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FINITE ELEMENT APPROXIMATIONS IN A NON-LIPSCHITZ

DOMAIN: PART II

GABRIEL ACOSTA AND MARÍA G. ARMENTANO

Abstract. In a paper by R. Durán, A. Lombardi, and the authors (2007) the
finite element method was applied to a non-homogeneous Neumann problem
on a cuspidal domain Ω ⊂ R

2, and quasi-optimal order error estimates in the
energy norm were obtained for certain graded meshes. In this paper, we study
the error in the L2 norm obtaining similar results by using graded meshes of
the type considered in that paper. Since many classical results in the theory
Sobolev spaces do not apply to the domain under consideration, our estimates
require a particular duality treatment working on appropriate weighted spaces.

On the other hand, since the discrete domain Ωh verifies Ω ⊂ Ωh, in the
above-mentioned paper the source term of the Poisson problem was taken
equal to 0 outside Ω in the variational discrete formulation. In this article we
also consider the case in which this condition does not hold and obtain more
general estimates, which can be useful in different problems, for instance in the
study of the effect of numerical integration, or in eigenvalue approximations.

1. Introduction

The finite element method has been widely studied in several contexts involving
different kinds of differential equations; however, the domains under consideration
are in general polygons or smooth domains. In the recent paper [2], the piecewise
linear finite element method was applied to a non-homogeneous Poisson problem
in a domain with an external cusp. Despite its simplicity, this problem provides an
interesting starting point for the finite element analysis of more general equations
in non-Lipschitz domains. These kinds of problems have interesting applications in
fluid mechanics. For instance, the motion of rigid bodies immersed in a fluid can
lead to the presence of cusps as a result of collisions between bodies or between a
body and the boundary [18, 22].

An interesting feature related with problems in this kind of domain is that even
regular solutions may require some type of mesh adaptivity. Indeed, as it was
proved in [1], the solution of the proposed problem belongs to H2 and, despite
of this fact, uniform meshes show a poor convergence rate. The reason for this
behavior is related to the fact that, in this context, classical extension theorems
do not apply [20, 23]. A solution for this drawback was also given in [2] and
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(quasi) optimal convergence order error in the energy norm was recovered by using
appropriate mesh adaptivity. Let us notice that, for problems in polygonal domains
with solutions having corner-like singularities, the use of graded meshes has been
widely studied (see [8, 11, 12, 15] and the references therein) and optimal or quasi-
optimal convergence rates for numerical approximations are usually obtained by
using arguments based on weighted Sobolev spaces.

In this paper we continue the analysis of the finite element method for the same
problem considered in [2], focusing on L2 convergence results. These estimates re-
quire a particular treatment, making it necessary to take into account the regularity
of the extended functions outside the non-Lipschitz domain under consideration.
We introduce two different kinds of auxiliary problems: one in the original domain
Ω, and the other in the discrete domain Ωh. The first one leads us to standard
estimates of the error in Ω, and the second one to estimates of the error between a
certain extension of the original solution and the discrete solution in Ωh. The latter
case is more general than the former, however, it is also much more technical and
relies on certain extra assumptions. In both cases quasi-optimal order of conver-
gence with respect to the number of nodes is obtained by using appropriate graded
meshes of the type considered in [2]. We present some numerical examples sup-
porting this analytical result, and in particular we show that uniform meshes lead
to poor L2 convergence order (similar conclusions for the H1 norm were obtained
in [2]).

Let Ω ⊂ R
2 be defined by

Ω = {(x, y) : 0 < x < 1, 0 < y < xα},
where α > 1. We denote the boundary of Ω by Γ = Γ1 ∪ Γ2 ∪ Γ3, where

Γ1 = {0 ≤ x ≤ 1, y = 0}, Γ2 = {x = 1, 0 ≤ y ≤ 1} and Γ3 = {0 ≤ x ≤ 1, y = xα}
(see Figure 1).

Our model problem is: find u such that

(1.1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−Δu = f , in Ω,

∂u

∂ν
= g , on Γ3,

∂u

∂ν
= 0 , on Γ1,

u = 0 , on Γ2,

where ν denotes the outside normal.
We will work along this paper with g = 0. This assumption partially simplifies

the treatment of the error and can be justified by recalling that H2 regularity results
for (1.1) rely on the smoothness of g and its fast decay to zero, i.e., g ∼ 0 near the
tip of the cusp [1].

Let V = {v ∈ H1(Ω) : v|Γ2
= 0}. Then, the variational formulation of our model

problem (1.1) is given by: find u ∈ V such that

a(u, v) = L(v) ∀v ∈ V,(1.2)

where a(u, v) =
∫
Ω
∇u · ∇v and L(v) =

∫
Ω
fv. It is known that this problem

has a unique solution in H2(Ω) and that there exists a constant C such that (see
[1, 15, 19])

(1.3) ‖u‖H2(Ω) ≤ C‖f‖L2(Ω).
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Figure 1. Cuspidal domain

The natural way to approximate the solution of (1.2) is to replace Ω by a polygo-
nal domain Ωh and then use the standard finite element method. We will construct
Ωh in such a way that Ω ⊂ Ωh and the nodes of Γh, the boundary of Ωh, are on Γ.

Let {Th} be a family of triangulations of Ωh verifying the maximum angle con-
dition. We can associate to {Th} the finite element space

Vh = {v ∈ H1(Ωh) : v|Γ2
= 0 and v|T ∈ P1 ∀T ∈ Th},

where P1 denotes the space of linear polynomials.
Then, the finite element approximation problem of (1.2) is: find uh ∈ Vh such

that

ah(uh, vh) = Lh(uh) ∀vh ∈ Vh,(1.4)

where ah(u, v) =
∫
Ωh

∇u · ∇v and Lh(v) =
∫
Ωh

fv. Observe that the discrete

problem corresponds to a boundary problem on Ωh.
Since the solution of problem (1.1) depends on the values of f in Ω only, it seems

natural to assume that f vanishes outside Ω, in which case we have Lh(v) =
∫
Ω
fv,

and so (1.4) agrees with the discrete problem from [2]. In this paper we also
consider the case in which this assumption is dropped and obtain more general
error estimates for finite element approximations. This approach introduces an
extra difficulty that was not addressed in [2]; however, it provides more information

in different scenarios. Indeed, the contribution of terms such as
∫
Ωh\Ω f̃vh, with f̃

being a certain approximation of f defined on Ωh, can be useful to evaluate the
effect of numerical integration (see, for example, [24]). Moreover, since Ω 
= Ωh, the
standard theory for eigenvalue approximations [9] does not apply straightforwardly.
In fact, the study of convergence for this problems leads to problems such as (1.4)
with f not necessarily equal to zero outside Ω [17, 24]. On the other hand, the
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study of the error between a certain extension of the solution u and uh, analyzed
in Section 5, is also of interest in the context of eigenvalue approximations [17, 24].

Let us mention that, even when Ω is not regular enough, certain extension oper-
ators can be constructed. More precisely, the solution of (1.2) can be extended to a
function in a weighted Sobolev space, with the weight being a power of the distance
to the cuspidal point (see [2, 20]). In fact, there exists a function uE ∈ H2

α(R2)
such that uE |Ω = u, and

(1.5) ‖uE‖H2
α(R

2) ≤ C‖u‖H2(Ω),

where the weighted Sobolev space H2
α is defined, for any domain D ⊂ R

2, as follows:

(1.6) H2
α(D) =

{
v : r

α−1
2 Dδv ∈ L2(D) ∀ δ , |δ| ≤ 2

}
with r =

√
x2 + y2, and

‖v‖2H2
α(D) =

∑
|δ|≤2

‖r
α−1
2 Dδv‖2L2(D).

This extension result will be useful to bound the approximation error in L2.
The rest of the paper is organized as follows. In Section 2 we present some

results involving the graded meshes that we will use in the remainder of the paper.
In Section 3 we obtain L2 error estimates in Ω when f ≡ 0 outside Ω. Section 4
is devoted to obtaining H1 and L2 error estimates when f is not necessarily equal
to zero outside Ω in the discrete variational formulation. In Section 5 we introduce
and analyze an auxiliary problem on Ωh, which is the main tool to obtain L2 error
estimates in Ωh between uh and a certain extension of u. Finally, in Section 6
we explain how the graded meshes can be constructed, and we present numerical
approximations in which the error behaves according to our analytical results.

2. Graded meshes

We will assume that the family of meshes {Th} satisfies the same properties as
those considered in [2]. More precisely, we take 1 < α < 3 and define γ = (α−1)/2.
Let Th be a triangulation of Ωh, where Ωh is an approximate polygon of Ω with all
its vertices belonging to Γ, and let h > 0 be a parameter that goes to 0. If for each
T ∈ Th we denote by hT its diameter and by θT its maximum angle, we assume
that there exist positive constants σ and θM < π, independent of h, such that

(1) θT < θM , ∀T ∈ Th (the maximum angle condition).

(2) hT ∼ σ h
1

1−γ , if (0, 0) ∈ T .
(3) hT ≤ σ h infT xγ , if (0, 0) /∈ T .

We denote by Γj
3,h, 1 ≤ j ≤ n, the edges on the boundary of Ωh, by Pj−1 =

(xj−1, x
α
j−1) and Pj = (xj , x

α
j ) their endpoints with x0 = 0 and xn = 1, and by Γj

3

the part on Γ3 with the same endpoints (see Figure 2). By Ωj
h we denote the region

bounded by Γj
3 and Γj

3,h.

