2 +

c3
L2
1

)
with c1 = c2 =

1

e
= 0.3678794 . . . and c3 = 4/3.

The slope of 1/e was derived empirically, but appears to hold over 1013 orders of
magnitude of x. The third term is only required for x ≤ 10 and is dropped for sim-
plicity in later analysis. Equating (10b) and (11) provides a simple approximation
for the summation of the cosine (or sine) terms

(12)

∣∣∣∣∣
∑
ρk

2 cos(αkL1 − arg ρk)

|ρk|

∣∣∣∣∣ < L3 + 1

e
·
(

1 +
2

L1

)
= O(L3).
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It is straightforward to rearrange equation (7) into the form A. E. Ingham used in
his review of Littlewood’s proof that π(x)− li(x) > 0, with Q(x ) being an unknown
function proportional to L3 [13],

π(x) − li(x) =
x

1
2

L1

(
−1 + Q(x)

L1

x
1
2

− o(1)

)
.

The −1 denotes that “normally” π(x) would be less than li(x) but for the impact of
Q(x ). From (12) and recalling Z(x) = R(x)V(x), we set Q(x ) equal to Z(x ) leading
to

π(x)− li(x) ≈ x
1
2

L1

(
−1 +

x
1
2

L1

(
L3 + 1

e

)
L1

x
1
2

− o(1)

)
=

x
1
2

L1

(
−1 +

(
L3 + 1

e

)
− o(1)

)
.

This is of the form Ingham finally gives [13, 105] for when π(x ) could exceed li(x)
(with 0 < ε < 1),

π(x) − li(x) >
x

1
2

L1

(
−1 +

1

2
(1 − ε)L3 − ε

)
.

Ingham made no attempt to estimate ε, but he notes that the right-hand side of
the above “is certainly positive when x is large enough, it remains negative at any
rate over the range 10 ≤ x ≤ 10700” (italics are ours). The problem with this
last equation, however, is that the assumption x > 10700 is already built-in such
that L3 can only be greater than 2 for any positive ε, which is incorrect since the
current upper bound for L3(S1) ≈ 1.8855888. Since ε is of o(1), we set the last
term to be k = δ − ε where 0 ≤ δ ≤ 1. Using data available in the 1970s1 to
1990s including Lehman’s and especially te Riele’s reductions of S1, one might have
estimated the slope as 1/e, leading to ε = 1 − 2/e ≈ 0.264241 and may even have
conjectured δ ≈ π/2 − 1 ≈ 0.5708 leading to an estimate for L3 ≈ 1.885 and thus
S1 ≈ 8.0 × 10314, remarkably close to the present estimate.

3. Numerical results

Table 1 shows computed values for Z(x) using 1, 7 and 17 Zn terms and 1000
or 64,000 complex zeros. Riesel and Göhl determined the complex zero impact
by adding terms “horizontally”—first finding the contribution from each x1/n, for
2 < n < (log x/log 2 − 1), for ρ1 then repeating and summing only up to ρ29 for
x ≤ 100 [24]. We compute “vertically”—calculating each Zn(x) separately, using
thousands of complex zeros then summing these results. This permits examination
of higher order Zn term contributions to Z(x). Table 1 supports the conjecture that
using additional zeros is more important for computing Z(x ) peaks than are the
higher order terms (recall from (8) that Zn(x) ∼ x1/2n).

The V(x ) limit curves, shown in Figure 2, bound the known extreme V(x ) values

from 5 ≤ x ≤ 1010
13

. The implied Skewes’ number from (11) occurs when V(x) =
−1 at x = 3.168323 × 10114, significantly less than the current S1 upper bound.
While this sets a feasible lower limit to S1, there is no expectation at all that S1

will be found at any significant value less than that already identified. However, we
do find V(x) = −0.9204 at 4.489 × 1041 and V(x) = +0.99896 at 1.90988 × 10215.

