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A POLYNOMIAL INTERPOLATION PROCESS AT

QUASI-CHEBYSHEV NODES WITH THE FFT

HIROSHI SUGIURA AND TAKEMITSU HASEGAWA

Abstract. Interpolation polynomial pn at the Chebyshev nodes cosπj/n
(0 ≤ j ≤ n) for smooth functions is known to converge fast as n → ∞. The
sequence {pn} is constructed recursively and efficiently in O(n log2 n) flops
for each pn by using the FFT, where n is increased geometrically, n = 2i

(i = 2, 3, . . . ), until an estimated error is within a given tolerance of ε. This
sequence {2j}, however, grows too fast to get pn of proper n, often a much
higher accuracy than ε being achieved. To cope with this problem we present
quasi-Chebyshev nodes (QCN) at which {pn} can be constructed efficiently
in the same order of flops as in the Chebyshev nodes by using the FFT, but
with n increasing at a slower rate. We search for the optimum set in the QCN
that minimizes the maximum error of {pn}. Numerical examples illustrate the
error behavior of {pn} with the optimum nodes set obtained.

1. Introduction

Polynomial interpolation [8] of a given real-valued function f(x) in terms of the
Chebyshev polynomial Tk(x) = cos kθ, where we set x = cos θ,

(1.1) pn(x) =

n∑
k=0

ankTk(x), −1 ≤ x ≤ 1,

is often used in many problems of scientific computing; see Battles and Trefethen
[1] Boyd [3], Boyd and Gally [4], Mason and Handscomb [12], and Reddy and
Weideman [16]. The Chebyshev interpolation pn(x) (1.1) that interpolates f(x)
at the Chebyshev nodes xn

j = cosπj/n (0 ≤ j ≤ n) [1, 15, 21], or the Cheby-
shev points of the second kind (Berrut and Trefethen [2]) is particularly useful in
many applications, say, in integration (the Clenshaw-Curtis rule [6, 21, 22, 23]) and
differentiation [16].

The Chebyshev interpolation has the following advantages with some problems.
The Chebyshev coefficients ank are efficiently evaluated by using the FFT (fast
Fourier transform) [7], or Fourier cosine transform [5, 9, 15]. For analytic functions
the polynomial pn converges fast; indeed |ank | = O(ρ−k) (ρ > 1) [21]. The interpo-
lation error can be estimated by using the last several, say m, ank (n−m < k ≤ n)
[1, 6, 17]. Since the Chebyshev nodes {x2n

j }2nj=0 = {xn
j }nj=0 ∪ {cosπ(2j − 1)/2n}nj=1

for p2n as shown in section 2, the sequence of {pn} can be recursively constructed
by doubling n, n = 2i (i = 2, 3, . . . ) until the required accuracy is achieved [14].
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However, this sequence n = 2i grows so fast that one might often obtain an inter-
polation polynomial with much higher accuracy than the required one, particularly
when the number of function evaluations n+ 1 required is high.

To cope with the above-mentioned problem, Hasegawa, Torii and Sugiura (HTS)
[11] present a modified set of the Chebyshev nodes (a van der Corput sequence)
at which a sequence of pn (1.1) is constructed recursively with n increasing like

n = 3 × 2i, 4 × 2i, 5 × 2i (i = 1, 2, . . . ), namely at an average rate 3
√
2, as well as

with the FFT, but interpolation errors being a little worse. Sugiura and Torii [19]
generalize the above HTS sequence [11] to make a complex polynomial interpolation
at quasi-equidistributed nodes on the unit disk on the complex plane.

The purpose of this paper is to extend the HTS sequence [11] to more general ones
by presenting new sets of nodes, or quasi-Chebyshev nodes (QCN) on [−1, 1], a real
version of the above quasi-equidistributed nodes [19]. We search for the optimum
set among those QCN that give the sequence of interpolation polynomials {pn}
with the maximum error minimized. HTS’s sequence [11] proves to be near but

not optimum among those of the average rate 3
√
2. In recursively updating pn to

generate the sequence {pn} we also make use of the Chinese remainder theorem
(CRT) [13], which is nicely used in the polynomial approach to fast Fourier cosine
(FCT) and sine transforms by Steidl and Tasche [18]. We discuss the computational
complexity in the fast algorithm to construct pn and the error analysis.

This paper is organized as follows. In section 2 we define the quasi-Chebyshev
interpolation at the QCN. In section 3 we review the modulo computation with the
Chebyshev polynomials. In section 4 we give a fast algorithm for quasi-Chebyshev
interpolation with the FFT in details before discussing the computational complex-
ity. In section 5 we discuss the error of interpolation polynomials. In section 6 we
search for optimum sequences of the QCN. In section 7 we outline an algorithm
for automatic interpolation with the given tolerance. Section 8 gives numerical
examples to illustrate the behavior of interpolation errors.

2. Quasi-Chebyshev interpolation

We begin by reviewing the Chebyshev interpolation. For a positive integer n let
Vn+1(x) be a polynomial defined by

(2.1) Vn+1(x) = {Tn+1(x)− Tn−1(x)}/2.