In addition to the assumptions (1), (2) and (3) we will need for our error analysis
the following hypothesis on the meshes:

(Ha) For 1 ≤ j ≤ n the region Ωj
h is strictly contained in only one triangle

denoted by Tj . We denote the diameter of Tj by hj .
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Figure 2

Let us also notice that, for 2 ≤ j ≤ n,

xj ≤ Cxj−1,

where C can be taken independent of h. Indeed, from (Ha) we have xj − xj−1 ≤
C|Γj

3,h| for some constant depending only on α. Then xj − xj−1 ≤ Chj , and hence

from assumption (3) we get

xj ≤ xj−1

(
1 + Chxγ−1

j−1

)
.

Therefore, we have proved the following useful result.

Lemma 2.1. For 2 ≤ j ≤ n,

xj−1 ≤ xj ≤ Cxj−1,

with C depending only on α and σ.

Remark 2.1. We will show in Section 6 that meshes verifying conditions (1), (2),
(3) and (Ha) can indeed be constructed.

We will assume that our family of triangulations satisfies conditions (1), (2), (3),
and hypothesis (Ha). The following result is obtained in the proof of Lemma 4.1
in [2]; we reproduce it here as a separate result for the sake of completeness.

Lemma 2.2. Let γ = α−1
2 with 1 < α < 3, and choose 0 < β and q > 1 such that

βq < min{2γ, 1}.
Then ∫

Ωh\Ω
x−2βq ≤ Ch2.
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Proof.

(2.7)

∫
Ωh\Ω

x−2βq =
N∑
j=1

∫
Ωj

h

x−2βq.

Let us estimate each term on the right hand side of (2.7). Since

Ω1
h ⊂ T = {(x, y) : 0 ≤ x ≤ x1, 0 ≤ y ≤ xα−1

1 x},
we have ∫

Ω1
h

x−2βq ≤
∫
T

x−2βq.

Hence, using now that h1 ≤ σ h
1

1−γ and βq < 1, we obtain∫
T

x−2βq ≤ Ch
2(γ+1−βq)
1 ≤ Ch2 γ+1−βq

1−γ

and, therefore, ∫
T

x−2βq ≤ Ch2

because βq < 2γ.
On the other hand, we have∑

j>1

∫
Ωj

h

x−2βq ≤
∑
j>1

x−2βq
j−1 |Ωj

h|,

but, by using the well known error formula for the trapezoidal rule, we obtain

|Ωj
h| ≤ Ch3

jx
α−2
j−1 = Ch3

jx
2γ−1
j−1 ,

where in the case when α > 2 we have used xj ≤ Cxj−1. Therefore, since hj ≤
σhxγ

j−1 we have∑
j>1

∫
Ωj

h

x−2βq ≤ C
∑
j>1

x−2βq+2γ−1
j−1 h3

j ≤ Ch2
∑
j>1

x−2βq+4γ−1
j−1 hj

≤ Ch2

∫ 1

0

x−2βq+4γ−1,

where we have used again that xj ≤ Cxj−1. But the last integral is finite because
βq < 2γ. �

We will also need bounds for the measure of the set Ωh \ Ω in terms of the
parameter h.

Lemma 2.3. It holds that
|Ωh \ Ω| ≤ Ch2.

Proof. It follows by using similar arguments as those in the proof of Lemma 2.2,
or as a corollary, taking into account that 1 ≤ x−2βq, where β and q are as in the
previous lemma. �

In order to obtain L2 error estimates in the polygonal domains Ωh we will need
a careful estimate for the inner angles of Ωh. This computation is carried out in
the following lemma.

Lemma 2.4. Let ωh be the maximum inner angle of Ωh. Then:

i) if α < 2, ωh ≤ π + Cα(α− 1)h
α−1
3−α ,
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ii) if 2 ≤ α < 3 , ωh ≤ π + Cα(α− 1)h,

where C is independent of α and h.

Proof. Assume first that j ≥ 2 (the case j = 1 is treated below). If we denote by

ωh,j the inner angle between Γj
3,h and Γj+1

3,h , we obviously have

(2.8) ωh,j = π + arctan

(
xα
j+1 − xα

j

xj+1 − xj

)
− arctan

(
xα
j − xα

j−1

xj − xj−1

)
.

But
xα
j+1 − xα

j

xj+1 − xj
= αx̃α−1

j+1 ,
xα
j − xα

j−1

xj − xj−1
= αx̃α−1

j

for some x̃j+1 ∈ [xj , xj+1] x̃j ∈ [xj−1, xj ], and using the fact that the function
arctan(αtα−1) is increasing, we get

ωh,j ≤ π + arctan(αxα−1
j+1 ) − arctan(αxα−1

j−1 ).

By the mean value theorem and Lemma 2.1,

arctan(αxα−1
j+1 ) − arctan(αxα−1

j−1 ) = C
α(α− 1)xα−2

j

1 + α2x
2(α−1)
j

(xj+1 − xj−1)

≤ Cα(α− 1)xα−2
j (xj+1 − xj−1)

≤ Chα(α− 1)xα−2
j x

α−1
2

j ,

where in the last inequality we have used condition (3).
Now, if α ≥ 2, the result follows immediately. For the case α < 2 we use the fact

that xj ≥ x1 and that, by condition (2), x1 ∼ h
2

3−α = h
1

1−γ , so

arctan(αxα−1
j+1 ) − arctan(αxα−1

j−1 ) ≤ Cα(α− 1)h
2(α−2)
3−α +1 = Cα(α− 1)h

α−1
3−α ,

obtaining the desired result.
Let us now focus on the case j = 1. In this case (2.8) takes the form

ωh,1 = π + arctan(
xα
2 − xα

1

x2 − x1
) − arctan(xα−1

1 ) = π + arctan(αx̃α−1
2 ) − arctan(xα−1

1 )

with x̃2 ∈ [x1, x2], but

xα−1
1 = α

( x1

α1/(α−1)

)α−1

= αx̃α−1
1 ,

so

(2.9) x̃1 ≤ x1 ≤ Cx̃1

with C depending only on α. Then

ωh,1 ≤ π + arctan(αx̃α−1
2 ) − arctan(αx̃α−1

1 ),

and the result now follows as in the case j ≥ 2 using (2.9). �

In Theorem 2.4 from [5, page 63] T. Apel obtained interpolation error estimates
for functions in weighted Sobolev spaces on tetrahedral elements under the maxi-
mum angle condition. However, we were unable to find analogous results for the
two dimensional case. The reason for this seems to be that corner singularities,
which lead to the kind of spaces considered in this work, do not require anisotropic
elements in the case of polygonal domains (see, for instance, [15]). In our case,
the external cusp enforces the occurrence of flat elements, and, hence, we need to
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obtain the required error estimates for functions in H2
α in dimension 2 under the

maximal angle condition. In order to do that, we prove the following Poincaré type
inequality for functions with zero average on a side of a triangle.

Lemma 2.5. Let T̂ be the following “reference” triangle, T̂ = {(x, y) ∈ R
2 : 0 ≤

x ≤ 1, 0 ≤ y ≤ x}, and w be such that ‖w‖L2(T̂ ) + ‖∇wxs‖L2(T̂ ) < ∞ for some

0 ≤ s < 1. If
∫
�
w = 0 where � is a side of T̂ , then there exists a positive constant

C, depending only on s and T̂ , such that

‖w‖L2(T̂ ) ≤ C‖∇wxs‖L2(T̂ ).

Proof. We observe that for any 0 ≤ s < 1, there exists p > 1 such that

(2.10) ‖v‖Lp(T̂ ) ≤ C‖vxs‖L2(T̂ ).

Indeed, since ∫
T̂

|v|p =

∫
T̂

|v|pxpsx−ps,

by applying Hölder’s inequality with exponent 2
p and its dual exponent 2

2−p we

obtain (2.10) for any p such that p < 2
s+1 . On the other hand, it is easy to see by

standard compactness arguments (see Lemma 2.2 in [3] for the case p = 2) that

functions with zero average on one side of T̂ verify

(2.11) ‖w‖Lp(T̂ ) ≤ C‖∇w‖Lp(T̂ ),

with C depending only on p and T̂ . Therefore,

‖w‖L2(T̂ ) ≤ C‖w‖W 1,p(T̂ ) ≤ C‖∇w‖Lp(T̂ ) ≤ C‖∇wxs‖L2(T̂ ).

Indeed, the first inequality follows by the classical embedding theorem, while the
second and third inequalities are consequences of (2.11) and (2.10) with v = ∇w.

�

Theorem 2.1. Let T be a triangle with a maximum interior angle θT , and let
vm be the vertex corresponding to the minimum interior angle of T . We denote
by dvm

(x, y) the distance from (x, y) ∈ T to vm. Let v be such that ‖v‖L2(T ) +

‖∇v‖L2(T ) +
∑

|δ|=2 ‖Dδvdsvm
‖L2(T ) < ∞ for some 0 ≤ s < 1. Then, there exists a

positive constant C, depending only on θT , such that

‖∇(v − Πv)‖L2(T ) ≤ Ch1−s
T

∑
|δ|=2

‖Dδvdsvm
‖L2(T ),(2.12)

‖v − Πv‖L2(T ) ≤ Ch2−s
T

∑
|δ|=2

‖Dδvdsvm
‖L2(T ),(2.13)

where Πv ∈ Vh denotes the piecewise linear Lagrange interpolation of v.

Proof. It is clear that it is enough to show (2.12) and (2.13) for a triangle obtained
from T after a rigid movement. Hence, we can assume that T is a triangle with
vm = (0, 0) and with remaining vertices of the form v2 = (h1, 0) v3 = (x1, h2) with

h1, h2 > 0 and h1 ≥
√
x2
1 + h2

2 ≥ h2. Therefore, the angle θ2 at v2 = (h1, 0) verifies

θ2 ≤ π/2 and, since it is not the minimum angle of T , θ2 ≥ π−θT
2 , i.e.,

(2.14)
π − θT

2
≤ θ2 ≤ π/2.
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Let us introduce a further linear transformation L given by the matrix

A =

(
1 x1−h1

h2

0 1

)
.