1Paulo Ribenboim [20, 177] notes that Bays and Hudson had a full table of primes up to
1.2× 1012 stored on magnetic tape in 1976. Since then, computer methods have made it feasible
to compute li(x)− π(x) and conjecture an envelope.
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Table 1. Comparison of Z(x ) estimates using 1000 and 64,000 zeros

x True Z(x) # zeros* Z1 only Σ to Z7 Σ to Z17

24,137 -11.492
1000
64000

-10.134
-10.598

-10.974
-11.424

-11.333
-11.400

302,830 30.429
1000
64000

37.194
29.895

26.520
29.240

26.55
29.27

110,102,617 -446.41
1000
64000

-385.92
-439.90

-382.99
-436.87

-382.88
-436.81

3,745,619,057 -1680.85
1000
64000

-1485.65
-1620.98

-1482.12
-1617.57

-1482.08
-1617.53

110,486,344,210 9614.97
1000
64000

8165.30
9367.08

8180.48
9380.15

8180.43
9380.18

330,957,852,107 -16,339.60
1000
64000

-13,482.64
-15,963.18

-13.485.48
-15,963.19

-13.485.45
-15,963.11

36,219,717,668,608 161,158.89
1000
64000

134,326.23
157,635.26

134,328.63
157,632.98

134,328.70
157,633.00

Table 2. π(x) components and V(x) at significant peaks for x < 1020

x π(x) Lierr(x) R(x) Z(x) V(x)

3,445,943 246,651 79.03818 163.019 -83.988 - 0.51517

30,909,673 1,910,834 169.7254 400.449 -230.727 - 0.57616

36,917,098 2,256,803 692.4810 431.385 261.093 + 0.60524

110,102,617 6,308,959 238.6247 685.052 -446.410 - 0.65168

11,467,849,446 518,601,766 8595.216 5242.640 3352.556 + 0.63947

110,486,344,210 4,531,230,536 24,164.270 14,549.31 9614.973 + 0.66086

330,957,852,107 12,987,694,192 7,626.300 23,965.91 -16,339.60 - 0.68179

36,219,717,668,608 1,199,924,248,491 369,491.06 208,332.19 161,158.89 + 0.77357

1,212,562,524,413,152 35,981,229,109,582 1,849,017.18 1,071,954.8 777,062.41 + 0.72490

16,452,596,773,450,799 453,114,351,748,945 1,196,278.77 3,650,290.9 -2,454,283.53 - 0.67230

266,175,790,131,587,542 6,808,276,716,152,988 23,364,674.45 13,593,108.6 9,771,565.82 + 0.71886

1.325 E+18 32,553,643,155,282,975 7,846,849.35 29,086,015.9 -21,239,165.97 - 0.73022

5.550 E+19 1,248,894,293,512,468,306 298,732,223.14 171,902,701.7 126,829,521.5 + 0.73780

Table 2 lists precise values for V(x) peak values for x < 1020. The V(x ) values

for 1020 < x < 1010
13

given in Table 3 are from Demichel in his detailed research of
V(x) spikes [6], [7]. He used (10b) and files containing 200 billion non-trivial zeros
he helped to compute and verify in prior work [11]. Plots of V(x) confirming all
previously discovered crossovers and new regions with large V(x) are shown in [6].

We observe that maximal values of lierr(x) and V(x ) seem to occur when x is
even (prior to the next prime where V(x ) decreases), corresponding to the end of
a string of large prime gaps and minimal values of lierr(x) and V(x ) occur at odd
numbers (a prime) corresponding to the end of a region of high prime density. The
most extreme exact V(x ) value identified for x < 1018 is at 36, 219, 717, 668, 608 with
V(x) = +0.7735669. We can also estimate x such that V(x ) equals a given value M
with L3(x) ∼= Me− 1. Thus |Z(x)| could equal twice R(x) at L3

∼= 2e− 1 = 4.4366

or x ∼ 1010
36.33

.
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Table 3. Most significant V(x) peaks for 1020 < x < 1010
13

x L3(x) Source of x (Date) Zeros Used V(x)