Then the Chebyshev nodes xn
j = cos(πj/n) are zeros of Vn+1(x). The coefficients ank

of the Chebyshev interpolation pn for f are determined so that pn ≡ f (mod Vn+1).
The CRT [13, p. 27], [18] is useful to construct the sequence of interpolation poly-
nomials recursively. For example, assume that n = 2j and pn is given. Let qn−1 be
a polynomial satisfying

(2.2) qn−1 :=

n−1∑
k=0

bkTk(x) ≡ f (mod Tn).

Then since V2n+1(x) = 2Vn+1(x)Tn(x) and Vn+1(x) and Tn(x) are relatively prime,
the coefficients a2nk of the polynomial p2n ≡ f (mod V2n+1) (1.1) are obtained from
ank of pn and bk of qn−1 so that p2n ≡ pn (mod Vn+1) and p2n ≡ qn−1 (mod Tn).
Note that bk in (2.2) are efficiently evaluated by the FFT, particularly the FCT
[18].
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Now we define the quasi-Chebyshev nodes as follows. Let λ be a positive integer.
Then we see that

(2.3) Tλ(x) = 2λ−1
∏

α∈A(λ)

(x− α), A(λ) := {cosπ(2l − 1)/(2λ) : 1 ≤ l ≤ λ}.

Since Tλ(Tn(x)) = Tλn(x) we have from (2.3)

(2.4) V2λn+1(x) = 2Vλn+1(x)Tλn(x) = 2λ Vλn+1(x)
∏

α∈A(λ)

{Tn(x)− α}.

Definition 2.1 (quasi-Chebyshev nodes). Let B = {α1, . . . , αμ} be a subset of
A(λ) (2.3) consisting of μ elements in A(λ), where 0 ≤ μ ≤ λ. Let n be a positive
integer. Let Wn(B;x) be a polynomial defined by

(2.5) Wn(B;x) = 2μ Vλn+1(x)

μ∏
l=1

{Tn(x)− αl}.

Then we define the quasi-Chebyshev nodes by the zeros of Wn(B;x).

Note that if B = φ or B = A(λ), then we have the Chebyshev nodes since
Wn(φ;x) = Vλn+1(x) or Wn(A(λ);x) = V2λn+1(x), respectively.

Definition 2.2 (quasi-Chebyshev interpolation). We define the quasi-Chebyshev
interpolation Φn(B)f by

(2.6) Φn(B)f =

(λ+μ)n∑
k=0

a
(λ+μ)n
k Tk ≡ f (mod Wn(B)).

Let {B0, B1, . . . , Bι} (0 < ι ≤ λ) be a sequence such that

(2.7) φ = B0 ⊂ B1 ⊂ · · · ⊂ Bι = A(λ).

Let n = 2j (j ≥ 0). Then by using the sequence of polynomials defined by

Vλn+1 = Wn(B0),Wn(B1), . . . ,Wn(Bι) = W2n(B0) = V2λn+1,

we have the sequence of interpolation polynomials {Φn(B0)f, . . . ,Φn(Bι)f} such
that

(2.8) Φn(Bi)f ≡ f (mod Wn(Bi)), i = 0, 1, . . . , ι.

In the sequence {Φn(Bi)f} (0 ≤ i < ι, n = 2j , j = 0, 1, . . . ) the degree of the

polynomial increases geometrically at an average rate ι
√
2.

Example 2.3. The HTS sequence [11] is obtained by choosing λ = 4, ι = 3 and

Wn(B0) = V4n+1,

Wn(B1) = 2V4n+1(Tn − cos 3π/8),

Wn(B2) = 2Wn(B1)(Tn − cos 5π/8) = 2V4n+1(T2n − cos 3π/4),

Wn(B3) = 2V4n+1T4n = V8n+1 = W2n(B0).
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3. Modulo computation with the Chebyshev polynomials

The modulo computation on the Chebyshev polynomials plays an important role
in constructing the sequence of interpolation polynomials with the CRT. We collect
some relations on the Chebyshev polynomials; see [12, 18] for details.

The Chebyshev polynomial of the second kind Uk(x) is defined by

Uk(x) = sin(k + 1)θ/ sin θ, x = cos θ, k ≥ 0.

We define U−1(x) = 0 and U−k(x) = −Uk−2(x) (k ≥ 2). Further, we define
T−k(x) = Tk(x) (k ≥ 1). For Vn+1 given by (2.1) the following relations are easily
verified:

(3.1) Tn+m = 2TnTm − T|m−n| = 2Um−1Vn+1 + T|m−n|.

Lemma 3.1. For integers m and k and a positive integer n such that 0 ≤ k ≤ n
we have

(3.2) T2mn+k ≡ Tk (mod Vn+1).

Proof. Since from (3.1) we have

T2n+k = 2Un+k−1Vn+1 + Tk ≡ Tk (mod Vn+1),

we can verify (3.2) for any m recursively. �
Lemma 3.2. Let m be an integer and n be a positive integer. Then for k and β
such that 0 ≤ k ≤ n/2 and |β| ≤ 1, respectively, we have

(3.3) Tmn+k ≡ Um(β)Tk − Um−1(β)Tn−k (mod Tn − β).

Proof. The proof is by induction on m. The case m = 0 is trivial since U−1(β) = 0
and U0(β) = 1. The case m = 1 holds since from (3.1)

Tn+k = 2TnTk − Tn−k ≡ 2βTk − Tn−k.