It is clear that L transforms the right triangle TR with vertices (0, 0), (h1, 0), (h1, h2)
into T . From (2.14), it is easy to see that x1−h1

h2
≤ C for some C = C(θT ) and, as

a consequence, ‖A‖ ≤ C and ‖A−1‖ ≤ C. Since in both triangles T and TR the
minimum angle is placed at the origin, the inequalities ‖(x, y)‖ ≤ ‖A−1‖‖L(x, y)‖ ≤
‖A‖‖A−1‖‖(x, y)‖ imply the equivalence between the distance dvm

(x, y) and the
norm of L(x, y). Therefore, changing variables, we have that it is enough to prove
(2.12) and (2.13) for TR with h1 ≥ h2. On the other hand, in TR it is clear that
dvm

= ‖(x, y)‖ ∼ x, and so in order to show that (2.12) holds it is enough to prove
that

(2.15) ‖∇(v − Πv)‖L2(TR) ≤ Ch1−s
TR

∑
|δ|=2

‖Dδvxs‖L2(TR).

We prove the previous inequality for ∂(v−Πv)
∂x ; the other derivative can be treated

in the same way. Taking w = ∂(v−Πv)
∂x we have that

∫
�1
w = 0, with �1 being

the side joining the vertices (0, 0) and (h1, 0). Changing variables to the reference

element defined in Lemma 2.5 we get, taking L̂(x̂, ŷ) = (x̂h1, ŷh2), that the function

ŵ = w ◦ L̂ has zero average on the side of T̂ joining the vertices (0, 0) and (1, 0).
Then, by Lemma 2.5 applied to ŵ we get

‖w‖2L2(TR) = h1h2‖ŵ‖2L2(T̂ )
≤ h1h2C‖∇ŵx̂s‖2

L2(T̂ )
,

and changing variables back to the original TR

‖w‖L2(TR) ≤ C

(
h1‖

∂w

∂x

(
x

h1

)s

‖L2(T̂ ) + h2‖
∂w

∂y

(
x

h1

)s

‖L2(T̂ )

)
since h1 ≥ h2,

‖w‖L2(TR) ≤ Ch1−s
TR

‖∇wxs‖L2(TR),

and (2.15) follows. As is usual when considering anisotropic elements, inequal-
ity (2.13) is easier to prove than (2.12), since its left hand side does not involve

derivatives. The estimate for T̂ ,

(2.16) ‖v̂ − Πv̂‖L2(T̂ ) ≤ C
∑
|δ|=2

‖Dδ v̂x̂s‖L2(T̂ ),

follows by using embedding results and standard Lagrange interpolation error esti-
mates in Lp together with (2.10). In fact,

‖v̂ − Πv̂‖L2(T̂ ) ≤ C‖v̂ − Πv̂‖W 1,p(T̂ ) ≤ C
∑
|δ|=2

‖Dδ v̂‖Lp(T̂ ) ≤
∑
|δ|=2

‖Dδ v̂x̂s‖L2(T̂ ).

Now, (2.13) follows on TR from (2.16) by using the change of variables L̂(x̂, ŷ) =

(x̂h1, ŷh2) and taking into account that Πv̂ = Πv ◦ L̂. �

We define a fixed (i.e., independent of h) domain TU , which contains our discrete
domain Ωh, in the following way:

(2.17) TU = {(x, y) ∈ R
2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ x}.
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Although TU agrees with T̂ , we use a different notation for both triangles for the
sake of clarity, since T̂ plays the standard role of the reference element in interpo-
lation error estimates and TU is the domain where the extension uE of u will be
studied.

Lemma 2.6. If 1 < α < 3, there exists a constant C, which depends only on α,
such that

‖uE‖W 2,p(TU ) ≤ C‖uE‖H2
α(TU )

for all 1 ≤ p < 4
α+1 .

Proof. The proof follows by using (2.10), with s = α−1
2 < 1, for uE and its deriva-

tives. �

Remark 2.2. Conditions (1), (2) and (Ha), together with the fact that α > 1, imply
that there exists only one triangle T in the mesh such that (0, 0) ∈ T . Moreover,
its vertices are necessarily of the form (0, 0), (0, h1), and (x1, x

α
1 ). Furthermore, if

hT → 0, the angle θ0 placed at (0, 0) tends to zero since
xα
1

x1
= xα−1

1 ≤ hα−1
T → 0,

and, hence, condition (1) implies that for hT small enough θ0 is in fact the minimum
interior angle.

Now we can prove the following “global” version of the interpolation error esti-
mates,

Theorem 2.2. There exists a constant C depending only on θM , σ and α such
that

(2.18) ‖∇(uE − ΠuE)‖L2(Ωh) ≤ Ch|uE |H2
α(Ωh)

and

(2.19) ‖uE − ΠuE‖L2(Ωh) ≤ Ch2|uE |H2
α(Ωh),

where ΠuE ∈ Vh denotes the piecewise linear Lagrange interpolation of uE and
|uE |H2

α(Ωh) denotes the usual semi-norm on H2
α,

Proof. We will only sketch the proof because it is standard (see [15]). For (2.18)
we write

‖∇(uE − ΠuE)‖2L2(Ωh)
= ‖∇(uE − ΠuE)‖2L2(T1)

+
∑

T∈Th,T �=T1

‖∇(uE − ΠuE)‖2L2(T ).

We observe that, in view of Remark 2.2, the triangle T1 defined in (Ha) is the unique
triangle which contains (0, 0). The first term can be bounded by using condition
(1), Theorem 2.1 with s = α−1

2 < 1 (recall that α < 3), and noticing that Lemma

2.6 gives the necessary regularity for uE (use embedding results on TU ). Finally,
condition (2) allows us to replace hT1

by h. The second term can be handled using
error estimates for Lagrange interpolation for classical unweighted Sobolev spaces
under the maximal angle condition (see, for example, [6]), together with condition
(3). Indeed, since (0, 0) is not in T , we have

‖∇(uE − ΠuE)‖L2(T ) ≤ ChT |uE |H2(T ) ≤ Ch inf
T

xγ |uE |H2(T ) ≤ Ch|uE |H2
α(T ).

The estimate (2.19) is handled in the same way. �

We finish this section by recalling the following estimate that will be useful later
on.
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Lemma 2.7. If 1 < α < 3, then there exists a constant C, which depends only on
α, θM and σ, such that

‖∇uE‖L2(Ωh\Ω) ≤ Ch
√
log(1/h)‖u‖H2(Ω).

Proof. See Lemma 4.1 in [2]. �

3. L2
error estimates in Ω when f ≡ 0 outside Ω

In this section we obtain error estimates in L2(Ω) of quasi-optimal order (i.e.,
optimal up to a logarithmic factor) with respect to the number of nodes using
appropriate graded meshes, when f vanishes outside Ω.

The following error estimate in H1(Ω) for the finite element approximation of
the Poisson problem (1.2) with f ≡ 0 outside Ω was obtained in [2].

Theorem 3.1. Let u be the solution of (1.2) and uh ∈ Vh be the solution of (1.4).
Assume that 1 < α < 3 and that f ∈ L2(Ω) is extended by zero outside Ω.

If the family of meshes satisfies (1), (2), (3) and (Ha), then there exists a con-
stant C depending only on α, θM and σ such that

‖u− uh‖H1(Ω) ≤ ‖uE − uh‖H1(Ωh) ≤ Ch
√

log(1/h) ‖f‖L2(Ω).

Our next goal is to obtain error estimates in the L2 norm. In order to use the
Aubin-Nitsche duality arguments we introduce the following auxiliary problem: Let
Φ ∈ H1(Ω) be the solution of

(3.20)

⎧⎪⎪⎨
⎪⎪⎩

−ΔΦ = u− uh , in Ω,

∂Φ

∂ν
= 0 , on Γ1 ∪ Γ3,

Φ = 0 , on Γ2,

where ν denotes the outside normal. Applying the a priori estimate (1.3) to Φ, we
have that Φ ∈ H2(Ω) and that there exists a constant C such that

(3.21) ‖Φ‖H2(Ω) ≤ C‖u− uh‖L2(Ω).

Moreover, solutions of (3.20) can be extended to R
2. Indeed, the analogue of (1.5)

applied to Φ shows that there exists a function ΦE ∈ H2
α(R2) such that ΦE |Ω = Φ

and

(3.22) ‖ΦE‖H2
α(R

2) ≤ C‖Φ‖H2(Ω).

On the other hand, applying Lemma 2.6 to ΦE , we get

(3.23) ‖ΦE‖W 2,p(TU ) ≤ C‖ΦE‖H2
α(TU )

for 1 ≤ p < 4
α+1 .

Theorem 3.2. Let u be the solution of (1.2) and uh be the solution of (1.4).
Assume that 1 < α < 3 and that f ∈ L2(Ω) is extended by zero outside Ω. Then,

‖u− uh‖L2(Ω) ≤ Ch2 log(1/h)‖f‖L2(Ω).

Proof. Let e = u− uh and Φ be the solution of (3.20). We have that

(3.24)

∫
Ω

e2 =

∫
Ω

(−ΔΦ)e =

∫
Ω

∇Φ∇e =

∫
Ω

∇(Φ − ΠΦ)∇e +

∫
Ω

∇(ΠΦ)∇e.
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From (1.2) and (1.4) we get∫
Ω

∇e∇v =

∫
Ωh\Ω

∇uh∇v ∀v ∈ Vh.

Hence,

(3.25)

∫
Ω

e2 =

∫
Ω

∇(Φ − ΠΦ)∇e +

∫
Ωh\Ω

∇uh∇(ΠΦE).