2.08963594805312 E+31 1.45355376 D (2008) 106 +0.85111265

4.489584432 E+41 1.51806506 D (2008) 1010 -0.92040123

5.38952511422773 E+84 1.66269816 D (2008) 108 -0.93251498

1.25855876915892 E+179 1.79541545 B&H (2000)/D(2005) 106 -0.95469600

1.33793033022140 E+190 1.80528667 B&H (2000)/D(2005) 106 -0.96875484

1.9098756608800 E+215 1.82551280 D (2005) 5 x 109 +0.99896402

1.397162914 E+316 1.8855888859 D (2005) 2 2 x 1011 -1.000

1.397166708 E+316 1.8855888865 S&D (2009) 2.2 x 107 -1.002

1.398215 E+316 1.88558904 C & P (2005)/D(2005) 107 -1.005

1.39822803460925 E+316 1.88558904 B&H (2000)/D(2005) B&H-106 /D-108 -1.01770266

6.65769904020884 E+370 1.90950668 R (1987)/D(2005) R-104 / D-106 -1.04965574

2.56771067186843 E+807 2.01861127 D (2008) 5 x 109 +1.04307053

1.592776 E+1165 2.06618941 L (1966) L-2.5x105/D-106 -1.042

2.76934778827004 E+4943 2.23429015 D (2008) 105 -1.11199752

1.303324322225356 E+651,157 2.65468731 B&H (2000)/D(2005) 106 -1.26421901

1.1952052716413331 E+1,748,085 2.72182581 D (2008) 105 -1.28300855

1.382217859037819 E+6,359,808 2.80333258 D (2005) 105 -1.2851

4.63188213923253 E+25,462,014 2.88405914 D (2008) 105 +1.30691350

6.5722 E+30,802,655 2.89464837 D (2005) 105 -1.332

1.49741610590218 E+140,451,912 2.97524423 D (2008) 105 +1.34051829

1.14937434741219 E+263,854,435 3.00691652 D (2008) 105 +1.36190288

3.3380935222734 E+1,048,348,162 3.07290228 D (2008) 105 -1.36843786

5.60458099779389 E+1,715,984,906 3.09545477 D (2008) 105 +1.41803522

4.66560656850816 E+3,926,214,944 3.13222689 D (2008) 105 +1.45919474

5.51920707045967 E+16,251,858,572 3.19234726 D (2008) 106 -1.50218678

7.48642968663951 E+1,741,296,446,971 3.36797434 D (2008) 105 +1.51320794

1.26735548862278 E+2,176,190,682,786 3.37562756 D (2008) 105 -1.51154647

4.9055169754782 E+3,648,403,832,739 3.39314314 D (2008) 106 -1.55246992

2.9778893050643 E+4,026,762,218,841 3.39645335 D (2008) 105 -1.51359970

2.30170547097451 E+7,424,180,200,481 3.41673589 D (2008) 105 -1.51177469

4. Bounds on |li(x) − π(x)| and π(x)

The prime number theorem, proven independently by Hadamard [12] and de la
Vallée-Poussin [32] in 1896, stipulates that limx→∞ π(x)/li(x) = 1. Since then,
there has been significant interest in expressing bounds on both the absolute and
relative error of li(x) − π(x), or alternatively, bounds on π(x) itself. De la Vallée-
Poussin also proved (assuming RH) the relative error for the li(x) approximation
approaches zero as ∣∣∣∣ li(x) − π(x)

li(x)

∣∣∣∣ < e−
√
cL1 .

H. von Koch [14] improved this in 1901 to show the relative error goes to zero faster
than

(13)

∣∣∣∣ li(x) − π(x)

li(x)

∣∣∣∣ < −cL2
1√

x
= cx− 1

2+
2L2
L1 < cx− 1

2+ε.

Since limx→∞ li(x) = x/L1, it is straightforward to show an equivalent form of the
RH from (13) that for every positive real number ε and some positive constant c,

2Lowest conjectured estimate for Skewes’ number based on deep exploration with 200 billion
zeros. Sources: B&H = Bays & Hudson, C&P = Chao & Plymen, D = Demichel, L = Lehman,
S&D = Saouter & Demichel, R = te Riele.
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the absolute error for li(x) − π(x) is
(14)

|li(x) − π(x)| =

∣∣∣∣ li(x) − π(x)

li(x)

∣∣∣∣ · li(x) <
cL2

1√
x
· x

L1
= cL1

√
x = cx

1
2+

L2
L1 = O

(
x

1
2+ε

)
.

In 1976, L. Schoenfeld [27] provided an estimate for c (assuming RH) by proving

(15) |li(x) − π(x)| < L1

8π

√
x for x ≥ 2657.

From (9) and (11) we have for x ≥ 10,

(16) |lierr(x)| < R(x)[(L3 + 1)/e + 1].