Let l ≥ 1 and assume that (3.3) holds for 0 ≤ m ≤ l. Then from (3.1) and the
recurrence relation [12, p. 31] Ul+1(β) = 2β Ul(β)− Ul−1(β) (l ≥ 0) we have

T(l+1)n+k = 2TnTln+k − T(l−1)n+k

≡ 2β{Ul(β)Tk − Ul−1(β)Tn−k} − {Ul−1(β)Tk − Ul−2(β)Tn−k}
= {2βUl(β)− Ul−1(β)}Tk − {2βUl−1(β)− Ul−2(β)}Tn−k

= Ul+1(β)Tk − Ul(β)Tn−k.

The case m < 0 is verified similarly but we omit the proof. �

4. Fast algorithm for quasi-Chebyshev interpolation

4.1. Constructing the quasi-Chebyshev interpolation. We present an algo-
rithm to construct the sequence of interpolation polynomials

Φn(B0)f,Φn(B1)f, . . . ,Φn(Bι)f,

satisfying (2.8). Particularly, assuming that Φn(B0)f =
∑λn

k=0 a
λn
k Tk and

(4.1) Ψ[l]
n f =

n−1∑
k=0

b
[l]
k Tk ≡ f (mod Tn − αl) (1 ≤ l ≤ μ),
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are given, we compute the coefficients a
(λ+μ)n
k of Φn(B)f satisfying (2.6). The

computation of b
[l]
k in (4.1) is shown in the following subsection. For simplicity we

rewrite aλnk as b
[0]
k to express Φn(B0)f as follows:

(4.2) Φn(B0)f =

λn∑
k=0

b
[0]
k Tk ≡ f (mod Wn(B0) = Vλn+1).

We use the CRT (4.3) below to determine a
(λ+μ)n
k in (2.6) so that Φn(B)f ≡

Φn(B0)f (mod Wn(B0)) and Φn(B)f ≡ Ψ
[l]
n f (mod Tn − αl), namely

(4.3) Φn(B0){Φn(B)f} = Φn(B0)f, Ψ[l]
n {Φn(B)f} = Ψ[l]

n f (1 ≤ l ≤ μ).

Now we give the computational procedure of (4.3) to obtain a
(λ+μ)n
k in some

detail. We begin by expressing (4.2) and (4.1) as follows:

Φn(B0)f =

λ∑
m=0

b[0]mn Tmn +

λ−1∑
m=0

b
[0]
mn+n/2 Tmn+n/2

+

n/2−1∑
k=1

λ−1∑
m=−λ

b
[0]
|mn+k| Tmn+k,

(4.4)

Ψ[l]
n f = b

[l]
0 T0 + b

[l]
n/2 Tn/2 +

n/2−1∑
k=1

{b[l]k Tk + b
[l]
n−k Tn−k}.(4.5)

If n is odd, then the second terms on the right-hand sides of (4.4) and (4.5) must be
omitted and n/2− 1 means �n/2	 − 1. Recall that T−k = Tk (k > 0). By defining⎧⎪⎨

⎪⎩
b
[0]
0 = b

[0]
0 (f) = (b

[0]
0 , b

[0]
n , . . . , b

[0]
λn)

T ,

b
[0]
k = b

[0]
k (f) = (b

[0]
|−λn+k|, b

[0]
|−λn+n+k|, . . . , b

[0]
|λn−n+k|)

T (0 < k < n/2),

b
[0]
n/2 = b

[0]
n/2(f) = (b

[0]
n/2, b

[0]
n+n/2, . . . , b

[0]
λn−n/2)

T ,

(4.6)

b
[l]
k = b

[l]
k (f) = (b

[l]
k , b

[l]
n−k)

T (0 < k < n/2, 1 ≤ l ≤ μ),(4.7)

we define bk (0 ≤ k ≤ n/2) by

(4.8)

⎧⎪⎪⎨
⎪⎪⎩
b0 = b0(f) = (b

[0]
0

T
, b

[1]
0 , . . . , b

[μ]
0 )T ∈ R

λ+μ+1,

bk = bk(f) = (b
[0]
k

T
, b

[1]
k

T
, . . . , b

[μ]
k

T
)T ∈ R

2λ+2μ (0 < k < n/2),

bn/2 = bn/2(f) = (b
[0]
n/2

T
, b

[1]
n/2, . . . , b

[μ]
n/2)

T ∈ R
λ+μ.

Further, we define

(4.9) b = b(f) = (bT0 , b
T
1 , . . . , b

T
n/2)

T ∈ R
λn+μn+1.

Similarly, for simplicity we omit the superscript of a
(λ+μ)n
k in (2.6) as ak to write

Φn(B)f =

λ+μ∑
m=0

amnTmn +

λ+μ−1∑
m=0

amn+n/2Tmn+n/2(4.10)

+

n/2−1∑
k=1

λ+μ−1∑
m=−λ−μ

a|mn+k|Tmn+k.
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By defining the coefficient vectors ak (0 ≤ k ≤ n/2) by

a0 = a0(f) = (a0, an, . . . , a(λ+μ)n)
T ,

ak = ak(f) = (a|−(λ+μ)n+k|, a|−(λ+μ−1)n+k|, . . . , a|(λ+μ−1)n+k|)
T

(0 < k < n/2),

an/2 = an/2(f) = (an/2, an+n/2, . . . , aλn+μn−n/2)
T ,

we define a by

(4.11) a = a(f) = (aT
0 ,a

T
1 , . . . ,a

T
n/2)

T ∈ R
λn+μn+1.