From Theorem 2.2 applied to ΦE and (3.22), we have that
(3.26)
‖∇(Φ − ΠΦ)‖L2(Ω) ≤ ‖∇(ΦE − ΠΦE)‖L2(Ωh) ≤ Ch‖ΦE‖H2

α(Ωh) ≤ Ch‖Φ‖H2(Ω).

Then, the first term of (3.25) can be bounded by means of Theorem 3.1 and (3.21).
Indeed, ∫

Ω

∇(Φ − ΠΦ)∇e ≤ Ch2 log(1/h)‖f‖L2(Ω)‖e‖L2(Ω).

For the second term in (3.25) we have that

(3.27)

∫
Ωh\Ω

∇uh∇(ΠΦE) =

∫
Ωh\Ω

∇(uh − uE)∇(ΠΦE) +

∫
Ωh\Ω

∇uE∇(ΠΦE).

The first term can be bounded using Theorem 3.1 by∫
Ωh\Ω

∇(uh − uE)∇(ΠΦE)

≤ Ch
√

log(1/h)‖f‖L2(Ω){‖∇(ΠΦE − ΦE)‖L2(Ωh\Ω) + ‖∇ΦE‖L2(Ωh\Ω)},

while the second term can be bounded using Lemma 2.7 and (1.3) by∫
Ωh\Ω

∇uE∇(ΠΦE)

≤ Ch
√

log(1/h)‖f‖L2(Ω)‖∇ΠΦE‖L2(Ωh\Ω)

≤ Ch
√

log(1/h)‖f‖L2(Ω){‖∇(ΠΦE − ΦE)‖L2(Ωh\Ω) + ‖∇ΦE‖L2(Ωh\Ω)}.

Therefore, from (3.27) we get∫
Ωh\Ω

∇uh∇(ΠΦE)

≤ Ch
√

log(1/h)‖f‖L2(Ω){‖∇(ΠΦE − ΦE)‖L2(Ωh\Ω) + ‖∇ΦE‖L2(Ωh\Ω)},

and using (3.26), Lemma 2.7 applied to ΦE , and (3.21), we obtain∫
Ωh\Ω

∇uh∇(ΠΦE) ≤ Ch2 log(1/h)‖f‖L2(Ω)‖e‖L2(Ω),

and the theorem follows. �

Remark 3.1. Whether or not the logarithmic factor log h in Theorem 3.1 and Theo-
rem 3.2 can be removed is an open problem, and it is not easy to obtain information
about either possibility from numerical experiments.
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4. Error estimates in the case in which f 
≡ 0 outside Ω

In this section we will obtain error estimates in H1 norm and L2 norm when
f does not necessarily vanish outside Ω. This kind of estimate can be useful in
several situations. For example, even for simple sources such as f ≡ 1 in Ω, the
term

∫
Ωh

χΩv in (1.4) is usually replaced by
∫
Ωh

1v (i.e. as if f were defined as 1

over Ωh) in numerical computations when any standard quadrature rule is applied.

In general, the contribution of the terms such as
∫
Ωh\Ω f̃vh, with f̃ being a certain

approximation of f defined on Ωh, may be useful in order to evaluate the effect of
numerical integration. On the other hand, in eigenvalue approximations the usual
approach (see [9]) is based on the convergence of appropriate operators Th to the
limit operator T , with T being the inverse of the Laplacian. Since Ωh 
= Ω, the
operators Th are mesh dependent and the analysis leads to the study of problems
such as (1.4) with f not necessarily equal to zero outside Ω [17].

In order to analyze the contribution of the consistency term arising from the
integral

∫
Ωh\Ω fvh in equation (1.4), we will need, in addition to assumptions (1),

(2), (3) and (Ha), the following hypothesis about the mesh:

(Hb) For each triangle Tj with vertices Pj−1, Pj , and Rj , and for hj small enough,

the triangle T̃j with vertices
Pj−1+Rj

2 ,
Pj+Rj

2 , and Rj (see Figure 3) does

not intersect Ωj
h.

T̃j

Ωj
h

Pj

Pj−1 Rj

Figure 3

Remark 4.1. It can easily be deduced that (Hb) holds for meshes with only regular
elements and for domains with smooth boundaries. Meshes for the domains under
consideration in this paper involve necessarily anisotropic elements (consider, for
instance, any element with a vertex at (0, 0)), and this kind of element may fail to
verify condition (Hb). In fact, an easy example is given by taking α = 5 and the



1962 G. ACOSTA AND M. G. ARMENTANO

triangle T defined by the vertices (0, 0), (h, 0), and (h, h5). In Section 6 we will show
that meshes verifying conditions (1), (2), (3),(Ha) and (Hb) can be constructed (we
recall that 1 < α < 3).

In what follows we will assume that the family of triangulations under consider-
ation verifies (1), (2), (3), (Ha) and (Hb).

Our first goal is to obtain the H1 error estimates for the solutions of (1.2) and
(1.4). In order to do that we will use the following result (let us recall that Ωh is
not uniformly Lipschitz in h):

Lemma 4.1. For any vh ∈ Vh there exists a constant C such that

‖vh‖Lp(Ωh) ≤ C‖vh‖H1(Ωh)

for 1 ≤ p ≤ 2(α+1)
α−1 .

Proof. Since Ω ⊂ Ωh and vh ∈ Vh, we see that vh|Ω ∈ H1(Ω), and then, using the
imbedding result for cusps given in Theorem 5.35 of [4] (with ν = α− 1), we get

‖vh‖Lp(Ω) ≤ C‖vh‖H1(Ω)

for 1 ≤ p ≤ 2(α+1)
α−1 . We now need to show that vh can also be bounded on Ωh \ Ω.

More precisely, since vh is a piecewise linear function, we claim that

(4.28) ‖vh‖Lp(Ωh) ≤ C‖vh‖Lp(Ω),

from which we can easily obtain the desired result. Inequalities such as (4.28) for
Lipschitz domains have been obtained in different works (see, for example, [16]).

Let us introduce the notation M j = Tj \ Ωj
h (i.e. M j stands for Ω ∩ Tj). All we

need is to show that the local estimates

(4.29) ‖vh‖Lp(Tj) ≤ C‖vh‖Lp(Mj)

hold with C depending only on α. From (Hb) we have that T̃j ∩ Ωj
h = ∅, so

T̃j ⊂ M j ⊂ Tj . On the other hand, calling T̂ and T̂ 1
2

the triangles of vertices

{(0, 0), (1, 0), (0, 1)} and {(0, 0), ( 12 , 0), (0, 12 )} respectively, we have that there exists

an affine mapping F̂ such that F̂ (T̂ ) = Tj and F̂ (T̂ 1
2
) = T̃j . Now, since the space

of linear functions has finite dimension, we have

‖v̂‖Lp(T̂ ) ≤ C‖v̂‖Lp(T̂ 1
2
)

for any linear function v̂ (the constant C depends only on T̂ and T̂ 1
2
). Changing

variables we get
‖vh‖Lp(Tj) ≤ C‖vh‖Lp(T̃j)

,

from which (4.29) follows, since T̃j ⊂ M j . �
Remark 4.2. Note that, since functions in Vh vanish at Γ2, the previous lemma
implies, together with Poincaré inequality, that

(4.30) ‖vh‖Lp(Ωh) ≤ C|vh|H1(Ωh)

for 1 ≤ p ≤ 2(α+1)
α−1 .

Theorem 4.1 below is a generalization of Theorem 3.1 and essentially says that
the contribution to the error of the consistency type term due to fact that f 
≡ 0

outside Ω is at most Ch
2

α+1 ‖f‖L2(Ωh\Ω).
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Theorem 4.1. Let u be the solution of (1.2) and uh be the solution of (1.4). If
we assume that α < 3 and f ∈ L2(R2), then there exists a positive constant C,
depending only on α, θM , and σ, such that

‖u− uh‖H1(Ω) ≤ ‖uE − uh‖H1(Ωh) ≤ Ch
√

log 1/h‖f‖L2(Ω) + Ch
2

α+1 ‖f‖L2(Ωh\Ω).

Proof. Since Ω ⊂ Ωh, by Poincaré inequality and (1.3) we observe that it is enough
to prove that

(4.31) |uE − uh|H1(Ωh) ≤ Ch
√

log 1/h‖u‖H2(Ω) + Ch
2

α+1 ‖f‖L2(Ωh\Ω).

Now,
(4.32)

|uE −uh|2H1(Ωh)
=

∫
Ωh

∇(uE −uh) ·∇(uE −ΠuE)+

∫
Ωh

∇(uE −uh) ·∇(ΠuE −uh),

but we know from (1.5) and (2.18) that

|uE − ΠuE |H1(Ωh) ≤ Ch‖uE‖H2
α(Ωh) ≤ Ch‖u‖H2(Ω).

Thus, for the first term in (4.32), by Young’s inequality, we have

(4.33)

∫
Ωh

∇(uE − uh) · ∇(uE − ΠuE) ≤ ε|uE − uh|2H1(Ωh)
+ Cεh

2‖u‖2H2(Ω),

with ε to be chosen below.
For the second term of (4.32) we proceed as follows. Let us introduce the notation

wh := ΠuE − uh. From (1.2) and (1.4) we have∫
Ωh

∇(uE − uh) · ∇wh =

∫
Ωh

∇uE · ∇wh −
∫
Ωh

∇uh · ∇wh

=

∫
Ωh\Ω

∇uE · ∇wh −
∫
Ωh\Ω

fwh.(4.34)

From Lemma 2.7 using Young’s inequality again we obtain

(4.35)

∣∣∣∣∣
∫
Ωh\Ω

∇uE · ∇wh

∣∣∣∣∣ ≤ Cεh
2 log(1/h)‖u‖2H2(Ω) + ε|wh|2H1(Ωh)

,

while for the second term in (4.34), if we take 1
p + 1

q = 1 as

q = 2
α + 1

α + 3
< 2, p = 2

α + 1

α− 1
,

we can write

|
∫
Ωh\Ω

fwh| ≤
(∫

Ωh\Ω
fq

) 1
q
(∫

Ωh\Ω
wp

h

) 1
p

≤
(∫

Ωh\Ω
fq

) 1
q (∫

Ωh

wp
h

) 1
p

.