Using the approximation for R(x ) shown in Appendix 1 we can now express new,
tight bounds on lierr(x ) for x ≥ 662 as

√
x

L1

(
x

1
6

x
1
6 − 1

)[
L2
1 − 2L1 − 8

L2
1 − 4L1 − 8

] [
e− L3 − 1

e

]
< lierr(x)

<

√
x

L1

(
x

1
6

x
1
6 − 1

)[
L2
1 − 2L1 − 8

L2
1 − 4L1 − 8

] [
L3 + e + 1

e

]
.

(17)

Theorem 1. If (11) is true, then |lierr(x)| < 3(L3+4)
8(L1−2)

√
x for x ≥ 32, 051.

Proof. First we note that 3(L3+4)
8(L1−2)

√
x > R(x)[(L3 + e1)/e] for x ≥ 102, 468, 440.

Since e+1 < 4, and 3/8 > 1/e, and using R(x) ∼ √
x(L1−2) from (A.5) the bound

is true for x ≥ 102, 468, 440. The validity between 32, 051 and 102, 468, 440 was
confirmed explicitly using Mathematica 7.0 with 30 digits precision. So,

(18) |lierr(x)| < R(x)
[L3 + e + 1

e

]
<

3(L3 + 4)

8(L1 − 2)

√
x for x ≥ 32, 051.

We have strong computational reasons to believe we can find even tighter bounds
on this error however. �

Conjecture 1. If (11) is true, then |lierr(x)| < (L3+4)
eL1

for x ≥ 36, 969, 811.

We find (L3+4)
eL1

√
x > R(x)(L3 + e + 1)/e for x ≥ 4.98× 1017. For x greater than

this, the limit is imposed by V(x). For 36, 969, 811 < x < 5× 1017 the validity was
confirmed against the known regions of large V(x ) variation.

Again, if (11) is valid for all x, we can also rewrite (9) using R(x) ∼
√
x/L1 to

express the error in exponent form such that for all x greater than some sufficiently
large x0,

(19a) |lierr(x)| <
√
x

eL1
(L3 + e + 1) ≈ x

1
2−

L2−L4+1
L1

+ 2(e+1)
L1(2L3+e+1) = O(x

1
2−ε).

The exponent stays < 1/2, and the error stays <
√
x since (L3 + e + 1)/eL1 is < 1

for all x > e.
Littlewood’s proof asserts that for suitably large x and a positive constant K,

(19b) |lierr(x)| > K
√

x

L1
L3.



THE IMPACT OF ζ(s) COMPLEX ZEROS ON π(x) FOR x < 1010
13

2389

For both (19a) and (19b) to be true implies that K must be 1/e. Finally, given
V(x ), the relative error becomes

(20)

∣∣∣∣ li(x) − π(x)

li(x)

∣∣∣∣ < L3 + 4

e
√
x

� cL2
1√
x

for x ≥ 36, 917, 119.

Bounds on π(x). L. Panaitopol [19] proved the following π(x) bounds used by Chao
and Plymen in their derivation and estimate of S1 [4]

for x ≥ 59,
x

L1 − 1 + 1/
√

L1

< π(x) <
x

L1 − 1 − 1/
√

L1

for x ≥ 6.

Pierre Dusart proved bounds on π(x) based on a truncated, modified expression
for li(x) for the lower bound (1.8 < 2) and a different truncated, modified expression
for li(x) (2.51 > 2) for the upper bound [8]. These bounds are significantly “tighter”
than Panaitopol’s for large x:

for x ≥ 32, 299,
x

L1

(
1 +

1

L1
+

1.8

L2
1

)
< π(x) <

x

L1

(
1 +

1

L1
+

2.51

L2
1

)
for x ≥ 355, 991.

From (11), we find the following bounds for π(x) which are even “tighter” than
Dusart’s at large x :

(21) for x ≥ 11, li(x) − R(x)

e
(L3 + 1 + e) < π(x) < li(x) +

R(x)

e
(L3 + 1 − e).

This equation may be of use in improving Lehman’s theorem (see Introduction).

Theorem 2. The Riemann Hypothesis is true if for some positive constants c and
δ, where 0 < δ < 2, we find |V(x)| < c(L2−δ

1 − 2L1−δ
1 ) − 1 for all x > x0.