Then, we can get a(f) by solving the linear system of equations derived from (4.3),
which gives b(Φn(B)f) = b(f), or

(4.12) bk(Φn(B)f) = bk(f) (0 ≤ k ≤ n/2).

Here we actually derive the system of equations for a(f) from (4.12). To this
end we compute b(Tmn+k) (−∞ < m < ∞, 0 ≤ k ≤ n/2). Since from (3.2) we see
that T2λmn+k ≡ Tk (mod Vλn+1) and recalling that T−k = Tk we can obtain the
following results:

Φn(B0)Tmn = Tm̂n, m̂ := λ− | mod (m, 2λ)− λ| ∈ [0, λ],

Φn(B0)Tmn+k = Tmn+k (0 < k < n/2),(4.13)

m := mod(m+ λ, 2λ)− λ ∈ [−λ, λ),

Φn(B0)Tmn+n/2 = Tm̃n+n/2,

m̃ := λ− 1/2− | mod (m, 2λ)− λ+ 1/2| ∈ [0, λ).

From (4.6) and (4.13) we have

b
[0]
0 (Tmn+k) = δ0,kp

[0]
m , b

[0]
j (Tmn+k) = δj,kq

[0]
m (0 < j < n/2),(4.14)

b
[0]
n/2(Tmn+k) = δn/2,kr

[0]
m ,

for 0 ≤ k ≤ n/2, where δj,k = 1 if j = k; otherwise δj,k = 0, and

p[0]
m := (δ0,m̂, δ1,m̂, . . . , δλ,m̂) = (

0
0, . . . , 0,

m̂
1 , 0, . . . , 0)T ∈ R

λ+1,

q[0]
m := (δ−λ,m, δ−λ+1,m, . . . , δλ−1,m) = (

−λ
0 , . . . , 0,

m
1 , 0, . . . , 0)T ∈ R

2λ,(4.15)

r[0]m := (δ0,m̃, δ1,m̃, . . . , δλ−1,m̃) = (
0
0, . . . , 0,

m̃
1 , 0, . . . , 0)T ∈ R

λ.

On the other hand, from (3.3) and (4.1) we have for 1 ≤ l ≤ μ,

Ψ[l]
n Tmn = p[l]m := Um(αl)− αlUm−1(αl),

Ψ[l]
n Tmn+k = Um(αl)Tk − Um−1(αl)Tn−k (0 < k < n/2),(4.16)

Ψ[l]
n Tmn+n/2 = r[l]mTn/2, r[l]m := Um(αl)− Um−1(αl).

From (4.7) and (4.16) we have

b
[l]
0 (Tmn+k) = δ0,k p

[l]
m, b

[l]
j (Tmn+k) = δj,k q

[l]
m (0 < j < n/2),(4.17)

b
[l]
n/2(Tmn+k) = δn/2,k r

[l]
m,

for 0 ≤ k ≤ n/2, where

q[l]
m := (Um(αl),−Um−1(αl))

T ∈ R
2.
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P =

⎡
⎢⎢⎣
Iλ−μ

Iμ Jμ

1
λ+1←↩

× × × ×

, Q =

⎡
⎢⎢⎣

Iμ Iμ
I2λ−2μ

Iμ Iμ
× × × × ×

⎤
⎥⎥⎦

R =

⎡
⎣Iλ−μ

Iμ Jμ
× × ×

⎤
⎦ , Iμ :=

⎡
⎣1 ..

.

1

⎤
⎦ ∈ R

μ×μ, Jμ :=

⎡
⎣ 1

. .
.

1

⎤
⎦ ∈ R

μ×μ

Figure 1. The matrices P , Q and R

It follows from (4.8), (4.14) and (4.17) that for 0 ≤ k ≤ n/2 and for 0 < j < n/2,

b0(Tmn+k) = δ0,k pm, pm := (p[0]
m

T , p[1]m , . . . , p[μ]m )T ∈ R
λ+μ+1,

bj(Tmn+k) = δj,k qm, qm := (q[0]
m

T , q[1]
m

T , . . . , q[μ]
m

T )T ∈ R
2λ+2μ,(4.18)

bn/2(Tmn+k) = δn/2,k rm, rm := (r[0]m
T , r[1]m , . . . , r[μ]m )T ∈ R

λ+μ.