Again applying Hölder’s inequality and Lemma 4.1 to the limit case p = 2α+1
α−1

(wh ∈ Vh; see also (4.30)), we get∣∣∣∣∣
∫
Ωh\Ω

fwh

∣∣∣∣∣ ≤ C|Ωh \ Ω|
2−q
2q ‖f‖L2(Ωh\Ω)|wh|H1(Ωh),

and by Young’s inequality, Lemma 2.3, and replacing q = 2α+1
α+3 , we obtain∣∣∣∣∣

∫
Ωh\Ω

fwh

∣∣∣∣∣ ≤ Cεh
4

α+1 ‖f‖2L2(Ωh\Ω) + ε|wh|2H1(Ωh)
.
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This inequality, together with (4.34) and (4.35), gives∣∣∣∣
∫
Ωh

∇(uE − uh) · ∇wh

∣∣∣∣ ≤ Cεh
2 log(1/h)‖u‖2H2(Ω)(4.36)

+ Cεh
4

α+1 ‖f‖2L2(Ωh\Ω) + 2ε|wh|2H1(Ωh)
.

By (2.18)

|wh|2H1(Ωh)
≤ 2(|ΠuE − uE |2H1(Ωh)

+ |uE − uh|2H1(Ωh)
)(4.37)

≤ Ch2‖u‖2H2(Ω) + 2|uE − uh|2H1(Ωh)
,

and replacing (4.37) in (4.36) we get (Cε may change from line to line)∣∣∣∣
∫
Ωh

∇(uE − uh) · ∇wh

∣∣∣∣ ≤ Cεh
2 log(1/h)‖u‖2H2(Ω) + Cεh

4
α+1 ‖f‖2L2(Ωh\Ω)

+ 4ε|ũ− uh|2H1(Ωh)
.(4.38)

Finally, taking ε small enough, by (4.32), (4.33) and (4.38) we obtain (4.31), and
the theorem follows. �

Our next goal is to obtain error estimates in L2(Ω).

Theorem 4.2. Let u be the solution of (1.2) and uh be the solution of (1.4).
Assume α < 3 and f ∈ L2(R2). Then

‖u− uh‖L2(Ω) ≤ Ch2 log(1/h)‖f‖L2(Ω) + Ch‖f‖L2(Ωh\Ω).

Proof. Let e = u− uh and Φ be the solution of (3.20). Then∫
Ω

e2 =

∫
Ω

(−ΔΦ)e =

∫
Ω

∇Φ∇e =

∫
Ω

∇(Φ − ΠΦ)∇e +

∫
Ω

∇(ΠΦ)∇e.

From (1.2) and (1.4) we get∫
Ω

∇e∇v =

∫
Ωh\Ω

∇uh∇v −
∫
Ωh\Ω

fv ∀v ∈ Vh,

hence,

(4.39)

∫
Ω

e2 =

∫
Ω

∇(Φ − ΠΦ)∇e +

∫
Ωh\Ω

∇uh∇(ΠΦE) −
∫
Ωh\Ω

f(ΠΦE).

The first term of (4.39) can be bounded by means of Theorem 4.1, (3.26) and
the a priori estimates (3.21). Indeed,∫

Ω

∇(Φ − ΠΦ)∇e ≤ Ch
{
h
√

log(1/h)‖f‖L2(Ω) + h
2

α+1 ‖f‖L2(Ωh\Ω)

}
‖e‖L2(Ω).

For the second term in (4.39), using Lemma 2.7 and Theorem 4.1 we know that∫
Ωh\Ω

∇uh∇(ΠΦE)

=

∫
Ωh\Ω

∇(uh − uE)∇(ΠΦE) +

∫
Ωh\Ω

∇uE∇(ΠΦE)

≤ Ch
√

log(1/h)‖f‖L2(Ω){‖∇(ΠΦE − ΦE)‖L2(Ωh\Ω) + ‖∇ΦE‖L2(Ωh\Ω)}.
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Then, using (3.26), Lemma 2.7 applied to ΦE , and (3.21), we get∫
Ωh\Ω

∇uh∇(ΠΦE) ≤ Ch2 log(1/h)‖f‖L2(Ω)‖e‖L2(Ω).

Therefore, we only have to estimate the third term in (4.39):

(4.40)

∫
Ωh\Ω

f(ΠΦE) =

∫
Ωh\Ω

f(ΠΦE − ΦE) +

∫
Ωh\Ω

fΦE .

Now, the L2 interpolation error estimate given in Theorem 2.2 says that

‖ΠΦE − ΦE‖L2(Ωh) ≤ Ch2‖ΦE‖H2
α(Ωh),

and then, using (3.21) and (3.22) we get∫
Ωh\Ω

f(ΠΦE − ΦE) ≤ Ch2‖e‖L2(Ωh)‖f‖L2(Ωh\Ω).

Now, for the second term in (4.40) we use (3.23) and the fact that for p > 1,
functions in W 2,p(TU ) are bounded, together with (3.21), (3.22) and Lemma 2.3,
to obtain∫

Ωh\Ω
fΦE ≤ C‖ΦE‖L∞(TU )|Ωh \ Ω| 12 ‖f‖L2(Ωh\Ω)

≤ Ch‖ΦE‖H2
α(TU )‖f‖L2(Ωh\Ω) ≤ Ch‖f‖L2(Ωh\Ω)‖e‖L2(Ω),

and the theorem follows. �

5. L2
error estimates between uE

and uh in Ωh

In this section we obtain L2 error estimates between the extended function uE

and the numerical solution uh in the polygonal domain Ωh. The results given below
allow us, in particular, to obtain a precise computation of terms like ‖uh‖L2(Ωh\Ω)

which, for example, provides an optimal bound for the error between ‖u‖L2(Ω) and

‖uh‖L2(Ωh). On the other hand, estimates for the error between uE and uh are
useful in the analysis of the error of eigenvalue problems [17].

The approach follows the lines of the previous sections, however, several extra
complications arise since the dual problem is posed over the polygonal domain Ωh.
The main result of this section is Theorem 5.1, which is more general than Theorem
4.2. However, we want to remark that Theorem 5.1 relies on Assumption 1 below,
which is not necessary for the estimates in L2(Ω) obtained in the previous sections.

We recall that error estimates between the extended function uE and the nu-
merical solution uh in the H1(Ωh) norm have been obtained in Theorem 4.1.

We want to use duality arguments similar to those in the previous section. For
this reason we introduce the following auxiliary problem closely related to (3.20):

For any h let Φh ∈ H1(Ωh) be the solution of

(5.41)

⎧⎪⎪⎨
⎪⎪⎩

−ΔΦh = uE − uh , in Ωh,

∂Φh

∂ν
= 0 , on Γ1 ∪ Γ3,h,

Φh = 0 , on Γ2,

where ν denotes the outside normal.
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A priori estimates for (5.41) in fractional and weighted Sobolev spaces are well
known. Calling ωh the maximum inner angle of Ωh, and taking

(5.42)

{
rh = 1 − Cα(α− 1)h

α−1
3−α , for α < 2,

rh = 1 − Cα(α− 1)h, for α ≥ 2

for a suitable C, we can assume, from Lemma 2.4, that rh < π/ωh. Hence, we have
that Φh ∈ H1+rh(Ωh) [15] (with rh = 1 if Ωh is convex) and that [15, page 388] Φh

belongs to the weighted Sobolev space H2,γh(Ωh) defined by

H2,γh(Ωh) =
{
v : r̂γhDβv ∈ L2(Ωh) ∀β , |β| ≤ 2

}
,

where

(5.43) r̂ = min
1≤j≤n

rj

with rj =
√

(x− xj)2 + (y − xα
j )2 and

(5.44)

{
γh = Cαh

α−1
3−α , for α < 2,

γh = Cαh for α ≥ 2.

The following a priori estimates also holds:

‖Φh‖H1+rh (Ωh) ≤ Ch‖uE − uh‖L2(Ωh),(5.45)

‖Φh‖H2,γh(Ωh) ≤ Ch‖uE − uh‖L2(Ωh).(5.46)

For (5.45) we refer the reader to [15], while (5.46) can be found in [7, 10].
The constants Ch in (5.45) and (5.46) may change with the number of vertices

of the polygonal domain Ωh (and hence with h). On the other hand, as mentioned
in [16], the classical proof for (5.45) provides very poor control of the constant
Ch (see Remark 4.3.2.6 in [15]). However, in [16] it is also mentioned that for
Lipschitz domains Ω with piecewise C2 boundary, the uniform boundedness of Ch

with respect to h is a plausible hypothesis for reasonable triangulations, since the
constants Ch could be bounded [16, page 141] via a boundary integral formulation.
As far as we know, there is not an explicit proof of this fact in the literature, even
for regular domains Ω.

Although our domain Ω is not Lipschitz, it has a C2 piecewise boundary and,
in view of (1.3), the a priori estimate for Ω, we consider the following assumption
also plausible:

Assumption 1. Our family of triangulations {Th} is such that the constants Ch

in ( 5.45) and in ( 5.46) are uniformly bounded with respect to h. For this reason
we will drop the subindex h in Ch in further references to ( 5.45) and ( 5.46).