Proof. We start with (9), assume large x, and compare it to the RH condition (18).

|lierr(x)| = R(x)(1 + V(x)) ≈
√
x

L1

(
1 +

2

L1

)
{1 + c(L2−δ

1 − 2L1−δ
1 ) − 1}

= c
√
x(L1−δ

1 − 4/L1+δ
1 ) < cL1

√
x.

The constant δ must be > 0 to confirm RH and it must be < 2 for lierr(x) to be
greater than

√
x/L1 which we know to be true. This emphasizes the true focus of

the RH condition; it is the Z(x) term that must be limited to < cL1
√
x. If (11)

is not valid for all x, lierr(x) could eventually exceed
√
x, and yet not violate the

RH. Assume for some x > x0, that |V(x)| < cL1 − 1, meaning Z(x) grows such
that Z(x) ∼ cx1/2, then

|lierr(x)| =

√
x

L1

(
1 +

2

L1
+ · · ·

)
(1 + cL1 − 1) = c

√
x

(
1 +

2

L1
+ · · ·

)
< cL1

√
x.

�

5. Relevant figures

This section contains figures relevant to the previous sections. Figure 1 shows
the known V(x ) peaks contained within the proposed ±V(x) limit curves for x <

1010
13

. The x-axis is labelled with both L3 values and the approximate x-values for
each L3 tick mark. Figure 2 shows V(x) values for increasing numbers of complex
zeros that conform the region of π(x) > li(x) found by Bays and Hudson (cited in
section 1) along with an estimate of the width of the crossover region. Figure 3
shows the maximum |V(x)| found to date with V(x) = −1.55247 · R(x) discovered

at x = 4.9055169 × 1010
12.562

.
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*

*

* * * *
***

***
****
********

****

* *

* *
*

* * ** * *** ** ******* ****** *

Known V(x) extremes Upper Limit LowerLimit Demichel Points

L3(x)

Extreme V(x) values with symmetric bounds

V
(x

)
1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

-1.25

-1.50

-1.75

-0.5 0

6 15 181 3.8E6 2.4E+38 5.8E+70.2
10ˆ10ˆ4.9

10ˆ10ˆ8.3
10ˆ10ˆ14.2

0.5 1 1.5 2 2.5 3 3.5

Low prime
density regions

High prime
density regions

Figure 1. V(x) values with limit curves for 5 < x < 1010
13

Figure 2. Confirmation of the Bays and Hudson crossover of
width ∼ 5.6 × 10311
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Figure 3. Largest |V(x)| found at L3 = 3.39314314

6. Conclusions

We have shown computational evidence that the non-trivial zeta zero contribu-

tion to π(x) grows no faster than (L3 + 1) · R(x)/e for x < 1010
13

. This implies
the Riemann zeta function complex zeros are distributed with sufficient orderliness
that the complex summation cancels to an extremely high degree which in turn
leads to the tight bounds on estimates of π(x) and |lierr(x)|. We also conjecture
that the limits for Z(x) and V(x) are:

|Z(x)| <
√
x

eL1

[
1 +

2

L1
+

8

L2
1

]
(L3 + 1) = O

(
L3

√
x

L1

)
and

|V(x)| =

∣∣∣∣Z(x)

R(x)

∣∣∣∣ ≈ ∑
αk

sin(αkL1)/αk = O(L3).
(22)

If V(x) from (11) can be shown to be a valid limit for Z(x)/R(x), then the statements
below follow:

|li(x)− π(x)| <
√
x

eL1

(
1 +

2

L1
+

α

L2
1

)
(L3 + e+ 1) where α > 8

for α = 24, this holds for x ≥ 3; for α = 9, it holds for x ≥ 463, 189

<
√

li(x) +
1

5
for x ≥ 3, (the 1/5 may be dropped for integer values of x)

<

√
x

L1 − x
+

2

5
for x≥3, (the 2/5 may be dropped for integer values of x)

<
√
x.