Finally, from (4.9) and (4.18) we have

b(Tmn+k) = (b0(Tmn+k), b1(Tmn+k), . . . , bn/2−1(Tmn+k), bn/2(Tmn+k))

= (δ0,kp
T
m, δ1,kq

T
m, . . . , δn/2−1,kq

T
m, δn/2,kr

T
m)T .(4.19)

Define the matrices P , Q and R by

P = (p0,p1, . . . ,pλ+μ) ∈ R
(λ+μ+1)×(λ+μ+1),

Q = (q−λ−μ, q−λ−μ+1, . . . , qλ+μ−1) ∈ R
(2λ+2μ)×(2λ+2μ),

R = (r0, r1, . . . , rλ+μ−1) ∈ R
(λ+μ)×(λ+μ),

respectively, see Figure 1. Then since from (4.10) and (4.18) we have for 0 < j <
n/2,

b0(Φn(B)f) =

λ+μ∑
m=0

amnb0(Tmn) =

λ+μ∑
m=0

amnpm = P a0,

bj(Φn(B)f) =

λ+μ−1∑
m=−λ−μ

a|mn+j|bj(Tmn+j) =

λ+μ−1∑
m=−λ−μ

a|mn+j|qm = Qaj ,

bn/2(Φn(B)f) =

λ+μ−1∑
m=0

amn+n/2bn/2(Tmn+n/2) =

λ+μ−1∑
m=0

amn+n/2rm = Ran/2,

it follows that

(4.20) P a0(f) = b0(f), Qaj(f) = bj(f) (0 < j < n/2), Ran/2(f) = bn/2(f).

Now we examine the number of multiplications required to obtain the values of ak
(0 ≤ k ≤ (λ+μ)n) in the equations (4.20) above. Assume that P−1, Q−1 and R−1

are given. Then (λ + μ + 1)2 multiplications are required to obtain a0 = P−1b0.
Similarly, (λ + μ)2 and 4(λ + μ)2 multiplications are required for an/2 and aj ,
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respectively. The total number of multiplications MC
n (B) is

MC
n (B) = (λ+ μ+ 1)2 + (λ+ μ)2 + �n/2	4(λ+ μ)2

= 2n(λ+ μ)2 +O(1) ≤ KC(B)(λ+ μ)n,(4.21)

where KC(B) is a constant independent of n.

4.2. Fast algorithm for Ψ
[l]
n f . We present a fast algorithm based on the real FFT

[20] for evaluating the coefficients b
[l]
k of Ψ

[l]
n f (4.1).

Theorem 4.1. Let αl = cos 2πτ and ξj = 2π(j + τ )/n (0 ≤ j < n). Further, for
0 ≤ k < n, let

(4.22) ck =
1

n

n−1∑
j=0

f(cos ξj)e
−ikξj =

e−i2πkτ/n

n

n−1∑
j=0

f(cos ξj)e
−i2πkj/n.

Then we have the coefficients b
[l]
k of Ψ

[l]
n f (4.1) as follows:

(4.23) b
[l]
0 = c0, b

[l]
k = 2(
ck − αl 
cn−k)/(1− α2

l ) (0 < k < n).

Proof. From the relations

b
[l]
k = 2�(cn−k)/ sin 2πτ (0 < k < n), b

[l]
0 = �(cn)/ sin 2πτ,

cn−k = ck exp(−2πiτ ), cn = c0 exp(−2πiτ ),

given in [10, (3.12),(3.13)] it is easy to verify (4.23). �

Remark 4.2. If n = 2j (j = 1, 2, . . . ), then the summations on the rightmost-hand
side of (4.22) can be efficiently computed by the real FFT [20] with n log2 n real
multiplications.

It follows that the number of multiplications M
(1)
n required to obtain ck from

(4.22) is given by

(4.24) M (1)
n ≤ n log2 n+K(1)n,

where K(1) is a constant independent of n.

4.3. Computational costs for quasi-Chebyshev interpolation. We examine
the computational costs, particularly the number of multiplications, required to
construct the quasi-Chebyshev interpolation. Here we assume that n = 2j (j =
0, 1, . . . ).

Lemma 4.3. For n = 2j (j = 0, 1, . . . ) let Mn(B0) denote the number of multipli-

cations required to obtain the coefficients b
[0]
k of Φn(B0)f (4.2). Then we have

(4.25) Mn(B0) ≤ λn log2 n+K(0)λn,

where K(0) = max{M1(B0)/λ,K
(1) + 2KC(A(λ))}.
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Proof. The proof is by induction. The case n = 1 is trivial. Assume that (4.25)
holds for some n = 2j ≥ 1. We can verify the case 2n = 2j+1 as follows. Since
Φ2n(B0)f = Φn(A(λ))f we have from (4.21) and (4.24)

M2n(B0) ≤ Mn(B0) + λM (1)
n +MC

n (A(λ))

≤ λn log2 n+K(0)λn+ λ(n log2 n+K(1)n) +KC(A(λ))2λn

= 2λn log2 n+ {K(0)/2 +K(1)/2 +KC(A(λ))}2λn
≤ 2λn log2 n+ (K(0)/2 +K(0)/2)2λn

= 2λn log2 n+K(0)2λn. �

Similarly, we have the following theorem.

Theorem 4.4. For n = 2j (j = 0, 1, . . . ) let Mn(B) denote the number of

multiplications required to obtain the coefficients a
(λ+μ)n
k of Φn(B)f (2.6). Let

N = (λ+ μ)n. Then Mn(B) = N log2 N +O(N).