In order to obtain L2 error estimates using the auxiliary problem (5.41), we will
need some embedding results in Ωh for the solution Φh. Since Ωh is not uniformly
Lipschitz in h (in fact, Ωh → Ω, and Ω is not a Lipschitz domain), the classical
embedding theorems for Lipschitz domains do not apply, neither do the general
results for cusps given in [20]; since Φh belongs to a weighted Sobolev space. As a
consequence, we will extend Φh to some fixed Lipschitz domain in a certain weighted
Sobolev space (we recall that the extension results given in [20] do not apply in our
case), and then we will get proper embedding results. Therefore, we will follow the
approach given in Lemma 3.1 of [2].
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We first extend Φh from Ωh to the following domain Dh (see Figure 4):

Dh = {(x, y) ∈ R
2 : −x < y < gh(x), 0 < x < 1},

where gh : [0, 1] → Γ3,h is a parametrization of Γ3,h :=
⋃

j Γj
3,h and we show that

Ω
h

T
L

T
U

Figure 4. Left: Domain Dh. Right: Triangle TU .

the extension belongs to the space

H2,γh

α+A(h)(Dh) =
{
v : r

α−1
2 +A(h)

2 ργhDβv ∈ L2(Dh) ∀β , |β| ≤ 2
}
,

where A(h) = 6γh, r =
√
x2 + y2 and

(5.47) ρ = min
1≤j≤n

{rj , dj} ,

with rj =
√

(x− xj)2 + (y − xα
j )2 and dj =

√
(x− xj)2 + (y + xj)2.

In the next lemma we find equivalent expressions for the distances involved in
the weights.

Lemma 5.1. Let us denote by dΓ3
(x, η) the distance from (x, η) ∈ Ω to Γ3. Then

(5.48) dΓ3
(x, η) ≤ xα − η ≤ CdΓ3

(x, η),

with C depending only on α.
What is more, a similar discrete version of this property holds. Indeed, for any

sequence 0 = x0 < x1 < · · · < xN = 1, if we define Ωj = {(x, η) : xj−1 ≤ x ≤
xj , 0 ≤ η ≤ xα}, 1 ≤ j ≤ N , then for any (x, η) ∈ Ωj there exists a constant C
depending only on α such that

(5.49) ρ(x, η) ≤ min
i=j−1,j

{ri(x, η)} ≤ Cρ(x, η),

where ri(x, η) stands for the distance from (x, η) to (xi, x
α
i ), and ρ(x, η) =

min1≤i≤N {ri(x, η)}.

Proof. It is clear that dΓ3
(x, η) ≤ xα− η. On the other hand, denoting by P∗ ∈ Γ3,

P∗ = (x∗, x
α
∗ ) the point for which dΓ3

(x, η) = ‖P∗ − (x, η)‖, and by L the line
joining the point P∗ with (x, xα) ∈ Γ3, we get that dL, the distance from (x, η) to
L, verifies dL(x, η) ≤ dΓ3

(x, η) (since P∗ ∈ L ∩ Γ3).
Let us consider the point Q∗ ∈ L such that dL(x, η) = ‖Q∗ − (x, η)‖, and let us

also consider the triangle given by the points Q∗, (x, η) and (x, xα). This triangle
has a right angle at Q∗, and the angle θ placed at (x, xα) is clearly bounded by
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below by some fixed θ0 > 0 depending only on α. Now (5.48) follows because of
the following inequalities:

dΓ3
(x, η) ≥ dL(x, η) = ‖(Q∗ − (x, η))‖ = ‖(x, xα) − (x, η)‖ sin(θ)

≥ ‖(x, xα) − (x, η)‖ sin(θ0) = sin(θ0)(x
α − η).

Let us now consider (5.49). A direct calculation shows that the function h :
(0, 1) → R, h(t) = (t − x)2 + (tα − η)2, decreases before its global minimum and
increases after that. Indeed, if x∗ verifies h′(x∗) = 0, with h′(t) = 2(t − x) +
2α(tα − η)tα−1, hence x∗ ∈ [η1/α, x] since obviously h′(t) < 0 for t < η1/α and
h′ > 0 for t > x. On the other hand, h′′(t) > 0 for η1/α ≤ t ≤ x, which shows the
existence of a unique x∗ ∈ [η1/α, x] global minimum of h.

For (x, η) ∈ Ωj and P∗ = (x∗, x
α
∗ ), the point for which dΓ3

(x, η) = ‖P∗ −
(x, η)‖ =

√
h(x∗), we consider the index l such that P∗ ∈ Ωl. If l = j, then

minj−1≤i≤j{ri(x, η)} = min1≤i≤N{ri(x, η)} (since h is increasing for t > x∗ and
decreasing if t < x∗). If l 
= j, then, without loss of generality, we may assume
l < j, and we write

ρ(x, η) = min
1≤i≤N

{ri(x, η)} = min
l−1≤i≤l

{ri(x, η)} ≤
√
h(x) = xα − η ≤ CdΓ3

(x, η),

where we have used the fact that x ≥ xl, the point (x, xα) ∈ Γ3, h is increasing
in the range [xl, x], and (5.48). Now, (5.49) follows from the fact that dΓ3

(x, η) ≤
minj−1≤i≤j{ri(x, η)}. �
Remark 5.1. It is easy to see that for (x, η) ∈ Ωh ⊂ Dh, ρ = r̂, where r̂ and ρ are
defined in (5.43) and (5.47), respectively.

We are now ready to extend Φh to Dh.

Lemma 5.2. Given v ∈ H2,γh(Ωh) such that ∂v
∂ν = 0 on Γ1, there exists a function

ṽ ∈ H2,γh

α+A(h)(Dh) such that ṽ|Ωh
= v and

‖ṽ‖
H

2,γh
α+A(h)

(Dh)
≤ C‖v‖H2,γh(Ω),

where A(h) = 6γh and, in particular, A(h) → 0 when h → 0.

Proof. The proof follows the ideas given in Lemma 3.1 of [2]. We extend v by
reflection in the following way.

For any (x, y) ∈ Dh with y ≤ 0, let us define η = −xα−1y. Observe that the
function (x, y) → (x, η) maps TL onto Ω ⊂ Ωh (see Figure 4), and therefore, calling
TL := Dh \ Ωh = {0 ≤ x ≤ 1, −x ≤ y < 0}, we can define{

ṽ(x, y) = v(x, y), for (x, y) ∈ Ωh,

ṽ(x, y) = v(x, η), for (x, y) ∈ TL.

We notice that for (x, y) ∈ TL we have r =
√
x2 + y2 ∼ x, and, therefore, we

can replace the weight rα−1+A(h) by xα−1+A(h) in our estimates.
Now, it is clear that

(5.50)

∫
TL

ṽ2(x, y)xα−1+A(h)ρ2γh(x, y)dxdy ≤ A + B

with

(5.51) A =

∫
TL1

ṽ2(x, y)xα−1+A(h)
[
(x− x1)

2 + (y + x1)
2
]γhdxdy
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and

B =

N∑
j=2

Bj ,(5.52)

Bj =

∫
TLj

ṽ2(x, y)xα−1+A(h) min
i=j−1,j

[
(x− xi)

2 + (y + xi)
2
]γhdxdy,

where TLj = {xj−1 ≤ x ≤ xj , −x ≤ y ≤ 0} (notice that we have used the fact that

ρ ≤ dj =
√

(x− xj)2 + (y + xj)2, for any j).
Changing variables, and taking into account that α < 3, we get for j > 1

Bj =

∫
Ωj

v2(x, η)xA(h) min
i=j−1,j

{
(x− xi)

2 + (− η

xα−1
+ xi)

2
}γh

dxdη

≤ C

∫
Ωj

v2(x, η)xA(h)−4γh min
i=j−1,j

{
(x− xj)

2 + (−η + xjx
α−1)2

}γh
dxdη,

where Ωj = {xj−1 ≤ x ≤ xj , 0 ≤ η ≤ xα}. Similarly,

A ≤ C

∫
Ω1

v2(x, η)xA(h)−4γh
{
(x− x1)

2 + (−η + x1x
α−1)2

}γh
dxdη.

Since

(−η + xjx
α−1)2 ≤ C[(η − xα

j )2 + (xα
j − xjx

α−1)2],

using the mean value theorem, Lemma 2.1, the fact that x, xj ≤ 1, and 1 < α, we
obtain for j > 1

(xα
j −xjx

α−1)2 ≤ Cx2
jx

2(α−2)(x−xj)
2 ≤ C max{x2(α−2), 1}(x−xj)

2 ≤ x−2(x−xj)
2,

and, hence,

Bj ≤ C

∫
Ωj

v2(x, η)xA(h)−6γh min
i=j−1,j

{
ri(x, η)

2
}γh

dxdη,

where ri(x, η) =
√

(x− xi)2 + (η − xα
i )2. Using the fact that A(h) = 6γh and

Lemma 5.1 we get

(5.53) Bj ≤ C

∫
Ωj

v2(x, η)ρ2γhdxdη.

Similarly, for j = 1 we have that

(xα
1 − x1x

α−1)2 ≤ C max{x2(α−2), 1}(x− x1)
2 ≤ Cx−2(x− x1)

2.

As a consequence,

A ≤ C

∫
Ω1

v2(x, η)xA(h)−6γh
{
r1(x, η)

2
}γh

dxdη.

Let us notice that, for (x, η) ∈ Ω1, it is clear that r1(x, η) = ρ(x, η); then

A ≤ C

∫
Ω1

v2(x, η)ρ(x, η)2γhdxdη.