Then from (13) or (14) the Riemann Hypothesis would be confirmed.
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Table 4. Limits on c

cLr
n c<

cL
3/2
3 0.17

cL2
3 0.07

cL2 0.03

cL
1/2
1 2 × 10−7

cL1 5 × 10−14

cL2
1 3 × 10−27

From the numerical evidence gathered so far, we can place limits on alternative
forms for V(x). Assume that V∗(x) = V(x)+ cLr

n. Table 4 shows the upper bound
on c such that the impact of the 2nd term would not have been detected so far in
our search for larger V(x). The limit is found by assuming the proposed V(x) limit
is violated by 50% at the maximum L3 explored (3.41767). The bottom row shows
that the positive constant c in the RH limit x1/2/L1 · [L3 + 1)/e + cL2

1] ≈ cL1x
1/2,

would have to be less than 3 × 10−27 to have not been detected by 1010
13

.
More investigation is needed on the statistical distribution of the zeta function’s

complex zeros to determine if there is a provable limit for |V(x)| as a function of
L3. Recent work by Bogomolny and others [2] shows the statistical distribution of
zeta zero spacing is well modeled by a circular unitary ensemble of N ×N random
unitary matrices with deviations described by unitary matrices of finite dimension.

Appendix A

li(x) and R(x) approximations

The equation for li(x) given below in (A.1) is well known [8, p. 87]. It is easily
obtained through repeated integration by parts and is often given without any
upper limit. However, like Stirling’s approximation for Γ(x), it is fast and useful in
other analysis. As an asymptotic expansion expressed as a divergent sequence, it
quickly converges to nearly the correct value up to a certain k (here depending on
log x ), then diverges after that. This summation begins to diverge at k = �L1� so
we stop at k = �L1 − 1�. The error is almost logarithmically linear between integer
changes in L1, but the envelope of the error is not symmetric:

(A.1) li(x) ∼=
x

L1

�L1−1�∑
k=0

k!

Lk
1

{
+1.2/

√
L1,

−0.6/
√

L1.

For significantly higher accuracy, li(x) can be expressed as a finite sum with smaller,
symmetric errors as

li(x) ∼=
x

L1

⎛
⎝�L1−1�∑

k=0

k!

Lk
1

+
(L1 − �L1�)�L1�!

L
�L1�
1

⎞
⎠

−
(

300L
3/2
1

359L2
1 + L2L1 − 3L3 + 3

)
− sin(2πL1)

7/3L2
1 + 61(L1 − 2)

.

(A.2)

The remaining error from (A.2) is estimated to be < 23L2
2/(L

2
1+48L1)

2 for x > 113.
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For the Möbius terms we use the following asymptotic expansion easily derived
from (A.1):

(A.3)
1

n
li
(
x

1
n

)
≈

(
x

1
n

L1

) �(L1/n)−1�∑
j=0

j!

(
n

L1

)j

.

With this, the Riemann correction term R(x) becomes

R(x) =

∞∑
n=2

−μ(n)

n
li
(
x

1
n

)
=

−μ(n)x
1
n

L1

� L1
ln(2)

�∑
n=2

�L1
n

−1�∑
j=0

j! (nL1)
j

∼= x1/2

L1

{
1 +

2

L1
+

8

L2
1

+
48

L3
1

+
384

L4
1

+ · · ·
}

+
x1/3

L1

{
1 +

3

L1
+

18

L2
1

+
162

L3
1

+ · · ·
}

+
x1/5

L1

{
1 +

5

L1
+

50

L2
1

+ · · ·
}

− x1/6

L1
....

(A.4)

Finally, R(x ) can be asymptotically approximated (in decreasing order of accuracy)
as:

R(x) ∼=
(
x

1
2 + x

1
3 + x

1
5

L1

)[
L2
1 − 2L1 − 8

L2
1 − 4L1 − 8

]
∼=

√
x

L1

(
x

1
6

x
1
6 − 1

)[
L2
1 − 2L1 − 8

L2
1 − 4L1 − 8

]

∼=
√
x

L1 − 2 − 4/L1

∼=
√
x

L1 − 2
∼=

√
x

L1

[
1 +

2

L1

] ∼= √
x

L1
.

(A.5)

We also find log(R(x))/L1 for large x, using the following logarithmic approxi-
mation:

log
(
1 +

a

x

)
≈ 2a

2x + a
+ O

( a

x

)3

for x > a(A.6)

log R(x)

L1

∼=
1

2
− L2

L1
+

(
2/L1

2x
1
6 + 1

)
+

2

L2
1 − 3L1 − 8

∼=
1

2
− L2

L1
+

2

L2
1 − 3L1 − 8

∼=
1

2
− L2

L1
+

2

L2
1

.
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