5. Interpolation error

In this section we study the error analysis of the quasi-Chebyshev interpolation
(2.6). Here we assume that n is a positive integer. Assume that the Chebyshev
series expansion of a given function f(x) defined on [−1, 1] given by

(5.1) f(x) =

∞∑
k=0

âkTk(x),

is of absolute convergence for any x ∈ [−1, 1], namely
∑∞

k=0 |âk| < ∞, where

â0 = (1/π)
∫ π

0
f(cos t) dt, âk = (2/π)

∫ π

0
f(cos t) cos kt dt (k > 0).

We begin by writing the quasi-Chebyshev interpolation Φn(B)Tk (k ≥ 0) of the

basis Tk with the coefficients vector t
(n)
k as follows:

(5.2) Φn(B)Tk =

(λ+μ)n∑
j=0

t
(n)
jk Tj , t

(n)
k := (t

(n)
0k , t

(n)
1k , . . . , t

(n)
(λ+μ)n,k)

T .

We define the error coefficients ω(n)(B) for Φn(B) and ω(B) for B by

(5.3) ω(n)(B) = max
k>(λ+μ)n

‖t(n)k ‖1, ω(B) = max
n≥1

ω(n)(B),

respectively, where ‖·‖1 denotes the 1-norm of a vector.

Theorem 5.1. The error of the quasi-Chebyshev interpolation Φn(B)f (2.6) and

the sum of errors of the coefficients ak(= a
(λ+μ)n
k ) are bounded, respectively, as

follows:

‖Φn(B)f − f‖∞ ≤ {ω(B) + 1}
∑

k>(λ+μ)n

|âk|,(5.4)

(λ+μ)n∑
k=0

|ak − âk| ≤ ω(B)
∑

k>(λ+μ)n

|âk|,(5.5)

where âk are the coefficients of the series (5.1).
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Proof. We begin by proving (5.5). Since Φn(B)Tk = Tk (0 ≤ k ≤ (λ + μ)n) from
(5.1) and (5.2) we have

Φn(B)f =
∞∑
k=0

âkΦn(B)Tk =

(λ+μ)n∑
j=0

âjTj +
∑

k>(λ+μ)n

âk

(λ+μ)n∑
j=0

t
(n)
jk Tj

=

(λ+μ)n∑
j=0

(âj +
∑

k>(λ+μ)n

âkt
(n)
jk )Tj .

From the above relation and (2.6) it follows that aj − âj =
∑

k>(λ+μ)n âkt
(n)
jk (0 ≤

j ≤ (λ+ μ)n), which gives

(λ+μ)n∑
j=0

|aj − âj | =
(λ+μ)n∑
j=0

∣∣∣ ∑
k>(λ+μ)n

âkt
(n)
jk

∣∣∣ ≤ ∑
k>(λ+μ)n

|âk|
(λ+μ)n∑
j=0

|t(n)jk |

=
∑

k>(λ+μ)n

‖t(n)k ‖1|âk| ≤ ω(n)(B)
∑

k>(λ+μ)n

|âk| ≤ ω(B)
∑

k>(λ+μ)n

|âk|.

Similarly, we can verify (5.4) as follows:

|f − Φn(B)f | ≤
∑

k>(λ+μ)n

|âk| · |Tk − Φn(B)Tk|

≤
∑

k>(λ+μ)n

|âk| (|Tk|+ |Φn(B)Tk|) ≤ {1 + ω(n)(B)}
∑

k>(λ+μ)n

|âk|,

since |Tk(x)| ≤ 1 for |x| ≤ 1 and we have

|Φn(B)Tk| ≤ ‖t(n)k ‖1 ≤ ω(n)(B) (k > (λ+ μ)n). �

The following theorem is helpful to evaluate ω(B).

Theorem 5.2. For ω(n)(B) and ω(B) defined by (5.3) we have

(5.6) ω(n)(B) = max
0≤k≤2λn

‖t(n)k ‖1, ω(B) = ω(4)(B) = max
0≤k≤8λ

‖t(4)k ‖1.

Proof. To verify the first equation of (5.6) it suffices to show that

(5.7) t
(n)
4mλn+k = t

(n)
k , t

(n)
(4m−2)λn+k = t

(n)
2λn−k,

for 0 ≤ k ≤ 2λn and m ≥ 1. From (3.2) we see that T4mλn+k ≡ Tk (mod V2λn+1).
On the other hand, since from (2.3) and (2.4) we see that Wn(B) divides V2λn+1

we have T4mλn+k ≡ Tk (mod Wn(B)), namely Φn(B)T4mλn+k = Φn(B)Tk, which
gives the first relation of (5.7). Similarly, we can derive the second relation of (5.7)
since T(4m−2)λn+k ≡ Tk−2λn = T2λn−k (mod V2λn+1).