From the previous inequality, (5.50) and (5.53), we have∫
TL

ṽ2(x, y)xα−1+A(h)ρ2γh(x, y)dxdy ≤
∫
Ω

v2(x, η)ρ(x, η)2γhdxdη.
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Bounds for the first and second derivatives of ṽ follow similarly using the same
ideas given in Lemma 3.1 of [2] and the estimates given above. Therefore, we have

proved that ṽ ∈ H2,γh

α+A(h)(TL) and that

‖ṽ‖
H

2,γh
α+A(h)

(TL)
≤ C‖v‖H2,γh(Ω).

On the other hand, using that ∂v
∂ν = 0 on Γ1, it is easy to see that ṽ ∈ H2,γh

α+A(h)(Dh),

concluding the proof. �

From the previous lemma we conclude that any Φ̃h ∈ H2,γh(Ωh) has an extension

Φ̃E
h belonging to H2,γh

α+A(h)(Dh). Since Dh is uniformly Lipschitz and the weights

involved belong to the Muckenhoupt class A2, we can use Chua’s results [13] with

the same arguments given in [2], and then Φ̃E
h (and hence Φh) can be extended to

R
2. More precisely, there exists a function ΦE

h belonging to

(5.54) H2,γh

α+A(h)(R
2) =

{
v : r

α−1
2 +A(h)

2 ργhDβv ∈ L2(R2) ∀β , |β| ≤ 2
}

such that

(5.55) ‖ΦE
h ‖H2,γh

α+A(h)
(R2)

≤ C‖Φh‖Ĥ2,γh (Ωh)
.

Remark 5.2. The extension result given in (5.55) agrees with (1.5), in the sense
that when h goes to zero, γh → 0, A(h) → 0, and Ωh → Ω . We emphasize the
fact that this sort of extension cannot be obtained in a direct way from the results
given in [20] due to the weights involved in the space of functions.

In what follows we will make use of ΦE
h restricted to the domain TU (see (2.17)

and Figure 4). Let us notice that Ωh ⊂ TU for any 0 < h, and, for (x, y) ∈ TU ,
we have that min1≤j≤n rj ≤ min1≤j≤n dj , and r ∼ x. Therefore, we can state the
following result (see (5.46) and Assumption 1).

Lemma 5.3. There exists an extension ΦE
h of Φh (the solution of (5.41)) belonging

to the space

H2,γh

α+A(h)(TU ) =
{
v : x

(α−1)
2 +A(h)

2 ργhDβv ∈ L2(TU ) ∀β , |β| ≤ 2
}
,

where
TU = {(x, y) ∈ R

2 : 0 < y < x 0 < x < 1}
and ρ = min1≤j≤n {rj}, with rj =

√
(x− xj)2 + (y − xα

j )2. Moreover,

‖ΦE
h ‖H2,γh

α+A(h)
(TU )

≤ ‖Φh‖H2,γh (Ωh) ≤ C‖uE − uh‖L2(Ωh).

Lemma 5.4. Let Φh be the solution of (5.41) and ΦE
h be the extension defined in

Lemma 5.3. For h small enough we have:

(1) ΦE
h ∈ W 2,p(TU ) for 1 ≤ p < 4

1+α . Moreover,

(5.56) ‖ΦE
h ‖W 2,p(TU ) ≤ C‖ΦE

h ‖H2,γh
α+A(h)

(TU )

with a constant C independent of h.
(2) ∇Φhx

β ∈ W 1,s(TU ) for β > α−1
2 , and s = 2 − ε with ε > 4γh. Moreover,

(5.57) ‖∇ΦE
h x

β‖W 1,s(TU ) ≤ C‖ΦE
h ‖H2,γh

α+A(h)
(TU )

with a constant C independent of h.
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(3) With β and s as in (2), we have that ∇ΦE
h x

β ∈ Ls∗(TU ), with s∗ = 2s
2−s =

2(2−ε)
ε . Moreover,

(5.58) ‖∇ΦE
h x

β‖Ls∗ (TU ) ≤
C

ε
‖ΦE

h ‖H2,γh
α+A(h)

(TU )

with a constant C independent of h.

Proof. Let us write∫
TU

|v|p =

∫
TU

|v|px
p(α−1+A(h))

2 ρpγhx− p(α−1+A(h))
2 ρ−pγh

for some p < 4
α+1 < 2 fixed. Applying Hölder’s inequality with exponent 2/p and

its dual exponent we obtain
(5.59)∫

TU

|v|p ≤
(∫

TU

|v|2x(α−1+A(h))ρ2γh

) p
2
(∫

TU

x− p
2−p (α−1+A(h))ρ−

2p
2−pγh

) 2−p
2

.

Calling sh = 2p
2−pγh, and applying Hölder’s inequality again with 1

1−2sh
(its dual

exponent is 1
2sh

), we have

(5.60)
(∫

TU

x− p(α−1+A(h))
2−p ρ−

2p
2−pγh

) 2−p
2 ≤ I1I2,

where

I1 =
(∫

TU

x
−(α−1+A(h)) p

(2−p)(1−2sh)

) 2−p
2 (1−2sh)

and

I2 =
(∫

TU

ρ−
1
2

)(2−p)sh
.

Now, since 1 ≤ p < 4
1+α , for h small enough we can assume that 1 ≤ p < 4

1+α+14γh
,

and using the fact that A(h) = 6γh, one can easily check that

(α− 1 + A(h))
p

(2− p)(1 − 2sh)
< 2,

which is precisely the condition that implies

I1 ≤ C

with C = C(α).
On the other hand, since

(5.61) ρ ≥ dΓ3
,

where dΓ3
is the distance function to Γ3, and taking into account that

∫
TU

1
ds < C

for any s < 1 (see for instance [15]), we get that
∫
TU

ρ−
1
2 ≤ C. As a consequence,

we have proved that for any function v and 1 ≤ p < 4
α+1+14γh

,

‖v‖Lp(TU ) ≤ C‖vx
α−1+A(h)

2 ργh‖L2(TU ).

Thanks to Lemma 5.3, we conclude that ΦE
h ∈ W 2,p(TU ), and (1) follows.
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Our next goal is to prove (2). Take β > α−1
2 ; then, for h small enough, we also

have β > (α−1+A(h))
2 . Let s = 2 − ε, with ε to be chosen below. Following similar

arguments as those of Lemma 4.1 of [2], we have that

D2ΦE
h x

β ∈ L2−ε(TU ).

Indeed, since D2ΦE
h x

βργh ∈ L2(TU ), we can write for fixed ε,∫
TU

|D2ΦE
h |sxsβ ≤

(∫
TU

(
D2ΦE

h x
βργh

)2) 2−ε
2

(∫
TU

ρ−
2γh
ε

) ε
2

,

and the last integral in the previous inequality is finite, taking for instance

(5.62) 4γh < ε

and using (5.61). On the other hand,

∇ΦE
h x

β−1 ∈ L2(TU ).

In fact, from (5.56), and embedding results for the planar Lipschitz domain TU ,

∇ΦE
h ∈ Lp∗(TU ),

with p∗ = 2p
2−p and 1 ≤ p < 4

α+1 . Now, by Hölder’s inequality with exponent p∗/2

and its conjugate exponent p
2(p−1) we get

∫
TU

|∇ΦE
h |2x2(β−1) ≤

(∫
TU

|∇ΦE
h |p

∗
) 2

p∗
(∫

TU

xp(β−1)/(p−1)

) 2(p−1)
p

.

A straightforward computation shows that the condition for the last integral to be
finite is

p(β − 1)/(p− 1) + 2 > 0

or, equivalently,

p >
2

β + 1
.

Choose p such that
2

β + 1
< p <

4

1 + α
,

which is possible since β > α−1
2 ; (2) follows.

The proof of (3) is now direct using the imbedding Ls∗(TU ) ⊂ W 1,s(TU ), s∗ =
2s
2−s = 2(2−ε)

ε , the explicit dependence on s of the constant (see the proof of Theorem

1 in [14, page 277]), and the result obtained in (2).
In fact,

‖∇ΦE
h x

β‖Ls∗ (TU ) ≤
C

2 − s
‖∇ΦE

h x
β‖W 1,s(TU ) ≤

C

ε
‖ΦE

h ‖H2,γh
α (TU )

for s = 2 − ε, with ε verifying (5.62). �

Lemma 5.5. Let Φh be the solution of (5.41). Then there exists a constant C such
that

‖∇Φh‖L2(Ωh\Ω) ≤ Ch log(1/h)‖uE − uh‖L2(Ωh)

and

‖Φh‖L2(Ωh\Ω) ≤ Ch‖uE − uh‖L2(Ωh).
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Proof. Let β, s, and ε > 4γh, as in lemma 5.4. Applying Hölder’s inequality with
s∗/2 = 2−ε

ε and its dual exponent q = s∗

s∗−2 = 2−ε
2−2ε , we have

(5.63)

∫
Ωh\Ω

|∇Φh|2 ≤
(∫

Ωh\Ω
|∇ΦE

h |s
∗
xβs∗

) 2
s∗
(∫

Ωh\Ω
x−2βq

) 1
q

,

and, therefore, from (3) in Lemma 5.4 we obtain

(5.64)

∫
Ωh\Ω

|∇Φh|2 ≤ C

ε2
‖ΦE

h ‖2H2,γh
α+A(h)

(TU )

(∫
Ωh\Ω

x−2βq
) 1

q

.

From Lemma 2.2 we get (observe that the constant given in that lemma remains
bounded when q → 1, and in the present context q = 2−ε

2−2ε , while ε will be chosen

such that ε → 0 when h → 0)

(5.65)

∫
Ωh\Ω

|∇Φh|2 ≤ C

ε2
‖ΦE

h ‖2H2,γh
α+A(h)

(TU )
h

2
q

and, since 1
q = 2−2ε

2−ε = 1 − ε
2−ε ,∫

Ωh\Ω
|∇Φh|2 ≤ C

(
h1− ε

2−ε

ε

)2

‖ΦE
h ‖2H2,γh

α+A(h)
(TU )

.

Let us now take ε = − 1
log(h) . It is clear that for h small enough, ε verifies ε > 4γh

for any choice of γh in (5.44). Taking into account that 1− ε
2−2ε ∼ 1− 1

2ε for ε → 0,
we get by standard arguments

(5.66)

∫
Ωh\Ω

|∇Φh|2 ≤ Ch2 log2(1/h)‖ΦE
h ‖2H2,γh

α+A(h)
(TU )

,

and the first estimate of the lemma follows from Lemma 5.3.
The estimate for

∫
Ωh\Ω |Φh|2 follows immediately. Since for p > 1 functions in

W 2,p(TU ) are bounded, using (5.56) we can write∫
Ωh\Ω

|Φh|2 ≤ ‖ΦE
h ‖2L∞(TU )|Ωh \ Ω|

≤ C‖ΦE
h ‖2W 2,p(TU )|Ωh \ Ω| ≤ C‖ΦE

h ‖2H2,γh
α+A(h)

(TU )
|Ωh \ Ω|,

and the proof concludes using Lemma 5.3 and Lemma 2.3. �

Now we are ready to obtain error bounds in the L2 norm. Mainly due to Lemma
5.5, it will not be possible (at least with the present approach; see Remark 3.1)
to improve the logarithmic factor log h in the estimates. For this reason, in the
intermediate computations we will replace terms such as hrh , with rh given by
(5.42), by C

√
log(1/h)h. This can be done thanks to the bound

(5.67) hrh ≤ C
√

log(1/h)h,

that holds for rh ∼ 1 − Chs with any 0 < s ≤ 1, as one can easily check from the
fact that

lim
h→0

hhs

= 1.

Our next goal is to obtain error estimates in L2(Ωh).
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Theorem 5.1. Let u be the solution of (1.2) and uh be the solution of (1.4).
Assume α < 3 and f ∈ L2(R2). Then,

‖uE − uh‖L2(Ωh) ≤ Ch2 log(1/h)‖f‖L2(Ω) + Ch‖f‖L2(Ωh\Ω).

Proof. Let e = uE − uh and Φh be the solution of (5.41). We have that
(5.68)∫

Ωh

e2 =

∫
Ωh

(−ΔΦh)e =

∫
Ωh

∇Φh∇e =

∫
Ωh

∇(Φh − ΠΦh)∇e +

∫
Ωh

∇(ΠΦh)∇e.

From (1.2) and (1.4) we get∫
Ωh

∇e∇v =

∫
Ωh\Ω

∇uE∇v −
∫
Ωh\Ω

fv ∀v ∈ Vh.

Hence,

(5.69)

∫
Ωh

e2 =

∫
Ωh

∇(Φh − ΠΦh)∇e +

∫
Ωh\Ω

∇uE∇(ΠΦh) −
∫
Ωh\Ω

f(ΠΦh).

From standard estimates for the Lagrange interpolation using finite triangular ele-
ments verifying the maximal angle condition, and (5.67), we get

‖∇(Φh − ΠΦh)‖L2(Ωh) ≤ Chrh‖Φh‖H1+rh(Ωh) ≤ Ch
√

log(1/h)‖Φh‖H1+rh (Ωh),

which under Assumption 1 for (5.45) yields

(5.70) ‖∇(Φh − ΠΦh)‖L2(Ωh) ≤ Ch
√

log(1/h)‖e‖L2(Ωh).

Therefore, the first term of (5.69) can be bounded using Theorem 4.1. Indeed,∫
Ωh

∇(Φ − ΠΦh)∇e(5.71)

≤ Ch
√

log(1/h)
{
h
√

log(1/h)‖f‖L2(Ω) + h
2

α+1 ‖f‖L2(Ωh\Ω)

}
‖e‖L2(Ωh).

For the second term in (5.69), using the estimates given in Lemma 2.7 and (1.3),
we know that∫

Ωh\Ω
∇uE∇(ΠΦh)

≤ Ch
√

log(1/h)‖f‖L2(Ω){‖∇(ΠΦh − Φh)‖L2(Ωh\Ω) + ‖∇Φh‖L2(Ωh\Ω)}.
Using (5.70), Lemma 5.5, and Assumption 1 for (5.45), we get

(5.72)

∫
Ωh\Ω

∇uE∇(ΠΦh) ≤ Ch2 log(1/h)‖f‖L2(Ω)‖e‖L2(Ωh).

Therefore, we only have to estimate the third term in (5.69),

(5.73)

∫
Ωh\Ω

f(ΠΦh) =

∫
Ωh\Ω

f(ΠΦh − Φh) +

∫
Ωh\Ω

fΦh.

Now, L2 interpolation error estimates give

‖ΠΦh − Φh‖L2(Ωh) ≤ Ch1+rh‖Φh‖H1+rh(Ωh),

and then, (5.45) with Assumption 1 and (5.67) give∫
Ωh\Ω

f(ΠΦh − Φh) ≤ Ch2
√

log(1/h)‖e‖L2(Ωh)‖f‖L2(Ωh\Ω).
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Now, for the second term in (5.73), by using Lemma 5.5 we have

(5.74)

∫
Ωh\Ω

fΦh ≤ Ch‖f‖L2(Ωh\Ω)‖e‖L2(Ωh).

So, from (5.69), (5.71), (5.72) and (5.74) we get the estimate of the theorem,
taking into account that the term arising from (5.71),

h1+ 2
α+1

√
log(1/h)‖f‖L2(Ωh\Ω),

is bounded, up to a multiplicative constant, by the term

h‖f‖L2(Ωh\Ω)

given in (5.74). �

6. Numerical examples

Now we show that meshes verifying hypotheses (1)-(3) and (Ha)-(Hb) can be
constructed by the same method given in [2].

(1) Introduce the partition of the interval (0, 1) given by

xj =

(
j

n

) 2
3−α

, 0 ≤ j ≤ n.

(2) Take the points (xj , 0) in Γ1, (xj , x
α
j ) in Γ3, and, for j > 1, divide each of

the vertical lines {(xj , y) : 0 ≤ y ≤ xα
j } uniformly into subintervals such

that each of them has length ∼ xj − xj−1.

Figure 5 shows an example of one of these meshes.

Figure 5. Graded mesh with α = 2 and n = 3

We observe that is clear that the meshes constructed in this way satisfy hypothe-
ses (1), (2), (3) and (Ha). Moreover, these meshes satisfy the additional condition
(Hb). Indeed, the first triangle T1 has vertices (0, 0), (x1, 0) and (x1, x

α
1 ), and so
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the triangle T̃1 has vertices (x1

2 , 0), (x1, 0) and (x1,
xα
1

2 ). Then, in order to check

that this triangle does not intersect Ω1
h, we analyze the function

g(x) = xα − xα−1
1 (x− x1

2
).

Hence, the hypothesis holds if we prove that g(x) > 0 for 0 ≤ x ≤ x1. An easy
calculation shows that g is convex and has a minimum in x∗ = x1

α
1

α−1
and

g(x∗) = xα
1

(
1

2
+

1

α
α

α−1
− 1

α
1

α−1

)
,

which is positive for 1 < α < 3.
Similar arguments can be used for the rest of the triangles Tj , 2 ≤ j ≤ n.
If N is the number of nodes in the partition Th, it can be proved that h2 ∼ 1/N

[15, page 393], [21]. Therefore, if f is assumed to be zero outside Ω, we have the
following error estimate in terms of the number of nodes:

‖u− uh‖L2(Ω) ≤ C
logN

N
‖f‖L2(Ω).

Observe that this estimate is quasi-optimal. Indeed, up to the logarithmic factor,
the order with respect to the number of nodes is the same as that obtained for a
smooth problem using quasi-uniform meshes.

We end this section by considering the same example presented in [2]. Here,
we compare the L2 order obtained by using uniform and graded meshes. Let us
notice that we take a non-homogeneous Neumann condition, for which we know
the analytical solution, and hence, the exact error. However, similar results are
obtained for the same source term f taking g = 0 and by computing an estimated
order of convergence from successive refinements.

Example 6.1. Consider the problem (1.1) with

f(x, y) = s(s− 1)(1 + y2/2)xs−2 + xs − 1

and

g(t, tα) =
−sαtα+s−2(1 + t2α/2) + (1 − ts)tα√

1 + α2t2(α−1)
.

Then, the solution is

u(x, y) = (1 − xs)(1 + y2/2),

and an easy calculation shows that u ∈ H2(Ω) whenever s > 3−α
2 .

We solve this using quasi-uniform meshes and graded meshes. Table 1 and Table
2 show the order of the error in the L2 norm, in terms of the number of nodes and in
terms of the mesh size for both kinds of meshes. Although the solution is in H2(Ω),
for all the values of s considered, the order of convergence is not optimal when quasi-
uniform meshes are used. On the other hand, the optimal order of convergence is
recovered by using appropriate graded meshes according to our theoretical results.
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Table 1. L2 order using quasi-uniform meshes for α = 2

value of s order in number of nodes order in h
0.55 0.769 1.497
0.6 0.785 1.528
0.65 0.801 1.561
0.7 0.820 1.597
0.75 0.842 1.640
0.8 0.869 1.693
0.85 0.904 1.761
0.9 0.949 1.847
0.95 1.001 1.951

Table 2. L2 order using graded meshes for α = 2

value of s order in number of nodes order in h
0.55 1.090 2.024
0.6 1.086 2.018
0.65 1.084 2.013
0.7 1.081 2.009
0.75 1.080 2.006
0.8 1.078 2.003
0.85 1.077 2.001
0.9 1.076 1.999
0.95 1.076 1.999
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