We proceed to prove the second equation of (5.6). Let um = P−1pm, vm =
Q−1qm and wm = R−1rm. Then since from (4.19) and (4.20) we have that
a(Tmn+k) = (δ0,ku

T
m, δ1,kv

T
m, . . . , δn/2−1,kv

T
m, δn/2,kw

T
m)T , where a is defined by

(4.11), it follows that

(5.8) ‖t(n)mn+k‖1 = ‖a(Tmn+k)‖1 =

⎧⎪⎨
⎪⎩
‖um‖1 (k = 0),

‖vm‖1 (0 < k < n/2),

‖wm‖1 (k = n/2).
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From the first equation of (5.6) we have

ω(n)(B) = max
0≤k≤n
0≤m<2λ

‖t(n)mn+k‖1 = max

⎧⎨
⎩ max

0≤k≤n/2
0≤m<2λ

‖t(n)mn+k‖1, max
0≤k≤n/2
0≤m<2λ

‖t(n)mn+n−k‖1

⎫⎬
⎭

= max

⎧⎨
⎩ max

0≤k≤n/2
0≤m<2λ

‖t(n)mn+k‖1, max
0≤k≤n/2
0≤m<2λ

‖t(n)(−m−1)n+k‖1

⎫⎬
⎭ = max

0≤k≤n/2
−2λ≤m<2λ

‖t(n)mn+k‖1,

which gives with (5.8)

(5.9) ω(n)(B) = max
−2λ≤m<2λ

max{‖um‖1, ‖vm‖1, ‖wm‖1},

if n ≥ 4 and is even. Otherwise, if n ≥ 3 and odd, then ‖wm‖1 must be neglected
in the right-hand side of (5.9). If n ≤ 2, then ‖vm‖1 must be neglected. The above
discussion reveals that ω(n)(B) ≤ ω(4)(B) for any positive integer n. �

Remark 5.3. For ω(B) (5.6) we have ω(B) ≥ 1 because ‖t(4)0 ‖1 = 1, particularly,
ω(B0) = 1. If λ = 1, then A(1) = {0} in (2.3), namely we have Wn(B0) = Vn+1

and Wn(B1) = V2n+1 = W2n(B0). This means that the sequence of the Chebyshev
interpolation {Φn(B0)f} (n = 2j , j = 0, 1, 2, . . . ) at the Chebyshev nodes is the
best in that the error coefficients are always smallest.

In the next section we search for the sequence of interpolation polynomials with
error coefficients as small as possible but the sequence of degrees of polynomials
increases slower than that of the above sequence.

6. Search for the optimum sequence

The numerical and non-numerical computations in this section were carried out
by using the Mathematica 5.2 on the Apple iBook with PowerPC G4.1, 1.2GHz.

Assume that n is a power of two. We search for a sequence of polynomials
Φn(Bj)f of {Bj} (0 ≤ j ≤ ι) satisfying (2.7) such that the degree of polynomial
n(λ+ μj), where μj = |Bj |, increases monotonously, namely

nλ < n(λ+ μ1) < n(λ+ μ2) < · · · < n(λ+ μι−1) < 2nλ < · · · ,
where

1 ≤ μj − μj−1 ≤ μj+1 − μj (0 < j < ι), μι − μι−1 ≤ 2μ1.

Recall that μ0 = 0 and μι = λ. Our particular interest is in the sequence {Bj} of
the smallest ω, where ω is defined by

ω = max
0≤j<ι

ω(Bj),

for λ ≥ 2 and 1 ≤ ι ≤ λ. From the practical point of view we search for the
cases ι = 2, 3 and 4 only in the ranges 2 ≤ λ ≤ 17, 3 ≤ λ ≤ 19 and 4 ≤ λ ≤ 20,
respectively. The results obtained are shown in Table 1. Recall that Wn(B0) =
Vλn+1.

Remark 6.1. The sequence of HTS [11] shown in the Example 2.3 is the case where
ι = 3 and λ = 4 and ω = 5.82 · · · , slightly larger than the optimum value 5.47 · · ·
shown in Table 1.
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Table 1. Optimum node set

ι 2 3 4

ω 3 5.47· · · 6.75· · ·
λ 3 5 9

(μ1, μ2, μ3, μ4) (1, λ) (1, 3, λ) (2, 4, 6, λ)
degree of pN {3,4}×2i {5,6,8}×2i {9,11,13,15}×2i

B1 {cosπ/2} {cos(π/2± π/9)}
B2\B1 {cos(1± (1− 1/λ))π/2}
B3\B2 {cos(π/2± π/5)} {cos(π/2± 2π/9)}
B4\B3 {cosπ/2, cos(π/2± 3π/9)}

Wn(B1)/(2Wn(B0)) Tn T2n + cos 2π/9
Wn(B2)/(2Wn(B1)) T2n − cosπ/λ
Wn(B3)/(2Wn(B2)) T2n + cos 2π/5 T2n + cos 4π/9
Wn(B4)/(2Wn(B3)) T3n

7. Outline of the algorithm for automatic interpolation

We outline the recursive construction of a sequence of interpolation polynomials
with an estimated error being within the tolerance ε, namely, the interpolation
process based on the sequence (2.8) where Bi = {αj : 1 ≤ j ≤ μi} (1 ≤ i ≤ ι)
(1 ≤ ι ≤ λ) and μi = |Bi| and μ0 = 0. The details of the implementation will appear
elsewhere. We assume that the estimate E(Φn(B)f) for the error ‖Φn(B)f − f‖ ≈
E(Φn(B)f) is given. Schemes for estimating the error are presented in Sloan and

Smith [17] and HTS [11], where the last several Chebyshev coefficients = |a(λ+μ)n
(λ+μ)n−i|

(i ≥ 0) in (2.6) are used.

Outline of the algorithm
Output is an approximate interpolating polynomial with an estimated error.

1. Initialization.
n = 1; i = 1;
Compute Φ1(B0)f ≡ f (mod Vλ+1).

2. Computation of Ψ
[l]
n f .

While i ≤ ι {
• compute Ψ

[l]
n f ≡ f (mod Tn − αl) (μi−1 < l ≤ μi).

• if E(Φn(Bi)f) ≤ ε, do Step 3.
• i = i+ 1;

}
Combine Φn(B0)f with Ψ

[l]
n f (1 ≤ l ≤ μι) to obtain Φ2n(B0)f .

n = 2n; i = 1; repeat Step 2.
3. Treatment on the convergence.

Combine Φn(B0)f with Ψ
[l]
n f (1 ≤ l ≤ μi) to obtain Φn(Bi)f .

exit.
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Table 2. Errors E
(C)
N at the Chebyshev nodes and E

(Q)
N at

the quasi-Chebyshev nodes. The values in bold face of the ratio

(= E
(Q)
N /E

(C)
N ) mean maxima.

Chebyshev quasi-Chebyshev
ι = 2 ι = 3 ι = 4

N E
(C)
N E

(Q)
N ratio E

(Q)
N ratio E

(Q)
N ratio

5 5.96 5.96 1
6 5.40 5.40 1 5.80 1.07
8 4.40 4.93 1.12 5.45 1.24

9 3.96 3.96 1
10 3.56 3.56 1
11 3.19 3.82 1.20

12 2.86 2.86 1 3.35 1.17
13 2.56 6.17 2.41
15 2.04 3.53 1.73

16 1.81 2.34 1.29 3.62 2.00
18 1.44 1.44 1

20 1.13 1.13 1
22 8.92×10−1 1.32 1.48

24 7.01×10−1 7.01×10−1 1 9.82×10−1 1.40
26 5.50×10−1 2.01 3.66
30 3.73×10−1 1.08 2.88

32 3.09×10−1 4.30×10−1 1.39 9.24×10−1 2.99
36 2.09×10−1 2.09×10−1 1

40 1.39×10−1 1.39×10−1 1
44 9.19×10−2 1.27×10−1 1.38

48 6.01×10−2 6.01×10−2 1 6.72×10−2 1.12
52 3.91×10−2 1.27×10−1 3.24
60 1.66×10−2 5.39×10−2 3.24

64 1.10×10−2 1.71×10−2 1.55 3.35×10−2 3.04
72 4.80×10−3 4.80×10−3 1

80 2.06×10−3 2.06×10−3 1
88 8.79×10−4 1.54×10−3 1.75

96 3.82×10−4 3.82×10−4 1 6.20×10−4 1.62
104 1.65×10−4 4.88×10−4 2.95
120 3.04×10−5 8.31×10−5 2.73
128 1.32×10−5 2.31×10−5 1.76 3.43×10−5 2.60
...

480 1.03×10−21 3.08×10−21 2.99
512 3.54×10−23 6.22×10−23 1.76 9.29×10−23 2.63

8. Numerical examples

The computations in this section are carried out in the multiple precision arith-
metic with the Mathematica. We show the errors EN of interpolation polynomials
pN at the optimum node set in the QCN for each ι = 2, 3, 4 given in section 6 for
the function f given by

f(x) =
1− ux

1− 2ux+ u2
=

∞∑
k=0

un Tk(x), u = 0.9.
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Here we define the error EN by

EN = max
0≤i≤ν

|pN (xi)− f(xi)|,

where xi = cosπi/ν for some large ν, say ν = 214. Although we computed the
errors EN for many values of N ≤ 2048, indeed E2048 = O(10−93), and we show
the results of small values of N in Table 2 and Figures 2, 3 and 4. Table 2 lists EN

(5 ≤ N ≤ 128, N = 480, 512) at the Chebyshev nodes and those at the optimum
node set in the QCN, where N = 3 × 2i, 4 × 2i, N = 5 × 2i, 6 × 2i, 8 × 2i, and
N = 9×2i, 11×2i, 13×2i, 15×2i, (i = 1, 2, . . . ) in the cases ι = 2, 3, 4, respectively.
Figures 2, 3 and 4 illustrate the comparison of the behaviors of the errors EN at the
optimum node sets (solid lines) with those at the Chebyshev nodes (broken lines).
Comparing Figures 2, 3, and 4 reveals that although the behavior of the errors
with small N for ι = 4 is a little worse than those for ι = 2, 3, as expected by the
searched result of optimum sequences, ω = 3, 5.47, 6.75 for ι = 2, 3, 4, respectively,
the required accuracy is attained with the smallest value of N when large N is
required. It is found that the interpolation scheme of ι = 4 is advantageous when
the number of function evaluations required is high.
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Figure 2. Errors EN of polynomials pN interpolating (1 − ux)/
(1−2ux+u2), u = 0.9 in the case ι = 2, where N+1 = 2j(3+μ)+1
(μ = 0, 1) denotes the number of function evaluations. The solid
line joins the errors EN based on the present node set while the
broken line joins those on the Chebyshev nodes.
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Figure 3. Errors EN in the case ι = 3, where N = 2j(5 + μ) (μ = 0, 1, 3)
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Figure 4. Errors EN in the case ι = 4, where N = 2j(9 + μ) (μ = 0, 2, 4, 6)
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